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We consider a transient diffusion in a (-κ/2)-drifted Brownian potential Wκ with 0 < κ < 1. We prove its localization at time t in the neighborhood of some random points depending only on the environment, which are the positive ht-minima of the environment, for ht a bit smaller than log t. We also prove an Aging phenomenon for the diffusion, a renewal theorem for the hitting time of the farthest visited valley, and provide a central limit theorem for the number of valleys visited up to time t.

, and on a precise analysis of exponential functionals of Wκ and of Wκ Doob-conditioned to stay positive.

Introduction and notation

1.1. Presentation of the model. We are interested in a diffusion (X(t), t ≥ 0) in a random càdlàg potential (V (x), x ∈ R). It is defined informally by X(0) = 0 and

dX(t) = dβ(t) - 1 2 V (X(t))dt,
where (β(t), t ≥ 0) is a Brownian motion independent of V . More rigorously, X is a diffusion process, starting from 0, and whose conditional generator given V is 1 2 e V (x) d dx e -V (x) d dx .

These diffusions in random potentials are considered as continuous time analogues of random walks in random environment (RWRE) (see e.g. P. Révész [START_REF] Révész | Random walk in random and non-random environments[END_REF], B.D. Hughes [START_REF] Hughes | Random Environments[END_REF], Z. Shi [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF] and O. Zeitouni [START_REF] Zeitouni | Lectures notes on random walks in random environment[END_REF] for reviews on RWRE).

The study of such a process starts with a choice for V . A classic one, originally introduced by S. Schumacher [START_REF] Schumacher | Diffusions with random coefficients[END_REF] and T. Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], is to choose V as a Lévy process. In fact only a few papers deal with the discontinuous case, see for example P. Carmona [START_REF] Carmona | The mean velocity of a brownian motion in a random Lévy potential[END_REF] or A. Singh [START_REF] Singh | Rates of convergence of a transient diffusion in a spectrally negative lévy potential[END_REF][START_REF] Singh | A Slow Transient Diffusion in a Drifted Stable Potential[END_REF]. Most of the results concern diffusions in a continuous Lévy potential V , that is,

V (x) = W κ (x) := W (x) - κ 2 x, x ∈ R,
where κ ∈ R and (W (x), x ∈ R) is a two sided Brownian motion. We denote by P the probability measure associated to W κ (.). The probability conditionally on the potential W κ is denoted by P Wκ and is called the quenched probability. We also define the annealed probability as P(.) := P Wκ (.)P (W κ ∈ dω).

We denote respectively by E Wκ , E, and E the expectations with regard to P Wκ , P and P .

In the case κ = 0, the diffusion X is a.s. recurrent. More precisely, T. Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF] shows that it is sub-diffusive with asymptotic behavior in (log t) 2 , and that it is localized, at time t, in the neighborhood of a random point b log t depending only on t and W , similarly as Sinai's walk (see Ya. G. Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium (English translation)[END_REF]). More precisely, this result can be written: Theorem 1.1. (Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF]) Assume κ = 0. Then, for all ε > 0, lim t→+∞ P X(t) ∈ [b log t -ε(log t) 2 , b log t + ε(log t) 2 ] = 1.

(1.1)

The limit law of b log t /(log t) 2 and therefore of X(t)/(log t) 2 was made explicit independently by H. Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF] and A. O. Golosov [START_REF] Golosov | On limiting distribution for a random walk in a critical one-dimensional random environment[END_REF]. For recent results for this recurrent case, see for example P. Andreoletti et al. [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF], and R. Diel [START_REF] Diel | Almost sure asymptotics for the local time of a diffusion in Brownian environment[END_REF].

In the case κ = 0, the diffusion X is a.s. transient, with a wide range of limiting behaviors, depending on the value of κ. It was first studied by K. Kawazu and H. Tanaka. Let us denote by H(r) the hitting time of r ∈ R by X: H(r) := inf{s > 0, X(s) = r}.

Kawazu et al. [START_REF] Kawazu | A diffusion process in a Brownian environment with drift[END_REF] proved in particular that under the annealed probability P, H(r)/r 1/κ converges in law to a stable distribution when 0 < κ < 1, whereas H(r)/(r log r) converges in probability to 4 when κ = 1, and H(r)/r converges almost surely to 4/(κ -1) if k > 1 (see also Y. Hu et al. [START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF], and H. Tanaka [START_REF] Tanaka | Limit theorem for a brownian motion with drift in a white noise environment[END_REF]). More recently we mention the results for large and moderate deviations, by M. Taleb ([47] and [START_REF] Talet | Annealed tail estimates for a Brownian motion in a drifted Brownian potential[END_REF]), A. Devulder [START_REF] Devulder | Some properties of the rate function of quenched large deviations for random walk in random environment[END_REF] and G. Faraud [START_REF] Faraud | Estimates on the speedup and slowdown for a diffusion in a drifted brownian potential[END_REF].

In this paper we study the case 0 < κ < 1. We follow a different approach from Y. Hu et al. [START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF] and K. Kawazu et al. [START_REF] Kawazu | A diffusion process in a Brownian environment with drift[END_REF]. Indeed we focus on a quenched study, which has attracted much interest for transient RWRE in the last few years, see for example the works of N. Enriquez et al. [START_REF] Enriquez | Quenched limits for the fluctuations of transient random walks in random environment on Z[END_REF], [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF], [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF], [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF], D. Dolgopyat et al. [START_REF] Dolgopyat | Quenched limit theorems for nearest neighbour random walks in 1D random environment[END_REF], and J. Peterson et al. [START_REF] Peterson | Weak quenched limiting distributions for transient one-dimensional random walk in a random environment[END_REF], [START_REF] Peterson | Weak weak quenched limits for the path-valued processes of hitting times and positions of a transient, one-dimensional random walk in a random environment[END_REF], [START_REF] Peterson | Quenched limits for transient, zero speed one-dimensional random walk in random environment[END_REF]. Heuristically, the diffusion X goes to locations where the potential is low, hence it goes to +∞, but it is slowed by "valleys" of the potential, which trap the diffusion for some time. The diffusion even spends most of its time in these valleys. We will prove this more in details in the present paper.

1.2. Main results. The goals of this paper are to localize the diffusion X, when 0 < κ < 1, in some valleys of the potential W κ , to understand the differences with Brox's result given by (1.1), and to prove an Aging phenomenon, corresponding to results obtained by Enriquez et al. in their papers [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF], [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] and [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF] for transient zero-speed RWRE. We moreover obtain a central limit theorem for the number of valleys visited up to time t. We also prove some intermediate results, which we think will be useful for obtaining new results about the maximum local time of X, as explained later in this introduction.

Let t → φ(t) be a positive increasing function, such that φ(t) = o(log t) and log log t = o(φ(t)) as t → +∞, where f (t) = o(g(t)) means lim t→+∞ f (t)/g(t) = 0. We prove the following aging phenomenon: Proposition 1.2. Assume 0 < κ < 1. For all α > 1, we have

lim t→+∞ P |X(αt) -X(t)| ≤ φ(t) = sin(κπ) π 1/α 0 u κ-1 (1 -u) -κ du.
More generally, aging usually denotes dynamical out-of-equilibrium physical phenomenons, which appear in some disordered systems. It refers to the existence of a limit for a given twotime correlation function of the system as both times diverge but keep a fixed ratio between them. This subject has received a considerable attention in physics. For a physical or a mathematical point of view on aging, see e.g. respectively Bouchaud et al. [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems. Spin-glasses and Random Fields[END_REF] and Zindy [START_REF] Zindy | Scaling limit and aging for directed trap models[END_REF], and references therein.

Proposition 1.2 is actually a consequence of Theorem 1.3. Before stating it, we first recall the notion of h-extrema, which was first introduced by J. Neveu et al. [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF], and studied in the case of drifted Brownian motion by A. Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF]. For h > 0, we say that x ∈ R is an hminimum for a given function f , R → R, if there exist u < x < v such that f (x) = inf y∈[u,v] f (y), f (u) ≥ f (x) + h and f (v) ≥ f (x) + h. Moreover, x is an h-maximum for f iff x is an h-minimum for -f . Finally, x is an h-extremum for f iff it is an h-maximum or an h-minimum for f . Since we want to study the diffusion X until time t > 0, we are more especially interested in the h t -extrema of W κ , where h t := log t -φ(t). It is known (see [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF]) that almost surely, the h t -extrema of W κ form a sequence indexed by Z, unbounded from below and above, and that the h t -minima and h t -maxima alternate. We denote respectively by (m j , j ∈ Z) and (M j , j ∈ Z) the increasing sequences of h t -minima and of h tmaxima of W κ , such that m 0 ≤ 0 < m 1 and m j < M j < m j+1 for every j ∈ Z. These h t -minima m i , i ∈ Z, can be considered as the bottoms of some valleys of the potential W κ , of height at least h t , that will be defined more precisely in Section 2. We also introduce

N t := max k ∈ N, sup 0≤s≤t X(s) ≥ m k ,
so that m Nt is the largest h t -minimum visited by X until time t if N t > 0 (and lim t→+∞ P(N t > 0) = 1 as proved later, see Proposition 1.6 or Lemma 5.2). The main result of this paper concerns the localization of the diffusion. It is stated as follows:

Theorem 1.3. Assume 0 < κ < 1. There exists a constant C 1 > 0, such that

lim t→+∞ P |X(t) -m Nt | ≤ C 1 φ(t) = 1.
We first recall that X(t) is asymptotically of order t κ (see Kawazu et al. [START_REF] Kawazu | A diffusion process in a Brownian environment with drift[END_REF]), and that the typical distance between two h t -minima of W κ is asymptotically of order e κht = t κ e -κφ(t) (see Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] Prop. 1, partly recalled in our Fact 2.2 below). So, the size 2C 1 φ(t) of the intervals in which X is localized in Theorem 1.3 is very small, since it is o(log t) and can be as small as, for example, (log log t) 1+ε , ε > 0. Notice that it depends on the minimum height h t of our valleys. We could not say however if it the best interval size that can be obtained.

The main difference with the result of Brox (1.1) is the appearance of the (random) integer N t , which is the number of typical valleys of height h t visited before time t. In the recurrent case of Brox, the diffusion X is, with a large probability, localized near the bottom of a unique valley of the potential, whereas in our transient case, the diffusion is localized near the bottom of one among several valleys of the potential. This, and the absence of scaling for the potential in the case 0 < κ < 1, contrarily to the case κ = 0, makes the study much more involved technically.

We also prove a renewal theorem for hitting time of the bottom m Nt of the last valley visited by X before t: Proposition 1.4. Assume 0 < κ < 1. We have the following convergence in law under the annealed probability P,

H(m Nt ) t , H(m Nt+1 ) t L → t→+∞ κ sin(πκ) π (y -x) -κ-1 x κ-1 1 [0,1] (x)1 [1,∞) (y)dxdy.
This unables us to get the following results, which are useful for the proofs of Proposition 1.2 and Theorem 1.3: Corollary 1.5. Assume 0 < κ < 1 and let 0 ≤ r < s ≤ 1 and v ≥ 0. Then,

lim t→+∞ P 1 -s ≤ H(m Nt ) t ≤ 1 -r = sin(πκ) π 1-r 1-s x κ-1 (1 -x) -κ dx, (1.2) 
lim t→+∞ P H(m Nt+1 ) t ≥ 1 + v = sin(πκ) π +∞ v (1 + x) -1 x -κ dx. (1.3)
Moreover, the total time spent in the last valley of height at least h t visited before time t renormalized by t, that is [H(m Nt+1 ) -H(m Nt )]/t, converges in law under P to a r.v. with density sin(πκ)π

-1 x -κ-1 [(1 -(1 -x) κ )1 [0,1] (x) + 1 (1,+∞) (x)].
Let x denote the integer part of x, for any x ∈ R. We introduce 0 < δ < 1 and n t := e κφ(t)(1+δ) .

(1.4)

We will see in Section 4 and 5 that Proposition 1.4 is a consequence of the fact that for any integer 1 ≤ k ≤ n t , the hitting time H(m k ) can approximated by a sum of i.i.d. random variables having the law of a r.v. U. This r.v. U is an approximation of the time the diffusion X spends in a typical valley of height at least h t before escaping this valley.

These results are in accordance with those obtained by Enriquez et al. in their three papers [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF], [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] and [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF] for transient RWRE. Compared to their study, we have the advantage of being able to use some powerful stochastic tools. However, some other technical difficulties appear in continuous time: for example local time and excursions are more complicated to deal with in continuous time than in discrete time. The present paper is self contained, in particular we provide in this same paper the technical study of the Laplace transform of the first exit time U of a typical valley. The study of the environment mainly requires continuous arguments of stochastic calculus, starting by a decomposition of the trajectory of W κ near its h t -minima, which mainly comes from results of A. Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF].

The number N t of valleys having height at least h t , visited before time t by the diffusion X, goes to +∞ as t → +∞. However, we prove that P(N t ≤ n t ) → t→+∞ 1, which explains why we study the potential W κ (x) only for x ≤ m nt , and the hitting times H(m k ) only for k ≤ n t . More precisely, we prove the following central limit theorem for N t , with renormalization e κφ(t) : Proposition 1.6. Assume 0 < κ < 1. Then N t e -κφ(t) → t→+∞ N in law under the annealed law P; the law of N is determined by its Laplace transform:

∀u > 0, E e -uN = +∞ j=0 1 Γ(κj + 1) -u C κ j (1.5)
where C κ > 0 is explicitly known (see Proposition 4.1). This r.v. N has then a Mittag-Leffler distribution of order κ.

Moreover we expect that the results of this paper will be useful to study other properties for the diffusion. In particular, let (L X (t, x), t ≥ 0, x ∈ R) be a bicontinuous version of the local time of X. It is known that the maximum local time of X at time t, that is L * X (t) := max x∈R L X (t, x), satisfies lim sup t→+∞ L * X (t)/t = +∞ a.s. in the cases κ = 0 (see Z. Shi [START_REF] Shi | A local time curiosity in random environment[END_REF] and R. Diel [START_REF] Diel | Almost sure asymptotics for the local time of a diffusion in Brownian environment[END_REF]) and even in the transient case 0 < κ < 1 (see A. Devulder [START_REF] Devulder | The maximum of the local time of a diffusion in a drifted brownian potential[END_REF]). Hence the maximum local time of X exhibits very interesting properties, that contrast with those of the maximum local time of RWRE at time t, which is naturally bounded by t/2. We especially think that the better understanding of the localization of X and some intermediate results provided in this paper will be useful to prove new results about L * X . Indeed, in a work in progress with G. Vechambre [2], we use the methods and results of the present paper to study the local time of the diffusion. In particular we expect to obtain the limit law of the maximal local time after suitable renormalization in the case 0 < κ < 1. Note that the local time plays a crucial role for estimation problems for random walk in random environment, recently studied e.g. in [START_REF] Andreoletti | On the estimation of the potential of Sinai's RWRE[END_REF], [START_REF] Andreoletti | Dna unzipping via stopped birth and death processes with random probability transition[END_REF] and [START_REF] Comets | Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support[END_REF]. In particular in [START_REF] Comets | Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support[END_REF], the limit law of the local time process in the neighborhood of the minima, obtained previously by [START_REF] Gantert | The infinite valley for a recurrent random walk in random environment[END_REF], is used. In the same way a better understanding of the local time of X may be useful to study estimation problems for diffusions in a random potential. 1.3. Sketch of the proof and organization of the paper. We now give a general idea of the proof and provide, at the same time, the organization of the paper. This subsection contains some non rigorous heuristics which will be made rigorous and explained in details in the following sections.

First, in Section 2, we build some valleys ( Li , mi , Li ) of the potential, of height at least h t (see Figure 1 page 11). The i-th valley is the potential W κ , restricted to some interval [ Li , Li ]; the minimum of W κ in this interval is attained at a location called mi . The height of this valley is at least h t , and more precisely,

W κ ( Li ) -W κ ( mi ) ≥ h t , W κ ( L- i ) -W κ ( mi ) ≥ (1 + κ + 2δ
)h t , These valleys, when recentered at mi , are i.i.d. We prove in Lemma 2.3 that with probability nearly 1, mi = m i for 1 ≤ i ≤ n t , that is, the mi , 1 ≤ i ≤ n t are in fact the n t first positive h t -minima. We also provide in this Section 2 different tools to study the law of W κ near mi or m i , and in particular drifted Brownian motions Doob-conditioned to stay positive.

Then in Section 3, we prove (see Lemma 3.2) that with probability nearly 1, after hitting the bottom mi of the each valley ( Li , mi , Li ) the diffusion X leaves this valley on the right, that is, on Li . Moreover, we prove (see Lemma 3.3) that with probability nearly 1, the diffusion X visits successively the valleys ( L-1 , m1 , L1 ), ( L-2 , m2 , L2 ), . . . , ( Li , mi , Li ), . . . , and does not come back to previously visited valleys. Moreover, we show in Lemma 3.7 that the time spent outside these valleys up to time t is negligible compared to t. That is, the hitting time H( mn ) of the bottom mn of each valley number n ≤ n t can be approximated as

H( mn ) ≈ U 1 + U 2 + • • • + U n-1 , (1.6) 
where U i can be seen as the time spent in valley number i. We also prove in Lemma 3.4 that these r.v. U i are "nearly" independent under the annealed and quenched probabilities P and P Wκ . Moreover, we prove that they have (under the annealed probability P) the same law as some random variable U, defined by

U := L2 L- 2 e -[Wκ(u)-Wκ( m2 )] L B τ B Ã2 L2 , Ã2 (u) du,
where Ã2 (z) := z m2 e Wκ(x)-Wκ( m2 ) dx, z ∈ R, and L B and τ B denote respectively the local time and hitting time of some Brownian motion B independent of W κ . This r.v. U, which depends on t, can be seen as the time spent by X in a typical valley, which X leaves on its right.

So, this reduces the study of H( mn ) to the study of a sum U 1 + U 2 + • • • + U n-1 of independent random variables having the same law as U under P.

The main goal of Section 4 is to study the asymptotics of the Laplace transform of U. More precisely, we prove in Proposition 4.1 that for all λ > 0, E e -λU/t = 1 -C κ λ κ e -κφ(t) + o(e -κφ(t) )

(1.7)

as t → +∞. To this aim, we first approximate U by a more tractable expression, which is done in Proposition 4.4 and Lemma 4.7. First, by scaling, U is equal in law to

L2 L- 2 e -[Wκ(u)-Wκ( m2 )] Ã2 L2 L B τ B (1), Ã2 (u)/ Ã2 L2 du. (1.8)
Loosely speaking, for u "close" to m2 , Ã2 (u)/ Ã2 ( L2 ) ≈ 0, and so (using our Lemma 4.3) we have [START_REF] Andreoletti | On the estimation of the potential of Sinai's RWRE[END_REF], 0] =: e 1 , which is by the first Ray Knight theorem an exponential variable of mean 2, and is independent of W κ .

L B [τ B (1), Ã2 (u)/ Ã2 ( L2 )] ≈ L B [τ B (
One the other hand, m2 is the minimum of the potential W κ in [ L-2 , L2 ] so for u "far" from m2 we have e -[Wκ(u)-Wκ(m 2 )] ≈ 0. And moreover, Ã2 ( L2 ) ≈ L2 τ2 (ht/2) e Wκ(x)-Wκ( m2 ) dx where τ2 (h) is the first hitting time of h > 0 by W κ -W κ ( m2 ) after m2 , because e Wκ(x)-Wκ( m2 ) is negligible compared to Ã2 ( L2 ) for m2 ≤ x ≤ τ2 (h t /2) ≤ τ2 (h t ) < L2 . All this leads to the approximation

U ≈ m2 L- 2 + τ2 (ht/2) m2 e -[Wκ(u)-Wκ(m 2 )] du τ2 (ht) τ2 (ht/2) + L2 τ2 (ht) e Wκ(x)-Wκ( m2 ) dx e 1 ≈: (I - 1 + I - 2 )(I + 1 + I + 2 )e 1
, which is the product of 5 independent random variables, the first 4 depending only on the potential W κ , and e 1 being independent of W κ . This approximation, the asymptotics of the Laplace transforms of I - 1 , I - 2 , I + 1 and I + 2 provided by Lemma 4.2, and some technical calculations help us to prove (1.7) as claimed in our Proposition 4.1.

Section 5 is devoted to the proofs of the main results of this paper. First, using the asymptotics (1.7) of the Laplace transform of U as well as (1.6), we prove the renewal results Proposition 1.4 and Corollary 1.5, using the same kind of techniques as in Enriquez et al. [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF], inspired by Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. We also show Proposition 1.6 about the number of visited valleys with a similar method. We prove before, in Lemma 5.2, that with probability nearly 1, the number N t of valleys visited by X up to time t is less than n t , which explains why we only consider the first n t valleys.

We then turn to the proof of the localization, that is, our Theorem 1.3. To this aim, using the previous renewal results, we prove that with probability nearly 1, at time t, the diffusion X has already spent a quite large amount of time in the last valley visited, that is, on [ L-Nt , LNt ], and that X(t) still belongs to this interval. This allows us to prove that, knowing N (t) = j, the quenched law of X(t) is nearly equal to the invariant probability μj of a diffusion Y j in the potential W κ , starting inside [ Lj , Lj ] and reflected at Lj and Lj . This is a kind of convergence to the invariant probability measure, which we prove as in Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], by using a coupling between Y j starting from Y j (0) distributed as its invariant measure μj , and X(.

+ H( mj )). Since μj is proportional to exp(-[W κ (x) -W κ ( mj ))1 [ L- j , Lj ] (x)dx
, it is highly concentrated on a small neighborhood of mj , which leads to the localization of X at time t in this small neighborhood of mj .

We then prove the Aging, that is, Proposition 1.2. For this, we apply the localization (Theorem 1.3), first at time t with function φ, and second at time αt but with another function φ α defined by log(αt) -φ α (αt) = log t -φ(t), so that the r.v. m i are the same in both cases.

Our hypothesis 0 < κ < 1 is used many times in this paper. We recall that the typical distance between two h t -minima of W κ , or valleys of depth at least h t , is asymptotically of order e κht = t κ e -κφ(t) . Moreover, the time spent by the diffusion X in such valleys is approximatively proportional to the exponential of the depth of such valleys. So X is trapped a long time, of order at least te -φ(t) , and then is slowed by such valleys if (and only if) it hits some of them.

In particular, the first h t -minimum, or valley, appears at a distance of order e κht = t κ e -κφ (t) which is much smaller than t if 0 < κ < 1, and much larger than t if κ > 1. Heuristically, if 0 < κ < 1, there are many h t -minima in [0, t κ+ε ], 0 < ε < 1 -κ, which trap and slow the diffusion X, which explains why X is zero-speed. However if κ > 1, loosely speaking, the first positive h t -minimum is very far from the origin, at a distance much large than t, and then at time t the diffusion X has not yet reached it; X has then not been trapped nor slowed by such deep valleys, and in this case X has a positive speed.

In all the paper, 0 < κ < 1 is fixed, and C + and c + (resp. C -and c -) denote positive constants that may increase (resp. decrease) from line to line and may only depend on our fixed constant κ. Moreover some events are denoted by E j.k i for some i, j, k; for example E 4.7 3 is the event number 3 introduced in the proof of Lemma 4.7.

Standard valleys and path decomposition of the potential

2.1. 3-dimensional drifted Bessel processes. In this subsection, we introduce 3-dimensional drifted Bessel processes as drifted Brownian motions conditioned to stay positive. These processes are helpful to describe the law of the potential W κ near the h t -minima m i and then to estimate relevant quantities depending on this potential W κ , mainly with formulas (2.3) and (2.4) below.

