
HAL Id: hal-00908662
https://hal.science/hal-00908662v2

Submitted on 3 Feb 2014 (v2), last revised 18 Mar 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive Estimation of Wireless Link Performance
from Medium Physical Parameters Using Support

Vector Regression and k-Nearest Neighbors
Guillaume Kremer, Philippe Owezarski, Pascal Berthou, German

Capdehourat

To cite this version:
Guillaume Kremer, Philippe Owezarski, Pascal Berthou, German Capdehourat. Predictive Estimation
of Wireless Link Performance from Medium Physical Parameters Using Support Vector Regression and
k-Nearest Neighbors. 2014. �hal-00908662v2�

https://hal.science/hal-00908662v2
https://hal.archives-ouvertes.fr

Predictive Estimation of Wireless Link Performance
from Medium Physical Parameters Using Support

Vector Regression and k-Nearest Neighbors

Guillaume Kremer1,2, Phillippe Owezarski1,2, Pascal Berthou1,2 and German Capdehourat3
1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

2Univ de Toulouse, UPS, INSA, LAAS, F-31400 Toulouse, France
3Instituto de Ingenierı́a Eléctrica, Facultad de Ingenierı́a, Universidad de la República, Uruguay

Email: {kremer, owe, berthou}@laas.fr, gcapde@fing.edu.uy

Abstract—In wireless networks, the physical medium is the
cause of most of the errors and performance drops. Thus, an
efficient predictive estimation of wireless networks performance
w.r.t. medium status by the communication peers would be a
leap ahead in the improvement of wireless communication. For
that purpose, we designed a measurement bench that allows us
to accurately control the noise level on an unidirectional WIFI
communication link in the protected environment of an anechoic
room. This way, we generated different medium conditions and
collected several measurements for various PHY layer parameters
on that link. Using the collected data, we analyzed the ability
to predictively estimate the throughput performance of a noisy
wireless link from measured physical medium parameters, using
machine learning (ML) algorithms. For this purpose, we chose
two different classes of ML algorithms, namely SVR (Support
Vector Regression) [1] and k-NN (k-Nearest Neighbors) [2], to
study the tradoff between complexity and estimation accuracy.
Finally, we ranked the pertinence of the most common physical
parameters for estimating or predicting the throughput that can
be expected by users on top of the IP layer over a WIFI link.

I. INTRODUCTION

Wireless networks are of essential importance nowadays.
Users are more and more mobile and access the Internet thanks
to mobile devices as laptops, smart phones or tablets. Even
when staying at home, users want to get rid of wires. However,
the wireless medium does not provide the same capabilities
as wired networks on copper or fiber. In wireless networks,
the physical medium is limited in terms of capacity, and the
cause of most of the errors and performance drops. From a
user or administrator point of view, the quality of wireless
communication can appear as very versatile and unpredictable.
This makes wireless networks very complex to manage, and
users often experience communication quality drops that are
completely unexpected.

Monitoring wireless networks is then very difficult. Moni-
toring such networks at the IP layer is very inefficient (whereas
it is the way it is done in wired networks with extremely good
results). Some previous work tried to include the MAC level
in the monitoring of wireless networks [3], but none integrates
the full monitoring of the network from physical to network
layers. We nevertheless argue that this is the direction to follow,
and propose our preliminary study to estimate the relations
between the physical signal parameters and the performance
at the network level. Physicists are doing very strong studies on

the signal level, but do not study the impact on upper layers
[4]. In this paper, it is proposed to bridge the gap between
the signal and the digital world in wireless communication
networks.

This paper then presents a double contribution.

First, we designed and built a platform for benchmarking
wireless communications. Many wireless testbeds, identified
in the literature, already exist for that purpose. However, the
major trend is to build large grid of wireless nodes which
can be programmed individually to transmit, receive and/or
measure data. Custom topologies can be made out of the
grid by switching on and off nodes. For example, Orbits [5]
follows this approach. However, these platforms are built in
open environments and lack the isolation and environmental
control required to conduct an accurate cross-layer study on
wireless networks. Contrary to these works, our testbed is
built in an anechoic chamber to fully control the experimental
environment, and avoid external signals to disturb the be-
havior of the communicating devices and the quality of the
measurements. We used on this platform the common digital
communications devices that are widely used (laptops, tablets,
smart phones), as well as dedicated signal measurement tools
specifically designed for physicists. Anyway, because of space
limit, this paper concentrates on the study of a WIFI link.

