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LOCALIZATION AND NUMBER OF VISITED VALLEYS FOR A
TRANSIENT DIFFUSION IN RANDOM ENVIRONMENT

PIERRE ANDREOLETTI AND ALEXIS DEVULDER

Abstract. We consider a transient diffusion in a (−κ/2)-drifted Brownian potential Wκ with
0 < κ < 1. We prove its localization before time t in an a neighborhood of some random points
depending only on the environment, which are the positive ht-minima of the environment, for
ht a bit smaller than log t . We also prove an Aging phenomenon for the diffusion, and provide
a central limit theorem for the number of valleys visited up to time t.

The proof relies on a Williams’ decomposition of the trajectory ofWκ in the neighborhood of
local minima, with the help of results of Faggionato [19], and on a precise analysis of exponential
functionals of Wκ and of 3-dimensional (−κ/2)-drifted Bessel processes.

1. Introduction and notation

1.1. Presentation of the model. We are interested in a diffusion (X(t), t ≥ 0) in a random
càdlàg potential (V (x), x ∈ R), defined informally by X(0) = 0 and

dX(t) = dβ(t)− 1

2
V ′(X(t))dt,

where β is a Brownian motion independent of V . More rigorously, X is defined by its conditional
generator given V , which is

1

2
eV (x) d

dx

(
e−V (x) d

dx

)
.

These diffusions in random potentials are considered as a continuous time analogues of random
walks in random environment (RWRE) (see e.g. P. Révész, [31], B.D. Hughes [22], Z. Shi [35]
and O. Zeitouni [42] for reviews on RWRE).

The study of such a process starts with a choice for V . A classic one, originally introduced by
S. Schumacher [33] and T. Brox [5], is to take for V a Lévy process. In fact only a few papers
deal with the discontinuous case, see for example P. Carmona [6] or A. Singh [36, 37], and most
of the results concern continuous V , that is to say

V (x) = Wκ(x) := W (x)− κ

2
x, x ∈ R,

with κ ∈ R and W a two sided Brownian motion. We denote by P the probability measure
associated to Wκ(.). The probability conditionally on the potential Wκ is denoted by PWκ and
is called the quenched probability. We also define the annealed probability as

P(.) :=

∫
PWκ(.)P (Wκ ∈ dω).

We denote respectively by EWκ , E, and E the expectancies with regard to PWκ , P and P .
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In the case κ = 0, X is recurrent and [5] shows that it is sub-diffusive with asymptotic
behavior in (log t)2, moreover X is localized, at time t, in the neighborhood of a random point
blog t depending only on t and W . This result can be written:

Theorem 1.1. (Brox [5]) Assume κ = 0, then for all ε > 0

lim
t→+∞

P
[
X(t) ∈ [blog t − ε(log t)2, blog t + ε(log t)2]

]
= 1. (1.1)

The limit law of blog t/(log t)2 and therefore of X(t)/(log t)2 were made explicit independently
by H. Kesten [25] and A. O. Golosov [23]. For recent results for this case see for example [1] and
[11].

In the case κ > 0, the diffusion X is a.s. transient, with a wide range of limiting behaviors,
depending on the value of κ. It was first studied by K. Kawazu and H. Tanaka. Let us denote
by H(r) the hitting time of r ∈ R by X:

H(r) := inf{t > 0, X(t) = r}.

Kawazu et al. [24] proved in particular that when 0 < κ < 1, H(r)/r1/κ converges in law to a
stable distribution (see also Y. Hu et al. [21], and H. Tanaka [40]). More recently we mention
the results for large and moderate deviations, by M. Taleb ([38] and [39]), A. Devulder [8] and
G. Faraud [18].

In this paper we follow a different approach from [21] and [24]. Indeed we focus on a quenched
study, which has attracted much interest for transient RWRE in the last few years, see for
example the works of N. Enriquez et al. [14], [15], [16], [17], D. Dolgopyat et al. [12], and J.
Peterson et al. [27], [28], [29]. Heuristically, the diffusion goes to locations where the potential is
low, hence it goes to +∞, but it is slowed by "valleys" of the potential, which trap the diffusion
for some time.

1.2. Main results. The goals of this paper are to localize the diffusion X, when 0 < κ < 1, in
some valleys of the potential Wκ, to understand the difference with Brox’s result given by (1.1),
and to prove an Aging phenomenon, as was done in [16] for transient zero-speed RWRE. We
moreover obtain a central limit theorem for the number of valleys visited up to time t. We also
prove some intermediate results, which we think will be useful for obtaining new results about
the maximum local time of X.

Let t 7→ φ(t) a positive increasing function of t, such that φ(t) = o(log t) and log log t = o(φ(t)),
where f(t) = o(g(t)) means limt→+∞ f(t)/g(t) = 0. We prove the following aging phenomenon:

Proposition 1.2. Assume 0 < κ < 1. For all α > 1, we have

lim
t→+∞

P (|X(αt)−X(t)| ≤ φ(t)) =
sin(κπ)

π

∫ 1/α

0
uκ−1(1− u)−κdu.

This is actually a consequence of Theorem 1.3. Before stating it, we first introduce the notion
of h-extrema, which were first introduced by Neveu et al. [26], and studied in the case of drifted
Brownian motion by Faggionato [19]. For h > 0, we say that x ∈ R is an h-minimum for a given
process V if there exist u < x < v such that V (y) ≥ V (x) for all y ∈ [u, v], V (u) ≥ V (x) + h
and V (v) ≥ V (x) + h. Moreover, x is an h-maximum for V if x is an h-minimum for −V , and x
is an h-extrema for V iff it is an h-maximum or an h-minimum for V .
As we are studying the process X until time t, we are more especially interested in the ht-extrema
of Wκ where

ht := log t− φ(t).
2
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It is known (see [19]) that almost surely, the ht-extrema of Wκ form a sequence indexed by Z,
unbounded from below and above, and that the ht-minima and ht-maxima alternate. We denote
respectively by (mj , j ∈ Z) and (Mj , j ∈ Z) the increasing sequences of ht-minima and of
ht-maxima of Wκ, such that m0 ≤ 0 < m1 and mj < Mj < mj+1 for every j ∈ Z.
We also define

Nt := max
{
k ∈ N, sup

0≤s≤t
X(s) ≥ mk

}
,

so that mNt is the largest ht-minima visited by X until time t. The main result of this paper
concerns the localization of the diffusion. It is stated as follows:

Theorem 1.3. Assume 0 < κ < 1. There exists a constant C1 > 0, such that

lim
t→+∞

P (|X(t)−mNt | ≤ C1φ(t)) = 1.

We first recall that X(t) is asymptotically of order tκ (see e.g. [21]). So, the size φ(t) of the
intervals in which X is localized, which can nearly be of the order of log log t, is small and is
related to the minimum height ht of our valleys. We could not say however if it the best that
can be obtained. The main difference with the result of Brox (1.1) is the appearance of the
(random) integer Nt, which is the number of typical valleys of height ht visited before time t. In
the recurrent case of Brox, the diffusion is, with a large probability, localized near the bottom of
a unique valley of the potential, whereas in our transient case, the diffusion is localized near the
bottom of one among several valleys of the potential.

We also prove a renewal theorem for the time to reach the last valley visited by X before t:

Proposition 1.4. We have the following convergence in law under the annealed probability P,
as t→ +∞,

(H(mNt)/t,H(mNt+1)/t)
L→ [κ sin(πκ)/π](y − x)−κ−1xκ−11[0,1](x)1[1,∞)(y)dxdy.

As a consequence, we get the following results, which are useful for the proofs of Proposition
1.2 and Theorem 1.3:

Corollary 1.5. Assume 0 < κ < 1 and let 0 ≤ r < s ≤ 1. Then,

lim
t→+∞

P
(

1− s ≤ H(mNt)

t
≤ 1− r

)
=

sin(πκ)

π

∫ 1−r

1−s
xκ−1(1− x)−κdx, (1.2)

lim
t→+∞

P(H(mNt+1)/t ≥ 1 + s) =
sin(πκ)

π

∫ +∞

s
(1 + x)−1x−κdx. (1.3)

Moreover, the total time spent in the last valley of height at least ht visited before time t renor-
malized by t, that is [H(mNt+1) − H(mNt)]/t converges in law under P to a r.v. with density
sin(πκ)π−1x−κ−1[(1− (1− x)κ)1[0,1](x) + 1(1,+∞)(x)].

We will see in Section 4 and 5, that this is due to the fact that for any integer k ≤ nt with

nt := beκφ(t)(1+δ)c, δ > 0,

H(mk) can approximated by a sum of i.i.d. random variables each of these random variables
having the law of U. We show that U is the product of a random variable depending only on the
environment and t, and an independent variable with exponential law of parameter 2. This first
random variable can itself be approximated by a product of sums of functionals of 3-dimensional
(−κ/2) drifted Bessel processes and of Wκ (see Proposition 4.3).

These results are in accordance with those obtained by Enriquez et al. ([14], [15] and [16]) for
transient RWRE. The work we present here is self contained, in particular we present in this same
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paper the technical study of the Laplace transform of the first exit time U. The study of the
environment only requires continuous arguments of stochastic calculus, starting by a Williams
decomposition of the trajectory of Wκ which mainly comes from the work of A. Faggionato [19].

The number Nt of valleys visited goes to +∞ as t → +∞, More precisely, we prove the
following central limit theorem for Nt, with renormalization eκφ(t):

Proposition 1.6. Assume 0 < κ < 1. Then Nte
−κφ(t) →t→+∞ N in law under the annealed

law P, where N is a r.v. determined by its Laplace transform:

∀u > 0, E
(
e−uN

)
=

+∞∑
j=0

1

Γ(κj + 1)

(
−u
Cκ

)j
(1.4)

where Cκ > 0 is explicitly known (see Proposition 4.7).

Moreover we expect that the results of this paper will be useful to study other properties for the
diffusion. In particular, let (LX(t, x), t ≥ 0, x ∈ R) be a bicontinuous version of the local time of
X. It is known that the maximum local time of X at time t, that is L∗X(t) := maxx∈R LX(t, x),
satisfies lim supt→+∞ L∗X(t)/t = +∞ a.s. in the cases κ = 0 (see [34] and [11]) and even in
the transient case 0 < κ < 1 (see [10]). Hence the maximum local times of X exhibits very
interesting properties, very different from those of the maximum local time of RWRE at time t,
which is naturally bounded by t/2. We expect that the better understanding of the localization
of X and some intermediate results provided in this paper will be useful to prove new results
about L∗X (work in progress).

The rest of the paper is organized as follows. First, we give in Section 2 the main properties
of the environment that will be useful for our study; in particular we present a Williams’ de-
composition of the trajectory of Wκ, close to the one detailed in [19]. Then, in Section 3, we
approximate the trajectory of X by a sum of i.i.d. random variables, and we study one of these
random variable in Section 4. We study the asymptotic behavior of the Laplace transform of the
first exit time U in Section 4.3. Finally, we prove the renewal results stated in Proposition 1.4,
Theorem 1.3 and Proposition 1.2 in Section 5. Moreover, Sections 2, 3 and 4 start with basic
facts on diffusion in random media and/or estimates on the drifted brownian motion and Bessel
processes.

2. Williams’ decomposition and Standard valleys

We use a Williams’ like decomposition ([41]), based on the results of A. Faggionato [19].

2.1. Williams’ decomposition in the neighborhood of ht-minima, (mi, i). We now recall
Williams’ decomposition of the trajectory in a neighborhood of the local minima mi, i ∈ N∗.

Let a > 0. For any process (U(t), t ∈ R+) we denote by

τU (a) := inf{t > 0, U(t) = a},
the first time this process hit a, with the convention inf ∅ = +∞. We denote by LU a bicontinuous
version of the local time of U when it exists. We also denote by Ua the process U starting from
a, and by P a the law of Ua; with the notation U = U0.