For any process (U (t), t ≥ 0) and any a ∈ R, we denote the hitting time of a by U as

τ U (a) := inf{t > 0, U(t) = a},
with the convention inf ∅ = +∞. We denote by (L U (t, x), t ≥ 0, x ∈ R) the bicontinuous version of the local time of U when it exists, which is the case for X and for Brownian motions. We also denote by U a the process U starting from a, with the notation U = U 0 . We sometimes write P a (U ∈ .) := P (U a ∈ .). In particular, for

x ∈ R, ζ = 0, W x ζ is a (-ζ/2)-drifted Brownian motion starting from x.
Let ζ = 0. We recall the definition of a (-ζ/2)-drifted Brownian motion W ζ Doob-conditioned to stay positive (see [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], 5. p. 1783, or [START_REF] Bertoin | Lévy Processes[END_REF], Chapter VII.3 and references therein for more details). We consider the σ-fields F t defined on C([0, ∞), R) by F t := σ(Y (s), 0 ≤ s ≤ t), t ≥ 0, and F ∞ := σ(Y (s), s ≥ 0), for a generic element (Y (s), s ≥ 0) of the path space C([0, ∞), R). Following ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], p. 1783), for z > 0, the probability measure P ζ/2,↑ z is defined on C([0, +∞), R) by

P ζ/2,↑ z (Λ) := 1 1 -e ζz E 1 -exp(ζW z ζ (t)) , W z ζ ∈ Λ, t < τ W z ζ (0) , Λ ∈ F t , t ≥ 0. (2.1)
This induces a unique probability measure

P ζ/2,↑ z on (C([0, ∞), R), F ∞ ). Moreover, P ζ/2,↑ z
converges weakly as z → 0 + , in the space of Skorokhod D([0, ∞), R) (see [START_REF] Bertoin | Lévy Processes[END_REF] VII.3 Prop. 14 and comments below) and in C([0, ∞), R) (see [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] , z ≥ 0), and then is strong Markov. Its infinitesimal generator is given for every x > 0 by 1 2

d 2 dx 2 + ζ 2 coth ζ 2 x d dx . (2.2)
This infinitesimal generator is given by Lemma 6 of [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], which is true in the case of positive or negative drift ζ/2.

This process R can be thought of as a (-ζ/2)-drifted Brownian motion W ζ Doob-conditioned to stay positive, with the terminology of [START_REF] Bertoin | Lévy Processes[END_REF], which is called Doob conditioned to reach +∞ before 0 in [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF]. We notice in particular that, by (2.2), or by ([25], eq. (5.4)), or directly by (2.1) combined with Girsanov theorem, the law of R is the same if ζ is replaced by -ζ. That is, W ζ Doob-conditioned to stay positive has the same law as W -ζ Doob-conditioned to stay positive. This is the case in particular in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], Thm. 2) and then also in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (1.1)), where the sign should be a + in every case. This process R is also shown in Rogers et al. ([40], Thm. 3 and eq. ( 13)) to be equal in law to the euclidian norm of a 3-dimensional drifted Brownian motion, with drift ζ/2 in some direction given by a unit vector of R 3 . We do not use this result in this paper, but for this reason, in the rest of the paper, we call for z ≥ 0 the process R with law P ζ/2,↑ z a 3-dimensional |ζ/2|-drifted Bessel process starting from z. As in [START_REF] Rogers | Markov functions[END_REF], its law is denoted by BES z (3, |ζ/2|), and by BES(3, |ζ/2|) = BES 0 (3, |ζ/2|) if it starts from z = 0.

In the rest of the paper, it is often useful to consider a process (R(s), s ≥ 0) with law BES z (3, κ/2) for some z ≥ 0. We have by the previous remark, when R starts from z > 0,

P z (R ∈ Λ) = P κ/2,↑ z (Λ) = P -κ/2,↑ z (Λ) = P (W z -κ ∈ Λ|τ W z -κ (0) = ∞), z > 0, Λ ∈ F ∞ , (2.3)
where the last equality is noticed in [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] just before its Lemma 6 for Λ ∈ F t , t ≥ 0 since -κ/2 < 0 and then W -κ has a positive drift κ/2, and so this is true for all Λ ∈ F ∞ . As a consequence, when R starts from 0, that is, when the law of (R(s), s ≥ 0) is BES(3, κ/2), we have for all Λ ∈ F ∞ such that P (R ∈ ∂Λ) = 0,

P (R ∈ Λ) = P κ/2,↑ 0 (Λ) = P -κ/2,↑ 0 (Λ) = lim z↓0 P -κ/2,↑ z (Λ) = lim z↓0 P (W z -κ ∈ Λ|τ W z -κ (0) = ∞). (2.4) 2.2.
Path decomposition of the potential W κ in the neighborhood of the h t -minima m i . The point of view of h-extrema has been used recently in some studies of random walks or diffusions in random environment in the recurrent case, see e.g. Cheliotis [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF], Bovier et al. [START_REF] Bovier | Spectral analysis of Sinai's walk for small eigenvalues[END_REF] and Devulder [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF]. We now recall some results for h-extrema of W κ . Let

V (i) (x) := W κ (x) -W κ (m i ), x ∈ R, i ∈ N * ,
which is the potential W κ translated so that it is 0 at the local minimum m i . We also define

τ - i (h) := sup{s < m i , V (i) (x) = h}, τ i (h) := inf{s > m i , V (i) (x) = h}, h > 0.
The following result has been proved by Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] for (i) and (ii).

Fact 2.1. (path decomposition of W κ around the h t -minima m i ) (i) The truncated trajectories

V (i) (m i -s), 0 ≤ s ≤ m i -τ - i (h t ) , V (i) (m i + s), 0 ≤ s ≤ τ i (h t ) -m i , i ≥ 1 are independent.
(ii) Let (R(s), s ≥ 0) be a process with law BES(3, κ/2). All the truncated trajectories

V (i) (m i - s), 0 ≤ s ≤ m i -τ - i (h t ) for i ≥ 2 and V (j) (m j + s), 0 ≤ s ≤ τ j (h t ) -m j for j ≥ 1 are equal in law to R(s), 0 ≤ s ≤ τ R (h t ) . (iii) For i ≥ 1, the truncated trajectory V (i) (s + τ i (h t )), s ≥ 0 is independent of W κ (s), s ≤ τ i (h t ) and is equal in law to W ht κ (s), s ≥ 0 , that is, to a (-κ/2)-drifted Brownian motion starting from h t .
We point out that for reasons linked to renewal theory, the first trajectory in (ii) for i = 1 has a different law, which we will not use in this paper.

Proof: Notice that M i-1 < τ - i (h t ) < m i < τ i (h t ) < M i , i ∈ Z.
Moreover the h t -extrema of W κ are the r.v. m i and M i , i ∈ Z. So (i) follows from the independence of the truncated trajectories between consecutive h t -extrema proved by Faggionato ([25], Theorem 1; notice in particular the comment about independence just before its equation (2.26)). Result (ii) is proved in Faggionato ([25], Theorem 2 p. 1785), since, as explained in the paragraph after (2.2) of the present paper, a Brownian motion starting at 0 with drift κ/2 Doob conditioned to reach +∞ before 0 has the same law as a Brownian motion starting at 0 with drift -κ/2 Doob conditioned to reach +∞ before 0, and the same law as BES(3, κ/2).

Finally, let i ≥ 1. For every x ≥ 0, τ i (h t ) ≤ x if and only if the function s → W κ (s)1 (-∞,x] (s)+ W κ (x)1 (x,+∞) (s) has at least i h t -minima in (0, x]. Consequently, τ i (h t ) is a stopping time for the σ-field σ(W κ (s), s ∈ (-∞, x]), x ≥ 0. Hence the strong Markov property gives (iii).

We now introduce

τ * 1 (h) := inf{u ≥ 0, W κ (u) -inf [0,u] W κ ≥ h}, h ≥ 0. (2.5) 
We gather here some other results proved by Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] that will be useful in the following:

Fact 2.2. (Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF]). The random variables 

W κ (M i ) -W κ (m i+1 ) -h t and W κ (M i ) - W κ (m i ) -h t , i ≥ 1,
E e -α(m i+1 -M i ) = e -κht/2 2α + κ 2 /4 2α + κ 2 /4 cosh(h t 2α + κ 2 /4) -(κ/2) sinh(h t 2α + κ 2 /4) , α > 0, (2.6 
)

E e -α(τ i (h)-m i ) = 2 2α + κ 2 /4 sinh(κh/2) κ sinh(h 2α + κ 2 /4) , 0 < h ≤ h t , α > -κ 2 /8, (2.7) 
P (0 < M 0 < m 1 ) = P (0 ∈ [m 0 , M 0 )) ∼ t→+∞ κh t e -κht . (2.8) 
Also, -inf [0,τ * 1 (h)] W κ is, for h > 0, exponentially distributed with mean 2κ -1 sinh(κh/2)e κh/2 . So for large h for all x > 0,

P inf [0,τ * 1 (h)] W κ ≥ -x ≤ e -κh x.
(2.9)

Finally, E τ * 1 (h) ≤ C + e κh , h > 0, (2.10) 
Proof: All this is proved in Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] with µ = κ/2, so we just explain where these results are stated in this paper [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF].

Thanks to ([25] Thm. 1 and the remark before its (2.26)),

(W κ (M i + x) -W κ (M i ), 0 ≤ x ≤ m i+1 -M i ) and (W κ (m i + x) -W κ (m i ), 0 ≤ x ≤ M i -m i ), i ≥ 1,
are independent, and their laws are respectively P κ/2 -and P κ/2 + , which are defined in ([25] p. 1769), with h = h t in our case. In particular, the lengths m i+1 -M i and M i -m i of these truncated and translated trajectories, called h t -slopes in [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], and their excess heights [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], Prop. 1, formulas (2.11), and (2.14) with λ = 0, see also (2.1)), which provides their law, and in particular this proves the present fact up to (2.6).

W κ (M i ) -W κ (m i+1 ) -h t and W κ (M i ) -W κ (m i ) -h t are denoted respectively by -, + , ζ -and ζ + in (
For 0 < h ≤ h t , m i is a h-minimum, so for i ≥ 1, by ([25], Thm. 1), (W κ (x+m i )-W κ (m i ), 0 ≤ x ≤ τ i (h) -m i ) has the law defined as P κ/2 +
for this h in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.9)). Hence τ i (h) -m i has the same law as the r.v. called τ -σ in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] eq. (2.9), see also (2.2)). Its Laplace transform is given in ([25] eq. (2.3) of Lem. 1). This gives (2.7). Now, 0 < M 0 < m 1 if and only if 0 ∈ [m 0 , M 0 ), that is, the translated trajectory between the two consecutive h t -extrema surrounding 0 belongs to the set of slopes starting at an h t -minimum and ending at an h t -maximum, denoted by W + in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] after eq. (2.10)). The probability of this event is given in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], Thm. 1 and eq. (2.25) in the case W + , h = h t ), which leads to (2.8).

We turn to (2.10). For h > 0, τ * 1 (h) is denoted by τ in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq (2.2)). Let -and + be as in ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], Prop. 1), that is, + L = τ -σ + σ ≥ τ -σ by ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.9)) and - L = τ -σ + σ ≥ σ by ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.10)), where the values of σ ≥ 0 and τ -σ ≥ 0 are not important here. Applying ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.17 [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.2)); its law is given by ( [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], eq. (2.4) in its Lem. 1), which leads to our (2.9). 2.3. Definition of valleys, and standard h t -minima mi , i ∈ N * . We would like to consider some valleys of the potential around the h t -minima m i , i ∈ N * , which would be intervals containing at least [τ - i ((1 + κ)h t ), M i ]. However, these valleys could intersect. In order to define valleys which are well separated and i.i.d., we introduce the following notation. This notation is later used to define valleys of the potential around some mi , which are shown in Lemma 2.3 to be equal to the m i for 1 ≤ i ≤ n t with large probability.

)) gives E τ * 1 (h) = E(τ ) = E[(τ -σ) + σ] ≤ E( -+ + ) ≤ 2κ -2 e κh . Finally, inf [0,τ * 1 (h)] W κ is denoted by β in ([

Let

h + t := (1 + κ + 2δ)h t . We define L+ 0 := 0, m0 := 0, and recursively for i ≥ 1 (see Figure 1),

L i := inf{x > L+ i-1 , W κ (x) ≤ W κ ( L+ i-1 ) -h + t }, τi (h t ) := inf x ≥ L i , W κ (x) -inf [ L i ,x] W κ ≥ h t , (2.11 
)

mi := inf x ≥ L i , W κ (x) = inf [ L i ,τ i (ht)] W κ , L+ i := inf{x > τi (h t ), W κ (x) ≤ W κ (τ i (h t )) -h t -h + t }.
We also introduce the following random variables for i ∈ N * :

Mi := inf{s > mi , W κ (s) = max mi ≤u≤ L+ i W κ (u)}, Li := inf{x > τi (h t ), W κ (x) -W κ ( mi ) = h t /2}, (2.12) τi (h) := inf{s > mi , W κ (x) -W κ ( mi ) = h}, h > 0, (2.13) 
τ - i (h) := sup{s < mi , W κ (x) -W κ ( mi ) = h}, h > 0, L- i := τ - i (h + t ).
We stress that these r.v. depend on t, which we do not write as a subscript to simplify the notation. Notice also that τi (h t ) is the same in definitions (2.11) and (2.13) with h = h t . Moreover by continuity of

W κ , W κ (τ i (h t )) = W κ ( mi ) + h t . So, the mi , i ∈ N * , are h t -minima, since W κ ( mi ) = inf [ L+ i-1 ,τ i (ht)] W κ , W κ (τ i (h t )) = W κ ( mi ) + h t and W κ ( L+ i-1 ) ≥ W κ ( mi ) + h t . Moreover, L+ i-1 < L i ≤ mi < τi (h t ) < Li < L+ i , i ∈ N * , (2.14) 
L+ i-1 ≤ L- i < mi < τi (h t ) < Mi < L+ i , i ∈ N * . (2.15)
Furthermore by induction the r.v. L i , τi (h t ) and L+ i , i ∈ N * are stopping times for the natural filtration of (W κ (x), x ≥ 0), and so Li , i ∈ N * , are also stopping times. Also by induction,

W κ ( L i ) = inf [0, L i ] W κ , W κ ( mi ) = inf [0,τ i (ht)] W κ , W κ ( L+ i ) = inf [0, L+ i ] W κ = W κ ( mi )-h + t , (2.16) 
for i ∈ N * . We also introduce the analogue of V (i) for mi as follows:

Ṽ (i) (x) := W κ (x) -W κ ( mi ), x ∈ R, i ∈ N * .
We call i th valley the translated truncated potential

Ṽ (i) (x), L- i ≤ x ≤ Li , for i ≥ 1. L+ i h + t h + t h t L+ i-1 L i L- i mi h + t 1 2 h t τi (h t ) Mi L * i 3 4 h t Li Figure 1. Schema of the potential between L+ i-1 and L+ i , in the case L i < L- i
We show in the following lemma that, with an overwhelming high probability, the first n t + 1 positive h t -minima m i , 1 ≤ i ≤ n t + 1, coincide with the r.v. mi , 1 ≤ i ≤ n t + 1. We introduce the corresponding event V t := ∩ nt+1 i=1 {m i = mi }.

Lemma 2.3. Assume 0 < δ < 1. For t large enough,

P V t ≤ C + n t e -κht/2 = e [-κ/2+o(1)]ht .
Moreover, the sequence

Ṽ (i) (x + L+ i-1 ), 0 ≤ x ≤ L+ i -L+ i-1 , i ≥ 1 , is i.i.d.
We notice that consequently, the valleys Ṽ (i) (x), Li ≤ x ≤ Li , i ≥ 1, are also i.i.d. Proof: Since mi is an h t -minimum for W κ for every i ≥ 1, we have { mi , i ∈ N * } ⊂ {m i , i ∈ N * }. We now assume that we are on the complement V t of V t . So the smallest j ≥ 1 such that m j = mj satisfies 1 ≤ j ≤ n t + 1. Due to the previous inclusion and since m0 = 0, we have mj-1 < m j < mj . If for this j, L j < m j < mj , there would be a v > m j > L j such that

W κ (m j ) = inf [m j ,v] W κ ≥ inf [ L j ,v] W κ , W κ (v) ≥ W κ (m j ) + h t ≥ inf [ L j ,v] W κ + h t , (2.17) 
since m j is an h t -minimum. The definition of τj (h t ) and (2.17) would give τj (h t ) ≤ v, and then

L j < m j < mj ≤ τj (h t ) ≤ v, by definition of mj . Then W κ (m j ) = inf [m j ,v] W κ ≤ W κ ( mj ), which contradicts the definition of mj . Hence, mj-1 < m j ≤ L j . Thus by (2.16), W κ (m j ) ≥ W κ L j = W κ L+ j-1 -h + t = W κ ( mj-1 ) -2h + t if j ≥ 2, whereas W κ (m j ) ≥ W κ L 1 = -h + t if j = 1. Consequently, V t ⊂ {W κ (m 1 ) ≥ -h + t } ∪ ∪ nt+1 j=2 {W κ (m j ) ≥ W κ (m j-1 ) -2h + t }. (2.18)
For j ≥ 2, we have by the start of Fact 2.2,

P [W κ (m j ) ≥ W κ (m j-1 ) -2h + t ] (2.19) ≤ P W κ (M j-1 ) -W κ (m j ) ≤ e κht/2 + P W κ (M j-1 ) -W κ (m j-1 ) > e κht/2 -2h + t ≤
C + e κht/2 . For j = 1, notice that either 0 < M 0 < m 1 , which has probability

P (0 < M 0 < m 1 ) ≤ 2h t e -κht
(2.20)

for large t by (2.8), either there is no h t -maximum in (0, m 1 ], and so M 0 ≤ 0.

In this last case we show that m 1 ≤ τ * 1 (h t ), which we defined in (2.5). Indeed, assume

τ * 1 (h t ) < m 1 . We consider u = inf x ≥ 0, W κ (x) = inf [0,τ * 1 (ht)] W κ and y = inf{x ≥ 0, W κ (x) = sup [τ * 1 (ht),m 1 ] W κ }. It follows from the definition of h t -extrema that W κ (m 1 ) = inf [M 0 ,m 1 ] W κ . Since M 0 ≤ 0 ≤ u < τ * 1 (h t ) < m 1 , this would give W κ (m 1 ) ≤ W κ (u) = W κ [τ * 1 (h t )] -h t ≤ W κ (y) -h t , and W κ (y) = sup [u,m 1 ] W κ , so y is an h t -maximum and belongs to (0, m 1 ], which contradicts this case. So m 1 ≤ τ * 1 (h t ). Hence in this case, there exists v > m 1 such that W κ (v) ≥ W κ (m 1 ) + h t and W κ (m 1 ) = inf [m 1 ,v] W κ , so τ * 1 (h t ) ≤ v. Thus, W κ (m 1 ) = inf [m 1 ,τ * 1 (ht)] W κ . This, M 0 ≤ 0 and W κ (m 1 ) = inf [M 0 ,m 1 ] W κ yield W κ (m 1 ) = inf [0,τ * 1 (ht)] W κ . So, (2.9) and (2.20) give for large t, P [W κ (m 1 ) ≥ -h + t ] ≤ 2h t e -κht + P inf [0,τ * 1 (ht)] W κ ≥ -h + t ≤ C + e -κht/2
. Hence, using (2.18) and (2.19), we get P (V t ) ≤ C + n t e -κht/2 for large t.

Finally, the fact that the sequence

Ṽ (i) (x + L+ i-1 ), 0 ≤ x ≤ L+ i -L+ i-1 , i ≥ 1, is i.i.d.

follows from the strong Markov property applied at times L+

i-1 , which are stopping times. The following remark will be useful in the rest of the paper.

Remark 2.4. On V t , we have for every 1 ≤ i ≤ n t , m i = mi , and as a consequence,

Ṽ (i) (x) = V (i) (x), x ∈ R, τ - i (h) = τ - i (h) and τ i (h) = τi (h) for h > 0. Moreover, Mi = M i . Indeed, Mi is an h t -maximum for W κ , which belongs to [ mi , mi+1 ] = [m i , m i+1 ] on V t ,
and there is exactly one h t -maximum in this interval since the h t -maxima and minima alternate, which we defined as M i , so Mi = M i . So in the following, on V t , we can write these r.v. with or without tilde.

2.4. Some technical estimates related to the potential. We first provide estimates for the distance between some points of a given valley:

Lemma 2.5. Assume 0 < δ < 1/2. For large t, for all 1 ≤ i ≤ n t , P mi+1 -Mi ≤ e κ(1-δ)ht , V t ≤ P m i+1 -M i ≤ e κ(1-δ)ht ≤ C + e -κδht , (2.21) 
P τi (h) -mi ≥ 8h/κ ≤ C + e -κh/(2 √ 2) , 0 ≤ h ≤ h t , (2.22) 
P mi -τ - i (h) ≥ 8h/κ ≤ C + e -κh/(2 √ 2) , 0 ≤ h ≤ h t . (2.23) Proof of Lemma 2.5: First, it follows from Remark 2.4 that { mi+1 -Mi ≤ e κ(1-δ)ht } ∩ V t ⊂ {m i+1 -M i ≤ e κ(1-δ)ht } for 1 ≤ i ≤ n t .
This gives the first inequality of (2.21), whereas for the second one we can use the results of Faggionato [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF] that we have gathered in Facts 2.1 and 2.2, and then BES(3, κ/2) processes. This technic is used several times in this proof and later in the paper.

Let i ≥ 1. We apply (2.6) with α(t) = e -κ(1-δ)ht so that E(e -α(t)(m i+1 -M i ) ) ∼ t→+∞ κ 2 e -κδht /2. This and Markov inequality yield for large t,

P m i+1 -M i ≤ e κ(1-δ)ht = P e -α(t)(m i+1 -M i ) ≥ e -1 ≤ C + e -κδht .
This ends the proof of (2.21).

Applying (2.7) with α = -κ 2 /16 gives

E e κ 2 (τ i (h)-m i )/16 = sinh(κh/2) √ 2 sinh(κh/ √ 8) ∼ h→+∞ 1 √ 2 e κ(1-1/ √ 2)h/2 . (2.24)
So, choosing C + large enough, RHS of (2.24) ≤ C + e κ(1-1/ √ 2)h/2 for all 0 ≤ h ≤ h t . Thus,

P τ i (h) -m i ≥ 8h/κ = P e (κ 2 /16)[τ i (h)-m i ] ≥ e κh/2 ≤ C + e -κh/(2 √ 2) , (2.25) 
for all 0 ≤ h ≤ h t by Markov inequality. Since τi (h) -mi = τ i (h) -m i on V t by Remark 2.4, and

P V t ≤ e -κht/(2 √ 2) ≤ e -κh/(2 √
2) for large t for all 0 ≤ h ≤ h t by Lemma 2.3, [START_REF] Faggionato | The alternating marked point process of h-slopes of the drifted Brownian motion[END_REF], which similarly as before gives (2.23) for i ≥ 2. Finally, m1 -τ -1 (h) has the same law as m2 -τ -2 (h) for 0 ≤ h ≤ h t by Lemma 2.3, so the case i = 1 of (2.23) follows from the case i = 2.