Second, the paper presents the analysis of the relations
between the PHY parameters of the WIFI connection, and
the performance parameters on top of the IP layer. It aims
at demonstrating that, at the opposite of wired networks, the
monitoring of wireless network can not avoid monitoring the
physical level. It is shown that using a very limited number of
signal parameters (one or two), it is possible to very accurately
estimate communication performance and quality parameters
as network level throughput, delay or loss ratio. With a
carefully selected and set ML algorithm, it is even possible
to predict performance drops at the scale of one second.
For this purpose we rely on two kinds of supervised ML
algorithms: SVR and k-NN. Both of them are known to have
good prediction capabilities and to succeed in many domains
as long as these domains can provide accurate time series [2],
[6]. However their operational characteristics are very different
making them more prone to different usage and applications.
For example, SVR algorithms are strong learners whereas k-
NN’s learning is weak, thus making them unable to assimilate

training data on the fly because of the huge computational
complexity. However, SVR algorithms are more sophisticated
than k-NN and so are more efficient to generalize data and
usually more accurate on the estimations [2]. Therefore, we
will compare the relative estimation performances obtained
with SVR and k-NN as well as their performance concerning
their time of execution (learning and estimation delays). Again,
because of space limit, the paper only presents the results with
the most common physical signal parameters as SNR or RSS
for estimating the throughput obtained on top of the IP layer.

II. MACHINE LEARNING ALGORITHMS

A. SVR theory

This section presents the basic theory behind SVR. More
details can be found in [7]. Given a set of training data
{(x1, y1), ..., (xn, yn)} ∈ X × R with X the input space. The
purpose of SVR algorithm is to estimate a function f(x)
with the requirements of having at most ε deviations from
the targets yi. Equations (1) and (2) show respectively SVR
approximation for linear and non-linear form, with 〈., .〉 the
notation for the dot product in X. In the linear case, SVR
performs a linear regression in the input space. In the non-
linear case, no regression can be done in the input space.
Therefore, on a first hand, the SVR algorithm has to map the
data into some feature space F via the function φ : X → F.
On a second hand, the classical SV regression algorithm is
applied in the new feature space.

f(x) = 〈w, x〉+ b with w ∈ X and b ∈ R. (1)
f(x) = 〈w, φ(x)〉+ b with w ∈ X and b ∈ R. (2)

The second requirement for the regression is to maximize the
”flatness” of the weights, here measured by ‖w‖2. Hence, in
the non-linear case both coefficients w and b are estimated
by minimizing the regularized risk function given in (4). In
this equation, C is a user-defined constant which controls the
trade-off between the training error and the model flatness. Lε
is the ε-insensitive loss function defined by equation (3). This
function allows the SVR algorithm to only penalize estimation
errors greater than ε.

Lε(yi, f(x(i), w) ={
|yi − f(x(i), w)| − ε if |yi − f(x(i), w)| ≥ ε.
0 otherwise.

(3)

R(f, C) = C

n∑
i=1

Lε(yi, f(x(i), w)) +
1

2
‖w‖2 . (4)

To complete the regression we need to solve a convex opti-
mization problem, which is more easily done by maximizing
its dual form and introducing the Lagrange multipliers (αi,α∗j).
The new optimization problem is given by (5) and is subject
to
∑n
i=1(αi − α∗i) = 0 and α∗i ∈ [0, C].

Maximize − 1
2

∑n
i,j=1(αi − α∗i)(αj − α∗j)〈φ(xi, xj)〉

−ε
∑n
i=1(αi + α∗i) +

∑n
i=1 y(i)(αi − αi∗).

(5)
Solving this leads to a new definition of (2) as f(x) =∑n
i=1(αi − α∗i)〈φ(xi), φ(x)〉+ b.