Definition 2.1. We recall the definition of a (−ζ/2)-drifted Brownian motion Wζ Doob- con-
ditioned to stay positive (see [3], Chapter VII.3), where ζ 6= 0. For z > 0, P−ζ/2,↑z is defined
by P−ζ/2,↑z (Λ) := 1

1−e−ζzE
z[(1 − exp(−ζW z

ζ (t))),Λ, t < τW
z
ζ (0)] for any Λ ∈ σ(Wζ(u), 0 ≤ u ≤

t) =: Ft, t ≥ 0, where Ez and P z are the expectancy and probability related to W z
ζ . This induces

4
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a unique probability measure P−ζ/2,↑z on σ(Wζ(u), u ≥ 0). Moreover, P−ζ/2,↑z converges weakly
as z → 0+, in the space of Skorokhod D(R+,R+) (see [3] Prop. 14) and in C(R+,R+) (see
[19]) to a probability measure denoted by P−ζ/2,↑0 . The canonical process, which we denote by R,
is a Feller process for the family (P

−ζ/2,↑
z , z ≥ 0); it takes values in R+, and its infinitesimal

generator is given for every x > 0 by (see [19] Lemma 6)

1

2

d2

dx2
+
ζ

2
coth

(
ζ

2
x

)
d

dx
. (2.1)

In the following, we call R under P−ζ/2,↑z for z ≥ 0 a 3 dimensional (−ζ/2)−drifted Bessel
process starting from z. Of course this is a misuse of language as this process is not drifted
directly but is obtained from a drifted process. We notice in particular that, by (2.1), the law of
R is the same if ζ is replaced by −ζ, that is, 3 dimensional (−κ/2)−drifted Bessel processes have
the same law as 3 dimensional (κ/2)−drifted Bessel processes. Finally, when ζ < 0, we have
P
−ζ/2,↑
z (Λ) = P z(Λ|τW

z
ζ (0) =∞) for every Λ ∈ Ft, t ≥ 0.

Let

V (i)(.) := Wκ(.)−Wκ(mi), i ∈ N∗,

which is the potential re-centered at the local minima mi. We also define for h > 0

τ−i (h) := sup{s < mi, V
(i)(x) = h}, τi(h) := inf{s > mi, V

(i)(x) = h}.

We have,

Fact 2.2. (William’s decomposition)
For any i ∈ N∗, let P (i)

1 be the truncated process (V (i)(mi − s), 0 ≤ s ≤ mi − τ−i (ht)), P2
(i) the

truncated process (V (i)(mi + s), 0 ≤ s ≤ τi(ht) −mi) and P (i)
3 the truncated process (V (i)(s +

τi(ht)), 0 ≤ s ≤ inf{s > τi(ht), V
(i)(s) = a} − τi(ht)), for a < ht. Then the truncated processes

((P
(i)
1 , P

(i)
2 ), i ≥ 1) are independent, and for a given i, P (i)

1 , P
(i)
2 and P

(i)
3 are independent as

well.
Let us denote (R, h) the killed process (R(s), 0 ≤ s ≤ τR(h)). Let (R(1), ht) and (R(2), ht) two
independent copies of (R, τ(ht)) and (W̃ b

κ, a) := (W̃ b
κ(s), 0 ≤ s ≤ τ W̃κ(a)) a (−κ/2)-drifted

Brownian motion starting from b and killed when it first hits a < b, and independent of R(1) and
R(2). Then for all i ≥ 2, P (i)

1 is equal in law to (R(1), ht); for all i ≥ 1, P (i)
2 is equal in law to

(R(2), ht), and P
(i)
3 is equal in law to (W̃ ht

κ , a), for a < ht.

The results for the sequence ((P
(i)
1 , P

(i)
2 ), i ≥ 1), comes from Theorems 1 and 2 in [19]. The

result for P (i)
3 comes from the fact that τi(ht) is a stopping time. We treat the central slope that

is to say P (1)
1 in Remark 2.4.

2.2. Standard ht-minima (m̃i, i). Among the ht-minima (mi, i) only some of them are inter-
esting for the analysis of the process X : the (m̃i, i) ht-minima. Recall that δ > 0 is a positive
real that can be chosen as small as needed (see the definition of nt just after Corollary 1.5). Let

h+
t := (1 + κ+ 2δ)ht.

5
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We define L̃+
0 := 0, m̃0 := 0, and recursively for i ≥ 1 (see Figure 1),

L̃]i := inf{x > L̃+
i−1, Wκ(x) = Wκ(L̃+

i−1)− h+
t },

τ̃i(ht) := inf{x ≥ L̃]i , Wκ(x)− inf
[L̃]i ,x]

Wκ = ht},

m̃i := inf{x ≥ L̃]i , Wκ(x) = inf
[L̃]i ,τ̃i(ht)]

Wκ},

L̃+
i := inf{x > τ̃i(ht), Wκ(x) = Wκ(τ̃i(ht))− h+

t − ht},
τ̃−i (h) := sup{s < m̃i, Wκ(x)−Wκ(m̃i) = h}, h > 0.

M̃2

= ht

= h+
t

x

Wκ(x)

M̃1

m̃1

L̃−
1 τ̃1(ht) L̃+

1
L̃
]
2L̃

]
1

m̃2

Figure 1. ht standard valleys

We also introduce the equivalent of V (i), for the (m̃i, i)

Ṽ (i)(.) := Wκ(.)−Wκ(m̃i).

We call i th valley, the re-centered truncated trajectory (Ṽ (i)(x), L̃+
i−1 ≤ x < L̃+

i ).

The next step is to show that with an overwhelming probability the first nt positive ht-minima
(mi, 1 ≤ i ≤ nt) coincide with (m̃i, 1 ≤ i ≤ nt). We denote Vt the event {(mi, 1 ≤ i ≤ nt) =
(m̃i, 1 ≤ i ≤ nt)}.
In all the paper, C+ and c+ (resp. C− and c−) denote positive constants that may grow (resp.
decrease) from line to line.

Lemma 2.3. For any 0 < δ < 1, and any t large enough P (Vt) ≥ 1−C1wt, where wt := nte
−κht/2

and C1 is a positive constant. Moreover, the sequence ((Ṽ (i)(x+ L̃+
i−1), 0 ≤ x < L̃+

i − L̃
+
i−1), i ≥

1) is i.i.d.

Proof: We first notice that m̃i is a ht-minimum for Wκ for every i ≥ 1, so {m̃i, i ∈ N∗} ⊂
{mi, i ∈ N∗}. Hence on the complementary of Vt, there would exist 1 ≤ i ≤ nt and 1 ≤ j ≤ nt
such that m̃i−1 < mj < m̃i. If for such i and j, L̃]i < mj < m̃i, there would be a v > mj

such that Wκ(mj) = inf [mj ,v]Wκ and Wκ(v) ≥ Wκ(mj) + ht, so mj < m̃i ≤ τ̃i(ht) ≤ v, then
6
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Wκ(mj) ≤ Wκ(m̃i), which contradicts the definition of m̃i. Hence, m̃i−1 < mj ≤ L̃]i and then
Wκ(mj) ≥Wκ(m̃i−1)− 2h+

t .

Consequently, Vt ⊂ (E2.3
1 ∩ E2.3

2 ) ∪ E2.3
1 where E2.3

1 := {Wκ(m1) < 0} ∩ ∩ntj=2{Wκ(mj) <

Wκ(mj−1)} and E2.3
2 := {Wκ(m1) ≥ −2h+

t } ∪ ∪
nt
j=2{Wκ(mj) ≥ Wκ(mj−1) − 2h+

t }. For j ≥ 2,
Wκ(mj) −Wκ(mj−1) is by ([19] Prop. 1, Thm 1 and the remark before (2.26)) equal in law
to ζ+ − ζ−, where ζ+ and ζ− are independent exponential r.v, such that the mean of ζ± is
2κ−1 sinh(κht/2)e∓κht/2. So for j ≥ 2,

P[Wκ(mj) ≥Wκ(mj−1)− 2h+
t ] ≤ P(ζ+ > eκht/2 − 2h+

t ) + P(ζ− < eκht/2) ≤ C+e
−κht/2.

For j = 1, we notice that either there is an ht-maximum between 0 and m1, with probability
≤ hte−κht by ([19], Thm. 1 and (2.25)), either m1 ≤ τ∗1 (ht) with

τ∗1 (ht) := inf{u ≥ 0, Wκ(u)− inf
[0,u]

Wκ ≥ ht}. (2.2)

In this case, Wκ(m1) = inf [0,τ∗1 (ht)]Wκ =: β∗, where −β∗ is by ([19] Lemma 1) exponentially
distributed with mean 2κ−1 sinh(κht/2)eκht/2. Hence P[Wκ(m1) ≥ −2h+

t ] ≤ hte−κht + P[−β∗ ≤
2h+

t ] ≤ C+e
−κht/2.

Hence, P(E2.3
1 ) ≤ P(E2.3

2 ) ≤ C+nte
−κht/2, and then P (Vt) ≥ 1− C1nte

−κht/2.

Finally, the fact that the sequence ((Ṽ (i)(x+L̃+
i−1), 0 ≤ x < L̃+

i −L̃
+
i−1), i ≥ 1) is i.i.d. follows

directly from the strong Markov property applied at times L̃+
i−1, which are stopping times. �

The following Remark will useful in the sequel

Remark 2.4. Lemma 2.3 implies that for all 1 ≤ i ≤ nt, τ−i (h+
t ) ≥ 0 with a probability

larger than 1 − C1wt. Also by Fact 2.2, (V (i)(mi − s), 0 ≤ s ≤ mi − τ−i (ht)) is equal in law
to (R(1), ht), and by Corollary 1 in [30] this result can be extended until τ−i (h+

t ), as long as
τ−i (h+

t ) ≥ 0 that is to say (V (i)(mi − s), 0 ≤ s ≤ mi − τ−i (h+
t )) on τ−i (h+

t ) ≥ 0 is equal in law
to (R(1), h+

t ). So for every event A which belongs to the σ−algebra generated by the truncated
trajectory (Ṽ (i)(s), τ̃−i (h+

t ) ≤ s ≤ m̃i), A ≡ A((Ṽ (i)(s), τ̃−i (h+
t ) ≤ s ≤ m̃i)) we can write

P (A(R(1), h+
t ))− C1wt ≤ P (A) ≤ P (A(R(1), h+

t )) + C1wt.

We also need the following intermediate random variables

M̃i := inf{s > m̃i, Wκ(s) = max
m̃i≤u≤L̃+

i

Wκ(u)},

τ̃+
i (h) := inf{s > m̃i, Wκ(x)−Wκ(m̃i) = h}, h > 0,

L̃−i := τ̃−i (h+
t ).

We have the following result for the distance between the points of a given valley:

Lemma 2.5. For all 0 ≤ i ≤ nt,

P (m̃i+1 − M̃i ≤ eκht(1−δ),Vt) ≤ C+e
−κδht , (2.3)

P (τ̃+
i (h)− m̃i > 8h/κ,Vt) ≤ C+e

−κh/2
√

2, 0 ≤ h ≤ ht, (2.4)

P (m̃i+1 − L̃−i+1 > 8h+
t /κ,Vt) ≤ C+e

−κh+t /2
√

2, (2.5)

P
(
L̃+
i+1 − L̃

−
i+1 > 28ht/κ,Vt

)
≤ C+e

−κht/24. (2.6)

Equation (2.4) is also valid for 0 ≤ h ≤ h+
t if τ̃+

i (h)− m̃i is replaced by m̃i+1 − τ̃−i+1(h).
7
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Before giving the proof, we detail a basic result and its short proof:

Lemma 2.6. Let 0 < α < ω. For all h large enough, we have

P
(
τWκ(−αh) ≥ 2ωh/κ

)
≤ e−κ(ω−α)2h/4ω. (2.7)

Proof: P (τWκ(−αh) ≥ 2ωh/κ) ≤ P (W (2ωh/κ) ≥ (ω−α)h) = P (W (1) >
√
κh(ω−α)/

√
2ω) ≤

e−κ(ω−α)2h/4ω, where we have used P(W (1) ≥ x) ≤ e−x2/2. �

Proof of Lemma 2.5: Working on the event Vt allows us to write that {m̃i+1 − M̃i ≤
eκht(1−δ),Vt} ⊂ {mi+1 −Mi ≤ eκht(1−δ)} and then use Faggionato’s results. This idea is used
several time in this proof and all along the paper. For i ≥ 1, thanks to ([19] Thm 1), the law of
(Wκ(Mi + t)−Wκ(Mi), 0 ≤ t ≤ mi+1 −Mi) is P κ/2− , which is defined in [19] p. 1769.
Applying ([19] Proposition 1 p. 1769 and especially Formula 2.14), mi+1−Mi has the same law
as a r.v. called `−, which Laplace transform is given by E

(
e−α`−

)
= ᾱe−κht/2/[ᾱ cosh(ᾱht) −

(κ/2) sinh(ᾱht)] for α > 0, with ᾱ :=
√

2α+ κ2/4. In particular, with a Markov inequality with
α = e−κht(1−δ), we get P (mi+1 −Mi ≤ eκht(1−δ)) ≤ exp(αeκht(1−δ))E(e−α`−) ≤ C+e

−κδht .

