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VISCO-POTENTIAL FLOWS IN ELECTROHYDRODYNAMICS

MATTHEW HUNT∗ AND DENYS DUTYKH

Abstract. In this study we consider the problem of the interface motion under the

capillary–gravity and an external electric force. The infinitely deep fluid layer is assumed

to be viscous, perfectly conducting and the flow to be incompressible. The weak viscous

effects are introduced using the Helmholtz–Leray decomposition and the visco-potential

flow approach. The electric charge distributions above and on the free surface are consid-

ered. Finally, we derive some linearized analytical solutions for the free surface elevation

shape under the localised pressure distribution and the combined action of the forces

mentioned hereinabove.

Key words and phrases: electro-hydrodynamics; free surface flows; viscous dissipation;

potential flow
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1. Introduction

Liquid thin films are a common occurance in the fields of biology and engineering un-
der the guise of coating flows, and have been subject to intensive study. Instabilities and
the ensuing dynamics associated to the liquid film can by caused by a number of effects
including interfacial instabilities due to surface tension variations (e.g. Marangoni insta-
bilities), gravitational instabilities (such as Rayleigh–Taylor) as well as instabilities caused
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by external fields like electric or magnetic ones. Instabilities of the interface can also be
due to topography or a moving pressure distribution (as it is considered in this study),
but an external electric field may lead to the stabilization of the interface. More precisely,
depending on the asymptotic form of the electric field in question, its effect can be either
stabilizing [23] or destablizing [21].

The study of electro-capillary waves was first initiated by G.I. Taylor et al.[21] for 3D
waves with a prescribed disturbance of the interface. On the other hand, in modern
investigations the disturbance is determined according to an applied external electric field
with the free surface profile is calculated by solving the electro-hydrodynamic formulation
[19]. The work carried out by Hunt [11] focused on forced waves in electrohydrodynamics
using the methods set out in [19, 26] to examine linear and weakly nonlinear free surface
flows in 2D and weakly 3D (Kadomtsev-Petviashvili-type models). The method proposed
in the present study takes into account the viscous effects [24, 25, 22, 23] by keeping the
simplicity of the potential flow approach. For the sake of the clarity of the exposition, we
illustrate this method in 2D inifinite depth case.

The theory of visco-potential flows probably originates from the pioneering work of
J. Boussinesq (1895) [1] who estimated the water wave amplitude decay due to the effect
of viscosity in the linear approximation. Then, this research has been continued in the 70’s
in the context of nonlinear long wave models [18, 14]. Later, Kit & Shemer (1989) [15]
developed a theoretical model which allows the estimation of the wave energy dissipation
which included the friction effect at the bottom and lateral walls in a rectangular wave
tank. The potential flows of viscous fluids were also thoroughly investigated theoretically
by D. Joseph and his collaborators [13, 12]. The visco-potential formulation in the deep
water case was derived by Dias et al. (2008) [5] and generalized to the finite depth case
in [16] and later in [8, 7]. This formulation was validated experimentally and numerically
for the practically important case of solitary wave propagation in [17]. More recently, the
damping rates for various dissipative operators were investigated numerically in [2, 20].
Finally, the asymptotic long time behaviour of some visco-potential models were found
and justified analytically in [4, 3, 9].

The present manuscript is organized as follows. After a brief introduction, in Section 2
we present the derivation of the electro-hydrodynamic visco-potential formulation. An
analytical solution to the linearized formulation is shown in Section 3 for several values
of problem parameters. A particular case of the electro-hydrodynamic problem where
the charge is distributed on the interface is considered in Appendix A. Finally, the main
conclusions and perspectives of this study are outlined in Section 4.

2. Mathematical Model

Consider an infinitely deep channel of a perfectly conducting weakly viscous and incom-
pressible fluid (referred to as the heavy fluid) and is in the region {(x, y)| x ∈ R, y 6 η(x, t)}.
The flow is assumed to be exactly two-dimensional. A Cartesian coordinate system (x, y)
is introduced, with y pointing vertically upwards. The interface between two fluids is given
by y = η(x, t). The sketch of the physical domain is given on Figure 1. Below we will
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Figure 1. Sketch of the physical domain considered in this study.

adopt the so-called free surface assumption and the light fluid will enter into equations
only through the electric forces.