P τi (h) -mi ≥ 8h/κ ≤ P τ i (h) -m i ≥ 8h/κ, V t + P V t ≤ C + e -κh/(2 √ 2) , 0 ≤ h ≤ h t , which gives (2.22). According to Fact 2.1 (ii), m i -τ - i (h) and τ i (h) -m i are equal in law for i ≥ 2 and 0 ≤ h ≤ h t . So we can replace τ i (h) -m i by m i -τ - i (h) in (2.
We also recall that a scale function of

W ζ (x → W (x) -ζx/2) is for ζ = 0 (see e.g. [25], (5.1)), s ζ (u) := e ζu -1 = 2e ζu/2 sinh(ζu/2), u ∈ R, P τ W y ζ (z) < τ W y ζ (x) = s ζ (y -x)/s ζ (z -x), x < y < z, (2.26) 
for which we remind that W y ζ denotes a (-ζ/2)-drifted Brownian motion starting from y. We also need some estimates on hitting times by W κ and a process R with law BES(3, κ/2) (recall that in (2.27), P αh denotes the law of R starting from αh, that is, with law BES αh (3, κ/2)): Lemma 2.6. Let 0 < γ < α < ω, and R having law BES(3, κ/2). For all h large enough,

P αh τ R (γh) < τ R (ωh) ≤ 2 exp[-κ(α -γ)h],
(2.27)

P τ R (ωh) -τ R (αh) ≤ 1 ≤ 4 exp -[(ω -α)h] 2 /3 , (2.28) 
P τ R (h) 0 e R(u) du ≥ e (1-α)h ≥ 1 -3 exp[-καh/2], 0 < α < 1, (2.29) 
P (τ R (h) > 8h/κ) ≤ C + exp -κh/(2 √ 2) . (2.30) 
Proof: We recall that R has the same law as the (κ/2)-drifted Brownian motion W -κ Doobconditioned to stay positive. In particular, this proof relies on (2.3) and (2.4). First, using (2.3) and (2.26), we have for

0 < γ < α < ω, LHS of (2.27) = P τ W αh -κ (γh) < τ W αh -κ (ωh) | τ W αh -κ (∞) < τ W αh -κ (0) = P τ W αh -κ (γh) < τ W αh -κ (ωh)]P τ W γh -κ (∞) < τ W γh -κ (0) /P τ W αh -κ (∞) < τ W αh -κ (0) = 1 - s -κ [(α -γ)h] s -κ [(ω -γ)h] s -κ (γh) s -κ (αh) = sinh[κ(ω -α)h/2] sinh(κγh/2) sinh[κ(ω -γ)h/2] sinh(καh/2) , (2.31) 
where LHS means left hand side. This gives (2.27) for large h. Now, we notice that the left hand side of (2.28) is thanks to (2.4) for 0 < α < ω,

lim z↓0 P τ W z -κ (ωh) -τ W z -κ (αh) ≤ 1 | τ W z -κ (0) = ∞ = lim z↓0 P τ W z -κ (αh) < τ W z -κ (0) P τ W αh -κ (ωh) ≤ 1, τ W αh -κ (0) = ∞ /P τ W z -κ (0) = ∞ ,
where we applied the strong Markov property at time τ W z -κ (αh). Moreover for large h,

P τ W αh -κ (ωh) ≤ 1 = P sup x∈[0,1] W (x) + αh + κx/2 ≥ ωh ≤ P sup [0,1] W ≥ (ω -α)h - κ 2 ≤ 2 exp -[(ω -α)h] 2 /3 , because sup [0,1] W L = |W (1)
|, where L = denotes equality in law, and

P (|W (1)| ≥ x) ≤ 2e -x 2 /2 for x ≥ 1. Since lim z↓0 P τ W z -κ (αh) < τ W z -κ (0) /P τ W z -κ (0) = ∞ = (1 -e -καh ) -1 ≤ 2 for large h by (2.26), we get (2.28). To prove (2.29), let 0 < α < 1. Notice that the probability of inf τ R [(1-α/2)h]≤u≤τ R (h) R(u) ≥ (1 -α)h ∩ τ R (h) -τ R [(1 -α/2)h] ≥ 1 is at least 1 -3e -καh/2
for large h by (2.27) and (2.28). Moreover, we have on this event,

τ R (h) 0 e R(u) du ≥ τ R (h) τ R [(1-α/2)h] e R(u) du ≥ τ R (h) -τ R [(1 -α/2)h] e (1-α)h ≥ e (1-α)h , which proves (2.29). Finally for 0 ≤ h ≤ h t , τ R (h) is equal in law to τ 1 (h) -m 1 by Fact 2.1 (ii), so (2.30) follows from (2.25)
We also provide in the following lemma some probabilities concerning

Ṽ (i) (x), τ - i (h + t ) ≤ x ≤ τ - i (h t )
. Unfortunately, they cannot be evaluated directly with the help of Fact 2.1 and BES(3, κ/2) processes, so we evaluate them with more elementary technics. The proof of this lemma is deferred to Section 6.

Lemma 2.7. With probability P at least 1 -e -κht/8 for large t, we have for every

1 ≤ i ≤ n t , mi -L- i ≤ L+ i -L- i = L+ i -τ - i (h + t ) ≤ 40h + t /κ, (2.32) mi L 
- i e Ṽ (i) (u) du ≥ e h + t -κht/2 , (2.33) inf [τ - i (h + t ),τ - i (ht)] Ṽ (i) ≥ h t /2. (2.34)
We end this section with the following basic result and its proof:

Lemma 2.8. Let 0 < α < ω. We have for large h, P τ Wκ (-αh) ≥ 2ωh/κ ≤ exp -κ(ω -α) 2 h/(4ω) . ( 2 

.35)

Proof: We have,

P τ Wκ (-αh) ≥ 2ωh/κ ≤ P W (2ωh/κ) ≥ (ω -α)h = P W (1) ≥ √ κh(ω -α)/ √ 2ω .
Since P (W (1) ≥ x) ≤ e -x 2 /2 for x ≥ 1, this proves the lemma.

3. Quasi-Independence in the trajectories of X

We now assume that 0 < κ < 1. In this section we provide some information on the typical trajectories of X. We also show that the times spent in the different valleys are, asymptotically in t, nearly independent under the annealed probability P (see Proposition 3.4). Then we prove that the time spent by X between the valleys is negligible.

We start with some classical formulae about the diffusion X, its hitting times and local times, which will be important in the rest of the paper.

3.1. Some formulas related to the diffusion X. We first introduce

A(r) := r 0 e Wκ(x) dx, r ∈ R, A ∞ := ∞ 0 e Wκ(x) dx < ∞ a.s. (3.1)
We recall that A is a scale function of X under P Wκ (see e.g. [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF] formula (2.2)), that is,

P Wκ y H(z) < H(x) = [A(y) -A(x)]/[A(z) -A(x)], x < y < z. (3.2) 
Here P Wκ y denotes the law of the diffusion X in the potential W κ , starting from y instead of 0, conditionally on W κ , and E Wκ y is the corresponding expectancy. As in (Brox [10], eq. (1.1) or Shi [START_REF] Shi | A local time curiosity in random environment[END_REF], eq. (2.2)), there exists a Brownian motion (B(s), s ≥ 0), independent of W κ , such that

X(t) = A -1 [B(T -1 (t))] for every t ≥ 0, where T (r) := r 0 exp{-2W κ [A -1 (B(s))]}ds, 0 ≤ r < τ B (A ∞ ). (3.3) 
As a consequence, with this notation, we have (see e.g. Shi [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF] eq. (4.5) and (4.6)),

H(r) = T [τ B (A(r))] = r -∞ exp[-W κ (u)]L B [τ B (A(r)), A(u)]du, r ≥ 0. (3.4) Moreover the local time of X is L X (t, x) = e -Wκ(x) L B [T -1 (t), A(x)], t ≥ 0, x ∈ R, as proved in Shi ([42], eq. (2.5)). So, L X (H(r), x) = e -Wκ(x) L B [τ B (A(r)), A(x)] r ≥ 0, x ∈ R. (3.5) 
It will sometimes be useful to notice that H(r) = H -(r) + H + (r), where

H -(r) := 0 -∞ L X (H(r), x)dx, H + (r) := r 0 L X (H(r), x)dx, r ≥ 0, (3.6) 
are the time spent by X respectively in R -and in R + before it first hits r. We will sometimes need the following result (see Dufresne [START_REF] Dufresne | Laguerre series for Asian and other options[END_REF], or Borodin et al. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] IV.48 p. 78):

Fact 3.1. (Dufresne) The r.v. 2/A ∞ is a gamma variable of parameter (κ, 1)
, and so has a density equal to e -x x κ-1 1 R + (x)/Γ(κ).

3.2.

Probability that the diffusion X leaves the valleys on the right. In this subsection, we prove that for most environments, with a large quenched probability, the diffusion X, after first hitting mi , leaves the valley [ Li , Li ] on its right, for every 1 ≤ i ≤ n t . More precisely, we introduce

H x→y := inf{s > H(x), X(s) = y} -H(x) for (x, y) ∈ R 2 + , which is equal to H(y) -H(x) if x < y. We also introduce U i := H( Li ) -H( mi ) = H mi → Li , E i := U i < H mi → L- i , i ≥ 1. (3.7)
We have (notice that n t e -κδht = o(1) since φ(t) = o(log t)), Lemma 3.2. Assume 0 < δ < 1/8. We have, for large t,

P nt i=1 P Wκ mi H Li > H L- i = P Wκ E i ≤ e -κht/2 ≥ 1 -C + n t e -κδht .
Proof: By the strong Markov property and then by (3.2), we have for all 1 ≤ i ≤ n t ,

P Wκ (E i ) = P Wκ mi H( Li ) > H( L- i ) = Li mi e Ṽ (i) (x) dx Li L- i e Ṽ (i) (x) dx -1 ≤ Q i /D i , (3.8) 
where, since sup

[ mi , Li ] Ṽ (i) ≤ sup [ mi , L+ i ] Ṽ (i) = Ṽ (i) ( Mi ) and L- i < mi , Q i := ( Li -L- i )e Ṽ (i) ( Mi ) , D i := mi L- i e Ṽ (i) (x) dx.
We start with the denominator D i . By (2.33), we have for all 1 ≤ i ≤ n t , since δ < 1/8,

P D i ≥ e h + t -κht/2 ≥ 1 -e -κht/8 ≥ 1 -e -κδht . (3.9) 
We now consider the numerator Q i for some 1 ≤ i ≤ n t . First by (2.32) and since Li < L+ i , we have

P ( Li -L- i > 40h + t /κ) ≤ e -κht/8 . Moreover, since τi (h t ) is a stopping time, (V (i) [x + τi (h t )] -h t , x ≥ 0) is equal in law to (W κ (x), x ≥ 0), so P Ṽ (i) ( Mi ) > h t (1 + δ) = P sup [τ i (ht), L+ i ] Ṽ (i) -h t ≥ δh t ≤ P sup s≥0 W κ (s) > δh t ≤ e -δκht , since P [sup [0,∞) W κ ≥ x] = P [inf [0,∞) W -κ ≤ -x] = e -κx ,
x ≥ 0, e.g. by (2.26). Finally

P Q i ≤ 40h + t κ -1 e (1+δ)
ht ≥ 1 -2e -δκht for δ < 1/8 and t large enough. This combined with (3.8) and (3.9) gives for large t,

P P Wκ (E i ) ≤ C + h t e (1+δ)ht-(h + t -κht/2) ≤ e -(κ/2)ht ≥ 1 -3e -κδht . (3.10)
This proves the lemma.

3.3. Probability that the diffusion X goes back to mi after leaving the i-th valley. We introduce for i ∈ N * (see Figure 1),

L * i := inf{x ≥ τi (h t ), W κ (x) -W κ ( mi ) ≤ 3h t /4} < Li . (3.11)
In the next lemma, we show that with a large probability, after hitting Li , X hits mi+1 before (maybe) going back to L * i for 1 ≤ i < n t . This is helpful in the proof of Lemma 3.7 and in Subsection 5.2. Lemma 3.3. We have for large t,

P P Wκ ∩ nt-1 i=1 H Li → mi+1 < H Li → L * i ≥ 1 -2n t e -ht/8 ≥ 1 -C + n t e -κht/16 .
(3.12)

This, combined with Lemma 3.2, gives a picture of the typical trajectories of X. In particular, with large probability, up to time t, X visits successively the different valleys [ Li , Li ], 1 ≤ i < n t ; it exits each one on its right Li , then does not go back to L * i and then to mi , but goes to mi+1 . That is, with a large probability, the diffusion X hits successively each h t -minimum m i , 1 ≤ i ≤ n t and does not come back to the previously visited m j . 

Proof of Lemma 3.3:

We define A x ∞ := ∞ x e Wκ(u)-Wκ(x) du, x ∈ R. Let E 3.3 1 := ∩ nt-1 i=1 {H Li →τ i+1 (ht) < H Li → L * i } ⊂ ∩ nt-1 i=1 H Li → mi+1 < H Li → L * i , (3.13) 
E 3.3 2 := ∩ nt-1 i=1 A Li ∞ ≤ e ht/16 , A τi+1 (ht) ∞ ≤ e ht/16 , A L * i ∞ ≥ e -ht/
P Wκ H Li →τ i+1 (ht) > H Li → L * i = P Wκ Li H(τ i+1 (h t )) > H( L * i ) = Q * i /D * i , 1 ≤ i ≤ n t -1,
where, recalling that

W κ ( Li ) = W κ ( mi ) + h t /2 and W κ ( L * i ) = W κ ( mi ) + 3h t /4, Q * i := τi+1 (ht) Li e Wκ(x) dx ≤ e Wκ( Li ) A Li ∞ ≤ exp(W κ ( mi ) + h t /2 + h t /16), (3.15) 
D * i := τi+1 (ht) L * i e Wκ(x) dx = e Wκ( L * i ) A L * i ∞ -e Wκ(τ i+1 (ht)) A τi+1 (ht) ∞ on E 3.3 2 . Moreover, W κ ( mi+1 ) ≤ W κ ( L i+1 ) ≤ W κ ( L+ i ) ≤ W κ ( mi ) -h t , so on E 3.3 2 for large t, D * i ≥ e Wκ( mi )+11ht/16 -e Wκ( mi+1
)+ht e ht/16 ≥ e Wκ( mi ) e 11ht/16 -e ht/16 ≥ e Wκ( mi )+11ht/16 /2

for all 1 ≤ i < n t , so Q * i /D * i ≤ 2e -ht/8 . Thus P Wκ E 3.3 1 1 E 3.3 2 ≤ 2n t e -ht/8
. This and (3.14) give

P E 3.3 1 ≤ P E 3.3 1 ∩ E 3.3 2 + P E 3.3 2 ≤ C + n t e -κht/16 , (3.16) 
which we need in the proof of Lemma 3.3. Moreover, we get LHS of (3.12) 16 . This proves (3.12).

≥ P P Wκ (E 3.3 1 ) ≥ 1 -2n t e -ht/8 ≥ P E 3.3 2 ≥ 1 -C + n t e -κht/
3.4. Independence in a trajectory of X. We are interested in the law of U, defined as follows:

Ãi (z) := z mi e Ṽ (i) (u) du, z ∈ R, i ∈ N * , U := L2 L- 2 e -Ṽ (2) (u) L B τ B ( Ã2 ( L2 )), Ã2 (u) du, (3.17) 
where (B(s), s ≥ 0) is a Brownian motion independent of W κ and then of Ṽ (2) . As explained below in (3.22), U is equal in law to the exit time of X from the valley L-2 , L2 under P Wκ m2 if X leaves this valley on its right. Notice that we have chosen the second valley in the definition of U because Fact 2.1 provides the law of V (i) near m i for i ≥ 2 but not for i = 1. Moreover we stress that U, as well as the r.v. U i , i ≥ 1, depend on t, since the mi , Li and Li depend on h t . We now prove that the law of the sum U 1 + • • • + U n (defined in (3.7)) can be approximated by the law of the sum of n independent copies of U, in the following sense: Proposition 3.4. Assume 0 < δ < 1/8. There exists a constant C 2 > 0 such that for large t,

∀λ > 0, ∀1 ≤ n ≤ n t , E e -λ n i=1 U i -E e -λU n ≤ C 2 n t e -δκht , (3.18) 
where n t e -δκht = o(1) since φ(t) = o(log t). Moreover for all n ≥ 2, [a, b] ⊂ [0, 1] and α > 0,

P n-1 i=1 U i t ∈ [a, b], n i=1 U i t ≥ α - b a P n-1 i=1 U i t ∈ dx P(U/t ≥ α -x) ≤ C + n t e -κδht . (3.19) Similarly for n = 1, |P(U 1 /t ≥ α) -P(U/t ≥ α)| ≤ C + n t e -κδht .
Proof: We fix 0 < δ < 1/8 and λ > 0. We also introduce

G s := σ(X(u), 0 ≤ u ≤ s, W κ (x), x ∈ R) for s ≥ 0.
For n ∈ N * and 1 ≤ i < n, we have Li < mi < Li < mn by (2.14) and (2.15), so U i and 1 E i (defined in (3.7)) are G H( mn) -measurable. Hence for t and n such that 2 ≤ n ≤ n t ,

E Wκ e -λ n i=1 U i n i=1 1 E i = E Wκ E Wκ e -λUn 1 E n G H( mn) e -λ n-1 i=1 U i n-1 i=1 1 E i = E Wκ E Wκ mn e -λH( Ln) 1 {H( Ln)<H( L- n )} e -λ n-1 i=1 U i n-1 i=1 1 E i ,
by the strong Markov property, applied at time H( mn ) to X which is a Markov process under the quenched probability P Wκ . Hence we obtain by induction on n,

E Wκ e -λ n i=1 U i n i=1 1 E i = n i=1 E Wκ mi e -λH( Li ) 1 {H( Li )<H( L- i )} .
(3.20)

Under P Wκ mi , (X(u)-mi , u ≥ 0) is a diffusion in the potential W κ (x+ mi )-W κ ( mi ) = Ṽ (i) (x+ mi ), x ∈ R,
and starting from 0. So, applying (3.1) and (3.4) with Ãi (. + mi ) instead of A(.), there exists a Brownian motion ( Bi (s), s ≥ 0), independent of Ṽ (i) , such that the hitting time of r ≥ 0 by X -mi is under

P Wκ mi , r -∞ e -Ṽ (i) (x+ mi ) L Bi τ Bi ( Ãi (r + mi )), Ãi (x + mi ) dx, (3.21) 
and is in fact H(r + mi ), hitting time of r + mi by X. So under

P Wκ mi on {H( Li ) < H( L- i )}, H( Li ) = U i := Li L- i e -Ṽ (i) (u) L Bi τ Bi ( Ãi ( Li )), Ãi (u) du, (3.22) 
where we replaced the born -∞ in the integral by L-

i because e -Ṽ (i) (u) L Bi [τ Bi ( Ãi ( Li )), Ãi (u)] is by (3.5) equal under P Wκ mi to L X (H( Li ), u), which is 0 for u < L- i on {H( Li ) < H( L- i )}.
For the same reason, we also have, under P Wκ mi ,

U i = L X (H( Li ), [ L- i , Li ]), (3.23) 
where

L X (s, ∆) := ∆ L X (s, x)dx, ∆ ⊂ R is the total time spent by X in ∆ until time s. Also, let L X ([u, v], ∆) := L X (v, ∆) -L X (u, ∆) for 0 ≤ u < v. We have by (3.22), (3.20) = n i=1 E Wκ mi exp(-λU i )1 {H( Li )<H( L- i )} ≤ n i=1 E Wκ mi (exp(-λU i )) . (3.24)
We notice that on {H( Li ) > H( Li )} under P Wκ mi , we have thanks to (3.23),

U i ≥ L X [H( L- i ) + H L- i → mi , H( Li )], [ L- i , Li ] , which is the time spent in [ L- i , Li ] by X between times H( L- i ) + H L- i → mi and H( Li ). So, we get E Wκ mi e -λU i 1 {H( Li )>H( L- i )} ≤ E Wκ mi 1 {H( Li )>H( L- i )} E Wκ mi e -λL X ([H( L- i )+H L- i → mi ,H( Li )],[ L- i , Li ]) G [H( L- i )+H L- i → mi ]∧H( Li ) = P Wκ mi H( Li ) > H( L- i ) E Wκ mi e -λU i = P Wκ E i E Wκ mi e -λU i
by the strong Markov property. This and (3.24) yield

(3.20) = n i=1 E Wκ mi e -λU i -E Wκ mi e -λU i 1 H( Li )>H( L- i ) ≥ n i=1 1 -P Wκ E i E Wκ mi e -λU i .
Consequently by Lemma 3.2, 

E e -λ n i=1 U i ≥ E (3.20) ≥ 1 -e -κht/2 n E n i=1 E Wκ mi e -λU i - C + n t e κδht . Since ( Ṽ (i) (x), L- i ≤ x ≤ Li ), i ≥ 1 are i.i.d
= U under P. Moreover, (1 -x) n ≥ 1 -xn for 0 ≤ x ≤ 1, so this gives for large t since δ < 1/2, E e -λ n i=1 U i ≥ E e -λU n -C + n t e -κδht , (3.25) 
for all 1 ≤ n ≤ n t . Similarly, using (3.24) and Lemma 3.2,

E e -λ n i=1 U i ≤ E (3.20) + P ∪ n i=1 E i ≤ E e -λU n + C + n t e -κδht ,
for every 1 ≤ n ≤ n t . This together with (3.25) proves (3.18).

For (3.19), we obtain for n ≥ 2, [a, b] ⊂ [0, 1] and α > 0,

P n-1 i=1 U i t ∈ [a, b], n i=1 U i t ≥ α, E n = E 1 n-1 i=1 U i t ∈[a,b] E Wκ 1 Un t ≥α-n-1 i=1 U i t 1 En G H( mn) .
Since U i is, for 1 ≤ i ≤ n-1, G H( mn) -measurable, whereas U n and 1 En are under P Wκ independent of G H( mn) by strong Markov property, this is equal to

E 1 n-1 i=1 U i t ∈[a,b] E Wκ 1 Un t ≥α-x 1 En x= n-1 i=1 U i t = b a P n-1 i=1 U i t ∈ dx P(U n /t ≥ α -x, E n ), since n i=1 U i /t is measurable with respect to σ(W κ (v), v ≤ Ln-1 , X(u), u ≤ H( Ln-1 )
), and so is independent of E Wκ 1 Un/t≥α-x 1 En which is for every x ∈ R measurable with respect to 3.5. Negligible parts in the trajectory of X. We now prove that the total time spent by the diffusion X between the first n t valleys is negligible compared to t.

σ W κ v + L+ n-1 -W κ L+ n-1 , v ≥ 0 with Ln-1 ≤ L+ n-1 ≤ L- n by (2.
P(U/t ≥ α -x) -P(E n ) ≤ P(U n /t ≥ α -x, E n ) ≤ P(U/t ≥ α -x), x ∈ R. ( 3 
We first give some estimates about hitting times. To this aim, we recall the notation of Subsection 3.1 and in particular H -(r) and H + (r), which are defined in (3.6) and (3.5). We start with an estimate concerning the total time spent by X in R -, that is, H -(+∞) := lim r→+∞ H -(r). Lemma 3.5. For z large enough (this lemma is in fact true for every κ ∈ (0, ∞)),

P(H -(+∞) > z) ≤ C + [(log z)/z] κ/(κ+2) .
(3.27)

Proof: For a > 0, α > 0 and b > 0, let

E 3.5 1 := sup x<0 e -Wκ(x) ≤ a , E 3.5 2 := {A ∞ ≤ α} , E 3.5 3 := sup y<0 L B [τ B (α), y] ≤ b , L * - X (+∞) := sup r≥0 sup x<0 L X (H(r), x).
We first prove an inequality with regards to L * - X (+∞). We notice that by (3.5),

L * - X (+∞) = sup r≥0 sup x<0 e -Wκ(x) L B τ B (A(r)), A(x) ≤ sup x<0 e -Wκ(x) sup y<0 L B [τ B (A ∞ ), y].
By the first Ray-Knight theorem (see e.g. Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], chap. XI), there exist two Bessel processes R 2 and R 0 , of dimensions 2 and 0 respectively, starting from 0 and R 2 (α), such that

L B (τ B (α), x) is equal to R 2 2 (α -x) for x ∈ [0, α] and to R 2 0 (-x) for x < 0. Hence, for α ≤ b, P E 3.5 3 = P R 2 2 (α) > b + b 0 P sup y>0 R 2 0 (y) > b R 2 0 (0) = x P R 2 2 (α) ∈ [x, x + dx] .
Since R 2 is equal in law to the euclidian norm of a 2-dimensional Brownian motion and so R 2 2 (α) is exponentially distributed with mean 2α, since

P(sup R + R 2 0 > b|R 2 0 (0) = x) = x/b, 0 ≤ x ≤ b (a scale function of R 2
0 being x → x, see e.g. Revuz and Yor, [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p. 442 with ν = -1), and since e -x ≤ 1/x, x > 0, this gives by scaling . Notice that on

P(E 3.5 3 ) = exp - b 2α + E R 2 2 (α) b 1 {R 2 2 (α)≤b} ≤ 2 + E R 2 2 (1) 
E 3.5 1 ∩ E 3.5 2 ∩ E 3.5 3 , L * - X (+∞) ≤ z. Moreover, P [sup [0,∞) W κ ≥ x] = e -κx ,
x ≥ 0 by (2.26) as in the proof of Lemma 3.2. So, using Fact 3.1 (Dufresne) for P E 3.5 2 , we get for z large enough,

P[L * - X (+∞) > z] ≤ P(E 3.5 1 )+P(E 3.5 2 )+P(E 3.5 3 ) ≤ a -κ +[2/α] κ /(κΓ(κ))+4α/b ≤ C + z -κ κ+2 . (3.29)
We now turn back to H -(+∞). Define for c > 0,

E 3.5 4 := min 0≤s≤τ B (α) B(s) > -αz κ+1 κ+2 , E 3.5 5 := A -1 (-z) ≤ c log z . On ∩ 5 i=1 E 3.5 i , notice that by (3.5), for r ≥ 0, L X (H(r), x) = 0 if A(x) ≤ min 0≤s≤τ B (A(r)) B(s), and in particular if A(x) < -αz κ+1 κ+2 = -z since α ≥ A ∞ ≥ A(r)
, and so

H -(r) = 0 A -1 (-z) L X (H(r), x)dx ≤ 0 A -1 (-z) L * - X (+∞)dx.
This gives on ∩ 5 i=1 E 3.5 i , since L * - X (+∞) ≤ z on this event,

H -(+∞) ≤ A -1 (-z) L * - X (+∞) ≤ cz log z. (3.30) 
Moreover, for c > 2/κ, small ε > 0, and all large z, using (W (-u), u ∈ R) Lemma 3.6. There exists a constant C 3 > 0 such that for every h > 0,

L = (W (u), u ∈ R), P E 3.5 5 = P -z < A(-c log z) = P z > c log z 0 e W (-u)+κu/2 du ≤ P z > exp inf [0,c log z] W 2 κ (z κc 2 -1) ≤ P exp inf [0,c log z] W < z 1-κc 2 +ε ≤ 2z -1 2c ( κc 2 -1-ε) 2 , ( 3 
E H + (τ * 1 (h)) ≤ C 3 e h , (3.32) 
where

τ * 1 (h) = inf u ≥ 0, W κ (u) -inf [0,u] W κ ≥ h as in (2.5). Moreover, P[H -( m1 ) ≥ t/ log h t ] ≤ C + [(log t) 2 /t] κ/(κ+2) . (3.33) 
Proof: First, (3.33) comes directly from Lemma 3.5 since log h t ∼ t→+∞ log log t.