Applying ([19] Thm 1 and formula 2.3) and taking α = −κ2/16, we getE
(
eκ

2(τi(h)−mi)/16
)
∼h→+∞

eκh(1−1/
√

2)/2/
√

2. Then, (2.4) follows from Markov inequality. We get (2.5) by the same way.

To get the last inequality, we just need an upper bound for L̃+
i − τ̃i(ht). Since L̃

+
i is a stopping

time for Wκ (in particular we do not need to work on Vt for this part), we have by using (2.7)

P (L̃+
i − τ̃i(ht) ≥ 12ht/κ) = P (τWκ(−h+

t − ht) ≥ 12ht/κ) ≤ e−κht/24.

And we used the fact that 0 < δ < 1 hence h+
t + ht ≤ 4ht. Combining these inequalities yields

(2.6). �

3. Quasi-Independence in the trajectories of X

In this section we show that the times to escape from the different valleys are asymptotically
in t independent under the annealed measure. Then we prove that the time spent by X between
the valleys is negligible.

We start with some basic facts about hitting times by X, R and Wκ.

3.1. About hitting times. We first introduce some notation. Let

A(r) :=

∫ r

0
eWκ(x)dx, r ∈ R,

and A∞ := limr→+∞A(r) <∞ a.s. As in Brox [5], there exists a Brownian motion B such that
X(t) = A−1[B(T−1(t))], where

T (r) :=

∫ r

0
exp{−2Wκ[A−1(B(s))]}ds, 0 ≤ r ≤ τB(A∞). (3.1)

With these notations, we recall the following expression of H(r), for all r ≥ 0,

H(r) = T [τB(A(r))] =

∫ r

−∞
e−Wκ(u)LB[τB(A(r)), A(u)]du.

We also need some estimates on hitting times by Wκ and a −(κ/2)-drifted Bessel process R:
8
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Lemma 3.1. Let 0 < γ < α < ω. For all h large enough, we have

Pαh
(
τR(γh) < τR(ωh)

)
≤ 2e−κ(α−γ)h, (3.2)

P
(
τR(ωh)− τR(αh) ≤ 1

)
≤ C+e

−c−[(ω−α)h]2 , (3.3)

P
(
τW

(h)
κ (γh) ≥ 1

)
≥ 1− 2e−[(1−γ)h−κ/2]2/2, γ 6= 1, (3.4)

P

(∫ τR(h)

0
eR(u)du ≥ e(1−α)h

)
≥ 1− 3e−καh/2, 0 < α < 1 (3.5)

P (τR(h) > 8h/κ) ≤ C+e
−κh/2

√
2. (3.6)

Proof: We recall that R has the same law as the (κ/2)-drifted Brownian motion W 0
−κ = W−κ

Doob conditioned to stay positive, and more precisely that P (R ∈ Λ) = limx↓0 P
x(Λ|τWκ(0) =

∞) for all Λ ∈ Gt, where (Gt, t ≥ 0) is the natural filtration (see [19] Lem 6. and the discussion
before), and then for every Λ ∈ Gτ , where τ is an a.s. finite stopping time. Moreover, we know
that a scale function of W−κ is given by sκ(u) := 2(1− e−κu)/κ = 4e−κu/2 sinh(κu/2)/κ, u ∈ R
(see [19], (5.1)), that is, P (τW−κ(y) < τW−κ(−x)) = sκ(x)/sκ(x+y) for x > 0 and y > 0. Hence,
since τW−κωh <∞ P x–a.s.,

LHS of (3.2)
= Pαh[τW−κ(γh) < τW−κ(ωh) | τW−κ(∞) < τW−κ(0)]

= Pαh[τW−κ(γh) < τW−κ(ωh)]P γh[τW−κ(∞) < τW−κ(0)]/Pαh[τW−κ(∞) < τW−κ(0)]

=

(
1− sκ((α− γ)h)

sκ((ω − γ)h)

)
sκ(γh)

sκ(αh)

=
sinh(κ(ω − α)h/2) sinh(κγh/2)

sinh(κ(ω − γ)h/2) sinh(καh/2)
, (3.7)

where LHS means left hand side. This gives (3.2) for large h.

We now turn to the proof of (3.4). We have, if 0 < γ < 1,

P
(
τW

h
κ (γh) ≤ 1

)
= P

(
inf
[0,1]

(W (x) + h− κ

2
x) ≤ γh

)
≤ P

(
inf
[0,1]

W ≤ (γ − 1)h+
κ

2

)
.

This yields to (3.4), since inf [0,1]W
L
= |W (1)|, where L= denotes equality in law, and P(|W (1)| ≥

x) ≤ 2e−x
2/2. The case γ > 1 is treated similarly.

Now, we notice that the left hand side of (3.3) is less than

lim sup
x↓0

P x[τW−κ(αh) < τW−κ(0)]× Pαh[τW−κ(ωh)− τW−κ(αh) ≤ 1]/P x[τW−κ(0) =∞].

Moreover

P x[τW−κ(ωh)− τW−κ(αh) ≤ 1] = Pαh[τW−κ(ωh) ≤ 1] ≤ 2 exp(−[(ω − α)h− κ/2]2/2),

where the inequality is proved in the same way as (3.4). Since limx→0 P
x[τW−κ(αh) < τW−κ(0)]/

P x[τW−κ(0) =∞] = (1− e−καh)−1 ≤ 2 for large h, we get (3.3).

To prove (3.5), let 0 < α < 1. Notice that the probability of
{

infτR[(1−α/2)h]≤u≤τR(h)R(u) ≥
(1−α)h

}
∩
{
τR[(1−α/2)h]− τR(h) ≥ 1

}
is at least 1− 3e−καh/2 for large h by (3.2) and (3.3).

Moreover, we have on this event,∫ τR(h)

0
eR(u)du ≥

∫ τR(h)

τR[(1−α/2)h]
eR(u)du. ≥ [τR[(1− α/2)h]− τR(h)]e(1−α)h) ≥ e(1−α)h),

9
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which proves (3.5). (3.6) is obtained similarly as (2.4). �

3.2. Independence in a trajectory of X. We prove that the sequence (Ui := H(L̃i) −
H(m̃i), i ≥ 1) is "nearly" i.i.d under P for large t in the following sense: First we need some
more points which belongs to the standard valleys, for all i ≥ 1

L̃i := inf{x > τ̃i(ht), Wκ(x)−Wκ(m̃i) = ht/2}.

Proposition 3.2. There exists a constant C2 > 0 such that for large t,

∀λ > 0, 1 ≤ n ≤ nt,
∣∣∣E(e−λ∑n

i=1 Ui
)
−
[
E
(
e−λU

)]n∣∣∣ ≤ C2u(t, n), (3.8)

where u(t, n) := ne−δκht if δ is chosen small enough,

U :=

∫ L̃2

L̃−2

e−Ṽ
(2)(u)LB[τB(Ã(L̃2)), Ã(u)]du,

with Ã(z) :=
∫ z
m̃2
eṼ

(2)(x)dx for all L̃−2 ≤ z ≤ L̃2. Moreover for all n ∈ N∗, [a, b] ⊂ [0, 1] and
α > 0,∣∣∣∣∣P(

n−1∑
i=1

Ui
t
∈ [a, b],

n∑
i=1

Ui
t
≥ α

)
−
∫ b

a
P
( n−1∑
i=1

Ui
t
∈ dx

)
P(U/t ≥ α− x)

∣∣∣∣∣ ≤ C+e
−δκht . (3.9)

Proof: Let Ei :=
{
Ui < H ′i(L̃

−
i )−H(m̃i)

}
, where H ′i(L̃

−
i ) := inf{s > H(m̃i), X(s) = L̃−i }. We

also introduce Ft := σ(X(u), 0 ≤ u ≤ t, Wκ(x), x ∈ R) for t ≥ 0. We get

E

(
e−λ

∑n
i=1 Ui

n∏
i=1

1Ei

)
= E

[
EWκ

(
EWκ

(
e−λUn1En

∣∣∣FH(m̃n)

)
e−λ

∑n−1
i=1 Ui

n−1∏
i=1

1Ei

)]

= E

[
EWκ

(
EWκ
m̃n

(
e−λH(L̃n)1H(L̃n)<H(L̃−n )

)
e−λ

∑n−1
i=1 Ui

n−1∏
i=1

1Ei

)]
,

by the strong Markov property and since m̃i < L̃i < m̃n for 1 ≤ i < n. Hence we obtain by
induction

E

(
e−λ

∑n
i=1 Ui

n∏
i=1

1Ei

)
= E

(
n∏
i=1

EWκ
m̃i

(
e−λH(L̃i)1H(L̃i)<H(L̃−i )

))

= E

(
n∏
i=1

[
Lλ(H(L̃i)PWκ(Ei)

])
, (3.10)

as PWκ(Ei) = PWκ
m̃i

(
H(L̃i) < H(L̃−i )

)
and whith Lλ[H(L̃i)] := EWκ

m̃i

(
e−λH(L̃i)

∣∣∣H(L̃i) < H(L̃−i )
)
.

We now need to prove that PWκ(Ei) is closed to one with a large probability, so the next step
is to get a lower bound for this probability. We now work under Vt which allows us to use V (i)

and its William’s decomposition instead of Ṽ (i), we have

E

(
n∏
i=1

[
Lλ(H(L̃i)PWκ(Ei)

])
≥ E

(
n∏
i=1

[
Lλ(H(L̃i)PWκ(Ei)1m̃i=mi

])
.

Let us give an upper bound for PWκ(Ei) on {m̃i = mi}. Recall that A is a scale function of X
under PWκ (see e.g. [35] formula (2.2)), that is

PWκ(Ei) = PWκ
m̃i

(
H(L̃i) > H(L̃−i )

)
=
(∫ L̃i

m̃i

eṼ
(i)(x)dx

)(∫ L̃i

L̃−i

eṼ
(i)(udx

)−1
, (3.11)
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so on {m̃i = mi},

(3.11) ≤
(

(L̃i − m̃i)e
V (i)(Mi)

)
/
(∫ τ−i [h+t (1−κ/4)]

τ−i (h+t )
eV

(i)(x)dx
)

=: Qi/Di,

recalling that τ−i (z) = sup{s < mi, V
(i)(s) ≥ z} for z > 0.

We start with the denominator Di. First on {m̃i = mi}, τ−i (h+
t ) ≥ 0 so by Remark 2.4 (V (i)(mi−

x) , mi−τ−i [h+
t ] ≤ x ≤ mi−τ−i [h+

t (1−κ/4)]) is equal in law to
(
R(2)(x), τR

(2)
[h+
t (1−κ/4)] ≤ x ≤

τR
(2)

(h+
t )
)
. Then, formula (3.2) applied with h = h+

t , γ = 1− κ/2, α = 1− κ/4 and ω = 1 gives
for t large enough, with a probability larger than 1− C+e

−κ2ht/4,

Di1m̃i=mi ≥ eh
+
t (1−κ/2)[τ−i (h+

t )− τ−i (h+
t (1− κ/4))]1m̃i=mi .

Moreover by (3.3), we have

P [τR
(2)

1 (h+
t )− τR(2)

1 (h+
t (1− κ/4)) ≥ 1] ≥ 1− C+e

−c−h2t .

So finally, we get Di1m̃i=mi ≥ eh
+
t (1−κ/2)1m̃i=mi with a probability larger than 1− C+e

−κ2ht .