At this point, this definition shows that the solution can
be found by only knowing 〈φ(xi), φ(x)〉 instead of explicitly

knowing φ. A function k(x, x′) which corresponds to a dot
product in some feature space F as defined by k(x, x′) =
〈φ(x), φ(x′)〉 is called a kernel. This kernel function can be
any symmetric function satisfying Mercer condition such as the
Gaussian Radial Basis (RBF) which is defined by K(xi, xj) =
exp(−γ ‖xi − xj‖2). The Gaussian kernel is parametrized by
γ (γ > 0) which impacts the generalization capability of the
regressor among other things.

B. k-NN for continuous variables estimation theory

The learning approach of k-NN [8] is to memorize the
entire training set. As so, the algorithm belongs to the class
of the so-called lazy learners as [9], [10] for instance. Given
a set of training data D = {(x1, y1), ..., (xn, yn)} ∈ X × R
, with X ⊆ R, the process followed by k-NN to estimate an
object z = (x′, y′) can be easily summed-up in three steps.
Firstly, the algorithm computes the distance d(x′, x) between
z and every object (xi, yi) ∈ D. Secondly, the set F of the k
closest neighbors to z is selected. Thirdly, k-NN computes
the estimation as ŷ = 1

k

∑k
i=1 xi with x ∈ F . Variants

exist and concern essentially the method used to compute
the distance d(x, x′) such as the Manhattan, Euclidean or
Minkowski distance. The p-order Minkowski distance for two
sets of points F = (x1, ...xn) and G = (y1, ..., yn) ∈ Rn is
defined by (

∑n
i=1 |xi − yi|)

1
p .

III. EXPERIMENTAL PLATFORM AND DATASET

A. Experimental conditions and measurement equipments

The implementation of a dedicated wireless testbed is a
major requirement for our work. First of all, experimentations
must be reproducible, allowing comparison between different
sets of measurements and algorithms. This point is not trivial
when using wireless networks as the environment factors have
a high impact on the network performances. Secondly, part
of the originality of this work comes from the combination
of measurements made at multiple network layers, using
electronics instruments and software tools. This was also a
strong requirement to be able to monitor the physical layer (the
wireless transmission), and compare it to the higher layers,
from the mac layer information given by the network cards
to the end-to-end layers as transport throughput for instance.
The hardware introspection requirement has an impact on
the components choice as explained below. Thirdly, the syn-
chronization of all of these datasets was a sticky point, but
absolutely required to ensure a good behavior of the learning
algorithms.

B. Reproducibility requirement

Our wireless testbed was designed inside an anechoic room.
An anechoic room is a protected RF room which simulates free
space conditions. Our model of chamber is 4,10 meters long
for 2,50 meters wide. Inside, walls are covered of microwave
absorbers materials that break and scatter any wireless signal
that would come from an inside source. The chamber is then
free of any multi-path propagation. There are different types
of absorbers, each of them is defined for a specific frequency
range that allows us to use the anechoic chamber for different
purposes and frequencies. The absorbers protect also the inner
environment of the room from outside perturbations. This

TABLE I: Constitutions and characteristics of our training sets. Each vector represents 1 second of measurements

Training set Dataset definition
notation {Tx Power (dBm); Noise Power (dBm)}; {sample 2};...

Dataset1 (5323 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{10;-10};{10;-7};{10;-5};
{20;-20};{20;-17};{20;-15};{20;-13};{20;-10};{20;-7};{20;-5}

Dataset2 (2661 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{20;-20};{20;-17};{20;-15};{20;-13}
Dataset3 (1330 vectors) {10;-20};{10;-17};{10;-15};{10;-7};{10;-5};{20;-20};

protected context minimizes the uncontrolled parameters of
our communication.