For (3.32), we notice that by the scale property of B, recalling that A(u) ≥ 0 for all u ≥ 0 and A is independent of B, we have for every r ≥ 0, which can depend on the environment W κ , Hence, applying this to r = τ * 1 (h) for h > 0, we get

E Wκ [H + (r)] = E Wκ r 0 e -Wκ(u) A(r)L B τ B (1), A(u)/A(r) du . We remind that E[L B (τ B (1), y)] = E[R 2 2 (1-y)] = 2(1-y) for 0 ≤ y ≤ 1,
E[H + (τ * 1 (h))] = 2E τ * 1 (h) 0 τ * 1 (h) u e Wκ(v)-Wκ(u) dvdu ≤ 2E ∞ 0 1 u≤τ * 1 (h) τ * 1 (u,h) u e Wκ(v)-Wκ(u) dvdu , where τ * 1 (u, h) := inf{x ≥ u, W κ (x) -inf [u,x] W κ ≥ h} ≥ τ * 1 (h).
Applying Fubini followed by the Markov property at time u, we get

E[H + (τ * 1 (h))] ≤ 2 ∞ 0 E 1 u≤τ * 1 (h) τ * 1 (u,h)-u 0 e Wκ(α+u)-Wκ(u) dα du = 2 ∞ 0 E(1 u≤τ * 1 (h) )E τ * 1 (h) 0 e Wκ(α) dα du = 2E τ * 1 (h) β 0 (h), (3.35) 
where, similarly as in Enriquez et al. ( [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF], Lem. 4.9),

β 0 (h) := E τ * 1 (h) 0
e Wκ(u) du .

We now prove that β 0 (h) ≤ C + e (1-κ)h . We notice that W κ (u) ≤ h for all 0 ≤ u ≤ τ * 1 (h) and so L Wκ (τ * 1 (h), x) = 0 for all x > h. Consequently, by the occupation time formula and Fubini,

β 0 (h) = E h -∞ e x L Wκ (τ * 1 (h), x)dx ≤ E h -∞ e x L Wκ (∞, x)dx = h -∞ e x E L Wκ (∞, x) dx, where L Wκ (∞, x) = lim u→+∞ L Wκ (u, x). Moreover, E L Wκ (∞, 0) = 2/κ < ∞, since L Wκ (∞, 0)
is an exponential variable of mean 2/κ (see e.g. Borodin et al. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF], p. 90 at the end of paragraph V.11). Furthermore by the strong Markov property,

E L Wκ (∞, x) = P τ Wκ (x) < ∞ E L Wκ (∞, 0) = 1 (-∞,0) (x) + e -κx 1 (0,∞) (x) 2/κ, x ∈ R,
since P τ Wκ (x) < ∞ = e -κx for x > 0 by (2.26), and is 0 for x ≤ 0 since lim +∞ W κ = -∞ a.s. So for large h,

β 0 (h) ≤ 0 -∞ 2 κ e x dx + h 0 2 κ e (1-κ)x dx ≤ C + e (1-κ)h .
This, together with (3.35) and E τ * 1 (h) ≤ C + e κh provided in Fact 2.2 gives (3.32). We now have all the tools needed to bound the time spent by X between the valleys. We recall that U i = H( Li ) -H( mi ) for i ≥ 1. More precisely, we prove the following lemma: Lemma 3.7. Assume 0 < δ < 2 -3/2 and (1 + 2δ)κ < 1. For t large enough,

P H( m1 ) ≤ 2t log h t ≥ P nt k=1 0 ≤ H( mk ) - k-1 i=1 U i ≤ 2t log h t ≥ 1 -C + n t (log h t )e -φ(t) ,
where

0 i=1 • • • = 0 by convention. Notice that n t (log h t )e -φ(t) ≤ (log log t)e [(1+δ)κ-1]φ(t) = o(1) as t → +∞ since log log t = o(φ(t)).
Proof : We use the notation L * i defined in (3.11). We introduce

X i (t) := X t + H Li , X * i (t) := X t + H L * i , t ≥ 0, (3.36) 
which are diffusions in the environment W κ , starting respectively from Li and L * i , by the strong Markov property. We also denote by H X i (r) the hitting time of r by X i for r ∈ R.

We first notice that since

U i = H( Li ) -H( mi ), i ∈ N * , H( mk ) = H( m1 ) + k-1 i=1 U i + k-1 i=1 H( mi+1 ) -H( Li ) , 1 ≤ k ≤ n t , (3.37) 
and H( mi+1 ) -H( Li ) ≥ 0 since mi+1 > Li by (2.14). So, we just have to prove that

H( m1 ) + nt-1 i=1 H( mi+1 ) -H( Li ) ≤ 2t/ log h t with large probability.
The idea of the proof is to use Lemma 3.3, which says that on some large event E 3.3 1 , the diffusion X i starting from Li hits mi+1 before L * i . This allows us to write (see step 2)

E Wκ [H X i ( mi+1 )1 E 3.3 1 ] ≤ E Wκ L * i [H + (τ i+1 (h t ))].
Thanks to some large event studied in Step 1, we can compare the expectancy of this last quantity with E[H + (τ * 1 (h t ))], which we can bound by Lemma 3.6.

Step 1: In this step, we prove that P (E 3.7

2 ) ≤ C + n t e -κht/2 , where,

τ * i+1 (h t ) := inf{u ≥ L * i , W κ (u) -inf [ L * i ,u] W κ ≥ h t } ≤ τi+1 (h t ), i ≥ 1, E 3.7 2 := ∩ nt-1 i=1 τ * i+1 (h t ) = τi+1 (h t ) ,
where we used, for the inequality, L * i < Li < L i+1 , coming from (3.11) and (2.14). By definition of τi+1 (h t ) and (2.16), we observe that τ

* i+1 (h t ) = τi+1 (h t ) = τ * i+1 (h t ) ≤ L i+1 = inf [ L * i ,τ * i+1 (ht)] W κ -W κ ( L * i ) ≥ -2h + t -3h t /4
. So, applying the strong Markov property at stopping time L * i yields

P [τ * i+1 (h t ) = τi+1 (h t )] = P inf [0,τ * 1 (ht)] W κ ≥ -2h + t -3h t /4 ≤ C + h t e -κht
by (2.9). Then P E 3.7 2 ≤ C + n t h t e -κht ≤ C + n t e -κht/2 .

Step 2: 

On E 3.7 2 , H( mi+1 ) -H( Li ) = H X i ( mi+1 ) ≤ H X i (τ i+1 (h t )) = H X i (τ * i+1 (h t )),
X * i -L * i is a diffusion in the environment (W κ ( L * i + x) -W κ ( L * i ), x ∈ R), which has on [0, +∞) the same law as (W κ (x), x ≥ 0) because L * i is a stopping time for W κ . Consequently, E[(H( mi+1 ) -H( Li ))1 E 3.3 1 ∩E 3.7 2 ] ≤ E[H + (τ * 1 (h t ))], 1 ≤ i ≤ n t -1. (3.38) 
A Markov inequality, this last inequality (3.38), and then Lemma 3.6 lead to

P H + ( m1 ) + nt-1 i=1 H( mi+1 ) -H( Li ) ≥ t log h t , E 3.3 1 , E 3.7 2 , E 3.7 3 , V t (3.39) ≤ log h t t E H + (m 1 )1 E 3.7 3 + (n t -1)E H + (τ * 1 (h t )) ≤ log h t t n t C 3 e ht ,
where E 3.7
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:= {m 1 ≤ τ * 1 (h t )} and since m1 = m 1 on V t .
Recall that φ(t) = o(log t) and log log t = o(φ(t)) as t → +∞, and then log h t ∼ t→+∞ log log t. This and (3.37) lead to

P H( mnt ) - nt-1 i=1 U i ≥ 2t log h t = P H( m1 ) + nt-1 i=1 H( mi+1 ) -H( Li ) ≥ 2t log h t ≤ P H -( m1 ) ≥ t/ log h t + (3.39) + P E 3.3 1 + P E 3.7 2 + P E 3.7 3 + P V t ≤ C + n t (log h t )e -φ(t) .
(3.40)

Indeed, we used in the last inequality (3.33), (3.16), Step 1, Lemma 2.3, and the fact that (2.20) and the definition of h t maximum and M 0 . As explained after (3.37), this concludes the proof.

P(E 3.7 3 ) ≤ P(0 ≤ M 0 < m 1 ) ≤ 2h t e -κht by

Time spent in a standard valley

The aim of this section is to prove the following proposition, which gives the second order of the Laplace transform of U, which is defined in (3.17) and is useful because of Proposition 3.4:

Proposition 4.1. Assume κ ∈ (0, 1) and 0 < δ < inf(2/27, κ 2 /2). Let λ > 0. As t → +∞, e κφ(t) 1 -E e -λU/t = C κ λ κ + o(1),
where

C κ := 8 κ (C 0 + |Υ 0 |) > 0, with C 0 := Γ(1 -κ)Γ(κ + 2)/(1 + κ) κ and Υ 0 := κ ∞ 0 y κ [Γ(κ + 1)I κ (2 √ y)] 2 -1 + y κ + 1 -2 y -κ-1 dy < 0, (4.1) 
I κ being the modified Bessel function of the first kind.

Before proving this in Subsection 4.3, we need additional estimates given below.

4.1. Some technical estimates. Recall that (R(s), s ≥ 0) is a process with law BES(3, κ/2), and that for a < b, W b κ (s), 0 ≤ s ≤ τ W b κ (a) is a (-κ/2)-drifted Brownian motion starting from b and killed when it first hits a. We now introduce

F ± (x) := τ R (x) 0 exp(±R(s))ds, x > 0, G ± (a, b) := τ W b κ (a) 0 exp ± W b κ (s) ds, a < b. (4.2)
The following technical lemma is useful to estimate the Laplace transform appearing in Proposition 4.1: Lemma 4.2. There exists C 4 > 0, M > 0 and η 1 ∈ (0, 1) such that ∀y > M, ∀γ ∈ (0, η 1 ],

E e -γF -(y) -[1 + 2γ/(κ + 1)] -1 ≤ C 4 max(e -κy , γ 3/2 ), (4.3 
)

E e -γF + (y)/e y -[1 -2γ/(κ + 1)] ≤ C 4 max(e -κy , γ 3/2 ), (4.4 
)

E e -γG + (y/2,y)/e y -[1 -Γ(1 -κ)(2γ) κ /Γ(1 + κ)] ≤ C 4 max(γ κ e -κy/2 , γ). (4.5)
Moreover, there exists c 1 > 0, such that for all y > 0, E [F + (y)/e y ] ≤ c 1 . Finally,

lim x→+∞ E e -γF -(x) = (2γ) κ/2 κΓ(κ)I κ (2 √ 2γ) γ > 0. (4.6) 
The proof of this lemma is deferred to Section 6.

Before proving Proposition 4.1, we also need to introduce the following technical lemma, which is useful to approximate U, and in particular the local time appearing in its expression (3.17): Lemma 4.3. (B(t), t ∈ R) being a standard two-sided Brownian motion, there exists a constant c 2 such that for every 0 < ε < 1, 0 < η < 1 and x > 0,

P sup u∈[-η,η] L B τ B (1), u -L B τ B (1), 0 > εL B τ B (1), 0 ≤ c 2 η 1/6 ε 2/5 , (4.7) 
P sup u∈[0,1] L B τ B (1), u ≥ x ≤ 4e -x/2 , (4.8) 
P sup u≤0 L B τ B (1), u ≥ x ≤ 4 x . (4.9) 
Proof: First, (4.9) is the particular case α = 1 of (3.28), which we proved in Lemma 3.5.

Second, by the first Ray-Knight theorem (see e.g. Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], chap. XI), L B (τ

B (1), u) = R 2 2 (1 -u) for u ∈ [0, 1],
where R 2 2 is a 2-dimensional squared Bessel process starting from 0, so (4.8) follows directly from Diel ([18] Lem. 2.3 (iii)).

We now turn to the proof of (4.7). Let 0 < ε < 1, 0 < η < 1 and

E 4.3 := sup u∈[-η,η] L B τ B (1), u -L B τ B (1), 0 > εL B τ B (1), 0 .
We have, for α > 0 and x > 0,

P(E 4.3 ) = P E 4.3 ∩ L B τ B (1), 0 ≥ α + P E 4.3 ∩ L B τ B (1), 0 < α ≤ P sup u∈[-η,η] L B τ B (1), u -L B τ B (1), 0 > εα + P L B τ B (1), 0 < α ≤ P τ B (1) ≥ x + P sup u∈[-η,η], 0≤s≤x L B (s, u) -L B (s, 0) > εα + α 2 , (4.10) 
since L B (τ B (1), 0) = R 2 2 (1) is an exponential variable with mean 2. Now, notice that

P τ B (1) ≥ x = P sup 0≤u≤x B(u) < 1 = P |B(x)| < 1 ≤ 2/ √ 2πx.
Let 0 < ε 0 < 1/2. The second term of (4.10) is less than or equal to 

P sup u∈[-η,η]-{0}, 0≤s≤x |L B (s, u) -L B (s, 0)| |u| 1/2-ε 0 > εα η 1/2-ε 0 ≤ η 1/2-ε 0 εα E sup a =b, 0≤s≤x |L B (s, b) -L B (s, a)| |a -b| 1/2-ε 0 , ( 4 
P E 4.3 ≤ 2/ √ 2πx + C + ( √ x) 1/2+ε 0 η 1/2-ε 0 (εα) -1 + α/2.
Now, we choose α = ε -2/5 η 1/5 , x = ε 4/5 η -2/5 and ε 0 < 1/36; we get P(E 4.3 ) ≤ C + η 1/6 ε -2/5 , which concludes the proof.

Approximation of the exit time from a typical valley.

We now prove that the standard exit time U, defined in (3.17), can be approximated by a product of (sums of) independent r.v, (I + 1 + I + 2 )(I - 1 + I - 2 )e 1 . We need this later to approximate the Laplace transform of U and then prove Proposition 4.1, in particular because we have estimates of the Laplace transforms of these r.v. I ± 1 and I ± 2 in Lemma 4.2. Proposition 4.4. Assume 0 < δ < inf(2/27, κ 2 /2) and let ε t := 3e -(1-3δ)ht/6 . Possibly on an enlarged probability space, there exist random variables I + 1 , I + 2 , I - 1 and I - 2 , depending on t and e 1 , such that

(i) I + 1 , I + 2 , I - 1 , I -
2 and e 1 are independent; (ii) e 1 is exponentially distributed with mean 2, and

I + 1 L = F + (h t ), I + 2 L = G + (h t /2, h t ), I - 1 L = I - 2 L = F -(h t /2),
where L = denotes equality in law, (iii) for t large enough, P(A t ) ≥ 1 -C + e -(c -)δht , where

A t := U -(I + 1 + I + 2 )(I - 1 + I - 2 )e 1 ≤ (I + 1 + I + 2 )(I - 1 + I - 2 )e 1 ε t . (4.
12)

The proof of this proposition involves 3 lemmas. The first two are straightforward consequence of what we have already proved and the last one is more technical.

The expressions of I - 1 , I - 2 , I + 2 and some intermediate r.v. I + 0 are given in the following lemma, which also provides their laws. The random variables e 1 and I + 1 are defined later, respectively in Lemma 4.7 and in (4.35). Lemma 4.5. We have with the notations F ± and G ± introduced in (4.2),

I + 0 := τ 2 (ht) m 2 e V (2) (x) dx L = F + (h t ), I - 1 := τ 2 (ht/2) m 2 e -V (2) (x) dx L = F -(h t /2), (4.13) 
I + 2 := L 2 τ 2 (ht) e V (2) (x) dx L = G + (h t /2, h t ), I - 2 := m 2 τ - 2 (ht/2) e -V (2) (x) dx L = F -(h t /2).
where e V (2) (x) dx, which is equal in law to F + (ζh t ) thanks to Fact 2.1 (ii). Hence by Lemma 2.3, LHS of (4.14) ≥ P e ζht(1-ε) ≤ F + (ζh t ) ≤ e ζht(1+ε) -P (V t ).

L 2 := inf{x > τ 2 (h t ), V (2) (x) = h t /
≥ P F + (ζh t ) ≥ e ζht(1-ε) -P F + (ζh t ) > e ζht(1+ε) -e [-κ/2+o(1)]ht .(4.15)
Since F + (ζh t ) ≤ τ R (ζh t )e ζht , we have by (2.30) for large t,

P F + (ζh t ) > e ζht(1+ε) ≤ P τ R (ζh t ) > e εζht ≤ C + e -κζht/(2 √ 2) . (4.16) 
For the lower bound, notice that by (2.29),

P F + (ζh t ) ≥ e (1-ε)ζht ≥ 1 -3 exp(-κεζh t /2).
This together with (4.15) and (4.16) proves the lemma.

In the following lemma, we provide an approximation of U by the product Ã2 L2 I -e 1 , where Ã2 L2 and I -depend only on the potential W κ , whereas e 1 is independent of the potential. Lemma 4.7. For all 0 < ε < inf(2/27, κ 2 /2), and t large enough,

P U -Ã2 L2 I -e 1 ≤ 2e -(1-3ε)ht/6 Ã2 L2 I -e 1 ≥ 1 -C + e -(c -)εht , (4.17) 
where

I -:= τ2 (ht/2) τ - 2 (ht/2) e -Ṽ (2) (u) du, e 1 = L B τ B Ã2 L2 , 0 / Ã2 L2 .
Moreover, e 1 is independent of W κ , and exponentially distributed with mean 2.

Proof Let 0 < ε < inf(2/27, κ 2 /2). We first notice that

U = L2 L- 2 e -Ṽ (2) (u) Ã2 L2 L B τ B (1), Ã2 (u)/ Ã2 L2 du,
where B (u) := B Ã2 L2 2 u / Ã2 L2 for u ≥ 0, and therefore (B (u), u ≥ 0) is by scaling, as B, a standard Brownian motion independent of W κ , that is, of Ṽ (2) . The idea of the proof is that, loosely speaking, for u close to 0, and more precisely for u between τ -2 (h t /2) and τ2 (h t /2),

L B τ B (1), Ã2 (u)/ Ã2 L2 is nearly L B τ B (1), 0 = e 1 , whereas for u far from 0, that is u / ∈ [τ - 2 (h t /2), τ2 (h t /2)], e -Ṽ (2) (x)
is "nearly" 0, with large probability. We first notice that e 1 = L B (τ B (1), 0) is an exponential r.v. with mean 2 by the first Ray-Knight theorem, and is independent of W κ . We cut U/ Ã2 L2 into three integrals:

U Ã2 L2 = τ - 2 (ht/2) L- 2 + τ2 (ht/2) τ - 2 (ht/2) + L2 τ2 (ht/2) e -Ṽ (2) (u) L B τ B (1), Ã2 (u)/ Ã2 L2 du =: J 0 + J 1 + J 2 . (4.18)
In what follows, we show that the main contribution comes from J 1 .

Step 1: study of Ã2 (u)/ Ã2 ( L2 ). We introduce

δ t := e -ht(1-3ε)/2 , (4.19) 
E 4.7 1 := δ t Ã2 L2 ≥ Ã2 (τ 2 (h t /2)) , E 4.7 2 := δ t Ã2 L2 ≥ -Ã2 (τ - 2 (h t /2
)) , so that on E 4. 7 1 ∩ E 

P Ã2 L2 ≥ e ht(1-ε) ≥ P F + (h t ) ≥ e ht(1-ε) -P (V t ) ≥ 1 -4e -κεht/2 , (4.21) 
where we used (2.29) and Lemma 2.3 in the last inequality. This, together with (4.20) gives

P (E 4.7 1 ) ≥ P δ t Ã2 L2 ≥ δ t e ht(1-ε) = e ht(1+ε)/2 ≥ Ã2 (τ 2 (h t /2)) ≥ 1 -C + e -κεht/4 . (4.22) 
Similarly on ≥ 1 -5e -κεht/2 .

V t , -Ã2 (τ - 2 (h t /2)) = m 2 τ - 2 (ht/2) exp(V (2) (s))ds L = F + (h t /
Step 2: study of J 2 . We prove in this step that for t large enough,

P J 2 ≥ c + h 2 t e -(1-ε)ht/2 ≤ C + e -κεht/2 , (4.23) 
for some constants c + and C + . Let E 4.7 3 := {sup u∈[0,1] L B (τ B (1), u) ≤ h t }, and define

E 4.7 4 := inf [τ 2 (ht/2),τ 2 (ht)] Ṽ (2) > (1 -ε)h t /2 , E 4.7 5 := L+ 2 -L- 2 ≤ 40h + t /κ . We have on E 4.7 3 ∩ E 4.7 4 ∩ E 4.7 5 , J 2 ≤ h t L2 τ2 (ht/2) e -Ṽ (2) (u) du ≤ h t e -(1-ε)ht/2 L2 -τ2 (h t /2) ≤ 40h + t h t κ e -(1-ε)ht/2 . (4.24)
Now, Fact 2.1, equation (2.27) with α = 1/2, γ = (1 -ε)/2 and ω = 1, and Lemma 2.3 give

P E 4.7 4 ≤ P inf [τ 2 (ht/2),τ 2 (ht)] V (2) ≤ (1 -ε)h t /2, V t + P (V t ) ≤ 3e -κεht/2 .
Moreover, P E 4.7
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≤ e -κht/8 ≤ e -κεht/2 by (2.32) since ε < 1/4, and P E 4.7 3 ≤ 4e -ht/2 by (4.8). This, together with (4.24) proves (4.23).