For the numerator Qi, first by (2.6) and Lemma 2.3 P (L̃i − L̃−i > 28ht/κ) ≤ 2e−κht/24. Also
thanks to Williams’ decomposition (Fact 2.2),

P [V (i)(Mi) > ht(1 + δ)] ≤ P
(

sup
s≥0

Wκ(s) > δht

)
≤ e−δκht ,

where the last inequality comes from formula 1.1.4 (1) page 251 of [4]. Finally for δ small enough
and t large enough, with probability greater than 1−2e−δκht , Qi1m̃i=mi ≤ 28htκ

−1eht(1+δ)1m̃i=mi
and Di1m̃i=mi ≥ eh

+
t (1−κ/2)1m̃i=mi , so

PWκ(Ei)1m̃i=mi ≥ (1− C+hte
−(κ+2(1−κ)δ)ht/2)1m̃i=mi . (3.12)

Collecting what we did above, we get

E

[
n∏
i=1

(
Lλ(H(L̃i)PWκ(Ei)1m̃i=mi

])

≥ (1− C+e
−δκht)nE

(
1Vt

n∏
i=1

EWκ
m̃i

(
e−λH(L̃i)

∣∣∣H(L̃i) < H(L̃−i )
))

.

Using Lemma 2.3 and considering (3.10),

E

(
e−λ

∑n
i=1 Ui

n∏
i=1

1Ei

)
− E

(
n∏
i=1

EWκ
m̃i

(
e−λH(L̃i)

∣∣∣H(L̃i) < H(L̃−i )
))
≥ −C+ne

−δκht .

With similar ideas for the upper bound, we finally get∣∣∣∣∣E(e−λ∑n
i=1 Ui

)
− E

(
n∏
i=1

EWκ
m̃i

(
e−λH(L̃i)

∣∣∣H(L̃i) < H(L̃−i )
))∣∣∣∣∣ ≤ C+ne

−δκht .

For every fixed Wκ, we have under PWκ
m̃i

on {H(L̃i) < H(L̃−i )},

H(L̃i) =

∫ L̃i

L̃−i

e−Ṽ
(i)(u)LB̃[τ B̃(Ãi(L̃i)), Ãi(u)]du, (3.13)
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where for all L̃−i ≤ z ≤ L̃j , Ãi(z) :=
∫ z
m̃j
eṼ

(i)(x)dx and B̃ is a standard Brownian motion. This

and (3.11) show that the left hand side of (3.11) and EWκ
m̃i

(e−λH(L̃i)|H(L̃i) < H(L̃−i )) are mea-
surable with respect to the σ-algebra generated by (Ṽ (i)(x), L̃−i ≤ x ≤ L̃i).

Using (3.13), and the fact that {(Ṽ (i)(x), L̃−i ≤ x ≤ L̃i), i ≤ n} is i.i.d. by Lemma 2.3 give
the upper bound of (3.8). Notice that we choose the second valley in the definition of U in order
to avoid the central slope (see Fact 2.2) when working under Vt.

For (3.9), we obtain

P
( n−1∑
i=1

Ui
t
∈ [a, b],

n∑
i=1

Ui
t
≥ α, En

)
= E

[
1∑n−1

i=1
Ui
t
∈[a,b]

EWκ

(
1
Un≥α−

∑n−1
i=1

Ui
t

1En |FH(m̃n)

)]
=

∫ b

a
P
( n−1∑
i=1

Ui
t
∈ dx

)
P(Un/t ≥ α− x, En),

since Ui is for i ≤ n− 1 measurable with respect to σ(Wκ(x), x ≤ L̃n−1, X(u), u ≤ H(L̃n−1)),
whereas EWκ

(
1Un≥α−x1En |FH(m̃n)

)
is for every x ∈ R measurable with respect to σ(Wκ(x +

m̃n) −Wκ(m̃n), x ≥ L̃−n − m̃n, X(u + H(m̃n)) − m̃n, 0 ≤ u ≤ H(L̃n) −H(m̃n)). Since Un is
equal in law to U and P(En) ≤ C+e

−δht , we get (3.9). �

3.3. Negligible parts in the trajectory of X. We now prove that the total time spent
between the first nt large valleys is negligible compared to t.

We first need to give estimates concerning the hitting times of m̃1 and τ1(ht). To this aim,
notice that H(r) = H−(r) + H+(r), where H−(r) :=

∫ 0
−∞ e

−Wκ(u)LB[τB(A(r)), A(u)]du and
H+(r) :=

∫ r
0 e
−Wκ(u)LB[τB(A(r)), A(u)]du. Actually, H−(r) (resp. H+(r)) is the time spent by

X in R− (resp. in R+) before it hits r for the first time. We start with the following lemma
about H−; it comes from [10] and the proof is given for the sake of completeness:

Lemma 3.3. Let κ > 0 and H−(+∞) := limr→+∞H−(r). For z large enough,

P(H−(+∞) > z) ≤ C+[(log z)/z]κ/(κ+2). (3.14)

Proof: For a > 0, α > 0 and b > 0, let

E3.3
1 :=

{
supx<0 e

−Wκ(x) ≤ a
}
, E3.3

2 := {A∞ ≤ α} , E3.3
3 :=

{
supy<0 LB[τB(α), y] ≤ b

}
.

L∗−X (+∞) := sup
r≥0

sup
x<0
LX(H(r), x) = sup

t≥0
sup
x<0
LX(t, x).

We first prove an inequality with regards to L∗−X (+∞). We notice that

L∗−X (+∞) = sup
r≥0

sup
x<0

{
e−Wκ(x)LB[τB(A(r)), A(x)]

}
≤
(

sup
x<0

e−Wκ(x)

)
sup
y<0
LB[τB(A∞), y].

By the first Ray–Knight theorem, there exist two Bessel processes R2 and R0, of dimensions 2
and 0 respectively, starting from 0 and R2(α), such that LB(τB(α), x) is equal to R2

2(α− x) for
x ∈ [0, α] and to R2

0(−x) for x < 0. Hence, for α ≤ b,

P(E3.3
3 ) = P(R2

2(α) > b) +

∫ b

0
Px
(

sup
y>0

R2
0(y) > b

)
P(R2

2(α) ∈ [x, x+ dx]).
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Consequently,

P(E3.3
3 ) = exp

(
− b

2α

)
+ E

(
R2

2(α)

b
1{R2

2(α)≤b}

)
≤
[
2 + E

(
R2

2(1)
)] α
b

=: c0
α

b
,

with c0 > 0. Now, let a := z
1

κ+2 , α := z
1

κ+2 and b := z
κ+1
κ+2 . Notice that on E3.3

1 ∩ E3.3
2 ∩ E3.3

3 ,
L∗−X (+∞) ≤ z and recall A∞

L
= 2/γκ (see Dufresne, [13]), where γκ is a gamma variable of

parameter (κ, 1). We have for z large enough,

P(L∗−X (+∞) > z) ≤ P(E3.3
1 ) + P(E3.3

2 ) + P(E3.3
3 ) ≤ a−κ + [2/α]κ/(κΓ(κ)) + c0α/b ≤ c1z

− κ
κ+2 ,
(3.15)

with c1 > 0. We now turn back to H−(+∞). Define for c > 0,

E3.3
4 :=

{
min

0≤s≤τB(α)
B(s) > −αz

κ+1
κ+2

}
, E3.3

5 := {|A−1(−z)| ≤ c log z}.

On E3.3
1 ∩ E3.3

2 ∩ E3.3
3 ∩ E3.3

4 ∩ E3.3
5 , we have for r ≥ 0,

H−(+∞) ≤ lim
r→+∞

∫ 0

A−1
(

min
0≤s≤τB(A(r))

B(s)
) L∗−X (+∞)dx

≤
∣∣∣A−1

(
min0≤s≤τB(A∞)B(s)

)∣∣∣L∗−X (+∞)

≤ |A−1(−z)|L∗−X (+∞) ≤ cz log z. (3.16)

Moreover, for c > 2/κ, and ε > 0,

P(E3.3
5 ) = P

(
z >

∫ c log z

0
eW (u)+κu/2du

)
≤ P

[
z > exp

(
inf

0≤u≤c log z
W (u)

)
2

κ
(zκc/2 − 1)

]
≤ 2z−

1
2c(

κc
2
−1−ε)

2

(3.17)

for all large z. Moreover, P(E3.3
4 ) = α/[α + αz

κ+1
κ+2 ] ≤ z−

κ+1
κ+2 . Choosing c large enough, this,

together with (3.15), (3.16) and (3.17) gives (3.14). �

Lemma 3.4. There exists a constant C5 > 0 such that for every h > 0,

E[H+(τ∗1 (h))] ≤ C5e
h (3.18)

where τ∗1 (h) is define in (2.2). Moreover,

P[H−(m̃1) ≥ t/ log ht] ≤ C+[(log t)2/t]κ/(κ+2). (3.19)

Proof: We first remind that E[LB(τB(1), y)] = 2(1−y) for 0 ≤ y ≤ 1; which is a consequence of
the first Ray–Knight theorem (see e.g. [32]). We notice that by the scale property of B, recalling
that A(u) ≥ 0 for all u ≥ 0 and A is independent of B, we have for every r ≥ 0, which can
depend on the environment Wκ,

EWκ(H+(r)) = EWκ

(∫ r

0
e−Wκ(u)A(r)LB

(
τB(1), A(u)/A(r)

)
du
)

=

∫ r

0
e−Wκ(u)2 (A(r)−A(u)) du

= 2

∫ r

0

∫ r

u
eWκ(v)−Wκ(u)dvdu, (3.20)
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by Fubini. Hence, applying this to r = τ∗1 (h), we get

E[H+(τ∗1 (h))] = 2E

(∫ τ∗1 (h)

0

∫ τ∗1 (h)

u
eWκ(v)−Wκ(u)dvdu

)

≤ 2E

(∫ ∞
0

1u≤τ∗1 (h)

∫ τ∗1 (u,h)

u
eWκ(v)−Wκ(u)dvdu

)
where τ∗1 (u, h) := inf{t > u, Wκ(t)− inf [u,t]Wκ ≥ h}. Applying Fubini followed by the Markov
property at time u, we get

E[H+(τ∗1 (h))] ≤ 2

∫ ∞
0

E

(
1u≤τ∗1 (h)

∫ τ∗1 (u,h)−u

0
eWκ(α+u)−Wκ(u)dα

)
du

= 2

∫ ∞
0

E(1u≤τ∗1 (h))E

(∫ τ∗1 (h)

0
eWκ(α)dα

)
du

= 2β1(h)β2(h), (3.21)

where, similarly as in Enriquez et al. ([15], Lem. 4.9),

β1(h) := E(τ∗1 (h)), β2(h) := E
(∫ τ∗1 (h)

0
eWκ(u)du

)
.

Using [19] (formula (2.3) and (2.7)) we have β1(h) ≤ c1e
κh, with c1 > 0.

We now cut the integral which appears in the definition of β2(h) into several parts. to show
that β2(h) ≤ C+e

(1−κ)h for h large enough. To this aim, we introduce e0 := 0 and

ej := inf{s > ej−1,Wκ(s) = −j}, j ≥ 1,

Hj := sup
ej≤u≤v≤ej+1

(Wκ(v)−Wκ(u)), j ∈ N,

Ξk := {ek ≤ τ∗1 (h) ≤ ek+1}, k ∈ N.

We have,

β2(h) = E

( ∞∑
k=0

1Ξk

∫ τ∗1 (h)

0
eWκ(u)du

)

=

∞∑
k=0

E

[
1{H0<h} × · · · × 1{Hk−1<h}1{Hk≥h}

( k−1∑
i=0

eWκ(ei)Ji + eWκ(ek)Jk

)]
where Ji :=

∫ ei+1

ei
eWκ(u)−Wκ(ei)du and Jk :=

∫ τ∗1 (h)
ek

eWκ(u)−Wκ(ek)du. Hence, applying Markov
at times ei and since Wκ(ei) = −i, we get

β2(h) =

∞∑
k=0

[
k−1∑
i=0

e−i(1− q)kqE(J0|H0 < h) + (1− q)kqe−kE(J0|H0 ≥ h)

]

≤
∞∑
k=0

[
(1− e−1)−1(1− q)kqE(J0|H0 < h)

]
+

q

1− (1− q)e−1
E(J0|H0 ≥ h)

with q := P (H0 ≥ h). Hence β2(h) ≤ C[E(J0|H0 < h) + E(J01{H0≥h})]. To finish first
by 3.10.7 (a) page 317 in [4], taking x = 0, a = −1, α = 0 and b = h, we easily get
E(J01{H0<h}) ≤ E(J01{τWκ (−1)<τWκ (h)}) ≤ Ce(1−κ)h. In the same way using formula 3.10.7 (b)
of the same reference with the same parameters except b = h − 1, we also get E(J01{H0≥h}) ≤
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E(J01{τWκ (−1)>τWκ (h−1)}) ≤ Ceh(1−κ). This, combined with q ∼h→+∞ Ce−κh gives β2(h) ≤
Ce(1−κ)h for large h, which together with (3.21) and β1(h) ≤ c1e

κh gives (3.18).