C. Introspection requirement and components choice

Inside the anechoic chamber we placed two WIFI nodes.
The nodes are controlled through a wired network to avoid
interference with the wireless communication. The nodes are
Avila-GW2348-4 gateway platforms and run a Linux OpenWrt
OS. The boxes have an Intel Xscale processor, 64 MB of
SDRAM and 16MBytes of Flash memory. The WIFI network
controllers are based on the AR5414 chip-set from Atheros
which uses the ath5k driver and are attached to an omni-
directional antenna. The choice of the wifi chipset and its driver
was crucial because they define the amount of metrics and the
accuracy that it will be possible to obtain. The ath5k driver is
open-source and well documented thanks to an active online
community support. It has also a good integration within the
OpenWrt OS. The OpenWrt OS is flexible enough to allow
the implementation of new functionalities so that it accelerates
the upgrade of the bench. In addition and because we were
unable to capture the noise strength of the received signal with
the Atheros hardware, we used an oscilloscope connected to
the receiver antenna. It records the amplitude of the received
signal. The oscilloscope chosen was a fast Lecroy WaveRunner
which allows us to capture a maximum number of frame signal
with little loss and to record them on internal memory. The
precision of this instrument gives us the ground truth required
by the training methods used. It also embeds a large library of
filters, and operators which can be applied on the input signals.
The oscilloscope is also synchronized by NTP.

1) Synchronization requirement: As we used several equip-
ments to get measurements, it is needed to have their clock
very accurately synchronized. This was done with NTP by
using a dedicated wired connection to a remote NTP server
(accuracy with a shared network bus is not sufficient).

2) Capture and measurement processes: The configuration
of the network interfaces is done in promiscuous mode to
capture any packets sensed by their antenna. The packets are
captured at the MAC layer using the PCAP library and tools
when they arrive at the kernel interface. The packets contain
data from link to application layers, such as the 802.11 channel
number, the type of frame at the MAC layer, or packet size
at the network layer. Additionally, a packet also contains a
RADIOTAP header which gives radio level information such
as the received signal strength (RSS) reported by the ath5k
driver. We modified the ath5k drivers of the OpenWrt OS to
permit, when possible, the propagation of packets with frame
check sequence (FCS) errors to the upper layers, while on
the original kernel they were discarded. The propagation is

only possible if the error corrupted the data but not the header
fields. Following this modification the RADIOTAP header now
contains a flag specifying whether a FCS error was detected
when decoding the packet.

The Lecroy oscilloscope was set to capture and flush the
data as soon as a frame is detected on the input cable. This
happens when the amplitude of the sensed signal is above a
specific threshold, set to be in between the current noise floor
and the minimal amplitude value of a frame. This threshold
has to be set in a way to prevent exceptional high noise values
that could be incorrectly detected as a frame.

D. Experimental protocol

1) Noise generation.: One of the objectives of our envi-
ronment is to minimize the presence of these uncontrolled
parameters on the communication. Another objective is to
generate and control selected parameters that will impact our
communications.

The noise and the interferences significantly impact the
communication. We then inject noise in the environment
using a signal generator to perturb the communication. The
signal generator is a device which emits RF signals. It can
be configured to generate very realistic noise. Among the
parameters of the generated noise, two important elements
have a crucial impact: on a first hand the modulation used
characterizes the main characteristics of the noise signal in the
time and frequency domains (i.e. it characterizes the spectral
occupancy of the generated signal, its fading or narrowness).
On a second hand, the amplitude of the signal also affects the
measured level of noise on the receiver side. We found that the
AWGN (Adaptive White Gaussian Noise) noise modulation
was a good choice for our preliminary studies because of
its simplicity. Moreover it can be used to impact the entire
bandwidth of a 802.11g channel contrary to most other mod-
ulation schemes which produce narrow band noise. The noise
level was determined empirically by testing the effects on
the communication. Finally, a major element that affects the
noise generated in the anechoic chamber is the antenna. It
characterizes the waveform, the direction and the amplitude
of the noise wave. In order to perturb only one side of the
communication we used a very directional antenna pointed to
the receiving station. We use IPERF to generate traffic between
the two peers. The traffic is a TCP flow with a constant
throughput of 24 Mb/s. The size of the packets is set to 1470
bytes.

2) Training and datasets: We generated different samples
with different noise levels and different transmission powers.
All the samples have the same duration of 5 minutes and will

be used to constitute our training datasets. Table I sums up the
characteristics of the different samples. The same experimental
settings (transmission power and noise) are used for training
and testing. Therefore a training dataset which contains all
these samples will be considered as having full knowledge
about the possible use cases met in the test dataset. Hence,
to test the generalization capacity of our algorithm, we built
three different training datasets as described in table I. These
datasets differ by the quantities of samples they are made of,
and consequently by the level of knowledge they represent.