Step 3: study of J 0 . We prove that for t large enough, 

P J 0 ≥ 40κ -1 h + t e -(1-4ε)ht/2 ≤ C + e -κεht/
Ṽ (2) (u) < (1/2 -ε)h t +P inf τ - 2 (ht)≤u≤τ - 2 (ht/2) Ṽ (2) (u) < (1/2 -ε)h t , V t + P V t ≤ 3e -κεht .
Moreover, by (4.9), P(E 4.7 7 ) ≤ 4e -εht . Therefore, on E 4. 7 5 ∩ E 4.7 6 ∩ E 4.7 7 , i.e with a probability larger than 1 -C + e -κεht/2 , we obtain

J 0 ≤ sup s≤0 L B [τ B (1), s] τ - 2 (ht/2) L- 2 e -Ṽ (2) (u) du ≤ 40κ -1 h + t e -(1/2-2ε)ht , (4.26) 
which yields (4.25).

Step 4: study of J 1 . We prove that for t large enough,

P J 1 ≤ e 1 e -εht /2 ≤ C + e -(c -)εht . (4.27)
First, recall that e 1 = L B (τ B (1), 0) and let

E 4.7 8 := sup s∈[-δt,δt] L B (τ B (1), s) -L B (τ B (1), 0) ≤ δ 1/3 t L B (τ B (1), 0) .
We know that P(E 

∩ E 4.7 2 , Ã2 (u)/ Ã2 ( L2 ) ∈ [-δ t , δ t ] for all u ∈ [τ - 2 (h t /2), τ2 (h t /2)], we get on E 4.7 1 ∩ E 4.7 2 ∩ E 4.7 8 , 1 -δ 1/3 t I -e 1 ≤ J 1 ≤ 1 + δ 1/3 t I -e 1 . (4.28) 
We finally prove that I -is not too small, with a similar argument as before. First, we have , where RHS means right hand side, which proves the lemma.

I -≥ τ2 (εht) m2 e -Ṽ (2) (u) du ≥ [τ 2 (εh t ) -m2 ]e -εht ≥
We are now ready prove Proposition 4.4, for which we use the notation of Lemma 4.5.

Proof of Proposition 4.4: The idea of the proof is that thanks to Lemma 4.7, we can already approximate U by Ã2 ( L2 )I -e 1 , which is equal to (I + 0 +I + 2 )(I - 1 +I - 2 )e 1 on V t . However, I + 0 is not independent of I - 1 , so we would like to replace it by a r.v I + 1 with the same law and independent of I - 1 , I - 2 , I + 2 and e 1 . We do this by replacing in I + 0 the small quantity τ 2 (ht/2) m 2 e V (2) (s) ds by an independent copy of it.

More precisely, we define

I + 3 := τ 2 (ht) τ 2 (ht/2) e V (2) (s) ds ≤ I + 0 . (4.34) By Fact 2.1 (ii), (V (2) (m 2 + s), 0 ≤ s ≤ τ 2 (h t ) -m 2
) is a Markov process, so I + 3 and I - 1 are independent by the strong Markov property. Moreover by Fact 2.1 (ii), I - 2 is independent of this Markov process and then is independent of I + 3 and I - 1 . Also, by Fact 2.1 (iii), I + 2 is independent of (W κ (s), s ≤ τ 2 (h t )) and then of I - 2 , I + 3 and I - 1 . Finally by Lemma 4.7, e 1 is independent of W κ and then I + 2 , I + 3 , I - 1 , I - 2 , and e 1 are independent.

Furthermore, by Lemma 4.5, I -

1 L = F -(h t /2), I - 2 L = F -(h t /2) and I + 2 L = G + (h t /2, h t
), e 1 is by Lemma 4.7 independent of W κ and exponentially distributed with mean 2. Moreover as before, by Fact 2.1, Lemma 4.5 and the strong Markov property, these r.v. I - 1 , I - 2 , I + 2 and e 1 are independent of (V (2) 

(s + τ 2 (h t /2)), 0 ≤ s ≤ τ 2 (h t ) -τ 2 (h t /2
)) which has the same law as a BES(3, κ/2) starting from h t /2 and stopped when it first hits h t .

We now consider, possibly on an enlarged probability space, a process (R (1) (s), 0 ≤ s ≤ τ R (1) (h t /2)), independent of W κ and e 1 and then independent of I - 1 , I - 2 , I + 2 , e 1 and (V (2) (s + τ 2 (h t /2)), 0 ≤ s ≤ τ 2 (h t ) -τ 2 (h t /2)), and distributed as (R(s), 0 ≤ s ≤ τ R (h t /2)), R being a BES(3, κ/2) process. We now extend this process by setting R (1) 

(u) := V (2) [u -τ R (1) (h t /2) + τ 2 (h t /2)] for τ R (1) (h t /2) ≤ u ≤ τ R (1) (h t /2) + τ 2 (h t ) -τ 2 (h t /2)
. By the Strong Markov property, (R (1) (s), 0 ≤ s ≤ τ R (1) (h t )) has the same law as (R(s), 0 ≤ s ≤ τ R (h t )), and then

I + 1 := τ R (1) (ht) 0 e R (1) (s) ds L = F + (h t ), I + 3 = τ R (1) (ht) τ R (1) (ht/2) e R (1) (s) ds. (4.35) Furthermore, since (R (1) (s), 0 ≤ s ≤ τ R (1) (h t )
) is obtained by gluing two processes independent of I - 1 , I - 2 , I + 2 and e 1 , it is also independent of these r.v., and so I + 1 is also independent of these r.v. I - 1 , I - 2 , I + 2 and e 1 . This already proves affirmations (i) and (ii) of Proposition 4.4. Moreover, with the same notation as in Lemma 4.7, we have on V t ,

I -= I - 1 + I - 2 and Ã2 ( L2 ) = L2 m2 e Ṽ (2) (x) dx = I + 0 + I + 2 , where I + 0 = τ 2 (ht) m 2
e V (2) (x) dx as defined in (4.13).

We now approximate I + 0 by I + 1 . Since

I + 0 -I + 3 = τ 2 (ht/2) m 2 e V (2) (s) ds L = F + (h t /2) by (4.34)
and Fact 2.1, and since

I + 1 -I + 3 = τ R (1) (ht/2) 0 e R (1) (s) ds L = F + (h t /2
), we get

P I + 1 -I + 3 > e (1+δ)ht/2 = P I + 0 -I + 3 > e (1+δ)ht/2 = P F + (h t /2) e ht/2 > e δht/2 ≤ c 1 e δht/2
, by Markov inequality since E [F + (y)/e y ] ≤ c 1 for all y > 0 by Lemma 4.2. Moreover, I + 3 ≤ I + 1 , and by (2.29), with a probability larger than 1 -3e -κδht/2 for large t, I + 1 ≥ e (1-δ)ht . Therefore, with a probability greater than 1 -4e -κδht/2 for large t,

I + 0 = I + 3 + (I + 0 -I + 3 ) ≤ I + 1 + e (1+δ)ht/2 ≤ (1 + e -(1-3δ)ht/2 )I + 1 , I + 0 ≥ I + 3 = I + 1 -(I + 1 -I + 3 ) ≥ I + 1 -e (1+δ)ht/2 ≥ (1 -e -(1-3δ
)ht/2 )I + 1 , and then

(1 -e -(1-3δ)ht/2 )I + 1 ≤ I + 0 ≤ (1 + e -(1-3δ)ht/2 )I + 1 .
This and Lemma 2.3 give with probability at least 1 -5e -κδht/2 ,

(1 -e -(1-3δ)ht/2 ) ≤ Ã( L2 )I - (I + 1 + I + 2 )(I - 1 + I - 2 ) = I + 0 + I + 2 I + 1 + I + 2 ≤ (1 + e -(1-3δ)ht/2 ). since on V t , I -= I - 1 + I - 2 and Ã( L2 ) = I + 0 + I + 2 .
Finally, this and Lemma 4.7 applied with ε = δ prove affirmation (iii) of the proposition.

4.3.

Second order of the Laplace transform of a standard exit time.

We are now ready to prove Proposition 4.1. This proof is quite technical and can be skipped at first reading.

Idea of the proof of Proposition 4.1:

In this proof we use Proposition 4.4 to approximate the Laplace transform of U by that of (I

+ 1 + I + 2 )(I - 1 + I - 2 )e 1
, and take advantage of the fact that the r.v. that appear in this product are independent. This allows us to condition first by e 1 , and then by σ(I + 1 , I + 2 ). We then cut this into 2 parts : one (studied in Lemma 4.8) for which I + 1 + I + 2 is "small", which allows us to use the approximations of the Laplace transforms provided by Lemma 4.2, and one (studied in Lemma 4.9) for which I + 1 + I + 2 is "big", which allows us to approximate I + 1 + I + 2 by a r.v. having the same law as A ∞ , for which we know the density.

Proof of Proposition 4.1: We fix κ ∈ (0, 1), 0 < δ < inf(2/27, κ 2 /2) and λ > 0. We have for every t > 0, A t being defined in (4.12), and with ε t = 3e -(1-3δ)ht/6 as defined in Proposition 4.4, E e -λU/t = E e -λU/t 1 At + E e -λU/t 1 At ≤ E e -λU/t 1 At + P A t .

Hence by the definition (4.12) of A t and Proposition 4.4, we get with

λ ± t := 2λ (1 ± ε t ) /t, S + 0,t -C + e -(c -)δht ≤ E e -λU/t ≤ S - 0,t + C + e -(c -)δht , (4.36) 
where

S ± 0,t := E e -(λ ± t /2)(I + 1 +I + 2 )(I - 1 +I - 2 )e 1 . Let θ ∈ (3κ/4, κ), B 1 := {I + 1 + I + 2 > te -θφ(t) }, B 2 := {I + 1 + I + 2 ≤ te -θφ(t) } = B 1 . (4.37)
Since e 1 /2 is an exponential r.v. with mean 1 and is independent of the r.v. I ± i , i ∈ {1, 2} by Proposition 4.4, we have S ± 0,t = S ± 1,t + S ± 2,t , where for i ∈ {1, 2},

S ± i,t := E e -(λ ± t /2)(I + 1 +I + 2 )(I - 1 +I - 2 )e 1 1 B i = ∞ 0 E 1 B i e -zλ ± t (I + 1 +I + 2 )(I - 1 +I - 2 ) e -z dz (4.38) = ∞ 0 E 1 B i E e -zλ ± t (I + 1 +I + 2 )I - 1 I + 1 , I + 2 2
e -z dz, (4.39) since I - 1 and I - 2 are independent and independent of I + 1 and I + 2 and have the same law, once more by Proposition 4.4. We also define,

Z t (x) := 1 + 2λ ± t x κ + 1 (I + 1 + I + 2 ) -1 , x > 0, S ± 3,t := ∞ 0 E 1 B 1 Z 2 t (z) e -z dz. (4.40)
We start with the study in the case I + 1 + I + 2 is "small", that is,

I + 1 + I + 2 ≤ te -θφ(t)
as is the case on B 2 . More precisely, we prove Lemma 4.8. As t → +∞, with C 0 = Γ(1 -κ)Γ(κ + 2)/(1 + κ) κ as defined in Proposition 4.1,

S ± 2,t + S ± 3,t = 1 -C 0 8 κ λ κ e -κφ(t) + o(e -κφ(t) ). (4.41) Proof: Let a(t) := e -(3/4)κφ(t) . Now, consider 0 ≤ z ≤ η 1 a(t)e θφ(t) /(tλ ± t ) = η 1 a(t)e θφ(t) /[2λ(1 ± ε t )],
where η 1 ∈ (0, 1) is defined in Lemma 4.2. We have on B 2 for such z,

0 ≤ zλ ± t (I + 1 + I + 2 ) ≤ η 1 a(t). (4.42)
This gives by (4.3) applied to I -

1 L = F -(h t /2) for t so large that h t /2 ≥ M and a(t) ≤ 1, E e -zλ ± t (I + 1 +I + 2 )I - 1 I + 1 , I + 2 = E e -γF -(ht/2) γ=zλ ± t (I + 1 +I + 2 ) ≤ Z t (z) + C 4 max e -κht/2 , zλ ± t (I + 1 + I + 2 ) 3 2 ,
on B 2 for such z, thanks to the independence of I - 1 and (I + 1 , I + 2 ) for the equality. Therefore for large t, by (4.39), and since 0 ≤ Z t (z) ≤ 1,

S ± 2,t ≤ η 1 a(t)e θφ(t) tλ ± t 0 E 1 B 2 Z 2 t (z) + 1 B 2 3C 4 [zλ ± t (I + 1 + I + 2 )] 3 
2 + e -κht/2 e -z dz

+ ∞ η 1 a(t)e θφ(t) /(tλ ± t )
e -z dz.

We notice that η 1 a(t)e θφ(t) /(tλ ± t ) ≥ φ(t) for large t since θ > 3κ/4, and so ∞ η 1 a(t)e θφ(t) /(tλ ± t ) e -z dz ≤ e -φ(t) . Moreover by (4.42),

η 1 a(t)e θφ(t) /(tλ ± t ) 0 E 1 B 2 [zλ ± t (I + 1 + I + 2 )] 3/2 e -z dz ≤ [η 1 a(t)] 3/2 = o(e -κφ(t) )
, and e -κht/2 = o(e -κφ(t) ) since φ(t) = o(log t). So for large t since 0 < κ < 1,

S ± 2,t ≤ ∞ 0 E 1 B 2 Z 2 t (z) e -z dz + o(e -κφ(t) ). (4.43)
Recall that for any random variable Y ≥ 0, we have by Fubini,

E (1 + Y ) -2 = ∞ 0 du ∞ u E e -x(1+Y ) dx.
So, by independence of I + 1 and I + 2 , we have for every z > 0,

E Z 2 t (z) = ∞ 0 du ∞ u e -x E exp - ρ ± κ zxλI + 1 t E exp - ρ ± κ zxλI + 2 t dx, (4.44) 
where

ρ ± κ := 4 (1 ± ε t ) κ + 1 .
Recall that t = e ht e φ(t) , 

I + 1 L = F + (h t ) and I + 2 L = G + (h t /
t ≥ M , E e - ρ ± κ zxλI + 1 t ≤ 1 - 2ρ ± κ zxλ (κ + 1)e φ(t) + C 4 max e -κht , ρ ± κ zxλ/e φ(t) 3/2 , E e - ρ ± κ zxλI + 2 t ≤ 1 - Γ(1 -κ) Γ(1 + κ) (2ρ ± κ zxλ) κ e κφ(t) + C 4 max ρ ± κ zxλ/e φ(t) κ e -κht/2 , ρ ± κ zxλ e φ(t) .
So, (4.44) gives for large t, 

E Z 2 t (z) ≤ +∞ 0 du +∞ u e -x 1 - Γ(1 -κ) Γ(1 + κ) (2ρ ± κ zxλ) κ e κφ(t) 1 ρ ± κ zxλ/e φ(
E Z 2 t (z) e -z dz ≤ +∞ 0 dze -z +∞ 0 du +∞ u e -x 1 - Γ(1 -κ) Γ(1 + κ) (2ρ ± κ zxλ) κ e κφ(t) 1 ρ ± κ zxλ/e φ(t) ≤η 1 dx + O(e -φ(t) ) = 1 - Γ(1 -κ) Γ(1 + κ) 8 κ λ κ (1 + κ) κ e κφ(t) (1 ± ε t ) κ +∞ 0 e -z z κ dz +∞ 0 e -x x κ+1 dx + Γ(1 -κ)(2λρ ± κ ) κ Γ(1 + κ)e κφ(t) +∞ 0 dze -z +∞ 0 du +∞ u e -x (zx) κ 1 ρ ± κ zxλ/e φ(t) >η 1 dx + O(e -φ(t) ) (4.46) = 1 - Γ(1 -κ)Γ(κ + 2)8 κ λ κ (1 + κ) κ e κφ(t) (1 ± ε t ) κ + o(e -κφ(t) ), (4.47) 
since, by the dominated convergence theorem, the integral in Line (4.46) goes to 0 as t → +∞ and then Line (4.46) = o(e -κφ(t) ). Combining equations (4.43), (4.40), then (4.47) and lim t→+∞ ε t = 0, we get

S ± 2,t + S ± 3,t ≤ +∞ 0 E Z 2 t (z) e -z dz + o(e -κφ(t) ) ≤ 1 -C 0 8 κ λ κ e -κφ(t) + o(e -κφ(t) ), (4.48) 
where t) ). This proves (4.41) and then the lemma. We now turn to the case I + 1 + I + 2 is "big", as is the case on B 1 . More precisely, we prove Lemma 4.9. We have, with Υ 0 as defined in Proposition 4.1,

C 0 = Γ(1 -κ)Γ(κ + 2)/(1 + κ) κ as defined in Proposition 4.1. We prove similarly that S ± 2,t + S ± 3,t ≥ 1 -C 0 8 κ λ κ e -κφ(t) + o(e -κφ(
(S ± 1,t -S ± 3,t ) ∼ t→+∞ (8λ) κ Υ 0 e -κφ(t) . ( 4 

.49)

Proof: We introduce 0 < ε < 1/2.

Step 1: Approximation of I + 1 + I + 2 . Since θ < κ, εe (1-θ)φ(t) ≥ ε(log t) 2 ≥ 8h t /κ for t large enough so that φ(t) ≥ 2(log log t)/(1 -κ). This gives as t → +∞, 

P I + 1 ≥ εte -θφ(t) ≤ P τ R (h t ) ≥ εe (1-θ)φ(t) ≤ P τ R (h t ) ≥ 8h t /κ ≤ C + e -κht/2 √ 2 = o e -φ(
I + 2 = e ht A ∞ -e ht/2 Ã∞ , A ∞ L = Ã∞ L = A ∞ , (4.51) 
and A ∞ , I - 1 , I - 2 and I + 1 are independent. We have

P e ht/2 Ã∞ ≥ εte -θφ(t) ≤ P A ∞ ≥ t 1/3 ≤ Ct -κ/3 = o e -φ(t) (4.52) 
as t → +∞, since φ(t) = o(log t) and P (A ∞ ≥ y) ≤ Cy -κ as explained before (3.14). Now, we have on

B 1 ∩ {I + 1 < εte -θφ(t) } ∩ {e ht/2 Ã∞ < εte -θφ(t) }, te -θφ(t) < I + 1 + I + 2 = I + 1 + e ht A ∞ -e ht/2 Ã∞ < e ht A ∞ + εte -θφ(t) .
This yields e ht A ∞ ≥ (1 -ε)te -θφ(t) , and then

I + 1 + I + 2 ≤ (1 + ε 1-ε )e ht A ∞ ≤ (1 + 2ε)e ht A ∞ . Similarly, I + 1 + I + 2 ≥ e ht A ∞ -e ht/2 Ã∞ ≥ e ht A ∞ -εte -θφ(t) ≥ (1 -ε 1-ε )e ht A ∞ ≥ (1 -2ε)e ht
A ∞ on the same event. Consequently, replacing ε by ε/2, we get for 0 < ε < 1 for large t,

P B 1 ∩ {(1 -ε)e ht A ∞ ≤ I + 1 + I + 2 ≤ (1 + ε)e ht A ∞ } c ≤ P I + 1 ≥ (ε/2)te -θφ(t) + P e ht/2 Ã∞ ≥ (ε/2)te -θφ(t) ≤ e -φ(t) , (4.53) 
by (4.50) and (4.52). Similarly, on {(1

+ ε)e ht A ∞ ≥ te -θφ(t) } ∩ {I + 1 + I + 2 > (1 + ε)e ht A ∞ }, we have by (4.51), εte -θφ(t) /(1 + ε) ≤ εe ht A ∞ ≤ I + 1 + I + 2 -e ht A ∞ ≤ I + 1 . Moreover, we have on {(1 + ε)e ht A ∞ ≥ te -θφ(t) } ∩ {I + 1 + I + 2 < (1 -ε)e ht A ∞ }, again by (4.51), εte -θφ(t) /(1 + ε) ≤ εe ht A ∞ ≤ e ht A ∞ -I + 1 -I + 2 ≤ e ht/2 Ã∞ .
Consequently for large t, the last inequality being obtained as in (4.50) and (4.52),

P {(1 + ε)e ht A ∞ ≥ te -θφ(t) } ∩ {(1 -ε)e ht A ∞ ≤ I + 1 + I + 2 ≤ (1 + ε)e ht A ∞ } c ≤ P I + 1 ≥ [ε/(1 + ε)]te -θφ(t) + P e ht/2 Ã∞ ≥ [ε/(1 + ε)]te -θφ(t) ≤ e -φ(t) . (4.54) 
Step 2: Simplification. Thanks to (4.38), (4.40) first and then the definition (4.37) of B 1 , (4.53) and |e -(...

) -Z 2 t (u))| ≤ 1, we get S ± 1,t -S ± 3,t = ∞ 0 E e -λ ± t u(I + 1 +I + 2 )(I - 1 +I - 2 ) -Z 2 t (u) 1 B 1 e -u du ≤ ∞ 0 E e -λ ± t u(I + 1 +I + 2 )(I - 1 +I - 2 ) -Z 2 t (u) 1 {I + 1 +I + 2 ≥te -θφ(t) } ×1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} e -u du + e -φ(t) .
Consequently, using 0 ≤ Z t,ε,∞ (u) ≤ Z t (u) in the expectation for Z t,ε,∞ defined below,

S ± 1,t -S ± 3,t ≤ ∞ 0 E e -λ ± t u(1-ε)e h t A∞(I - 1 +I - 2 ) -Z 2 t,ε,∞ (u) 1 {I + 1 +I + 2 ≥te -θφ(t) } ×1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} e -u du + e -φ(t) = S ± 4,t,ε + S ± 5,t,ε + e -φ(t) , (4.55) 
where

Z t,ε,∞ (u) := 1 + 2λ ± t u(1 + ε)e ht A ∞ /(κ + 1) -1 , S ± 4,t,ε := ∞ 0 e -u E e -λ ± t u(1-ε)e h t A∞(I - 1 +I - 2 ) -Z 2 t,ε,∞ (u) 1 {(1+ε)e h t A∞≥te -θφ(t) } 1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} du, S ± 5,t,ε := ∞ 0 e -u E e -λ ± t u(1-ε)e h t A∞(I - 1 +I - 2 ) -Z 2 t,ε∞ (u) 
[

1 {I + 1 +I + 2 ≥te -θφ(t) } -1 {(1+ε)e h t A∞≥te -θφ(t) } ]1 {(1-ε)e h t A∞≤I + 1 +I +
2 ≤(1+ε)e h t A∞} du. We will prove in our Step 5 that S ± 5,t,ε is negligible. So, we start with S ± 4,t,ε . Using (4.54) and |e

-(... ) -Z t,ε,∞ (u) 2 )| ≤ 1 leads to S ± 4,t,ε - ∞ 0 E e -λ ± t u(1-ε)e h t A∞(I - 1 +I - 2 ) -Z 2 t,ε,∞ (u) 1 {(1+ε)e h t A∞≥te -θφ(t) } du e u ≤ 1 e φ(t) . (4.56) 
Recall that by (4.51) and Proposition 4.4, I - 1 , I - 2 and A ∞ are independent, and

I - 1 L = I - 2 .
So, the integral in (4.56) can be written as

∞ 0 E E e -λ ± t u(1-ε)e h t A∞I - 1 | A ∞ 2 -Z 2 t,ε∞ (u) 1 A∞≥ e (1-θ)φ(t) 1+ε e -u du ≤ ∞ 0 E E e -4λ(1-ε) 2 ue -φ(t) γ -1 κ I - 1 |γ κ 2 -1 + 8λ(1 + ε) 2 u (κ + 1)e φ(t) γ κ -2 1 γκ≤ 2(1+ε) e (1-θ)φ(t) du e u , (4.57) 
where γ κ := 2/ A ∞ , for t large enough so that 2λ(1 -ε)/t ≤ λ ± t ≤ 2λ(1 + ε)/t. Since γ κ has density x κ-1 e -x 1 R + (x)/Γ(κ) by Fact 3.1 (Dufresne), and is, as A ∞ , independent of I - 1 , the RHS of (4.57) is equal to

∞ 0 e -u du 2(1+ε) e (1-θ)φ(t) 0 E e -4λ(1-ε) 2 ue -φ(t) x -1 I - 1 2 -1 + 8λ(1 + ε) 2 u (κ + 1)e φ(t) x -2 x κ-1 e -x Γ(κ) dx.
With the change of variables y = 8uλe -φ(t) x -1 , this is equal to (8λ) κ e -κφ(t) Υ t, , with

Υ t, := ∞ 0 ∞ 0 f t,ε (u, y)dydu and f t,ε (u, y) := 1 {y≥ 4λue -θφ(t) 1+ε } u κ e -u Γ(κ) E e -(1-ε) 2 yI - 1 /2 2 -1 + (1 + ε) 2 y κ + 1
-2 e -8λuy -1 e -φ(t) y κ+1 .