The second inequality, that is (3.19), comes directly from (3.14). �

We now have all the tools needed to bound the time spent between the deep valleys:

Lemma 3.5. For any δ small enough (δ < 2−3/2 and κ(1 + 2δ) < 1) and t large enough

P (H(m̃1) < ṽt) ≥ P

(
nt⋂
k=1

{
0 ≤ H(m̃k)−

k−1∑
i=1

Ui < ṽt

})
≥ 1− C3vt,

where ṽt := 2t/ log ht, vt := nt(log ht)e
−φ(t) = o(1), C3 > 0 and

∑0
i=1 · · · = 0 by convention.

Proof : We have, for every 1 ≤ k ≤ nt,

H(m̃k) = H(m̃1) +

k−1∑
i=1

Ui +

k−1∑
i=1

(
H(m̃i+1)−H(L̃i)

)
, (3.22)

so we just have to prove that H(m̃1)+
∑nt−1

i=1

(
H(m̃i+1)−H(L̃i)

)
is less than or equal to ṽt with

large probability. We consider

L̃∗i := inf{x ≥ τ̃i(ht), Wκ(x)−Wκ(m̃i) = 3ht/4}.
We define Xi(t) := X(t + H(L̃i)) (resp. X∗i (t) := X(t + H(L̃∗i ))), t ≥ 0, which is a diffusion in
the environment Wκ, starting from L̃i (resp. L̃∗i ). We also denote by HXi(r) the hitting time of
r by Xi, for r ≥ L̃i and Ax∞ :=

∫∞
x eWκ(u)−Wκ(x)du. We introduce the following events:

E3.5
1 := ∩nt−1

i=1 {HXi(m̃i+1) < HXi(L̃
∗
i )},

E3.5
2 := ∩nti=1{A

L̃i
∞ ≤ eht/16, A

τ̃i+1(ht)
∞ ≤ eht/16, A

L̃∗i∞ ≥ e−ht/16}.
We recall that A∞ := A0

∞ has the same law as 2/γκ, where γκ is a gamma variable of parameter
(κ, 1), with density e−xxκ−11R+(x)/Γ(κ) (see [13], or [4] IV.48). Hence, P (A∞ ≥ y) ≤ Cy−κ for
y > 0 and C > 0, and P (A∞ ≤ y) ≤ e−1/y for small y > 0. Moreover, since L̃i, τ̃i+1(ht) and L̃∗i
are stopping times for the natural filtration of Wκ, AL̃i∞ , Aτ̃i+1(ht)

∞ and AL̃
∗
i∞ have the same law as

A∞ under P by the strong Markov property. Consequently,

P (E3.5
2 ) ≤ nt(Ce−κht/16 + e−e

ht/16
). (3.23)

Moreover, we have for 1 ≤ i ≤ nt − 1 on E3.5
2 , PWκ [HXi(m̃i+1) > HXi(L̃

∗
i )] = Q∗i /D

∗
i , where

Q∗i :=

∫ m̃i+1

L̃i

eWκ(x)dx ≤ eWκ(L̃i)AL̃i∞ ≤ exp(Wκ(m̃i) + ht/2 + ht/16), (3.24)

D∗i :=

∫ m̃i+1

L̃∗i

eWκ(x)dx = eWκ(L̃∗i )A
L̃∗i∞ −

∫ ∞
m̃i+1

eWκ(x)dx.

Moreover, we have on E3.5
2 ∩ E3.5

3 , where E3.5
3 := ∩nt−1

j=1 {τ̃j+1(ht)− m̃j+1 ≤ 8ht/κ},∫ ∞
m̃i+1

eWκ(x)dx ≤ [τ̃i+1(ht)− m̃i+1 +A
τ̃i+1(ht)
∞ ]eWκ(m̃i+1)+ht ≤ (8ht/κ+ eht/16)eWκ(m̃i)

for large t since Wκ(m̃i+1) ≤Wκ(L̃+
i ) ≤Wκ(m̃i)−ht. This yields to D∗i ≥ eWκ(m̃i)+11ht/16/2 for

large t. Hence,

P(E3.5
1 ) ≤ P(E3.5

1 ∩ E3.5
2 ∩ E3.5

3 ) + P (E3.5
2 ) + P (E3.5

3 ) ≤ 2nte
−ht/8 + P (E3.5

2 ) + P (E3.5
3 ), (3.25)

where P (E3.5
3 ) ≤ C+nte

−κht/23/2 by (2.4) and Lemma 2.3.
15
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Let τ̃∗i+1(ht) := inf{u ≥ L̃∗i , Wκ(u)−inf [L̃∗i ,u]Wκ ≥ ht} for i ≥ 1, and E3.5
4 := ∩nt−1

i=1 {τ̃∗i+1(ht) =

τ̃i+1(ht)}. By definition of τ̃i(ht), {τ̃∗i+1(ht) 6= τ̃i+1(ht)} = {τ̃∗i+1(ht) ≤ L̃]i+1} = {inf [L̃∗i ,τ̃
∗
i+1(ht)]

Wκ−
Wκ(L̃∗i ) ≥ −2h+

t − 3ht/4}. Since L̃∗i is a stopping time, using the strong Markov property, we
obtain P (τ̃∗i+1(ht) = τ̃i+1(ht)) ≤ P(inf [0,τ∗1 (ht)]Wκ ≥ −2h+

t − 3ht/4) ≤ C+e
−κht/2 as in the proof

of Lemma 2.3. Then P (E3.5
4 ) ≤ C+nte

−κht/2.

On E3.5
4 , H(m̃i+1) − H(L̃i) = HXi(m̃i+1) ≤ HXi(τ̃i+1(ht)) = HXi(τ̃

∗
i+1(ht)), which is, on

E3.5
1 , the total time spent by Xi in [L̃∗i ,+∞) before hitting τ̃i+1(ht). This last quantity is less

than or equal to the total time spent in [L̃∗i ,+∞) by X∗i before hitting τ̃∗i+1(ht), which has
the same law as H+(τ∗1 (ht)) under the annealed probability P, since L̃∗i is a stopping time for
Wκ and then (Wκ(L̃∗i + x) −Wκ(L̃∗i ), x ≥ 0) is a standard Brownian motion. Consequently,
E[(H(m̃i+1)−H(L̃i))1E3.51 ∩E3.54

] ≤ E[H+(τ∗1 (ht))] for 1 ≤ i ≤ nt − 1. This, together with Lemma
3.4 and a Markov inequality lead to

P
(
H+(m̃1) +

nt−1∑
i=1

(
H(m̃i+1)−H(L̃i)

)
≥ t/(log ht), E3.5

1 , E3.5
4 , E3.5

5 ,Vt
)
≤ C+nte

ht log ht
t

,

where E3.5
5 := {m1 ≤ τ∗1 (ht)}. Recall that P(E3.5

5 ) ≤ P(0 ≤ M0 < m1) ≤ hte
−κht as seen in

the proof of Lemma 2.3, case j = 1. This, combined with (3.19), (3.23), (3.25) and Lemma 2.3,
concludes the proof. �

4. Time spent in a standard valley

The aim of this section is to prove Proposition 4.6. First we need additional estimates given
below.

4.1. Some technical estimates. Recall that (R(s), s ≥ 0) is a (−κ/2) drifted 3-dimensional
Bessel process, and let (W̃ b

κ(s), 0 ≤ s ≤ τ W̃
b
κ(a)) a (−κ/2)-drifted Brownian motion starting

from b and killed when it first hits a < b. We now introduce

F±(a) :=

∫ τR(a)

0
e±R(s)ds, G±(a, b) :=

∫ τW̃
b
κ (a)

0
e±W̃

b
κ(s)(s)ds,

Lemma 4.1. There exists C4 > 0, M > 0 and η1 ∈ (0, 1) such that ∀y > M,∀γ ∈ (0, η1],∣∣∣E (e−γF−(y)
)
− [1 + 2γ/(κ+ 1)]−1

∣∣∣ ≤ C4 max(e−κy, γ3/2), (4.1)∣∣∣E (e−γF+(y)/ey
)
− [1− 2γ/(κ+ 1)]

∣∣∣ ≤ C4 max(e−κy, γ3/2), (4.2)∣∣∣E (e−γG+(y/2,y)/ey
)
− [1− Γ(1− κ)(2γ)κ/Γ(1 + κ)]

∣∣∣ ≤ C4 max(γκe−κy/2, γ). (4.3)

Moreover, there exists c1 > 0, such that for all y > 0, E (F+(y)/ey) ≤ c1.

Proof: We denote by Iκ and Kκ the modified Bessel functions, respectively of the first and
second kind (see e.g. [4] p. 638). First, ([4], 2.10.3 page 302) with α = 0, x = y, z = ωy < y,
β = 1/2, and µ = −κ/2 gives

E
(
e−γG

+(ωy,y)
)

=
eκ(1−ω)y/2Kκ(2

√
2γey/2)

Kκ(2
√

2γeωy/2)
, γ > 0.

Note that this expression can be deduced from the fact that G+(ωy, y)
L
=
∫ τW̃κ (ωy)

0 eW̃κ(x)dx,

A∞
L
=
∫ τW̃κ (ωy)

0 eW̃κ(x)dx + eωyA′∞, with A′∞
L
= A∞ independent of

∫ τW̃κ (ωy)
0 eW̃κ(x)dx and [13].
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Recall that P(R ∈ Λ) = limx↓0 P
x(Λ|τWκ(0) = ∞) for every Λ ∈ GτWx

κ (a). Hence, we have for
γ > 0, by the strong Markox property,

E
(
e−γF

±(y)
)

= lim
x↓0

Ex
[
exp

(
−γ
∫ τW−κ(y)

0
e±W−κ(s)ds

)
1{Ty<T0}

]
P y(T0 =∞)

P x(T0 =∞)

=
±κ−1 sinh(ky/2)

Iκ(2
√

2γe±y/2)Kκ(2
√

2γ)−Kκ(2
√

2γe±y/2)Iκ(2
√

2γ)
, (4.4)

where the last equality comes from ([4], 3.10.7(b) page 317) with α = 0, a = 0, b = a, β = ±1/2,
and x > 0, since P x(T0 =∞) = 1− e−κx and I ′κ(u)Kκ(u)− Iκ(u)K ′κ(u) = 1/u for u > 0. Now,
notice that when max(v2κ, u3)→ 0,

f(u, v) :=
−κ−1(v−κ − vκ)

Iκ(uv)Kκ(u)−Kκ(uv)Iκ(u)
= [1 + u2/(4(κ+ 1))]−1 +O(max(v2κ, u3)). (4.5)

Hence, there exist C ′4 > 0 and η′1 > 0 such that

max(v2κ, u3) < η′1 =⇒ |f(u, v)− [1 + u2/(4(κ+ 1))]−1| ≤ C ′4 max(v2κ, u3).

Consequently, taking u = 2
√

2γ and v = e−y/2, there exist M > 0 and η1 > 0 satisfying (4.1).
Similarly, we get as u→ 0 and y → +∞,

E(e−uF
+(y)/ey) = 1− 2u/(κ+ 1)) + o(max(u3/2, e−κy)),

E(e−uG
+(y/2,y)/ey) = 1− Γ(1− κ)(2u)κ/Γ(1 + κ) + o(max(u, uκe−κy/2)),

which yield respectively to (4.2) and (4.3). Finally we deduce the result for the mean of F+(y)/ey

computing the first derivative of (4.4). �

Before proving Proposition 4.6, we still need to introduce the following technical lemma:

Lemma 4.2. B being a standard two-sided Brownian motion, there exists a constant c3 such
that for every 0 < ε < 1, 0 < δ < 1 and x > 0,

P
(

sup
u∈[−δ,δ]

|LB(τB(1), u)− LB(τB(1), 0)| > εLB(τB(1), 0)

)
≤ c3

δ1/6

ε2/5
, (4.6)

P
(

sup
u∈[0,1]

LB(τB(1), u) ≥ x
)
≤ 4e−x/2, (4.7)

P
(

sup
u≤0
LB(τB(1), u) ≥ x

)
≤ 1/x. (4.8)

Proof: First, (4.7) and (4.8) follow respectively by [11] Lemma 2.3 and [39] Lemma 3.1 together
with the first Ray-Knight theorem.