E. SVR features definitions

1) Atheros Received Throughput: This is the performance
metric of the communication that we are considering in
this paper. It is computed from the PCAP captured at the
receiver side of the transmission. It is defined by BWi =
n∑
k=1

L(pk) with k ∈ N. BWi is the computed throughput at

second i, L(pk) is the length of the payload at the network
layer for packet pk such as pk ∈ Pi which is defined as the set
of the nth received packets without FCS error during second
i: Pi = {p1, ..., pn}.

2) Atheros RSS: The Atheros RSS is extracted from the
RSS field in the RADIOTAP headers of the packets included
in the PCAP files. Given that RSS(pk) is the RSS of packet
pk such as pk ∈ Pi, and Ri is the set of RSS extracted
from packets captured during second i, it is defined as
ATH RSSi = Ri with Ri = {RSS(p1), ..., RSS(pn))} .

3) Lecroy noise: In addition to the Atheros values, we
extract different metrics from the Lecroy datasets. These values
are computed from the Root Mean Square (RMS) values of the
raw data. These RMS values can be split into three parts, which
are the data that are before, during and after the frame. The
part of the data before and after the frame are the noise values
and therefore can be used to extract the noise floor during the
reception of that frame. We consider A and C, the sets of these
points. Therefore we compute the average noise floor of the
data during the reception of frame f with Nf = A ∪ C.

With Mi the set of noise levels extracted from the
frames captured by the Lecroy oscilloscope during second
i, we compute the feature for the noise floor at second i
LECR NOISEi as LECR NOISEi = Mi with Mi =
{Np1 , ..., Npn} and pk ∈ Pi.

4) Lecroy RSS: The RSS of the received frame is computed
on the first 8 symbols to comply with 802.11 standard (see
http://standards.ieee.org/getieee802/). These points constitute
the set D. Thus, similarly to previous equations, the RSS
for a frame f is given by Rf = D and LECR RSSi =
{Rp1 , ..., Rpn} , where LECR RSSi is the feature of the
Lecroy RSS at second i.

5) Lecroy SNR: Finally we compute the SNR Sf for frame
f as the difference between the noise floor and the RSS of the
frame P and therefore, similarly to previous formulas: Sf =
Rf−Nf and LECR SNRi =Wi with Wi = {Sp1 , ..., Spn}
and pk ∈ Pi.

IV. ESTIMATION OF THE RELATIONS BETWEEN PHYSICAL
AND PERFORMANCE PARAMETERS IN WIFI

COMMUNICATIONS

A. ML based methodology

The 2nd contribution of this paper is the analysis of the
relations linking the PHY layer parameters and the upper layers
performance.

1) SVR: SVR algorithm has been used with RBF as a
kernel function. As section II-A points it out, in our configura-
tion SVR requires three user-defined parameters (C, γ and ε)
which can impact performance and therefore must be carefully
selected with regard to the application. For our estimations,
we used a grid search to select these SVR parameters. It is
a common empirical method which consists in an exhaustive
test run of SVR training using generated settings combinations.
We then select the best combination of C, γ and ε among the
results.

2) k-NN: For the performance of k-NN, the value of k must
be carefully selected. Therefore, after several tests on the dif-
ferent datasets, we chose a value which allows a good tradeoff
between the estimation accuracy and the generalization results.
Hence, in the presented experimentation, we set the value of
k to 3. The distance method used is Minkowski with order
2 which corresponds to the Euclidean distance recommended
with the traditional version of the algorithm [8].

3) Training and estimation delays measurements: One part
of the analysis of the machine learning estimations concerns
the computational time associated with the training and esti-
mations process. Our ML setup uses Python scikit-learn imple-
mentation [11] of SVR and k-NN. The delays are computed
by reading the current clock using the ’time’ function. The
clock is read twice: before and after the measured process.
The difference of the two measures constitutes the delay for
the measured process. For each estimation, we made 100 runs
and then computed the average and standard deviation of the
delays. The CPU used to conduct the measures is a 64 bits Intel
Core 2 Duo (2x2.53 GHz) with 6 MB of cache memory. The
computer disposes of 4 GB of RAM memory. The operating
system is Debian Linux.