Consequently by (4.56), S ± 4,t,ε ≤ (8λ) κ e -κφ(t) Υ t, + e -φ(t) . (4.58)

Step 3: pointwise convergence. Notice that thanks to (4.6),

lim x→+∞ E e -γF -(x) = (2γ) κ/2 κΓ(κ)Iκ(2 √ 
2γ) for γ > 0, and recall that

I - 1 L = F -(h t /2
) by Proposition 4.4. Hence, for every 0 < ε < 1, u > 0 and y > 0,

f t,ε (u, y) → t→+∞ f ε (u, y) := u κ e -u Γ(κ) (1 -ε) 2κ y κ [Γ(κ + 1)I κ (2(1 -ε) √ y)] 2 -1 + (1 + ε) 2 y κ + 1 -2 y -κ-1 .
(4.59)

Step 4: dominated convergence. We notice that f t,ε (u, y) = a t,ε (u, y) + b t,ε (u, y) and f ε (u, y) = a ε (u, y) + b ε (u, y) for every 0 < ε < 1, u > 0 and y > 0, where

a t,ε (u, y) := 1 {y≥ 4λue -θφ(t) 1+ε } u κ e -u Γ(κ) E e -(1-ε) 2 yI - 1 /2 2 -1 + (1 -ε) 2 y κ + 1 -2 e -8λuy -1 e -φ(t) y κ+1 , b t,ε (u, y) := 1 {y≥ 4λue -θφ(t) 1+ε } u κ e -u Γ(κ) 1 + (1 -ε) 2 y κ + 1 -2 -1 + (1 + ε) 2 y κ + 1 -2 e -8λuy -1 e -φ(t)
y κ+1 , and their pointwise limits on (R * + ) 2 as t → +∞ are respectively

a ε (u, y) := u κ e -u Γ(κ) (1 -ε) 2κ y κ [Γ(κ + 1)I κ (2(1 -ε) √ y)] 2 -1 + (1 -ε) 2 y κ + 1 -2 y -κ-1 , b ε (u, y) := u κ e -u Γ(κ) 1 + (1 -ε) 2 y κ + 1 -2 -1 + (1 + ε) 2 y κ + 1 -2 y -κ-1 . (4.60) Since ∀x > 0, I κ (x) > (x/2) κ Γ(κ+1) + (x/2) κ+2
Γ(κ+2) due to the series expansion of I κ (see e.g. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] p. 638), we get

γ κ [Γ(κ+1)Iκ(2 √ γ)] 2 -1 + γ κ+1 -2
< 0 for every γ > 0. One consequence of this inequality is that Υ 0 < 0, Υ 0 being defined in (4.1), and another one is that ∀(u, y) ∈ (R * + ) 2 , a ε (u, y) < 0. This, and the fact that x → E e -γF -(x) is nonincreasing for γ ≥ 0, lead to + (notice for example that e u u -κ a(u, y) = O(y -κ ) as y → 0, since I κ (x) = (x/2) κ /Γ(κ + 1) + (x/2) κ+2 /Γ(κ + 2) + o(x κ+2 ) as x → 0 by (6.1) below, and -y -κ-1 u κ e -u /Γ(κ) ≤ a ε (u, y) < 0 as y → +∞). Thus, by the dominated convergence theorem,

∀(u, y) ∈ (R * + ) 2 , a ε (u, y) ≤ a t,ε (u, y) ≤ u κ e -u Γ(κ) 1 -1 + (1 -ε) 2 y κ + 1 -2 y -κ-1 =: h ε (u, y).
lim t→+∞ Υ t, = ∞ 0 ∞ 0 f ε (u, y)dydu =: Υ , 0 < ε < 1. (4.62) 
Hence applying (4.58),

lim sup t→+∞ S ± 4,t,ε e κφ(t) λ -κ ≤ 8 κ Υ , 0 < ε < 1. (4.63) 
Step 5: Let 0 < ε < 1; we now prove that S ± 5,t,ε is negligible. First, we have

S ± 5,t,ε = ∞ 0 e -u E Z 2 t,ε,∞ (u) -e -λ ± t u(1-ε)e h t A∞(I - 1 +I - 2 ) 1 {I + 1 +I + 2 <te -θφ(t) } 1 {(1+ε)e h t A∞≥te -θφ(t) } 1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} du, where we used (1 E 1 -1 E 2 )1 E 3 = -1 E 1 1 E 2 1 E 3 + 1 E 1 1 E 2 1 E 3 , for events E i with 1 E 1 1 E 2 1 E 3 = 0 in our case. Conditioning by σ A ∞ , I + 1 , I + 2 , which is independent of I - 1 and I - 2 gives since I - 1 35
and I - 2 are independent,

S ± 5,t,ε = ∞ 0 e -u E Z 2 t,ε,∞ (u) -E e -λ ± t u(1-ε)e h t A∞I - 1 A ∞ 2 1 {I + 1 +I + 2 <te -θφ(t) } 1 {(1+ε)e h t A∞≥te -θφ(t) } 1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} du ≤ ∞ 0 e -u E 1 + 4λu(1 -ε 2 )e -φ(t) A ∞ κ + 1 -2 -E e -2λu(1-ε 2 )e -φ(t) A∞I - 1 A ∞ 2 1 {I + 1 +I + 2 <te -θφ(t) } 1 {(1+ε)e h t A∞≥te -θφ(t) } 1 {(1-ε)e h t A∞≤I + 1 +I + 2 ≤(1+ε)e h t A∞} du (4.64)
for large t where we used 2λ(1

-ε)/t ≤ λ ± t ≤ 2λ(1 + ε)/t. Consequently, S ± 5,t,ε ≤ ∞ 0 e -u E 1 + 4λu(1 -ε 2 )e -φ(t) A ∞ κ + 1 -2 -E e -2λu(1-ε 2 )e -φ(t) A∞I - 1 A ∞ 2 1 {(1-ε)e h t A∞≤te -θφ(t) ≤(1+ε)e h t A∞} du. (4.65)
As in Step 2 after (4.57), since γ κ = 2/ A ∞ has density x κ-1 e -x 1 R + (x)/Γ(κ), and A ∞ and then γ κ are independent of I - 1 , the right hand side of (4.65) is equal to

∞ 0 e -u 2 (1+ε) e (1-θ)φ(t) 2(1-ε) e (1-θ)φ(t) 1 
+ 8λu(1 -ε 2 ) (κ + 1)e φ(t) x -2 -E e -4λu(1-ε 2 )e -φ(t) x -1 I - 1 2 x κ-1 e -x Γ(κ) dxdu. (4.66)
With the change of variables y = 8uλe -φ(t) x -1 , this is equal to

(8λ) κ e κφ(t) ∞ 0 u κ e -u Γ(κ) 4uλ (1-ε)e θφ(t) 4uλ (1+ε)e θφ(t) E e -y(1-ε 2 )I - 1 /2 2 -1 + (1 -ε 2 )y κ + 1 -2 dydu y κ+1 e 8uλe -φ(t) y -1 .
So by (4.65),

S ± 5,t,ε ≤ (8λ) κ e κφ(t) ∞ 0 ∞ 0 F t,(1-ε 2 ),(1-ε 2 ),ε u, y dydu (4.67)
where for z 1 ≥ 0 and z 2 ≥ 0,

F t,z 1 ,z 2 ,ε (u, y) := 1 { 4λue -θφ(t) 1+ε ≤y≤ 4λue -θφ(t) 1-ε } u κ e -u Γ(κ) E e -z 1 yI - 1 /2 2 -1 + z 2 y κ + 1 -2 1 y κ+1 .
Using the same method, we get for large t, S ± 5,t,ε ≥ -

(8λ) κ e κφ(t) ∞ 0 ∞ 0 F t,(1-ε) 2 ,(1+ε) 2 ,ε (u, y) dydu.
This together with (4.67) gives

|S ± 5,t,ε | e κφ(t) (8λ) κ ≤ ∞ 0 ∞ 0 F t,(1-ε 2 ),(1-ε 2 ),ε (u, y) + F t,(1-ε) 2 ,(1+ε) 2 ,ε (u, y) dydu. (4.68) 
We have for every z 1 ≥ 0, z 2 ≥ 0,

F t,z 1 ,z 2 ,ε (u, y) ≤ u κ e -u Γ(κ) 1 -1 + z 2 y κ + 1 -2 1 y κ+1 , u ≥ 0, y > 0, (4.69) 
which has a finite integral over R 2 + since 0 < κ < 1. We recall that In what follows, we mainly use the same ideas as in Enriquez et al. ([24] pages 441 to 443), inspired by the book of Feller ([27] pages 470 to 472). We start with the following lemma, for which we recall that for all i ≥ 1, U i = H( Li ) -H( mi ), and C κ is defined in Proposition 4.1.

lim x→+∞ E e -γF -(x) = (2γ) κ/2 κΓ(κ)Iκ(2 √ 2γ) ∈ [0, 1]
Lemma 5.1. For t > 0, let µ t be the positive measure on R + such that

∀x ≥ 0, µ t ([0, x]) := e -κφ(t) nt-2 j=1 P j i=1 U i t ≤ x .
Then, (µ t ) t converges vaguely as t → +∞ to µ defined by dµ(x

) := (C κ Γ(κ)) -1 x κ-1 1 (0,+∞) (x)dx.
Moreover when t → +∞, x → e κφ(t) P(U/t ≥ x) converges uniformly on every compact subset in (0, +∞) to x → C κ x -κ /Γ(1 -κ).

Proof: First, let us prove that for all λ > 0, we have as t → +∞,

+∞ 0 e -λx dµ t (x) = +∞ 0 e -λx x κ-1 C κ Γ(κ) dx + o(1), (5.1) 
+∞ 0 e -λx e κφ(t) P(U/t ≥ x)dx

= +∞ 0 e -λx C κ Γ(1 -κ)x κ dx + o(1). (5.2) 
Let λ > 0. First, we have, by Proposition 3.4,

+∞ 0 e -λx dµ t (x) = 1 e κφ(t) nt-2 j=1 E e -λ j i=1 U i t = nt-2 j=1 1 e κφ(t) E e -λ U t j + O (n t ) 2 e
-δκht e κφ(t) .

We notice that, by Proposition 4.1, [E e -λU/t ] nt-1 = o(1), since n t e -κφ(t) → t→+∞ +∞ and C κ > 0. Hence, we get as t → +∞, again by Proposition 4.1 and since (n t ) 2 e -δκht e -κφ(t

) = o(1) because φ(t) = o(log t), +∞ 0 e -λx dµ t (x) = e -κφ(t) (1 + o(1)) 1 -E e -λU/t + o(1) = 1 C κ λ κ + o(1) = +∞ 0 e -λx x κ-1 C κ Γ(κ) dx + o(1),
which gives (5.1). This implies the pointwise convergence of the Laplace transform of (µ t ) t to that of µ, and then the vague convergence of (µ t ) t to µ (e.g. by Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], XIII.1 Th. 2c). Now, we have as t → +∞ by Fubini and then Proposition 4.1,

λ +∞ 0 e -λx P (U/t ≥ x) dx = ∞ 0 u 0 λe -λx dxP(U/t ∈ du) = E 1 -e -λ t U = C κ λ κ + o(1)
e κφ(t) .

Since λ κ = λ +∞ 0 e -λx x -κ dx/Γ(1 -κ), we get (5.2). Again, this pointwise convergence of Laplace transforms gives the vague convergence of e κφ(t) P (U/t ≥ x) dx to C κ x -κ dx/Γ(1 -κ) as t → +∞. Since x → P(U/t ≥ x) is nonincreasing, we have for all 0 < ε < x,

1 ε x+ε x e κφ(t) P (U/t ≥ u) du ≤ e κφ(t) P (U/t ≥ x) ≤ 1 ε x x-ε
e κφ(t) P (U/t ≥ u) du.

Using the previous vague convergence gives

lim sup t→+∞ e κφ(t) P (U/t ≥ x) ≤ 1 ε lim t→+∞ x x-ε e κφ(t) P (U/t ≥ u) du = 1 ε x x-ε C κ u -κ Γ(1 -κ) du.
Taking the limit as ε ↓ 0 gives lim sup t→+∞ e κφ(t) P (U/t ≥ x) ≤ C κ x -κ /Γ(1 -κ). We prove similarly that lim inf t→+∞ e κφ(t) P (U/t ≥ x) ≥ C κ x -κ /Γ(1 -κ). This gives the pointwise convergence of x → e κφ(t) P(U/t ≥ x) to x → C κ x -κ /Γ(1 -κ) on (0, +∞) as t → +∞. Finally, since x → e κφ(t) P(U/t ≥ x) is monotone and its pointwise limit is continuous on (0, ∞), Dini's theorem proves that this convergence is uniform on every compact of (0, ∞).

We now introduce for t > 0 the unique integer Ñt such that H( m Ñt ) ≤ t < H( m Ñt+1 ). We notice that Ñt = N t on V t due to Remark 2.4. We prove the following lemma: Lemma 5.2. We have, as t → +∞, P (N t ≥ n t ) = o(1), P N t = 0 = o(1), P Ñt ≥ n t = o(1), P Ñt = 0 = o(1).

Proof: First, by equation (3.37) and the exponential Markov inequality,

P Ñt ≥ n t ≤ P nt-1 j=1 U j ≤ H( mnt ) ≤ t ≤ eE e -n t -1 i=1 U i /t .
This, together with Propositions 3.4 and 4.1, gives since φ(t) = o(log t), P Ñt ≥ n t ≤ e E e -U/t nt + eC 2 n t e -δκht ≤ C + exp -c -n t e -κφ(t) + eC 2 n t e -δκht = o(1).

(5.3) This proves the third inequality of the lemma. Moreover, P( Ñt = 0) = o(1) by Lemma 3.7. Finally, the first two inequalities follow from Lemma 2.3, since Ñt = N t on V t .

Proof of Proposition 1.4: First, let 0 < r < s < 1, and a > 0. Remark 2.4 and then Lemmas 2.3, 3.7 and 5.2 give for t > 0,

P 1 -s ≤ H(m Nt )/t ≤ 1 -r, H(m Nt+1 )/t ≥ 1 + a (5.4) ≤ nt-1 j=1 P 1 -s ≤ H( m Ñt ) t ≤ 1 -r, H( m Ñt+1 ) t ≥ 1 + a, Ñt = j, V t + P Ñt ≥ n t + P Ñt = 0 + P (V t ) ≤ nt-1 j=1 P 1 -s - 2 log h t ≤ j-1 i=1 U i t ≤ 1 -r, j i=1 U i t ≥ 1 + a - 2 log h t + o(1)
.

We now use (3.19) of Proposition 3.4 and get for small ε > 0, for large t,

(5.4) ≤ 1-r 1-s-ε e κφ(t) P(U/t > 1 + a -ε -x)dµ t (x) + o(1). (5.5) 
Using first the uniform convergence of u → e κφ(t) P(U/t > u) on the compact [a + r -ε, a + s] ⊂ (0, ∞) and then the vague convergence of µ t (see Lemma 5.1), we get

lim t→+∞ 1-r 1-s-ε e κφ(t) P(U/t > 1 + a -ε -x)dµ t (x) = 1-r 1-s-ε x κ-1 (1 + a -ε -x) -κ Γ(κ)Γ(1 -κ) dx.
Consequently, by letting ε → 0, we obtain the first inequality of the following line:

lim sup t→+∞ (5.4) ≤ 1-r 1-s x κ-1 Γ(1 -κ)Γ(κ) ∞ a κ(1 + y -x) -κ-1 dydx ≤ lim inf t→+∞ (5.4).
We prove similarly the second inequality. Consequently, P[(H(m Nt )/t, H(m Nt+1 )/t) ∈ ∆] converges to ∆ κx κ-1 (y -x) -κ-1 1 (0,1) (x)1 (1,∞) (y)/(Γ(1 -κ)Γ(κ))dxdy as t → +∞ for ∆ = [1-s, 1-r]×[1+a, +∞) and so for every ∆ = [a, b]×[c, d] ⊂ (0, 1)×(1, ∞). This gives the vague convergence on (0, 1) × (1, +∞), and then the convergence in law of (H(m Nt )/t, H(m Nt+1 )/t) to κx κ-1 (y -x) -κ-1 1 (0,1) (x)1 (1,∞) (y)/(Γ(1 -κ)Γ(κ))dxdy, which proves Proposition 1.4 since Γ(1 -κ)Γ(κ) = π/ sin(πκ).

Proof of Corollary 1.5: First by Proposition 1.4, for v ≥ 0 as t → +∞,

lim t→+∞ P H(m Nt+1 ) t ≥ 1 + v = sin(πκ) π ∞ v du 1 0 κx κ-1 (1 + u -x) -κ-1 dx.
Using the change of variables z = x/(1 + u -x) in the second integral leads to (1.3). (1.2) follows from Proposition 1.4 by straightforward computations. Finally, for every continuous bounded function ϕ, Proposition 1.4 and the change of variables u = y -x give

E ϕ (H(m Nt+1 ) -H(m Nt ))/t → t→+∞ ϕ(u) sin(πκ) π u -κ-1 κx κ-1 1 [0,1] (x)1 {x≥1-u} dxdu,
which gives the convergence in law of (H(m Nt+1 ) -H(m Nt ))/t under P as t → +∞.

Proof of Proposition 1.6: Let λ > 0. For t > 0, we denote by ν t the measure on R + such that

ν t ([0, x]) = e -κφ(t) nt-1 j=1 exp - C κ λ κ j e κφ(t) P j-1 i=1 U i t ≤ x , x ≥ 0.
In particular for j = 1, P( j-1 i=1 U i /t ∈ .) = P(0 ∈ .) denotes the Dirac measure at 0. We first show that the Laplace transform of the measure ν t converges when t goes to infinity. We consider α such that 0 < λ < α. We get as in the proof of Lemma 5. 

1 α κ + λ κ = +∞ j=0 (-λ κ ) j α κ(1+j) = +∞ j=0 (-λ κ ) j Γ[κ(1 + j)] +∞ 0 e -αu u κ(1+j)-1 du. Moreover, ∞ 0 ∞ j=0 (-λ κ ) j Γ[κ(1+j)] e -αu u κ(1+j)-1 Cκ du < ∞, since +∞
(-λ κ ) j u κ(1+j)-1 Γ[κ(1+j)]
1 R + (u)du. This pointwise convergence of the Laplace transform of ν t on (λ, +∞) leads to the vague convergence of ν t to ν as t → +∞ (e.g. by Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], XIII.1 Th. 2c).

We have, with the arguments already used between (5.4) and (5.5), for any a > 0 and ε > 0,

E exp - C κ λ κ N t e κφ(t) , H(m Nt+1 ) t ≥ 1 + a (5.6) ≤ nt-1 j=1 exp - C κ λ κ j e κφ(t) P H( mj ) t ≤ 1, H( mj+1 ) t ≥ 1 + a, Ñt = j, V t + o(1) ≤ nt-1 j=1 exp - C κ λ κ j e κφ(t) P j-1 i=1 U i t ≤ 1, 1 + a - 2 log h t ≤ j i=1 U i t + o(1) ≤ 1 0 e κφ(t) P U t > 1 + a -ε -x dν t (x) + o(1),
since the term for j = 1 in the third line is less than 1) by the case n = 1 just after (3.19).

P[U 1 /t ≥ 1 + a -ε] ≤ P(U/t ≥ 1 + a -ε) + o(1) = o(
Using the uniform convergence of x → e κφ(t) P (U/t > 1 + a -x) on [0, 1] provided by Lemma 5.1 followed by the vague convergence of ν t to ν, we get the first inequality of

lim sup t→+∞ (5.6) ≤ 1 0 C κ Γ(1 -κ) (1 + a -x) -κ dν(x) ≤ lim inf t→+∞ (5.6).
(5.7)

We obtain the second one similarly. Since lim a↓0 lim t→+∞ P(H(m Nt+1 )/t < 1 + a) = 0 by equation (1.3) of Corrolary 1.5, letting a ↓ 0 in (5.7) gives

lim t→+∞ E exp - C κ λ κ N t e κφ(t) = 1 0 C κ (1 -x) -κ Γ(1 -κ) dν(x) = +∞ j=0 (-λ κ ) j 1 0 (1 -x) -κ x κ(1+j)-1 Γ[κ(1 + j)]Γ(1 -κ) dx.
Since 

5.2.

The localization : proof of Theorem 1.3. We recall the notation H x→y = inf{s > H(x), X(s) = y} -H(x) for (x, y) ∈ R 2 + , which is equal to H(y) -H(x) if x < y. Let φ * (t) := φ(t)/ζ, where 0 < ζ < 1 will be chosen later. We define t * := t -e (1+2δ)φ * (t) ,

A 0 := 1 ≤ Ñt < n t , A 1 := ∩ nt-1 j=1 H Lj → mj+1 ≤ 2t/ log h t , A 2 := ∩ nt-1 j=1 H mj → mj+1 < H mj → L- j , A 3 := H m Ñt ≤ t * .
We also introduce

I j := [ mj -φ * (t)/ζ, mj + φ * (t)/ζ], j ∈ N * . Let ε > 0.
We have:

P X(t) / ∈ I Ñt ≤ P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 + P Ñt = Ñt(1+ε) + P A 0 +P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 + P A 1 + P A 2 . (5.8)
We split the proof into three parts, in which we estimate these different probabilities. We start with:

Part 1: We prove that for large t, P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 ≤ n t C + h t e -κ(1-δ)φ * (t)/16 + e -(c -)δφ * (t) . (5.9) Let B j := { Ñt = Ñt(1+ε) = j} ∩ A 1 ∩ A 2 for j ∈ N * . We have , and then X(u) ∈ ( Lj , Lj ). That is, if t is large enough, on B j , after first hitting mj , X stays in ( Lj , Lj ) at least until time (1 + ε/2)t. Therefore, conditioning on H( mj ) and using the strong Markov property,

P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 = nt-1 j=1 P (X(t) / ∈ I j , B j ∩ A 3 ) . ( 5 
P (X(t) / ∈ I j , B j ∩ A 3 ) ≤ E P Wκ X(t) / ∈ I j , H( mj ) ≤ t * , ∀u ∈ [H( mj ), (1 + ε/2)t], X(u) ∈ L- j , Lj = E t * 0 P Wκ (H( mj ) ∈ ds)P Wκ mj X(t -s) / ∈ I j , ∀u ∈ 0, (1 + ε/2)t -s , X(u) ∈ L- j , Lj ≤ E sup 0≤s≤t * P Wκ mj X(t -s) / ∈ I j , ∀u ∈ [0, (1 + ε/2)t -s], X(u) ∈ L- j , Lj . (5.11) 
Now, as in Brox ([10], proof of Prop. 4.1) we introduce a coupling between X (under P Wκ mj ) and a reflected diffusion Y j defined below. To this aim, let Y (x) j (u), u ≥ 0 be (in words) a diffusion in the potential W κ , starting from x ∈ Lj , Lj and reflected at Lj and Lj . We denote its law by P Wκ j,x . More precisely, this process Y (x) j is defined as in Brox ([10], p. 1216) by

Y (x) j (u) := A -1 B (x) j T -1 j,x (u) , u ≥ 0, x ∈ [ L- j , Lj ],
where ( B (x) j (s), s ≥ 0) is a one-dimensional Brownian motion independent from W κ , starting from A(x) and reflected at A L- .