Let 0 < ε < 1, 0 < δ < 1 and

E4.2 :=

{
sup

u∈[−δ,δ]
|LB(τB(1), u)− LB(τB(1), 0)| > εLB(τB(1), 0)

}
.

We have, for α > 0 and β > 0,

P(E4.2) = P(E4.2 ∩ {LB(τB(1), 0) ≥ α}) + P(E4.2 ∩ {LB(τB(1), 0) < α})

≤ P
(

sup
u∈[−δ,δ]

|LB(τB(1), u)− LB(τB(1), 0)| > εα

)
+ P[LB(τB(1), 0) < α]

≤ P[τB(1) ≥ β] + P
(

sup
u∈[−δ,δ], 0≤s≤β

|LB(s, u)− LB(s, 0)| > εα

)
+
α

2
(4.9)
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since LB(τB(1), 0) is an exponential variable with mean 2. Now notice that

P[τB(1) ≥ β] = P
(

sup
0≤u≤β

B(u) < 1
)

= P
(√

β|B(1)| < 1
)
≤ 2/

√
2πβ.

Let 0 < ε0 < 1/2. The second term of (4.9) is less than or equal to

P
(

sup
u∈[−δ,δ]−{0}, 0≤s≤β

|LB(s, u)− LB(s, 0)|
|u|1/2−ε0

>
εα

δ1/2−ε0

)
≤ δ1/2−ε0

εα
E
(

sup
a6=b, 0≤s≤β

|LB(s, b)− LB(s, a)|
|a− b|1/2−ε0

)
, (4.10)

the last inequality being a consequence of Markov inequality. Now, applying Barlow and Yor ([2],
(ii) p. 199 with γ = 1) to the continuous martingale B(.∧β), we can say that the expectancy in
(4.10) is less than or equal to C1,ε0(

√
β)1/2+ε0 where C1,ε0 > 0. Consequently,

P(E4.2) ≤ c3/
√
β + C1,ε0(

√
β)1/2+ε0δ1/2−ε0(εα)−1 + α/2.

Now, we choose α = ε−2/5δ1/5, β = ε4/5δ−2/5 and ε0 < 1/36; we get P(E4.2) ≤ c3δ
1/6ε−2/5,

which concludes the proof. �

4.2. Approximation of the time to escape from a typical valley.
We now prove that a standard exit time can be approximated by product and sums of independent
well known random variables. We recall that U is defined in Proposition 3.2.

Proposition 4.3. Let εt := 3e−(1−3δ)ht/6. There exist independent random variables I+
1 , I

+
2 , I

−
1

and I−2 , depending on t and independent of e1 a random variable with exponential law with mean
2, such that I+

1 is distributed as F+(ht), I+
2 as G+(ht/2, ht), and I−1 and I−2 as F−(ht/2), such

that for t large enough, P(At) ≥ 1− C+e
−δ2c−ht , where

At :=
{∣∣U− (I+

1 + I+
2 )(I−1 + I−2 )e1

∣∣ ≤ (I+
1 + I+

2 )(I−1 + I−2 )e1εt
}
.

The proof of this Proposition involves 3 Lemmata, the first two are straightforward conse-
quence of what we have already discussed or proved the last one is more technical.

First applying Williams decomposition (see Fact 2.2), we have the following

Lemma 4.4. We have

A+
1 :=

∫ τ2(ht)

m2

eV
(2)(x)dx L= F+(ht), A−1 :=

∫ τ2(ht/2)

mi

e−V
(2)(x)dx L= F−(ht/2) (4.11)

A±2 :=

∫ L2

τ2(ht)
e±V

(2)(x)dx L= G±(ht/2, ht), B±1 :=

∫ τ−2 (ht/2)

m2

e±V
(2)(x) L= F±(ht/2),

with L2 := inf{x > τ2(ht), Wκ(x)−Wκ(m2) = ht/2},

Recall that Ã is defined just before (3.9). We have,

Lemma 4.5. For all 0 < ζ ≤ 1, 0 < ε < 1/2 and t large enough, we have

P
[
eζht(1−ε) ≤ Ã(τ̃1(ζht)) ≤ eζht(1+ε)

]
≥ 1− C+e

−εκζht . (4.12)

Proof: Working on Vt, and considering the first expression in (4.11) (replacing ht by ζht), we
know that the probability in 4.12 is larger than P

[
eζht(1−ε) ≤ F+(ζht) ≤ eζht(1+ε)

]
− P (Vt).

Then by Markov inequality and Lemma 4.1 P
[
F+(ζht) > eζht(1+ε)

]
≤ c1e

−εζht . For the lower
18
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bound, taking γ = ζ(1− ε/2), α = ζ(1− ε) and ω = ζ in (3.2) we get with a probability larger
than 1− C+e

−εκht ,

F+(ζht) ≥ eζht(1−ε)[τR(ζht)− τR(ζht(1− ε/2))].

Finally using (3.3) we get the result. �

We first prove the following intermediate result

Lemma 4.6. For all 0 < ε < inf(2/27, κ2/2), and t large enough,

P
(∣∣∣U− Ã(L̃2)I−e1

∣∣∣ ≤ 3e−(1−3ε)ht/6Ã(L̃2)I−e1

)
≥ 1− C+e

−c−εht ,

where I− :=
∫ τ̃2(ht/2)

τ̃−2 (ht/2)
e−Ṽ

(2)(u)du. Also e1 is independent of Wκ.

Proof Let δt := e−ht(1−3ε)/2. We introduce x+
0 := Ã−1(δtÃ(L̃2)) and x−0 := Ã−1(−δtÃ(L̃2)).

We cut the integral defining U into three parts:

U =

∫ x−0

L̃−1

+

∫ x+0

x−0

+

∫ L̃1

x+0

e−Ṽ
(2)(u)Ã(L̃2)LB′(τB′(1), Ã(u)/Ã(L̃2))du =: J0 + J1 + J2, (4.13)

where B′(.) = B([Ã(L̃2)]2.)/Ã(L̃2), and (B′u)u≥0 is a standard Brownian motion independent of
Wκ, which we still denote by B in the rest of this proof. In what follows, we show that the main
contribution comes from J1.
For J2, we prove that for t large enough

P(J2 ≥ Ã(L̃2)c+h
2
t e
−(1−ε)ht/2) ≤ C+e

−εc−ht . (4.14)

To this aim, we first notice that x+
0 ∈ (m̃2, L̃2) since 0 ≤ δt ≤ 1. Moreover, Ã(x) ≤ δtÃ(L̃2) iff

x ≤ x+
0 . We introduce E4.6

1 := {x+
0 ≥ τ̃

+
2 (ht/2))}, and prove that P (E4.6

1 ) ≤ C+e
−c−εht . First by

(4.12)
P (Ã(τ̃+

2 (ht/2))) ≤ eht(1+ε)/2) ≥ 1− C+e
−εht/2. (4.15)

Working on Vt, Ã(L̃2) = A+
1 + A+

2 , so by Lemma 4.4 P (Ã(L̃2) ≥ eht(1−ε)) ≥ P (F+(ht) ≥
eht(1−ε)) − P (Vt). Hence, we get P (Ã(L̃2) ≥ eht(1−ε)) ≥ 1 − 4e−κεht/2 by (3.5). This, together
with (4.15) gives

P (E4.6
1 ) = P [δt ≥ Ã(τ̃+

2 (ht/2)))/Ã(L̃2)] ≥ 1− C+e
−c−εht . (4.16)

We now turn back to J2. We have on E4.6
1 ,

J2 ≤ sup
u∈[0,1]

LB(τB(1), u)Ã(L̃2)

∫ L̃2

τ̃+2 (ht/2))
e−Ṽ

(2)(u)du. (4.17)

Let E4.6
2 := {inf τ̃+2 (ht/2))≤u≤τ̃2(ht)

[Ṽ (2)(u)] > (1 − ε)ht/2} and E4.6
3 := {L̃+

2 − L̃−2 ≤ 28ht/κ}.
Working on Vt, E4.6

2 = {infτ2(ht/2)≤u≤τ2(ht)[V
(2)(u)] > (1−ε)ht/2}, then Williams’ decomposition,

equation (3.2) with α = 1/2, γ = 1/2(1 − ε) and ω = 1 give P (E4.6
2 ) ≤ P (E4.6

2 ,Vt) + P (Vt) ≤
2e−κεht/2 + P (Vt). Moreover, P (E4.6

3 ) ≤ C+e
−κht/24 by (2.6) and Lemma 2.3. We have on

E4.6
2 ∩ E4.6

3 , ∫ L̃2

τ̃+2 (ht/2))
e−Ṽ

(2)(u)du ≤ e−(1−ε)ht/2(L̃2 − τ̃+
2 (ht/2))) ≤ ht

28

κ
e−(1−ε)ht/2.

This, together with (4.17) and (4.7) with M = ht proves (4.14).

For J0, we prove that for t large enough

P(J0 ≥ C+Ã(L̃2)hte
−(1/2−2ε)ht) ≤ C+e

−εδc−ht . (4.18)
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With the same arguments as those used for (4.16), we get P (E4.6
4 ) ≥ 1 − C+e

−c−εht , where
E4.6

4 := {x−0 ≤ τ̃
−
2 (ht/2)}.

We now define E4.6
5 := {x−0 ≥ L̃−2 } and prove it has a large probability. In the one hand we

have

P (Ã(L̃2) ≥ eht(1+ε/2)) ≤ C+e
−c−εht/2. (4.19)

Indeed Ã(L̃2) = Ã(τ̃2(ht))+Ã(L̃2)−Ã(τ̃2(ht)). Thanks to Lemma 4.5 P (Ã(τ̃2(ht)) > 2eht(1+ε/2))

≤ C+e
−εht/2/2. Also the strong Markov property gives Ã(L̃2)− Ã(τ̃2(ht))

L
= G+(ht, ht/2), then

we notice that G+(ht, ht/2)
L
= ehtG+(0,−ht/2) ≤ ehtA∞, where A∞ is defined just above (3.1).

So P (Ã(L̃2)− Ã(τ̃2(ht)) > eht(1+ε/2)/2) ≤ P (A∞ > eεht/2)/2) ≤ C+e
−κεht/2/2 ≤ C+e

−c−εht/2/2,
as A∞

L
= 2/γκ.

On the other hand P (−Ã(L̃−2 ) ≥ eht(1+κ/2)) ≥ P (F+(h+
t ) ≥ eht(1+κ/2)))−P (V̄t) (see Remark

2.4). So by (3.5) P (−Ã(L̃−2 ) ≥ eht(1+κ/2)) ≥ 1−4e−κ
2ht/4 for large t . This, together with (4.19),

gives

P (E4.6
5 ) = P (−δt ≥ Ã(L̃−2 )/Ã(L̃2)) ≥ 1− C+e

−c−εht/4.

Let E4.6
6 := {infL̃−2 ≤u≤τ̃

−
2 (ht/2)(Ṽ

(2)(u)) ≥ e(1/2−ε)ht} and E4.6
7 := {sups≤0 LB(τB(1), s) ≤ eεht}.

Also by Remark 2.4, on {τ−2 (h+
t ) ≥ 0}, (V (2)(u), τ−2 (h+

t ) ≤ u ≤ τ−2 (ht/2)) has the same law as
(R(2)(s), τR

(2)
(ht/2) ≤ s ≤ τR(2)

(h+
t )). Hence (3.2) with γ = 1/2−ε, α = 1/2 and ω = 1+ κ+2δ

gives P (E4.6
6 ) ≤ P (E4.6

6 ,Vt) + P (V̄t) ≤ 2e−κεht . Moreover, by (4.8), P(E4.6
7 ) ≤ e−εht .

Therefore, on ∩7
i=3E4.6

i ∩ Vt, i.e with a probability larger than 1− C+e
−c−εht , we obtain

J0 ≤ Ã(L̃2) sup
s≤0
LB(τB(1), s)

∫ τ̃−1 (ht/2)

L̃−1

e−Ṽ
(1)(u)du ≤ C+htÃ(L̃2)e−(1/2−2ε)ht , (4.20)

which yields (4.18).
For J1, we prove that for t large enough,

P[J1 ≤ e1Ã(L̃2)e−εht/2] ≤ C+e
−c−εht , (4.21)

where e1 := LB(τB(1), 0) is an exponential r.v. with mean 2 by the first Ray-Knight theorem,

and is independent of Wκ. First, let Ĵ1 :=
∫ m̃1

x−0
+
∫ x+0
m̃1

e−(Wκ(u)−Wκ(m̃1))du =: Ĵ −1 + Ĵ +
1 and

E4.6
8 :=

{
supu∈[−δt,δt] |LB(τB(1), u)− LB(τB(1), 0)| ≤ δ1/3

t LB(τB(1), 0)
}
.