B. Estimation performance

To evaluate the estimations, two methods are used.

1) Mean Squared Error (MSE): Given that Ŷi, ..., Ŷn are
estimations and Yi, ..., Yn are the real values, the MSE is
defined as MSE = 1

n

∑n
i=1(Ŷi − Yi)2.

2) Percentage of correct estimations: We also use the
percentage of correct estimations noted P (e < d) and defined
by P (e < d) = 1

n

∑n
i=1D(Ŷi, Yi, d). This value is the

percentage of estimations which differ from the corresponding
real values by less than a defined threshold d as shown on
equation (6). These estimations are then considered ’correct’.
Given the maximum throughput of 24 Mbps and the size of
the packets defined to be 1470 bytes, we set the value of the
threshold d to 1 Mbps. Indeed, this threshold corresponds to an
error in the estimation of 4% (89 packets over 2139 transmitted
during one second). By considering the preliminary measured
performance of the algorithms this value could be considered
to be fair to assess the goodness of the algorithms.

TABLE II: Results of the estimations using physical layer metrics. D1, D2 and D3 stands respectively for Dataset1, Dataset2
and Dataset3.

(a) Scores and pertinence of the estimations.

Physical layer parameter(s) MSE (Mbps2) P(e < 1Mbps) (%) SVR Pertinence ranking k-NN Pertinence ranking

SVR k-NN SVR k-NN MSE P(e < 1Mbps) MSE P(e < 1Mbps)

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 11.24 11 10.17 23 33 34 35 33 34 24 22 14 6 6 6 6 6 5 6 6 6 5 6 6

2 LECR RSS 4.42 3.9 4.5 27 7.1 10 51 59 32 18 35 31 5 4 4 5 2 6 5 5 5 6 5 4

3 LECR NOISE 2.28 5.4 5.8 5 2.8 4.2 69 55 44 50 44 24 4 5 5 3 4 3 4 4 4 3 4 5

4 LECR SNR 1.69 1.6 1.6 4 2.3 2.8 64 66 62 48 50 45 3 1 1 4 1 1 2 3 3 4 3 3

5 ATH RSS + LECR NOISE 1.02 2.3 3.3 4 1.3 1.7 70 49 41 54 60 50 2 3 3 2 5 4 2 2 1 2 2 1
6 LECR RSS + LECR NOISE 0.88 2.0 2.53 2 1.2 2.2 75 57 49 64 63 46 1 2 2 1 3 2 1 1 2 1 1 2

(b) Average delays observed for the training and estimations processes on 100 runs (values into brackets are the standard deviation of the distributions. Due to
space limitation, standard deviation values are given in 103 unit).

Physical layer parameter(s) Time used for training (s) Time used for estimation (s)

SVR k-NN SVR k-NN

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 5.39 (40) 1.40 (2) 0.36 (0.4) 0.048 (2) 0.023 (0.1) 0.012 (0.1) 1.52 (10) 0.78 (6) 0.40 (3) 1.13 (10) 0.63 (1) 0.39 (0.6)

2 LECR RSS 41.27 (300) 11.71 (7) 3.12 (2) 0.048 (1) 0.023 (0.2) 0.012 (0.1) 1.58 (20) 0.81 (10) 0.42 (3) 0.61 (3) 0.44 (0.8) 0.29 (0.6)

3 LECR NOISE 5.17 (10) 1.38 (1) 0.36 (0.8) 0.051 (6) 0.023 (0.2) 0.012 (0.1) 1.47 (20) 0.76 (10) 0.42 (4) 0.96 (30) 0.35 (0.9) 0.08 (0.3)

4 LECR SNR 11.54 (6) 3.87 (4) 1.35 (2) 0.048 (4) 0.023 (0.2) 0.012 (0.1) 1.38 (30) 0.70 (10) 0.36 (3) 0.74 (60) 0.45 (0.8) 0.19 (0.3)