The velocity field in the heavy fluid in region I is then given as u = ui + vj + 0k. We
assume that there is an electric field in region II {(x, y)| x ∈ R, y > η(x, t)}. The electric
field E satisfies the equations ∇×E = 0 and, thus, can be written in the following potential
form:

E ≡ −∇V.

Since there are no free charges in the light fluid, the Gauss’s law states that ∇ · E = 0,
and hence the governing equation for the electric potential reads:

∇
2V ≡ ∂2V

∂x2
+
∂2V

∂y2
= 0 y > η(x, t).

This equation is completed by appropriate boundary conditions. At infinity we require the
following asymptotic behaviour of the solution V (x, y):

V (x, y) → −E0y as y → +∞
The usual linear incompressible Navier-Stokes equations are used and use the Helmholtz
decomposition [5, 8] on the velocity vector u = (u, v, 0)

u = ∇ϕ+∇×A, (2.1)

with A = (0, 0, ψ). The idea of the approach taken here is to say that the motion is
mainly potential flow but with a small non-potential part, represented by the function ψ
i.e. ‖ψ‖L2 ≪ ‖ϕ‖L2.1 Along with a small viscosity, ν. The decomposition of the velocity
is inserted into the linear Navier-Stokes equations to end up with two separate equations
for ϕ and ψ

∂ψ

∂t
= ν∇2ψ, ∇2ϕ = 0

1The L2 norn is given by:

‖f‖L2 =

(
ˆ

R2

|f(x, y)|2dxdy
)

1

2
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Moreover, in 2D the velocity field u can be simply expressed as:

u =
∂ϕ

∂x
+
∂ψ

∂y
, v =

∂ϕ

∂y
− ∂ψ

∂x
.

The use of decomposition for the velocity and the governing equation for ψ yields a Bernoulli
equation in the usual way:

∂ϕ

∂t
+
pI

ρ
+ gy = C. (2.2)

2.1. Boundary Conditions

In constrast to some previous studies which considered the linear case, in this section
the derivations of the fully nonlinear equations will be presented.

The capillary and electric effects come into the problem through the Young– Laplace
equation at the interface between two media:

[

n̂ ·T · n̂
]2

1
= σ∇ · n̂, (2.3)

where the brackets [·] denotes evaluation at each side of the interface y = η(x, t) and the
unit normal n̂ (pointing from the lower fluid to the upper fluid) and unit tangent vector
are given by

n̂ =
(−ηx, 1)
√

1 + η2x
, t̂ =

(1, ηx)
√

1 + η2x
(2.4)

The stress tensor take on two different forms depending upon which region is under con-
sideration. In region I,

Tij = −pδij + τij ,

where p is the pressure as defined above and δij is the Kronecker delta symbol. and the
tensor τij corresponds to the viscosity. The stress tensor in region II is given by

Tij = −Pδij + Σij ,

where P is the pressure distribution on the interface and Σij corresponds to the electric
field in region II. Two constitutive components of the viscous and electric stresses are
correspondingly:

• τij = µ
(

∂jui + ∂iuj
)

,

• Σij = εp

(

EiEj − 1
2
δijEkEk

)

,

where µ = ρν is the dynamic viscosity and εp is the electric permittivity. Recall that
the Young–Laplace condition (2.3) involves the projection of the stresses onto the normal
direction n̂ to the interface. In order to avoid cumbersome expressions, we will perform
the computations of n̂ ·T · n̂ by parts. The viscous part of the stress tensor T gives:

n̂ · τ · n̂ = n̂iτijn̂j = n̂2
1τ11 + n̂2

2τ22 + 2n̂1n̂2τ12 =

ν

1 + η2x

[

η2x(ϕxx + ψxy)− 2ηx(2ϕxy + ψyy − ψxx) + 2(ϕyy − ψxy)
]

.