We know that P(E4.6
8 ) ≤ C+δ

1/30
t by (4.6). We have on E4.6

8 ,∣∣∣J1 − Ã(L̃2)Ĵ1e1

∣∣∣ ≤ δ1/3
t Ã(L̃2)Ĵ1e1. (4.22)

We finally need that Ĵ1 is not too small, which we prove with a similar argument as before : first
we have Ĵ1 ≥ Ĵ +

1 ≥ e−εht(τ̃
+
2 (εht)−m̃2) ≥ e−εht on E4.6

1 ∩E4.6
9 , where E4.6

9 := {τ̃+
2 (εht)−m̃2 ≥ 1}

has a probability P (E4.6
9 ) ≥ P (E4.6

9 ,Vt)−P (V̄t) ≥ 1−C+e
−c−ε2h2t /4−C1nte

−κht/2 by Lemma 2.3,
Williams decomposition and (3.3). Hence J1 ≥ (1− δ1/3

t )Ã(L̃2)e−εhte1 on E4.6
1 ∩E4.6

8 ∩E4.6
9 ∩Vt,

which gives (4.21) for large t.

End of the proof. To finish we have to prove that Ĵ1 is nearly equal to I−.
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On E4.6
1 ∩ E4.6

4 ∩ E4.6
5 , we have L̃−2 ≤ x−0 ≤ τ̃−2 (ht/2) ≤ τ̃+

2 (ht/2)) ≤ x+
0 ≤ L̃2, and Ṽ (2)(x) ≥

(1− ε)ht/2 for every x ∈ [L̃−2 , τ̃
−
2 (ht/2)] ∩ [τ̃+

2 (ht/2)), L̃2] on E4.6
2 ∩ E4.6

6 , hence on ∩9
i=4E4.6

i ,

0 ≤ Ĵ1 − I− ≤
∫ τ̃−2 (ht/2)

L̃−2

+

∫ L̃2

τ̃+2 (ht/2))
e−Ṽ

(2)(x)dx ≤ e−(1−ε)ht/2(L̃2 − L̃−2 ) ≤ C+hte
−(1−ε)ht/2.

Let E4.6
10 := {e1 ≥ e−εht/2}, and observe that P(E4.6

10 ) ≥ 1 − e−εht/2. We now combine all
the previous intermediate results. On ∩10

i=1E4.6
i , for t large enough, J1 ≥ Ã(L̃2)e1e

−εht/2 ≥
Ã(L̃2)e−2εht/2 and J0 + J2 ≤ Ã(L̃2)e(−1/2+3ε)ht ≤ 2J1e

(−1/2+5ε)ht . This, together with (4.22),
yields

(1− e−ht(1−3ε)/6)Ã(L̃2)Ĵ1e1 ≤ J1 ≤ U ≤ (1 + 2e(−1/2+5ε)ht)J1 ≤ (1 + 2e−ht(1−3ε)/6)Ã(L̃2)Ĵ1e1
(4.23)

Moreover, Ĵ1 ≥ I− ≥ e−εht(τ̃+
2 (εht)−m̃1) ≥ e−εht , and Ĵ1 = (Ĵ1−I−)+I− ≤ C+hte

−(1−ε)ht/2+

I− ≤ (1 + e(−1/2+2ε)ht)I− for large t. This and (4.23) give (1− e−ht(1−3ε)/6)Ã(L̃2)I−e1 ≤ U ≤
(1 + 3e−ht(1−3ε)/6)Ã(L̃2)Ĵ1e1 which proves the lemma. �

We are now ready prove the proposition :

Proof of Proposition 4.3: We define I−1 :=
∫ τ2(ht/2)
m2

e−V
(2)(s)ds = A−1 ,

I−2 :=
∫m2

τ−2 (ht/2)
e−V

(2)(s)ds = B−1 , I+
3 :=

∫ τ2(ht)
τ2(ht/2) e

V (2)(s)ds, and I+
2 :=

∫ L2

τ2(ht)
eV

(2)(s)ds = A+
2 .

By Williams’ decomposition and the strong Markov property, I−1 , I−2 and I+
2 are independent,

I−1
L
= F−(ht/2), I−2

L
= F−(ht/2) and I+

2
L
= G+(ht/2, ht), and they are independent of (Wκ(s +

τ2(ht/2)) −Wκ(m2), 0 ≤ s ≤ τ2(ht) − τ2(ht/2)) which has the same law as a (κ/2)-drifted 3
dimensional Bessel process started from ht/2 and killed when it first hits ht.

We now consider, possibly on an enlarged probability space, a process (R(1)(s), 0 ≤ s ≤
τR

(1)
(ht/2)), independent ofWκ and e1 and then independent of I−1 , I−2 and I+

2 , and distributed
as (R(s), 0 ≤ s ≤ τR(ht/2)). We now extend this process by setting R(1)(s) := Wκ[s −
τR

(1)
(ht/2) + τ2(ht/2)]−Wκ(m2) for τR(1)

(ht/2) ≤ s ≤ τR(1)
(ht/2) + τ2(ht)− τ2(ht/2). We also

introduce I+
1 :=

∫ τR(1)
(ht)

0 eR
(1)(s)ds. By the strong Markov property, R(1) (and hence also I+

1 )
is independent of I+

2 , I−1 , I−2 and e1.

Moreover, with the same notation as in Lemma 4.6, we have on Vt, I− = I−1 + I−2 and
Ã(L̃2) = A+

1 + I+
2 where I− is defined in Lemma 4.6.

We now prove that A+
1 can be approximated by I+

1 . Since A+
1 − I

+
3 =

∫ τ2(ht/2)
m2

eV
(2)(s)ds L=

F+(ht/2), and by Lemma 4.1

P
(
I+

1 − I
+
3 > e(1+δ)ht/2

)
= P

(
A+

1 − I
+
3 > e(1+δ)ht/2

)
= P

(
F+(ht/2)

eht/2
> eδht/2

)
≤ C+

eδht/2
.

Moreover by (3.5), with a probability larger than 1 − 3e−κδht/2 for large t, I+
1 ≥ eht(1−δ).

Therefore, with a probability greater than 1− 4e−κδht/2 for large t, A+
1 ≤ I

+
3 + e−ht(1−3δ)/2I+

1 ≤
I+

1 (1 + e−ht(1−3δ)/2) and A+
1 ≥ I

+
1 − (I+

1 − I
+
3 ) ≥ (1− e−ht(1−3δ)/2)I+

1 , and then

(1− e−ht(1−3δ)/2)I+
1 ≤ A

+
1 ≤ (1 + e−ht(1−3δ)/2)I+

1 ,

which gives (1− e−ht(1−3δ)/2) ≤ Ã(L̃2)I−/[(I+
1 + I+

2 )(I−1 + I−2 )] ≤ (1 + e−ht(1−3δ)/2) . To finish
we use Lemma 4.6 with ε = δ. �

21

ha
l-0

09
08

62
6,

 v
er

si
on

 1
 - 

25
 N

ov
 2

01
3



4.3. Second order Laplace transform of a standard exit time.
We are now ready to prove a key point of this paper which is the second order of the Laplace
transform of U/t :

Proposition 4.7. Let λ > 0. For t large enough,

eκφ(t)
(

1− E
(
e−

λ
t
U
))

= Cκλ
κ + o(1)

with Cκ := 8κ(C0 + |Υ0|), with C0 := Γ(1− κ)Γ(κ+ 2)/(1 + κ)κ and

Υ0 :=

∫ ∞
0

∫ ∞
0

uκy−κ−1e−u

Γ(κ)

[
yκ

[Γ(κ+ 1)Iκ(
√
y)]2
−
[
1 +

y

(κ+ 1)

]−2 ]
dydu.

Proof: We have,

E
(
e−

λ
t
U
)

= E
(
e−

λ
t
U1At

)
+ E

(
e−

λ
t
U1At

)
≤ E

(
e−

λ
t
U1At

)
+ P

(
At
)
.

Hence by definition of At and Proposition 4.3, we get with λ±t := 2λ (1± εt) /t,

S+
0 − C+e

−δ2c−ht ≤ E
(
e−

λ
t
U
)
≤ S−0 + C+e

−δ2c−ht ,

where S±0 := E
(
e−(λ±t /2)(I+1 +I+2 )(I−1 +I−2 )e1

)
. Let ε1 > 0, θ := 3κ/4 + ε1, B1 := {(I+

1 + I+
2 ) >

elog t−θφ(t)}, and B2 := {(I+
1 + I+

2 ) ≤ elog t−θφ(t)}. Since e1 is an exponential r.v. with mean 2,
we get S±0 = S±1 + S±2 , where for 1 ≤ i ≤ 2,

S±2 :=

∫ ∞
0

dze−zE
(
1Bie

−zλ±t (I+1 +I+2 )(I−1 +I−2 )
)

=

∫ +∞

0
dze−zE

(
1Bi

[
E
(
e−zλ

±
t (I+1 +I+2 )I−1

∣∣∣ I+
1 , I

+
2

)]2 )
, (4.24)

since I−1 and I−2 are independent and independent of I+
1 and I+

2 and have the same law.

We start with S±2 . Let a(t) := e−(3/4)κφ(t). Now, consider 0 ≤ z ≤ η1a(t)eθφ(t)−log t/λ±t =

η1a(t)eθφ(t)/(2λ(1± εt)). On B2, we have zλ±t (I+
1 + I+

2 ) ≤ η1a(t), which gives by (4.1) applied
to I−1

L
= F−(ht/2) for t so large that ht/2 ≥M ,

E
(
e−zλ

±
t (I+1 +I+2 )I−1

∣∣∣ I+
1 , I

+
2

)
≤ Z(z) + C4 max(e−κht/2, [zλ±(I+

1 + I+
2 )]

3
2 ).

with Z(x) :=
(
1 + 2λ±t x(I+

1 + I+
2 )/(κ+ 1)

)−1 for any x > 0.Therefore, for such z and t, by
(4.24),

S±2 ≤
∫ η1a(t)e

θφ(t)

tλ±t

0

dz
ez
E
(
1B2Z

2(z) + 1B23C4([zλ±(I+
1 + I+

2 )]
3
2 + e−κht/2)

)
+

∫ +∞

η1a(t)eθφ(t)/(tλ±t )
e−zdz.

We notice that
∫ +∞
η1a(t)eθφ(t)/(tλ±t )

e−zdz ≤ e−φ(t) for large t since a(t)eθφ(t) ≥ φ(t). Moreover,∫ η1a(t)eθφ(t)/(tλ±t )
0 dze−zE

(
1B2 [zλ±t (I+

1 + I+
2 )]3/2

)
≤ [η1a(t)]3/2. So for t large,

S±2 ≤
∫ ∞

0
dze−zE

(
1B2Z

2(z)
)

+ o(e−κφ(t)).

We also define,

S±3 :=

∫ +∞

0
dze−zE

(
1B1Z

2(z)
)
.
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Recall that for any λ > 0 and any random variable X ≥ 0, we have by Fubini,

E
(

(1 + λX)−2
)

=

∫ +∞

0
du
∫ +∞

u
E
(
e−x(1+λX)

)
dx.

So, by independence of I+
1 and I+

2 , and defining ρ±κ := 4(1±εt)
κ+1

E
(
Z2(z)

)
=

∫ +∞

0
du
∫ +∞

u
dxe−xE

(
e−

ρ±κ zxλI
+
1

t

)
E

(
e−

ρ±κ zxλI
+
2

t

)
. (4.25)

Recall that t = ehteφ(t), so using (4.2), (4.3) and the laws of I+
1 and I+

2 , we notice than whenever
ρ±κ zxλ/e

φ(t) ≤ η1 and y ≥M ,

E

(
e−

ρ±κ zxλI
+
1

t

)
≤ 1− 2ρ±κ zxλ

(κ+ 1)eφ(t)
+ C4 max

(
e−κht ,

(
ρ±κ zxλ/e

φ(t)
)3/2

)
,

E

(
e−

ρ±κ zxλI
+
2

t

)
≤ 1− Γ(1− κ)

Γ(1 + κ)

(2ρ±κ zxλ)κ

eκφ(t)
+ C4 max

((
ρ±κ zxλ/e

φ(t)
)κ
e−κht/2,

ρ±κ zxλ

eφ(t)

)
.