5 ATH RSS + LECR NOISE 4.50 (4) 1.15 (2) 0.30 (0.2) 0.048 (0.6) 0.023 (0.1) 0.012 (0.1) 1.34 (9) 0.67 (10) 0.35 (8) 0.32 (10) 0.15 (0.3) 0.06 (0.1)

6 LECR RSS + LECR NOISE 4.72 (9) 1.23 (2) 0.31 (3) 0.046 (0.5) 0.023 (0.1) 0.012 (0.08) 1.38 (1) 0.70 (4) 0.36 (3) 0.27 (0.4) 0.15 (0.2) 0.08 (0.1)

D(Ŷi, Yi, d) =

{
1 if |Ŷi − Yi| < d.

0 if |Ŷi − Yi| ≥ d.
(6)

C. Estimation results

Table II contains the results of the throughput estimation
based on 6 different PHY or combinations of PHY parameters
for respectivelyDataset1, Dataset2, and Dataset3. The first
column quotes the PHY parameters that have been used for the
SVR estimation of the IP throughput. Columns 2 to 4 show the
figures obtained for the MSE and the probability P (e < 1Mb)
for both ML algorithms. The four last columns give the ranking
for the PHY parameters according to their ability to allow good
estimations of the throughput. A ranking of 1 corresponds to
the best result among the 6 PHY parameters considered.

For Dataset1, i.e. the full one, the best result is obtained
with LECR RSS + LECR NOISE for both families of
algorithms. The estimations for SVR are plotted on figure 1.
This figure exhibits impressive matching between the real and
estimated values of the throughput, with just very few outliers
appearing (75% matchings). We got as impressive results for
Dataset2, and Dataset3, but this time, the best results for
SVR have been obtained with the LECR SNR parameter
(60% matchings). The difference of the results when using a
full trace for the training compared to a sampled one exhibits
the non empty intersection between PHY parameters as SNR,
RSS and NOISE. These 3 parameters are closely related. The
results for k-NN improve with the use of Dataset2. Contrary
to SVR, the best estimations are obtained with the features
5 and 6 for every training datasets. Generally speaking, SVR
performs better than k-NN excepts in the 2nd training dataset
where k-NN outperforms SVR in terms of MSE.

It nevertheless clearly appears with these figures that SNR,
RSS and NOISE can help to perfectly estimate and predict

(on a one second scale) the performance of the network at
layers 3 and 4. Nevertheless, a deeper analysis on larger
datasets, that still need to be produced, would allow a more
accurate characterization of the link between PHY parameters
and network performance. Actually, it appears that while the
combined features metrics performance decreases, the overall
performance of the RSS metrics 1 and 2 increases or stays
more or less the same. This seems to suggest that the full
training set was not adapted to these metrics. This is even more
visible in k-NN results, while MSE performances improve
impressively between Dataset1 and Dataset2. The difference
between the full and the reduced sets is that the samples
obtained with high noise are not present in the reduced
datasets. This could be caused by incoherent values existing
in Dataset1 because of the bad and noisy conditions. One
possibility is that these values could deteriorate the model
issued from the training process. This hypothesis seems to
be corroborated by the results obtained with k-NN and the
simplicity of its algorithm which makes it more sensible to
the general quality of the training dataset and the choice of
the feature. This aspect needs to be considered for improving
our platform and experiment protocol.

D. Training and estimation time performance

Table II presents the results of the measured delays for
training and estimations using SVR and k-NN. According to
these numbers, the time taken by SVR to train can be very
high. Hence, with Dataset1 and the RSS metrics, the delays
goes up to the tens of seconds. Then the time decreases with
the use of smaller training sets. In the case of k-NN, no model
are computed, the data are simply memorized. Therefore the
training is very fast and essentially depends on the size of
the training sets. As a consequence, k-NN values decrease
geometrically by a factor of 2 when changing from Dataset1
to Dataset2 and then from Dataset2 to Dataset3. According
to section II-A, SVR forces the estimated function to be within

Fig. 1: Throughput estimation results obtained with the LECR RSS+LECR NOISE metric compared to the real throughput.