The same expansion can be also done for the Faraday stress tensor Σ:

n̂ · Σ · n̂ = n̂2
1Σ11 + n̂2

2Σ22 − 2n̂1n̂2Σ12,



Visco-potential flows in Electro-hydrodynamics 5 / 13

where

Σ11 =
εp

2
(V 2

x − V 2
y ), Σ12 = εpVxVy, Σ22 = −εp

2
(V 2

x − V 2
y ).

Where the approximation ‖ψ‖L2 ≪ ‖ϕ‖L2 was used along with a small viscosity.

∂ϕ

∂t
+

1

2
|∇ϕ|2 + gη +

P

ρ
− 1

ρ(1 + η2x)

[

η2xΣ11 + 2ηxΣ12 + Σ22

]

+
ν

1 + η2x

(

η2xϕxx

− 2ηxϕxy + 2ϕyy

)

=
σ

ρ

ηxx

(1 + η2x)
3/2
, on y = η(x, t).

The free surface equation is modified in the presence of a small viscosity which is on of the
results of the visco-potential flow theory [16, 5, 8]:

∂η

∂t
=
∂ϕ

∂y
+ 2ν

∂2η

∂x2
.

2.2. Fully Nonlinear Formulation

Now we can write down the set of fully nonlinear equations which govern the motion of
the viscous fluid under the action of an exterior electric force:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, −∞ < y 6 η(x, t)

∂2V

∂x2
+
∂2V

∂y2
= 0, η(x, t) < y < +∞

∂η

∂t
+
∂ϕ

∂x

∂η

∂x
=
∂ϕ

∂y
+ 2ν

∂2η

∂x2
, y = η(x, t)

∂ϕ

∂t
+

1

2
|∇ϕ|2 + gη +

P

ρ
− 1

ρ(1 + η2x)

[

η2xΣ11 + 2ηxΣ12 + Σ22

]

+
ν

1 + η2x

(

η2xϕxx − 2ηxϕxy + 2ϕyy

)

=
σ

ρ

ηxx

(1 + η2x)
3/2
, on y = η(x, t).

∂V

∂x
+
∂η

∂x

∂V

∂y
= 0, y = η(x, t) (2.5)

V → −E0y y → +∞,

∂ϕ

∂y
→ 0, y → −∞

This set of equations will be used below to derive some linearised solutions to the electro-
hydrodynamic problem of weakly viscous fluids. A particular case of this problem when
the charge is distributed on the interface is discussed in Appendix A.

Remark 1. The formulation presented above was done in deep water approximation. The

generalization to the finite depth case can be done relatively easily. The usual bottom

impermeability condition is modified to include a nonlocal term in time which is due to the

presence of a boundary layer at the bottom. the details can be found in [16, 8, 7]. For the

same reasons, the dispersion relation of the visco-electro-hydrodynamic problem coincides

with the classical visco-potential formulation [7, 6].
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2.3. Linear Wave Theory on a Uniform Flow

The method of derivation in this case for infinite deph is given in [26] section 4.2.2. It is
assumed that there is a uniform flow with speed U , and choose the asymptotic expansion
as follows:

ϕ = Ux+ εϕ1 + o(ε)

η = εη1 + o(ε)

V = −E0y + εV1 + o(ε)

p = εp1 + o(ε)

The linearisation of the system of equations presented in Section 2.2 reads:

∂2ϕ1

∂x2
+
∂2ϕ1

∂y2
= 0 −∞ < y 6 0

∂2V1

∂x2
+
∂2V1

∂y2
= 0 0 6 y < +∞

U
∂η1

∂x
=

∂ϕ1

∂y
+ 2ν

∂2η1

∂x2
y = 0

U
∂ϕ1

∂x
+
p1

ρ
+ gη1 +

εpE
2
0

ρ

∂V1

∂y
+ 2ν

∂2ϕ1

∂y2
=

σ

ρ

∂2η1

∂x2
y = 0 (2.6)

∂V1

∂x
= E0

∂η1

∂x
∂ϕ1

∂y
→ 0 y → −∞

∂V1

∂y
→ 0 y → +∞

The obtained linear system will be understood uising the Fourier analysis:

ϕ1(x) =
1

2π

ˆ

R

ϕ̂1e
ikx dk, V1(x) =

1

2π

ˆ

R

V̂1e
ikx dk,

η1(x) =
1

2π

ˆ

R

η̂1e
ikx dk, p1(x) =

1

2π

ˆ

R

p̂1e
ikx dk.