(5.12)

As is proved in ( [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], proof of Prop. 4.1), μj is invariant for the semi-group of Y j ; in particular P Wκ j (Y j (s) ∈ ∆) = μj (∆) for every s ≥ 0 and ∆ ⊂ [ Lj , Lj ].

We can now, as in [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], build a coupling Q Wκ mj of X and Y j , such that Q Wκ mj (Y j ∈ .) = P Wκ j (Y j ∈ .), and Q Wκ mj (X ∈ .) = P Wκ mj (X ∈ .), these two Markov processes Y j and X move independently until

H {X=Y j } := inf{u ≥ 0, X(u) = Y j (u)},
which is the first collision, then X(u) = Y j (u) until the next exit time

H exit j := inf u > H {X=Y j } , X(u) / ∈ ( L- j , Lj )
, and then X and Y j move independently again.

We introduce (see Figure 2)

t 1 := t -t * = e (1+2δ)φ * (t) , L + j := τj (φ * (t)), L - j := τ - j (φ * (t)).
We now prove that, with a large probability, under Q Wκ mj , X and Y j first collide before time t 1 , that is, H {X=Y j } ≤ t 1 . To this aim, we first provide a result concerning only the hitting times H of X:

L- i h + t h t mi φ * (t) I i L+ i Mi Li mi + φ * (t)/ζ mi -φ * (t)/ζ L- i Figure 2.
Schema of valley number i and some notation around its minimum for small ζ Lemma 5.3. For large t, with a probability larger than 1 -e -(c -)δφ * (t) ,

Q Wκ mj H L + j ∨ H L - j > e (1+δ)φ * (t) ≤ C + φ * (t)e -δφ * (t)/8 , (5.13) 
uniformly for j ∈ [1, n t ) and with x ∨ y := max(x, y),

The proof of this lemma is deferred to Subsection 5.4. We deduce from (5.13) and the definition of x ∨ y = max(x, y) that with probability larger than 1 -e -(c -)δφ * (t) ,

Q Wκ mj H {X=Y j } > t 1 ≤ Q Wκ mj H {X=Y j } > H( L + j ) ∨ H( L - j ) + Q Wκ mj H( L + j ) ∨ H( L - j ) > t 1 ≤ Q Wκ mj H {X=Y j } > H( L - j ), Y j (0) < mj + Q Wκ mj H {X=Y j } > H( L + j ), Y j (0) ≥ mj + C + φ * (t) e δφ * (t)/8 . On H {X=Y j } > H( L - j ), Y j (0) < mj , Y j (0) -X(0) = Y j (0) -mj < 0 under Q Wκ mj ,
and by continuity Y j -X < 0 up to time H {X=Y j } and in particular at time H( L - j ), so

Q Wκ mj H {X=Y j } > t 1 ≤ Q Wκ mj Y j [H( L - j )] ∈ [ L- j , L - j ], H {X=Y j } > H( L - j ) +Q Wκ mj Y j [H( L + j )] ∈ [ L + j , Lj ], H {X=Y j } > H( L + j ) + C + φ * (t) e δφ * (t)/8 ≤ μj L- j , L - j + μj L + j , Lj + C + φ * (t)e -δφ * (t)/8 , (5.14) 
where the last line comes from the independence of X and Y j until H {X=Y j } and since Q Wκ mj (Y j (s) ∈ ∆) = P Wκ j (Y j (s) ∈ ∆) = μj (∆), for every s ≥ 0 and ∆ ⊂ [ Lj , Lj ] as explained after (5.12).

We would like to bound (5.11)

. Let s ∈ [0, t * ]. Using first t 1 = t -t * ≤ t -s ≤ (1 + ε/2)t -s, and second X(u) = Y j (u) for every H {X=Y j } ≤ u ≤ H exit j and Q Wκ mj (Y j (t -s) ∈ .) = μj (.), Q Wκ mj X(t -s) / ∈ I j , ∀u ∈ [0, (1 + ε/2)t -s], X(u) ∈ ( L- j , Lj ) (5.15) ≤ Q Wκ mj H {X=Y j } > t 1 + Q Wκ mj H {X=Y j } ≤ t 1 ≤ t -s ≤ (1 + ε/2)t -s ≤ H exit j , X(t -s) / ∈ I j ≤ Q Wκ mj H {X=Y j } > t 1 + Q Wκ mj Y j (t -s) / ∈ I j ≤ Q Wκ mj H {X=Y j } > t 1 + μj L- j , Lj I j .
(5.16)

In the following lemma, we show that with high probability, the invariant probability measure μj is highly concentrated on the small neighborhood I j of mj . The proof of this lemma is deferred to Subsection 5.4. More precisely:

Lemma 5.4. If ζ < κ/8, for all 1 ≤ j < n t , with a probability greater than 

1 -e -(c -)δφ * (t) , μj L- j , Lj I j ≤ μj L- j , L - j + μj L + j , Lj ≤ C + h t e -(
* P Wκ mj X(t -s) / ∈ I j , ∀u ∈ [0, (1 + ε/2)t -s], X(u) ∈ ( L- j , Lj ) ≤ μj L- j , L - j + μj L + j , Lj + C + φ * (t) e δφ * (t)/8 + μj L- j , Lj I j ≤ C + h t e (1-δ)κφ * (t)/16 + C + φ * (t) e δφ * (t)/8
with probability at least 1-e -(c -)δφ * (t) . Finally, integrating this and applying successively (5.10) and (5.11) leads to (5.9), which ends the proof of this Part 1.

Part 2 : We prove that there exists c 3 > 0 such that if ζ ≤ κ/48,

P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 ≤ n t e -c 3 φ * (t)/ζ . (5.18) 
First, we prove similarly as in Part 1 from (5.10) to (5.11) that, using H( mj ) ≤ t on B j , 

P X(t) / ∈ I Ñt , Ñt = Ñt(1+ε) , A 0 , A 1 , A 2 , A 3 = nt-1 j=1 P X(t) / ∈ I j , B j ∩ A 3 (5.19) ≤ nt-1 j=1 E sup t * ≤s≤t P Wκ mj X(t -s) / ∈ I j , ∀u ∈ [0, (1 + ε/2)t -s], X(u) ∈ L- j , Lj ≤ nt-1 j=1 E sup t * ≤s≤t P Wκ mj H( mj -φ * (t)/ζ) ∧ H( mj + φ * (t)/ζ) < t -
P Ñt = Ñt(1+ε) ≤ P[H(m N t+1 ) < t(1 + ε)] + P V t ≤ ε 1-κ /(1 -κ) + o(1).
Moreover by the strong Markov property, recalling that Li < mj < L * i < Li < mj+1 by (3.11),

P Wκ mj H( mj+1 ) < H( L- j ) = P Wκ mj H( Lj ) < H( L- j ) × P Wκ Lj H( mj+1 ) < H( L- j ) ≥ P Wκ mj H( Lj ) < H( L- j ) × P Wκ Lj H( mj+1 ) < H( L * j ) ≥ 1 -e -κht/2 × 1 -2n t e -ht/8 = 1 -o(1/n t ),
for all 1 ≤ j ≤ n t -1 with probability ≥ 1 -C + n t e -κδht by Lemmas 3.2 and 3.3 since δ < 1/16. This proves that P A 2 = o(1). This leads to (5.21), which ends this Part 3.

Conclusion:

We now choose ζ = δ 2 . We recall that φ(t) ≤ h t ≤ log t = exp(o(φ(t)) since log log t = o(φ(t)). Combining (5.8), (5.9), (5.18) with (5.21), and choosing δ small enough gives lim sup t→+∞ P X(t) / ∈ I Ñt ≤ ε 1-κ /(1 -κ), for every ε > 0, and so is 0. ht) and n αt = e o(ht) . Consequently,

P(|X(αt) -X(t)| ≤ 3C 1 φ(t), N t < N αt ) ≤ P |m Nαt -m Nt | ≤ C 1 [4φ(t) + φ α (αt)], N t < N αt ≤ n αt , N t ∈ [1, n t ) + P N t / ∈ [1, n t ) + P |X(t) -m Nt | > C 1 φ(t) + P |X(αt) -m Nαt | > C 1 φ α (αt) + P N αt / ∈ [1, n αt ) ≤ nt i=1 nαt j=i+1 P m j -m i ≤ 4C 1 φ(t) + C 1 φ α (αt) + o(
(|X(αt) -X(t)| ≤ C 1 φ(t), N t < N αt ) = o(1) since n t = e o(
P(|X(αt) -X(t)| ≤ 3C 1 φ(t)) = P(|X(αt) -X(t)| ≤ 3C 1 φ(t), N t = N αt ) + o(1) ≤ P(N t = N αt ) + o(1). (5.22) 
Moreover, by Theorem 1.3 applied at time t with function φ, we have for large t,

P(|X(αt) -X(t)| > 3C 1 φ(t), N t = N αt ) ≤ P(|X(αt) -m Nt | > 3C 1 φ(t) -C 1 φ(t), N t = N αt ) + P[|X(t) -m Nt | > C 1 φ(t)] ≤ P[|X(αt) -m Nαt | > 2C 1 φ(t)] + o(1) ≤ P(|X(αt) -m Nαt | > C 1 φ α (αt)) + o(1).
This is o(1) as t → +∞, by Theorem 1.3 applied at time αt with function φ α . Therefore,

P(N t = N αt ) = P(|X(αt) -X(t)| ≤ 3C 1 φ(t), N t = N αt ) + o(1) ≤ P(|X(αt) -X(t)| ≤ 3C 1 φ(t)) + o(1).
This together with (5.22) gives

P(|X(αt) -X(t)| ≤ 3C 1 φ(t)) = P(N t = N αt ) + o(1) = P[H(m Nt+1 ) > αt] + o(1).
This, combined with (1.3) and the change of variables u = 1/(1 + x) proves Proposition 1.2, since φ is choosen up to a multiplicative constant.

5.4. Proof of Lemmas 5.3, 5.4 and 5.5.

Proof of Lemma 5.3:

Let j ∈ [1, n t ). First by (3.2), P Wκ mj H( L + j ) > H τ - j ((1 + δ/2)φ * (t)) ≤ Q j / D j , where Q j := L + j mj e Ṽ (j) (x) dx and D j := m j τ - j ((1+δ/2)φ * (t)) e Ṽ (j) (x) dx. Recall that L + j = τj (φ * (t))
. With a method similar as for (3.10), we get with a probability larger than 1e -(c -)δφ * (t) , 

Q j ≤ ( L + j -mj ) exp max [ mj , L + j ] Ṽ (j) ≤ 8κ -1 φ * (t) exp(φ * (t)), D j ≥ e (1+δ/
) < H[τ - j ((1 + δ/2)φ * (t))] , H L + j L = Ãj L + j L + j τ - j [(1+δ/2)φ * (t)] e -Ṽ (j) (u) L B τ B (1), Ãj (u)/ Ãj ( L + j ) du, (5.24) 
where Ãj (u) = u mj e Ṽ (j) (x) dx for u ∈ R as before. Since Ãj L + j ≤ [τ j (φ * (t)) -mj ]e φ * (t) , we get RHS of (5.24) ≤ e φ * (t) τj (φ

* (t)) -τ - j [(1 + δ/2)φ * (t)] 2 sup x∈R L B τ B (1), x .
We know that P τj (φ

* (t)) -mj ≥ e δφ * (t)/3 ≤ C + e -κφ * (t)/(2 √ 2) and P mj -τ - j [(1 + δ/2)φ * (t)] ≥ e δφ * (t)/3 ≤ C + e -κφ * (t)/(2 √ 
2) by (2.22) and (2.23). So, we get with probability at least 1 -

C + e -κφ * (t)/(2 √ 2) , τj (φ * (t)) -τ - j [(1 + δ/2)φ * (t) ≤ 2e δφ * (t)/3
and then P Wκ mj RHS of (5.24) ≥ e (1+δ)φ * (t) ≤ P Wκ mj sup x∈R L B (τ B (1), x) ≥ e δφ * (t)/3 /4 ≤ C + e -δφ * (t)/3 , where the last inequality comes from (4.8), (4.9) and the independence of B and W κ . This, (5.23), (5.24) and Q Wκ mj (X ∈ .) = P Wκ mj (X ∈ .) give with a probability larger than 1 -e -c -δφ * (t) ,

Q Wκ mj H( L + j ) > e (1+δ)φ * (t) = P Wκ mj H( L + j ) > e (1+δ)φ * (t) ≤ C + φ * (t)e -δφ * (t)/8 . (5.25) 
We get the same result for H( L - j ), since the law of V (j) restricted to [τ - j (h t ), τ j (h t )] is symmetric with respect to m j for j ≥ 2 by Fact 2.1; the result from j = 1 follows from the fact that the valleys for j = 1 and j = 2 have the same law by Lemma 2.3. This together with (5.25) gives (5.13).

Proof of Lemma 5.4: Let 1 ≤ j ≤ n t -1 and assume 0 < ζ < κ/8. Recall that L - j = τj (φ * (t)) and L + j = τj (φ * (t)). First by (2.22) since φ * (t) = o(log t) and ζ < κ/8, we have for large t, 2) .

P L + j ≥ mj + φ * (t)/ζ ≤ P τj (φ * (t)) -mj > 8φ * (t)/κ ≤ C + e -κφ * (t)/(2 √ 
Similarly by (2.23), P L 2) . So with probability at least 2, and then μj Lj , Lj I j ≤ μj Lj , L - j + μj L + j , Lj . This gives the first inequality of (5.17) with such probability.

- j ≤ mj -φ * (t)/ζ ≤ C + e -κφ * (t)/(2 √ 
1 -C + e -κφ * (t)/(2 √ 2) , L - j , L + j ⊂ [ mj -φ * (t)/ζ, mj + φ * (t)/ζ] = I j as in Figure
We now prove the second inequality of (5.17). First, we observe that for large t,

Z := Lj L- j dy e Ṽ (j) (y) ≥ τ j [αφ * (t)] τ j [αφ * (t)/2] dy e V (j) (y) ≥ τ j [αφ * (t)] -τ j [αφ * (t)/2] e -αφ * (t) ≥ e -αφ * (t) on E 5.4 1 ∩ V t , where E 5.4 1 := {τ j [αφ * (t)] -τ j [αφ * (t)/2] ≥ 1} and α := (1 -δ)κ/16
. By (2.28) and Fact 2.1 (ii), P (E 5. 4 1 ) ≤ 4e -α 2 φ * (t) 2 /12 . Moreover, due to the definition (5.12) of μj , we have μj

L- j , L - j + μj L + j , Lj = [J 3 + J 4 + J 5 + J 6 ]/ Z, (5.26) 
where .

J 3 := τ - j (ht) L- j dy e Ṽ (j) (y) , J 4 := τ - j [φ * (t)] τ - j ( 
Recalling that Ṽ (j) = V (j) on V t by Remark 2.4, we introduce γ = (1 -δ)κ/8, (2.22). Moreover using Fact 2.1 (ii) if j ≥ 2 and taking the limit as t → +∞ in (2.31) applied with h = φ * (t), α = 1, γ = (1 -δ)κ/8 and ω = h t /φ * (t) gives P (E 5. 4 2 ) ≤ 2e κ(γ-1)φ * (t) ≤ 2e -δκ 2 φ * (t)/8 . We have on E 5.4 2 ∩ E 5.4 3 ∩ E 5.4 4 ∩ V t , J 5 ≤ τj (h t ) -mj e -γφ * (t) ≤ 8κ -1 h t e -γφ * (t) , J 6 ≤ Lj -τj (h t ) e -ht/2 ≤ 2κ -1 h t e -ht/2 .

E 5.4 2 := inf{V (j) (s), τ j (φ * (t)) ≤ s ≤ τ j (h t )} > γφ * (t) , E 5 
We prove similarly that there exists an event E 5.4 5 such that P E 5.4 5 ∩ V t ≤ 2e κ(γ-1)φ * (t) + C + e -κht/(2 √ 2) and J 4 ≤ 8κ -1 h t e -γφ * (t) on E 5. 4 5 ∩V t . Furthermore, by Lemma 2.7 equations (2.32) and (2.34), on some event E 5.4 6 which has probability at least 1 -e -κht/8 ≥ 1 -C + e -(c -)δφ * (t) , J 3 ≤ (τ - j (h t ) -Lj )e -ht/2 ≤ 40κ -1 h + t e -ht/2 ≤ 8κ -1 h t e -γφ * (t) for large t. These inequalities combined with (5.26) and Lemma 2.3 give on ∩ 6 i=1 E 5.4 i ∩ V t , μj Lj , L - j + μj L + j , Lj ≤ 8κ -1 h t [3e -γφ * (t) + e -ht/2 ]e αφ * (t) ≤ C + h t e -(1-δ)κφ * (t)/16 , since φ * (t) = o(log t). Since P (∩ 6 i=1 E 5.4 i ∩V t ) ≥ 1-C + e -(c -)δφ * (t) , due to the previous inequalities and to Lemma 2.3, this proves the second inequality of (5.17) for 2 ≤ j ≤ n t -1. This is also true if j = 1 since the first valley has the same law by Lemma 2.3.

Proof of Lemma 5.5: Let j ∈ [1, n t ). By (3.21) applied with i = j and r = τj [κφ * (t)/(8ζ)]-mj , there exists a Brownian motion B, independent of Ṽ (j) , such that under P ] mj e -Ṽ (j) (u) du.

By scaling, there exists some Brownian motion B independent of Ṽ (j) such that

H + j ≥ τj [ κφ * (t) 16ζ
] mj e -Ṽ (j) (u) J 7 L B τ B (1), Ãj (u)/J 7 du ≥ J 7 J 8 J 9 on E 5. for large t with probability ≥ 1 -c 2 (δ * t ) 1/30 by (4.7) for the first inequality, and with probability ≥ 1 -e -κφ * (t)/(48ζ) for the last one since L B τ B (1), 0 is exponentially distributed with mean 2 as before by the first Ray-Knight theorem. Furthermore, by Lemma 2. with probability at least 1 -e -(c -)φ * (t)/ζ since ζ ≤ κ/48 and δ < 1. We obtain the same result for H( mj -φ * (t)/ζ) by symmetry of the law of V (j) for j ≥ 2 by Fact 2.1 (ii), and then for j = 1 by Lemma 2.3 as before.

6. Proofs of some technical estimates related to the environment 6.1. Proof of Lemma 4.2. We denote by I κ and K κ the modified Bessel functions, respectively of the first and second kind. We remind that as x ↓ 0 (see e.g. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] p. 638), since 0 < κ < 1, So, E e -γG + (y/2,y)/e y = e κy/4 Kκ(2

I κ (x) = 1 Γ(κ + 1)
√ 2γ) Kκ(2 √ 2γe -y/4 ) = g + 2 √ 2γ, [2 √ 2γe -y/4 ] κ .
where

g + (u, v) := u κ K κ (u) vK κ (v 1/κ ) , u > 0, v > 0.
We have, as max(u, v) ↓ 0, by (6.1) and (6.2),

g + (u, v) = u κ π 2 sin(πκ) 1 Γ(1-κ) (u/2) -κ -1 Γ(κ+1) (u/2) κ + 1 Γ(2-κ) (u/2) 2-κ + o(u 2-κ ) v π 2 sin(πκ) 1 Γ(1-κ) v -1 2 -κ -1 Γ(κ+1) v 2 κ + o(v) = 1 - Γ(1 -κ) Γ(κ + 1)
u 2κ 4 κ + O [max(u, v)] 2 .
This gives, with u = 2 √ 2γ and v = [2 √ 2γe -y/4 ] κ as γ ↓ 0 and y → +∞, E e -γG + (y/2,y)/e y = 1 -Γ(1 -κ) Γ(κ + 1) (2γ) κ + O max(γ, γ κ e -κy/2 ) . (6.4)

We now turn to F ± (y), defined in (4.2). We have for γ > 0, by (2.4), E e -γF ± (y) = lim where S κ (u, v) = (uv) -κ [I κ (u)K κ (v) -K κ (u)I κ (v)] as defined in ([7] p. 645). So E e -γF ± (y) is the limit, as x ↓ 0, of We now consider

I κ (2 √ 2γe ±x/2 )K κ (2 √ 2γ) -K κ (2 √ 2γe ±x/
f (u, v) := -(v -κ -v κ ) 2κ[I κ (uv)K κ (u) -K κ (uv)I κ (u)] (6.6) 
so that E e -γF -(y) = E e -γF + (y)/e y = f (2 √ 2γ, e -y/2 ), and so F -(y) L = F + (y)/e y . We get successively, as max(v 2κ , u 3 ) → 0, by (6.1) and (6.2), using Γ(1 -κ)Γ(κ) = π/ sin(πκ),

K κ (uv)I κ (u) = 1 2κ v -κ + 1 8(κ + 1)κ v -κ u 2 + v -κ o(max(v 2κ , u 3 )), I κ (uv)K κ (u) = v κ /(2κ) + v -κ o(max(v 2κ , u 3 
)), 2κ I κ (uv)K κ (u) -K κ (uv)I κ (u) = v κ -v -κ -1 4(κ + 1) v -κ u 2 + v -κ o(max(v 2κ , u 3 )).

This yields

f (u, v) = -(v -κ -v κ ) v κ -v -κ -1
4(κ+1) v -κ u 2 + v -κ o(max(v κ , u 3 ))

= 1 -1 4(κ + 1) u 2 + o(max(v 2κ , u 3 )).

Consequently, as max(e -κy , γ 3/2 ) → 0, f (2 2γ, e -y/2 ) = 1 -2γ κ + 1 + O(max(e -κy , γ 3/2 )) = 1 + 2γ κ + 1 + O(max(e -κy , γ 3/2 )).

Since E e -γF + (y)/e y = E e -γF -(y) = f (2 √ 2γ, e -y/2 ), this and (6.4) proves the existence of C 4 > 0, M > 0 and η 1 ∈ (0, 1) such that (4.3), (4.4) and (4.5) are satisfied simultaneously for all y > M and γ ∈ (0, η 1 ].

We now prove E[F + (y)/e y ] exists and is bounded, by computing ∂ ∂γ E e -γF + (y)/e y at γ = 0. To this aim, we fix y > 0 and observe that as γ ↓ 0, once more by (6.1) and (6.2), E e -γF + (y)/e y = f (2 2γ, e -y/2 ) = 1 -[e κy/2 -e -κy/ Ṽ (i) < h t /2. There exists an integer j ∈ Z such that -j ≥ W κ [τ - i (h + t )] > -j -1. As before, just before and after (6.8), this yields 0 ≤ j < n t e 5κht/4 on E 6.2 2 . Consider now y j := inf x ≥ τ Wκ (-j -1), W κ (x) -inf [τ Wκ (-j-1),x] W κ ≥ h t /2 . We have y j > τ Wκ (-j -1) ≥ 0. Moreover, due to the definition of our i, and since for all 0 ≤ x ≤ τ Wκ (-j -1), W κ [τ Wκ (x)] ≥ -j -1 > W κ ( mi ) + h + t -1 and so, for large t,

Ṽ (i) (x) > h t /2 ≥ inf [τ - i (h + t ),τ - i (ht)]
Ṽ (i) , we have

Ṽ (i) [τ - i (h t )] - inf
[τ Wκ (-j-1),τ - i (ht)]

Ṽ (i) ≥ Ṽ (i) [τ - i (h t )] - inf [τ - i (h + t ),τ - i (ht)] Ṽ (i) ≥ h t /2.
Thus, y j ≤ τi (h t ). Hence, inf [τ Wκ (-j-1),y j ] W κ ≥ inf [0,τ i (ht)] W κ = W κ ( mi ) by (2.16). Thus for these j and i, inf [τ Wκ (-j-1),y j ] W κ -(-j -1) ≥ W κ ( mi ) -(-j -1) ≥ W κ ( mi ) -W κ [τ - i (h + t )] = -h + t , (6.10) inf [y j ,τ i (ht)]

W κ -W κ (y j ) ≥ W κ ( mi ) -[(-j -1) + h t /2] ≥ -h + t -h t /2. (6.11)

So on E 6.2 5 ∩ E 6.2 2 there exists 0 ≤ j ≤ n t e 5κht/4 and some 1 ≤ i ≤ n t such that such that (6.10) and (6.11) are satisfied. More over for this i, we showed that y j ≤ τi (h t ), one consequence of this being that τi (h t ) -y j plays the role of τ * 1 (h t ) for the process W κ (. + y j ) -W κ (y j ). Moreover y j -τ Wκ (-j -1) plays the role of τ * 1 (h t /2) for W κ [. + τ Wκ (-j -1)] -(-j -1). Applying the strong Markov property for every 0 ≤ j ≤ n t e 5κht/4 at stopping times τ Wκ (-j -1) and y j , we get for large t, P E 6. 2 5 ∩ E 

  p. 1784) to a probability measure on C([0, ∞), R) denoted by P ζ/2,↑ 0 . The canonical process, which we denote by (R(s), s ≥ 0), takes values in R + . It is a Feller process for the family (P ζ/2,↑ z

  [START_REF] Devulder | Some properties of the rate function of quenched large deviations for random walk in random environment[END_REF]. By(3.22), U n = H( Ln ) = U n on E n under P Wκ mn , and U n L = U under P by Lemma 2.3. So,

1 κ+2 , α := z 1 κ+2

 11 z > 0, a := z and b := z κ+1 κ+2

. 31 )

 31 since inf [0,c log z] W L = -√ c log z|W (1)| and P(W (1) ≥ x) ≤ e -x 2 /2 for large x. Moreover, P(E 3.5 4 ) = α/[α + αz κ+1 κ+2 ] ≤ z -κ+1 κ+2 . Choosing c large enough, this, together with (3.29), (3.30) and (3.31) gives P[H -(+∞) > cz log z] ≤ C + z -κ/(κ+2) , which proves (3.27).

e

  by the first Ray-Knight theorem, R 2 being a 2-dimensional Bessel process starting from 0 as in the proof of Lemma 3.5. So by Fubini and due to the independence of B and W κ , E Wκ [H + (r)] = r 0 e -Wκ(u) 2 (A(r) -A(u)) du = 2 Wκ(v)-Wκ(u) dvdu. (3.34)

( 4 .