an ε distance of the averaged data, a requirement which can
be tedious for the algorithm to fulfill. Hence, the high value
for SVR model training are explained by the usage of this ε
parameter which affects greatly the training accuracy as well as
the delays. However, this affirmation would need more study
focused on the SVR parameters and these specific data. The
time taken for the estimation are higher when using SVR, than
when using k-NN. The SNR delays vary with the size of the
training set. This result seems unintuitive since SVR training
model is based on regression. However, the results obtained
with k-NN are conform to its training model which is based
on the memorization of the entire training set. k-NN results
are very good comparatively to the one of SVR. By observing
the global results, we see that k-NN can largely compete with
SVR when it comes to accuracy while at the same time being
slightly faster.

V. CONCLUSIONS AND FUTURE WORK

The main contribution presented in this paper deals with
the design of a generic platform for monitoring and analyzing
wireless networks. This wireless testbed is set in the RF
protected environment of an anechoic room, allowing us to
control the perturbation on the physical medium by generating
noise. It also has the originality to integrate pure physical
signal measurement tools as Lecroy oscilloscopes for very
accurate measurements serving as ground truth. Based on the
collected data, the second contribution of the paper deals with
exhibiting the importance of PHY parameters on network com-
munication performance. The correlation between the physical
environment and the communication performance is so strong
that it is possible by only monitoring the SNR and the RSS
of the signal to predict the performance level at the TCP/IP
level. This result has been demonstrated using different kinds
of models, in particular the SVR and k-NN models presented
in this paper. Future work includes a large exploitation of our
platform. Indeed, for this preliminary stage, we just set simple
scenarios with a single connection and simple noise model
that can appear a bit far from realistic situations. These first
simplistic scenarios were manadatory to validate the platform
accuracy, and the monitoring and analysis tools, as well as
for gaining the required skills required for this multi-thematic
work, especially in the domain of the signal propagation and
behaviour. We now plan to generate large datasets with more
complex and realistic scenarios, and this for different kinds of
wireless networks, including WIFI, UMTS, LTE, etc. We will
also exploit this datasets by deeply analyzing them, understand
how wireless networks behave, and then trying to improve the
way we use and manage them.

VI. ACKNOWLEDGMENTS

This work is partially funded by the French National
Research Agency (ANR) under two projects: the MAITRE
project of the STIC AmSud program, and the RESCUE project
of the VERSO program.

REFERENCES

[1] V. Vapnik, S. E. Golowich, and A. Smola, “Support vector method for
function approximation, regression estimation, and signal processing,”
in Advances in Neural Information Processing Systems 9, vol. 9, 1997.

[2] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowl.
Inf. Syst., vol. 14, no. 1, Dec. 2007.

[3] T. Claveirole and M. D. de Amorim, “Wipal and wscout, two hands-
on tools for wireless packet traces manipulation and visualization,” in
ACM Mobicom Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, 2008.

[4] A. Lecointre, D. Dragomirescu, and R. Plana, “New methodology to
design advanced mb-iruwb communication system,” IEE Electronics
Letters, vol. 11, 2008.

[5] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network
protocols,” in Wireless Communications and Networking Conference,
2005 IEEE, vol. 3, 2005, pp. 1664–1669 Vol. 3.

[6] N. Sapankevych and R. Sankar, “Time series prediction using support
vector machines: A survey,” Computational Intelligence Magazine,
IEEE, vol. 4, no. 2, pp. 24–38, 2009.

[7] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, Aug. 2004.

[8] N. S. Altman, “An introduction to kernel and nearest-
neighbor nonparametric regression,” The American Statistician,
vol. 46, no. 3, pp. pp. 175–185, 1992. [Online]. Available:
http://www.jstor.org/stable/2685209

[9] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artif. Intell. Rev., vol. 11, no. 1-5, pp. 11–73, Feb. 1997.
[Online]. Available: http://dx.doi.org/10.1023/A:1006559212014

[10] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational
issues, methodological variations, and system approaches,” AI
Commun., vol. 7, no. 1, pp. 39–59, Mar. 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=196108.196115

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