The solutions for ϕ1(x, y) and V1(x, y) can be easily obtained:

ϕ1(x, y) =
1

2π

ˆ

R

A(k)e|k|yeikx dk, V1(x, y) =
1

2π

ˆ

R

B(k)e−|k|yeikx dk.

By satisfying the boundary conditions one can find the unknown functions A(k) and B(k):

A(k) = (iU + 2νk) sgn(k)η̂1(k), B(k) = E0η̂1(k).

Inserting all the elements into equation (2.6) allows us to find the Fourier transform of the
free surface elevation:

η̂1(k) =
p̂1(k)

ρU2

[

k sgn(k)− 4ik2ν sgn(k)

U
− g

U2
+
εpE

2
0

ρU2
|k| − 4ν2k3 sgn(k)

U2
− σ

ρU2
k2
]−1

.
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For brevity denote sk = sgn(k) and note that ksk = |k|. Following section 4.2.2 in [26], a
Gaussian distribution distribution is used:

p1(x) =
ρU2

2
e

−5g2x2

U4 .

The expression for the free surface elevation in the physical space under this pressure
distribution is then given by:

η1(x) =
U2

4g
√
5π

Re

ˆ

R

e
− k2U4

20g2 eikx

|k| − 4iνk|k|
U

− g
U2 +

εpE2

0
|k|

ρU2 − 4ν2k2|k|
U2 − σk2

ρU2

dk. (2.7)

This expression can be further simplified by choosing new dimensionless variables:

l :=
U2

g
k, x̂ :=

g

U2
x, ζ :=

g

U2
η1.

With these new variables the solution (2.7) becomes:

ζ(x̂) =
1

4
√
5π

Re

ˆ

R

e−
l2

20 eilx̂

(1 + β)|l| − 1− iδl|l| − γl2|l| − αl2
dl, (2.8)

where

α :=
σg

ρU4
, β :=

εpE
2
0

ρU2
, γ :=

4ν2g2

U6
, δ :=

4νg

U3
.

For instance, we can notice that the coefficient γ = O(δ2) ≪ 1 and, thus, can be neglected.
The integrand in (2.8) is complex. The complex part plays the role of the Rayleigh dis-
persion as mentioned in [26]. From an analytical point of view, the complex terms remove
the singularity. Consequently, formula (2.8) will always define a valid solution in L2 due
to the complex denomenator. It is expected also that ζ(x̂) → 0 as x̂→ ±∞.

3. Results

Comparisons of (2.8) can be made with previous established results in the literature, taking
β = γ = δ = 0 reduces to the case in [26] and likewise setting γ = δ = 0 reduces to the
case in [11]. In order to illustrate the analytical result derived in the previous Section, we
plot on Figure 2 the free surface elevation shape predicted analytically by solution (2.8).
The parameters were chosen to be α = 0.3, β = 0.15 and δ = 0.01. The profile for these
base values is given in Figure 2.

When δ = 0, there is a possibility that there are two zeros in the denominator of (2.8)
if the values are taken above the minimum. The weakly viscous terms act as a kind of
variable Rayleigh dispersion term which is why there is more damping than is normally
seen with the inviscid case. In order to compare the viscous case with previous cases, the
case in [11] is given by:

As can be seen quite clearly, even a small viscosity has a large impact on wave of higher
frequency by damping it severly and increases the amplitude of the lower frequency whilst
also damping the waves. It is also interesting that the addition of viscosity doesn’t affact
the wavelength of the short and long waves. In order to illustrate the free surface elevation
depends on the parameter β (which measures the relative importance of intertia to the
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Figure 2. Typical free surface profile predicted by solution (2.8).
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Figure 4. Free Surface Profiles for Various Values of β

electric force), we represent in figure X the same solution ((2.8)) for several values of β
The same result is plotted on Figure 5 also for the parameter δ, which measures the relative
magnitude of dissipative effects. The increase in parameters leads the slight decrease of
the amplitude, as it can be expected from the analytical solution.
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Figure 5. Free surface elevation shapes for various values of the parameter δ.