 4 61) Hence, |a t,ε (u, y)| ≤ |a ε (u, y)| + |h ε (u, y)| and |b t,ε (u, y)| ≤ |b ε (u, y)|. for every (u, y) ∈ R 2 + and 0 < ε < 1. Moreover, since 0 < κ < 1, |h ε |, |b ε | and |a ε | have finite integrals over R 2

1 L= 5 . 5 . 1 .

 1551 for γ > 0 by(4.6), and that I - F -(h t /2) by Proposition 4.4. Also, which proves Proposition 4.1. Proof of the main results The renewal results : In this subsection we prove Propositions 1.4, 1.6 and Corollary 1.5. We start with some important intermediate result on the exit time U.

j=0( 0 e

 0 λu) κj Γ[κ(1+j)] = O(e (λ+ε)u ) as u → +∞ for any ε > 0, and κ > 0. So Fubini gives, ∀α > λ, lim t→+∞ +∞ -αu dν t (u) = +∞ 0 e -αu dν(u) + o(1), where ν is the measure defined by dν(u) = 1 Cκ +∞ j=0

1 0 x a- 1 ( 1 -

 111 x) b-1 dx = Γ(a)Γ(b)/Γ(a + b) for every a > 0 and b > 0, changing C κ λ κ into u gives the pointwise convergence of E[exp(-uN t /e κφ(t) )] to +∞

j

  and A Lj , and T j,x is defined as T (see(3.3)) replacing B by B(x) j . This enables us to define (Y j (s), s ≥ 0) by P Wκ j (Y j ∈ .) := Lj Lj P Wκ j,x (.)dμ j (x), where dμ j (x) := exp(-Ṽ (j) (x))1 [ L- j , Lj ] (x)dx Lj Lj exp(-Ṽ (j) (y))dy -1

4 8 :

 8 = { Ãj τj κφ * (t) 16ζ ≤ δ * t J 7 } with J 9 := inf x∈[0,δ * t ] L B τ B (1), x . We have J 8 ≥ τj [κφ * (t)/(48ζ)] -τj [κφ * (t)/(96ζ)] exp[-κφ * (t)/(48ζ)] ≥ exp[-κφ * (t)/(48ζ)]with probability ≥ 1 -e -(c -)(φ * (t)) 2 /ζ 2 -e -ht/4 for large t by (2.28), Fact 2.1 (ii) and Lemma 2.3. Moreover,J 9 ≥ 1 -(δ * t ) 1/3 L B τ B (1), 0 ≥ (1/2)L B τ B(1), 0 ≥ e -κφ * (t)/(48ζ)

2 √

 2 κ) + O(x κ+2 ). (6.2) Moreover, we remind that (see e.g.[START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] p. 638),I κ (u)K κ (u) -I κ (u)K κ (u) = 1/u, u > 0.(6.3)Let y > 0. First, ([START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF], 2.10.3 page 302) with α = 0, x = y, z = y/2 < x, β = 1/2, and µ = -κ/2 gives for G + , which is defined in (4.2), E e -γG + (y/2,y) = E exp -γ τ W y κ (y/2) 0 e W y κ (s) ds = e κy/4 K κ (2γe y/2 ) K κ (2 √ 2γe y/4 ) , γ > 0.

.

  The expectation in the right hand side of this equality is equal to, first by the strong Markov property, and second by ([7], 3.10.7(b) page 317) with α = 0, a = 0, b = y, β = ±1/2, µ = κ/2 and x > 0, and sinceP τ W x -κ (0) = ∞ = 1 -e -κx due to the scale function (2.26), y -κ (0) = ∞ P τ W x -κ (0) = ∞ = e (µ-|µ|(±1))y S κ 2 √ 2γe ±x/2 , 2 √ 2γ e (µ-|µ|(±1))x S κ 2 √ 2γe ±y/2 , 2 √ 2γ1 -e -κy 1 -e -κx ,

  16 .Applying Fact 3.1(Dufresne) we have P (A ∞ ≥ y) ≤ C + y -κ for y > 0, and P (A ∞ ≤ y) ≤ e -1/y for small y > 0. Moreover, since Li , τi+1 (h t ) and L * i are stopping times for the natural filtration of W κ , the r.v. A Li ∞ , A τi+1 (ht) ∞ under P by the strong Markov property. Consequently for large t, P (E3.3 2 ) ≤ n t 2C + e -κht/16 + e -e h t /16 ≤ C + n t e -κht/16 .

	∞	and A	L *
			(3.14)
	Moreover, applying the strong Markov property and (3.2), we have on E 3.3 2 ,

i

∞ have the same law as A

  (see(3.13)), the total time spent by X i in [ L * i , +∞) before hitting τi+1 (h t ) = τ * i+1 (h t ). This last quantity is less than or equal to the total time spent in [ L * i , +∞) by X * i before hitting τ * i+1 (h t ). This is the total time spent in [0, +∞) by X * i -L * i before it first hits τ * i+1 (h t ) -L * i , which has the same law as H + (τ * 1 (h t )) under the annealed probability P, since

	which is,
	on E 3.3 1

  2} is defined similarly as L2 in (2.12) without tilde, so that L 2 = L2 on V t .

	Proof: This is a direct consequence of Fact 2.1 (ii) for I + 0 , I -1 and I -2 . and of Fact 2.1 (iii) for I + 2 .
	Recall the notation Ã2 (z) =	z m2 e	Ṽ (2) (x) dx introduced just after (3.20). We have,
	Lemma 4.6. For all 0 < ζ ≤ 1 and 0 < ε < 1/2, for t large enough,
	P e ζht(1-ε) ≤ Ã2 (τ 2 (ζh t )) ≤ e ζht(1+ε) ≥ 1 -4e -κεζht/2 .	(4.14)

Proof: First, notice that on V t , by Remark 2.4, Ã2 (τ 2 (ζh t )) = τ 2 (ζht) m 2

  ≤ C + e -κεht/4 . By Lemma 4.6,P Ã2 (τ 2 (h t /2)) ≤ e ht(1+ε)/2 ≥ 1 -C + e -κεht/4 .

	4.7 2 , Ã2 (u)/ Ã2 ( L2 ) ∈ [-δ t , δ t ] for all u ∈ [τ -2 (h t /2), τ2 (h t /2)]. We first prove
	that P E 4.7 1
	(4.20)
	Notice that Ã2 L2 = I + 0 + I + 2 on V

t , and that I + 0 L = F + (h t ) by Lemma 4.5. So

  where we used (4.18) and (4.32) in the first inequality, and (4.28), (4.19) and ε ≤ 2/27 in the second one. Finally, by (4.31) and (4.33), RHS of (4.17) ≥ 1 -10 i=1 P E 4.7

			i	
			e -εht	(4.29)
	on E 4.7 9 , where E 4.7			
	4.7 10 ) ≥ 9 ∩E 4.7 8 ∩E 4.7 2 ∩E 4.7 1 ∩E 4.7 1-e -εht/2 since e 1 is exponentially distributed with mean 2. Since on E 4.7 10 ,
	J 1 ≥ 1 -δ	1/3 t	I -e 1 ≥ (1/2)e -εht e 1 ≥ e -2εht	(4.30)
	for large t by (4.28) and (4.29), this gives (4.27).	
	Step 5: end of the proof. We have on ∩ 10 i=1 E 4.7 i , for t large enough, by (4.18), (4.28) and
	(4.19),			
	U/ Ã2 L2 ≥ J 1 ≥ (1 -e -ht(1-3ε)/6 )I -e 1 .	(4.31)
	Moreover on ∩ 10 i=0 E 4.7 i , for t large enough,	
	J 0 + J 2 ≤ e (-1/2+3ε)ht ≤ e (-1/2+5ε)ht J 1	(4.32)
	by (4.26) and (4.24) for the first inequality, and (4.30) for the second one. As a consequence,

9 := {τ 2 (εh t ) -m2 ≥ 1}. Moreover for large t, P E 4.7 9

≥ P τ 2 (εh t ) -τ 2 (εh t /2) ≥ 1, V t -P V t ≥ 1 -e -κht/4

by Fact 2.1, (2.28) and Lemma 2.3. Let E 4.7 10 := {e 1 ≥ e -εht/2 }, and observe that P(E U/ Ã2 L2 ≤ 1 + e (-1/2+5ε)ht J 1 ≤ 1 + 2e -ht(1-3ε)/6 I -e 1 (4.33) for large t,

  2, h t ) by Proposition 4.4. So applying (4.4) and (4.5), we have whenever ρ ± κ zxλ/e φ(t) ≤ η 1 and h

  t) ≤η 1 dx

		+ C +	0	+∞	du	+∞ u	e -x	ρ ± κ zxλ e φ(t)	κ	e -κht/2 +	ρ ± κ zxλ e φ(t) +	1 e κht/2 1 ρ ± κ zxλ/e φ(t) ≤η 1 dx
				+∞		+∞			
		+	0		du	u	e -x 1 ρ ± κ zxλ/e φ(t) >η 1 dx.	(4.45)
	Now, notice that +∞ 0 e -z dz +∞ 0 du 0 +∞ +∞ e -z dz u	+∞ 0	du	+∞ u	e -x ρ ± κ zxλdx/e φ(t) = 2ρ ± κ λ/e φ(t) . Moreover, we have
							+∞ 0	dze -z +∞ 0	du	+∞ u
	+∞ 0	dze -z +∞ 0	du		+∞ u				

e -x ρ ± κ zxλ/e φ(t) κ dx = O(e -κφ(t) ), and furthermore

1 ρ ± κ zxλ/e φ(t) >η 1 ≤ ρ ± κ zxλ/ η 1 e φ(

t) 

, so that e -x 1 ρ ± κ zxλ/e φ(t) >η 1 dx = O(e -φ(t) ), whereas e -x dx = 1. This together with (4.45) and φ(t) = o(h t ) gives +∞ 0

  + (h t ) ≤ e ht τ R (h t ) by Proposition 4.4, φ(t) = o(log t), and thanks to (2.30).

	t)
	(4.50)
	since I + 1 = F Moreover, I + L 2 = G + (h t /2, h t ) and I -L 1 , I -2 , I + 1 and I + 2 are independent by Proposition 4.4. So, possibly on an enlarged probability space, there exists a random variable ̰ equal in law to
	A ∞ (A ∞ being defined in (3.1) and G + in (4.2)) and such that Ã∞ , I -1 ,I -2 , I + 1 and I + 2 are independent under P . We now introduce A ∞ := e -ht I + 2 + e -ht/2 Ã∞ . By Markov property,

  1, 

		0	+∞	e -αu dν t (u) = e -κφ(t)	nt-1 j=1	exp -	C κ λ κ j e κφ(t)	E e -αU/t j-1	+ O(e -κφ(t) n 2 t e -δκht )
	=	1 -exp -Cκλ κ e κφ(t) E e -αU/t nt-1 exp κφ(t) + Cκλ κ e κφ(t) 1 -exp -Cκλ κ e κφ(t) E e -αU/t	+ o(1) =	1 C κ (α κ + λ κ )	+ o(1),
	by Propositions 3.4 and then 4.1. We also notice that	

  .10) Let 1 ≤ j < n t . Notice that on B j , Ñt(1+ε) = j, so H( Lj ) + H Lj → mj+1 = H( mj+1 ) > t(1 + ε);

	moreover for large t, H Lj → mj+1 ≤ εt/2, then H( Lj ) > (1 + ε/2)t, and so for all u ∈ [H( mj ), (1 +
	ε/2)t], u < H( Lj ) < H( mj+1 ) = H( mj ) + H mj → mj+1 < H( mj ) + H mj → L-

j

  Lemma 5.5. Assume ζ ≤ κ/48. For large t, for each 1 ≤ j < n t , with probability at least1 -e -(c -)φ * (t)/ζ , P Wκ mj H( mj ± φ * (t)/ζ) ≤ e (1+2δ)φ * (t) ≤ e -(c -)φ * (t)/ζ . A 0 = o(1)by Lemma 5.2. The fact that P A 1 = o(1) for such δ follows from (3.40) since (log h t )n t e ht /t = o(1) as stated in Lemma 3.7. Furthermore, by Lemma 2.3 and then (1.3),

	This together with (5.20) leads to (5.18), which ends this Part 2.	
	Part 3: We prove that if 0 < δ < 1/16 and (1 + 2δ)κ < 1, as t → +∞,	
	P Ñt = Ñt(1+ε) + P A 0 + P A 1 + P A 2 ≤ ε 1-κ /(1 -κ) + o(1).	(5.21)
	First, P		
			=
	e (1+2δ)φ * (t) , this gives		
	(5.19) ≤ n t sup 1≤j≤nt-1	E P Wκ mj H( mj -φ * (t)/ζ) ∧ H( mj + φ * (t)/ζ) < e (1+2δ)φ * (t) .	(5.20)

s , by definition of I j = [ mj -φ * (t)/ζ, mj + φ * (t)/ζ], and with x ∧ y := inf(x, y). Since t -t *

We estimate this with the following lemma, the proof of which is deferred to Subsection 5.4:

  Equation (2.35) with h = h t , α = 1/2 and ω = 1 gives for large t since τj (h t ) is a stopping time, Wκ (-h t /2) > 2h t /κ ≤ e -κht/16 .

	P E 5.4 4 = P τ We have P E 5.4 3 ≤ C + e -κht/(2 √ 2) by

.4 

3 := τj (h t ) -mj ≤ 8h t /κ . E 5.4 4 := Lj -τj (h t ) ≤ 2h t /κ .

  (x) dx. Now, let E 5.4 7 := {τ j [κφ * (t)/(8ζ)] -mj ≤ φ * (t)/ζ}. By(2.22),P E 5.4 7 ≥ 1 -C + e -κ 2 φ * (t)/(16ζ√2) . We have on E 5.4 7 under P Wκ mj ,H mj + φ * (t)/ζ ≥ H τj [κφ * (t)/(8ζ)] ≥ H + j .Assume ζ ≤ κ/48. In order to estimate H + j , we introduce δ * t := e -κφ * (t)/(48ζ) ∈ (0, 1),

									Wκ mj ,
	H τj [κφ * (t)/(8ζ)] ≥	τj [κφ * (t)/(8ζ)] mj	e -V (j) (u) L B τ	B Ãj τj	κφ * (t) 8ζ	, Ãj (u) du =: H + j ,
	where for all z ∈ R, Ãj (z) =	z mj e	Ṽ (j) J 7 := Ãj τj	κφ * (t) 8ζ	,	J 8 :=	τj [	κφ * (t) 16ζ

  3, Fact 2.1 and (2.29), Finally by (2.22), with probability at least 1-C + exp(-κ 2 φ * (t)The last two inequalities give P [E 5.4 8 ] ≥ 1 -e -(c -)φ * (t)/ζ . As a consequence, we haveP Wκ mj H mj + φ * (t)/ζ ≥ H + j ≥ J 7 J 8 J 9 ≥ e κφ * (t)/(16ζ) ≥ e (1+2δ)φ * (t) ≥ 1 -e -(c -)φ

		5κφ * (t)									
	P J 7 ≥ e	48ζ	≥ P								
							32ζ	√	2 ),		
	Ãj τj	κφ * (t) 16ζ	≤ τj	κφ * (t) 16ζ	-mj exp	κφ * (t) 16ζ	≤	φ * (t) 2ζ	exp	κφ * (t) 16ζ	.

τ R (κφ * (t)/(8ζ)) 0 e R(u) du ≥ e (1-1/6) κφ * (t) 8ζ -P V t ≥ 1 -4e -(c -)φ * (t) ζ . * (t)/ζ

  Now, notice that as x ↓ 0,I κ 2 2γe ±x/2 = I κ 2 2γ(1 ± x/2 + o(x)) = I κ 2 2γ ± 2γI κ [2 2γ]x + o(x), K κ 2 2γe ±x/2 = K κ 2 2γ(1 ± x/2 + o(x)) = K κ 2 2γ ± 2γK κ [2 2γ]x + o(x). N ± (x, y) ∼ x↓0 ± 2γ I κ [2 2γ]K κ (2 2γ) -K κ [2 2γ]I κ (2 2γ) sinh(κy/2)x ∼ x↓0 ± sinh(κy/2)x/2.Moreover, sinh(κx/2) ∼ ↓0 κx/2, and then E e -γF ± (y) = lim

	I κ (2 √	2γe ±y/2 )K κ (2 √	2γ) -K κ (2 √	2 )I κ (2 √ 2γe ±y/2 )I κ (2 √ 2γ) 2γ)	sinh(κy/2) sinh(κx/2)	=:	N ± (x, y) D ± (x, y)	.
	So by (6.3),							
		x↓0	N ± (x, y) D ± (x, y)	=	I κ (2 √	±κ -1 sinh(κy/2) 2γe ±y/2 )K κ (2 √ 2γ) -K κ (2 √	2γe ±y/2 )I κ (2 √	2γ)	. (6.5)

  which is a bounded function of y on R + . 0 ≤ k ≤ mnt ≤ e 2κht on E6.2 4 . Moreover we have for every k ∈ N,W κ ≥ κh t /2 ≤ P sup = 2P |W (2)| ≥ κh t /4 -κ ≤ 4 exp -(κh t /4 -κ) 2 /4for large t since sup [0,2] W |W (2)| and P (W (1) ≥ x) ≤ e -x 2 /2 for large x. Consequently, for large t. Notice in particular that on E 6.2 3 , we have for every1 ≤ i ≤ n t , τi (h + t ) + 1 < mi since Ṽ (i) ( mi ) = 0 < h + t -κh t /2,andṼ (i) ≥ h t /2. On E 6.2 5 , we consider 1 ≤ i ≤ n t such that inf [τ -

	P sup [k,k+2]	W κ -inf [k,k+2]							[0,2]	W ≥	κh t 4	-κ + P -inf [0,2]	W ≥	κh t 4	-κ
	P E 6.2 3	≤ P E 6.2 3 ∩E 6.2 4	+P E 6.2 4	≤	e 2κh t k=0	P sup [k,k+2]	W κ -inf [k,k+2]	W κ ≥	κh t 2	+P E 6.2 4	≤ e -κht/4
				mi	e	Ṽ (i) (u) du ≥	τ -i (h + t )+1	e	Ṽ (i) (u) du ≥ e h + t -κht/2 .	(6.9)
				L-i					τ -i (h + t )	
	Finally, let E 6.2 5 := ∩ nt i=1 inf [τ -i (h + t ),τ -i (ht)]	
		i (h + t ),τ -i (ht)]								
										2-y ] (κ + 1) sinh(κy/2)	γ -	(e -y+κy/2 -e -κy/2 ) (1 -κ) sinh(κy/2)	γ + o(γ).
	Hence,										
	E(F + (y)/e y ) = -	∂ ∂γ γ=0	E e -γF + (y)/e y =	[e κy/2 -e -κy/2-y ] (κ + 1) sinh(κy/2)	+	(e -y+κy/2 -e -κy/2 ) (1 -κ) sinh(κy/2)	,

L

=

  ≤ 2n t e 5κht/4 h + t e -κht/2 (h + t + h t /2)e -κht ≤ e -ht/8 /10where we applied (2.9) and n

			nte 5κh t /4					
	6.2 2	≤	j=0	P	inf [0,τ * 1 (ht/2)]	W κ ≥ -h + t P	inf [0,τ * 1 (ht)]	W κ ≥ -h + t -h t /2

t = e o(ht) since φ(t) = o(log t). This together with (6.7) gives P E 6.2 5 ≤ e -κht/8 /2.
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x → E e -γF -(x) is nonincreasing for γ > 0. So,

(4.70)

Notice that RHS of (4.70) has a finite integral over R 2 + , since it is, for fixed u, O(y -κ ) as y → 0 and O(y -κ-1 ) as y → +∞, where we used I κ (x) = (x/2) κ /Γ(κ+1)+(x/2) κ+2 /Γ(κ+2)+o(x κ+2 ) as x → 0 by (6.1) below, and RHS of (4.70) ≥ -2u κ e -u y -κ-1 /Γ(κ). This and (4.69) prove that |F t,z 1 ,z 2 ,ε | is dominated by some function which does not depend on t and has a finite integral over

So, by the dominated convergence theorem, RHS of (4.68) → t→+∞ 0. So by (4.68), we get for every 0 < ε < 1,

Step 6: We now prove that Υ → ε→0 Υ 0 , and end the proof of Lemma 4.9. We recall that Υ = ∞ 0 ∞ 0 f ε (u, y)dydu as introduced in (4.62), where f ε is defined in (4.59). First, notice that for every (u, y) ∈ (0, ∞) 2 ,

and c > 0, coming from Mean value theorem, we have for b ε defined in (4.60),

which has a finite integral over (R * + ) 2 . Moreover, as in (4.70),

is bounded by 2 on R + , and is o(γ) as γ → 0. and so is less than |γ| for every γ in some nonempty interval [0, c). So, 

so LHS of (4.73) ≤ 8 κ Υ 0 . We prove with the similarly that lim inf t→+∞ (S ± 1,t -S ± 3,t )e κφ(t) λ -κ ≥ 8 κ Υ 0 . This proves (4.49) and then Lemma 4.9.

Conclusion:

This and (4.41) gives S ± 0,t = S ± 1,t + S ± 2,t = 1 + (Υ 0 -C 0 )8 κ λ κ e -κφ(t) + o(e -κφ(t) ). This and (4.36) give, since φ(t) = o(log t),

Finally, taking the limit of E e -γF -(y) in (6.5) as y → +∞ with the help of (6.1) and (6.2) proves (4.6). 6.2. Proof of Lemma 2.7. We consider E 6.2 1

We also introduce E 6.2 2 := {W κ ( mnt ) ≥ -n t e 5κht/4 }. We have,

Recall that the r.v. there exists

So on E 6.2 2 by (2.16), -j > W κ ( mi ) ≥ W κ ( mnt ) ≥ -n t e 5κht/4 , thus j < n t e 5κht/4 . Moreover, we have by (2.16),

and then 

We notice that since 3 ∩ E 6.2 5 , due to (6.9) for the second one, the lemma is proved