4. Conclusions & Perspectives

In this study we considered the problem of a free surface flow description in the presence
of electric forces. Moreover, the fluid is assumed to be weakly viscous. By using the visco-
potential flow theory, the classical potential formulation was modified to take into account
weak dissipative effects. The derivations presented in this study were performed in the
deep water approximation. However, the generalization to the finite depth case does not
represent any major difficulties.

The free surface shape in the presence of a uniform current and a localized interfacial
pressure distribution was computed analytically. The dependence of this shape on two
important dimensionless parameters was studied numerically as well.

This study opens a certain number of directions for future investigations. For instance,
the present analysis was only linear. Nonlinearities have to be taken into account as well
as the finite depth effects. Moreover, long wave asymptotics can be also performed to
investigate the shallow water regime.
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A. Electric charge at the interface

This section details the analysis of the problem where there is an interfacial surface
charge. In the inviscid case, as there were co shearing forces, there could be no dynamic
charge on the surface and it was only possible to compute in induced charge on the interface
given by:

ΣQ = ǫp
∂V

∂n
Then the definition leads to the same result as in the inviscid case, that the induced surface
charge is just the Hilbert transform of the derivative of the free surface profile. For the
dynamics surface charge equation (2.5) is replaced with two following equations [10]:

n̂ ·
[

εpE
]2

1
= q,

∂q

∂t
+∇T · (qu) + n̂

[

σqE
]2

1
= 0.

The operator ∇T is the covariant derivative defined as

∇T = ∇− n̂
(

n̂ ·∇
)

.

Below we will perform the linear analysis of this problem as well. The expansions in this
case are given by:

ϕ = Ux+ εϕ1 + o(ε)

η = εη1 + o(ε)

V = −E0x+ εV1 + o(ε)

q = εq1 + o(ε)

p = εp1

The covariant derivative on the free surface with the normal defined by equation (2.4) is
expressed as

∇T =
( ∂

∂x
, 0
)

+ ε
(∂η1

∂x

∂

∂y
,
∂η1

∂x

∂

∂x

)

+ o(ε)

The equations reduce to the following [10]:

U
∂q1

∂x
+ σqE0

∂η1

∂x
+ σq

∂V1

∂y
= 0

−εpE0
∂η1

∂x
+ εp

∂V1

∂y
= q1

Two last equations can be combined into one:

−εpE0U
∂2η1

∂x2
+ Uεp

∂2V1

∂x∂y
+ σqE0

∂η1

∂x
+ σq

∂V1

∂y
= 0.

The rest of linearised equations in this case is exactly the same as in the previous section.
The analytical expression for the linearized free surface elevation in the Fourier space can
be derived in a similar way:

η̂1(k) =
[

k sgn(k)− 4iνk2 sgn(k)

U
− g

U2
+
εpE

2
0

ρU2
kf(k)− σ

ρU2
k2
]−1 p̂1(k)

ρU2
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Then, the free surface elevation in the physical space can be easily obtained:

η1(x) =
1

2πρU2

ˆ

R

p̂1(k)e
ikx

k sgn(k)− 4iνk2 sgn(k)
U

− g
U2 +

εpE2

0

ρU2 kf(k)− σ
ρU2k2

dk, f(k) =
εpUk + iσq
σq + ikUεp

Using the same scalings and pressure form as before, the integral can be reduced to the
following dimensionless form:

ζ(x̂) =
1

4
√
5π

Re

ˆ

R

e−
l2

20 eix̂l

|l| − iδl|l| − 1 + βlf̃(l)− αl2
dl,

where

f̃ =
µl + i

iµl + 1
, µ =

εpg

Uσq
,

and coefficients α, β and δ are defined as in the previous section.
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