So, we get, C being a positive constant,

(4.25) ≤
∫ +∞

0
du
∫ +∞

u
dxe−x

(
1− Γ(1− κ)

Γ(1 + κ)

(2ρ±κ zxλ)κ

eκφ(t)

)
1ρ±κ zxλ/eφ(t)≤η1

+C

∫ +∞

0
du
∫ +∞

u
dxe−x

((
ρ±κ zxλ

eφ(t)

)κ
e−κht/2 +

ρ±κ zxλ

eφ(t)
+ e−κht/2

)
1ρ±κ zxλ/eφ(t)≤η1

+

∫ +∞

0
du
∫ +∞

u
e−xdx1ρ±κ zxλ/eφ(t)>η1 .

Finally, notice that
∫ +∞

0 e−zdz
∫ +∞

0 du
∫ +∞
u dxe−xρ±κ zxλ/eφ(t) = 2ρ±κ λ/e

φ(t). Moreover, we
have

∫ +∞
0 e−zdz

∫ +∞
0 du

∫ +∞
u dxe−x[ρ±κ zxλ/e

φ(t)]κ = O(e−κφ(t)), and furthermore
∫ +∞

0 dze−z∫ +∞
0 du

∫ +∞
u e−xdx1ρ±κ zxλ/eφ(t)>η1 = O(e−φ(t)). Hence, we get∫ +∞

0
dze−zE

(
Z2(z)

)
≤
∫ +∞

0
dze−z

∫ +∞

0
du
∫ +∞

u
dxe−x

(
1− Γ(1− κ)

Γ(1 + κ)

(2ρ±κ zxλ)κ

eκφ(t)

)
1ρ±κ zxλ/eφ(t)≤η1 +O(e−φ(t))

= 1− Γ(1− κ)

Γ(1 + κ)

8κλκ

(1 + κ)κeκφ(t)
(1± εt)κ

∫ +∞

0
dze−zzκ

∫ +∞

0
dxe−xxκ+1

+
Γ(1− κ)(2λρ±κ )κ

Γ(1 + κ)eκφ(t)

∫ +∞

0
dze−z

∫ +∞

0
du
∫ +∞

u
dxe−x(zx)κ1ρ±κ zxλ/eφ(t)>η1 +O(e−φ(t)) (4.26)

= 1− Γ(1− κ)Γ(κ+ 2)8κλκ

(1 + κ)κeκφ(t)
(1± εt)κ + o(e−κφ(t)). (4.27)

since, by the dominated convergence theorem, the integral in (4.26) goes to 0 as t → +∞
and then Line (4.26) = o(e−κφ(t)). Combining equations (4.24) to (4.27) we get S±2 + S±3 ≤
1−C08κλκe−κφ(t) +o(e−κφ(t)). We prove similarly that S±2 +S±3 ≥ 1−C08κλκe−κφ(t) +o(e−κφ(t)).

We now turn to the estimation of S±1 − S
±
3 . We assume that φ(t) ≥ 4 log log t, 0 < ε < 1/2,

b(t) = −θφ(t).

Step 1: Approximation of I+
1 + I+

2 . Since εe(1−3κ/4−ε1)φ(t) ≥ 8ht/κ for large t, we have

P(I+
1 ≥ εte

−(3κ/4+ε1)φ(t)) ≤ P(τR(ht) ≥ εe(1−3κ/4−ε1)φ(t)) ≤ P (τR(ht) ≥ 8ht/κ) ≤ C+e
−κht/2

√
2,

since F+(ht) ≤ ehtτR(ht), τR(ht)
L
= τ1(ht)−m1 by Fact 2.2, and thanks to (2.4).
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Moreover, we can write I+
2 = ehtÂ∞ − eht/2Ã∞, where Â∞

L
= Ã∞

L
= A∞. We have

P(eht/2Ã∞ ≥ εte−(3κ/4+ε1)φ(t)) ≤ P(Ã∞ ≥ t1/3) ≤ Ct−κ/3 since P (A∞ ≥ y) ≤ Cy−κ (see
Dufresne). Now, we have on B1 ∩ {I+

1 < εte−(3κ/4+ε1)φ(t)} ∩ {eht/2Ã∞ < εte−(3κ/4+ε1)φ(t)},

te−(3κ/4+ε1)φ(t) < I+
1 + I+

2 = I+
1 + ehtÂ∞ − eht/2Ã∞ < ehtÂ∞ + εte−(3κ/4+ε1)φ(t).

This yields ehtÂ∞ ≥ (1−ε)te−(3κ/4+ε1)φ(t), and then I+
1 +I+

2 ≤ (1+ ε
1−ε)e

htÂ∞ ≤ (1+2ε)ehtÂ∞.
Similarly, I+

1 +I+
2 ≥ ehtÂ∞−εte−(3κ/4+ε1)φ(t) ≥ (1− ε

1−ε)e
htÂ∞ ≥ (1−2ε)ehtÂ∞. Consequently,

replacing ε by ε/2,

P(B1 ∩ {(1− ε)ehtA∞ ≤ I+
1 + I+

2 ≤ (1 + ε)ehtA∞}c) = O(e−φ(t)). (4.28)

Step 2: Simplification. Thanks to (4.28), we get

S±1 − S
±
3 ≤

∫ ∞
0

E
[(
e−λ

±
t u(I+1 +I+2 )(I−1 +I−2 ) − Z2(u)

)
1{I+1 +I+2 ≥teb(t)}

1{(1−ε)eht Â∞≤I+1 +I+2 ≤(1+ε)eht Â∞}

]
e−udu+ e−φ(t)

≤ S±4 + S±5 + e−φ(t), (4.29)

where

S±4 :=

∫ ∞
0

E
[(
e−λ

±
t u(1−ε)eht Â∞(I−1 +I−2 )−

)
1

(1+ε)eht Â∞≥teb(t)

1{(1−ε)eht Â∞≤I+1 +I+2 ≤(1+ε)eht Â∞}

]
e−udu,

S±5 :=

∫ ∞
0

E
[(
e−λ

±
t u(1−ε)eht Â∞(I−1 +I−2 ) − Z2

∞(u)
)

[1I+1 +I+2 ≥teb(t)
− 1

(1+ε)eht Â∞≥teb(t) ]1{(1−ε)eht Â∞≤I+1 +I+2 ≤(1+ε)eht Â∞}

]
e−udu,

Z∞(u) :=
[
1 + 2λ±t u(1 + ε)ehtÂ∞/(κ+ 1)

]−1
.

Using once more (4.28) leads to

S±4 ≤
∫ ∞

0
E
[(
e−λ

±
t u(1−ε)eht Â∞(I−1 +I−2 ) − Z2

∞(u)
)
1

(1+ε)eht Â∞≥teb(t)

]
e−udu

+2e−φ(t). (4.30)

Now, for t large enough so that 0 ≤ εt ≤ ε, the integral in (4.30) can be written as∫ ∞
0

e−uduE
[(
E
(
e−λ

±
t u(1−ε)eht Â∞I−1 |Â∞

)2
− Z2

∞(u)

)
1
Â∞≥ e

b(t)+φ(t)

1+ε

]
≤

∫ ∞
0

e−uduE
[(
E
(
e−4λ(1−ε)2ue−φ(t)γ−1

κ I−1 |γκ
)2
− Z2

∞(u)

)
1
γκ≤ 2(1+ε)

eb(t)+φ(t)

]
. (4.31)

By Dufresne [13], since γκ has density xκ−1e−x/Γ(κ)1R+(x) and is, as Â∞, independent of I−1
then the RHS of (4.31) is equal to∫ ∞

0
e−udu

∫ 2(1+ε)

eb(t)+φ(t)

0

[
E
(
e−4λ(1−ε)2ue−φ(t)x−1I−1

)2
−
(

1 +
8λ(1 + ε)2u

(κ+ 1)eφ(t)x

)−2 ]
xκ−1e−x

Γ(κ)
dx.

(4.32)
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With the change of variables y = 8uλe−φ(t)x−1, this is equal to (8λ)κe−κφ(t)Υε(t), with Υε(t) :=∫∞
0

∫∞
0 ft(u, y)dydu and

ft(u, y) := 1
{y≥ 4λue−θφ(t)

(1+ε)
}
uκe−u

[
E
(
e−(1−ε)2yI−1 /2

)2
−
(

1 +
(1 + ε)2y

(κ+ 1)

)−2 ]
e−8λuy−1e−φ(t)

Γ(κ)yκ+1
.

Step 3: pointwise convergence.
Notice that thanks to (4.4), limy→+∞E

(
e−γF

−(y)
)

= (2γ)κ/2

κΓ(κ)Iκ(2
√

2γ)
for γ > 0. Hence, for every

u > 0 and y > 0,

ft(u, y)→t→+∞ f(u, y) := uκe−u
[

(1− ε)2κyκ

[Γ(κ+ 1)Iκ(2(1− ε)√y)]2
−
(

1 +
(1 + ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
.

Step 4: dominated convergence. We notice that ft(u, y) = at(u, y) + bt(u, y) and f(u, y) =
a(u, y) + b(u, y), where

at(u, y) := 1
{y≥ 4λue−θφ(t)

(1+ε)
}
uκe−u

[
E
(
e−(1−ε)2yI−1 /2

)2
−
(

1 +
(1− ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
e−8λuy−1e−φ(t)

bt(u, y) := 1
{y≥ 4λue−θφ(t)

(1+ε)
}
uκe−u

[(
1 +

(1− ε)2y

(κ+ 1)

)−2

−
(

1 +
(1 + ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
e−8λuy−1e−φ(t)

and their pointwise limits on (R∗+)2 as t→ +∞ are respectively

a(u, y) := uκe−u
[

(1− ε)2κyκ

[Γ(κ+ 1)Iκ(2(1− ε)√y)]2
−
(

1 +
(1− ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
,

b(u, y) := uκe−u
[(

1 +
(1− ε)2y

(κ+ 1)

)−2

−
(

1 +
(1 + ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
.

Since ∀x > 0, Iκ(x) > (x/2)κ

Γ(κ+1) + (x/2)κ+2

Γ(κ+2) , we get γκ

[Γ(κ+1)Iκ(2
√
γ)]2

−
(

1 + γ
(κ+1)

)−2
< 0 for every

γ > 0. Consequently, ∀(u, t) ∈ R2
+, a(u, t) < 0. This, and the fact that t 7→ E

(
e−γF

−(ht/2)
)
is

nonincreasing for γ ≥ 0, lead to

∀(u, y) ∈ (R+)2, a(u, y) ≤ at(u, y) ≤ uκe−u
[
1−
(

1 +
(1− ε)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
=: h(u, y). (4.33)

Hence, |at(u, y)| ≤ |a(u, y)| + |h(u, y)| and |bt(u, y)| ≤ |b(u, y)|. for every (u, y) ∈ R2
+. More-

over, since 0 < κ < 1, |h|, |b| and |a| have finite integrals over R2
+ (notice for example that

euu−κa(u, y) = O(y−κ) as y → 0). Thus, by the dominated convergence theorem,

lim
t→+∞

Υε(t) =

∫ ∞
0

∫ ∞
0

f(u, y)dydu =: Υε.

Hence for small ε, lim supt→+∞((S±4 )eκφ(t)λ−κ) ≤ (1− ε)8κΥε, since limx→0 J(x) = J(0) < 0.

Step 5: S±5 is negligible. First, we have

|S±5 | ≤
∫ ∞

0
E
[∣∣∣e−λ±t u(1−ε)ehtA∞(I−1 +I−2 ) − Z2

∞(u)
∣∣∣

1{I+1 +I+2 <teb(t)}
1{(1+ε)ehtA∞≥teb(t)}1{(1−ε)ehtA∞≤I+1 +I+2 ≤(1+ε)ehtA∞}

]
e−udu

≤
∫ ∞

0
E
[∣∣∣e−λ±t u(1−ε)ehtA∞(I−1 +I−2 ) − Z2

∞(u)
∣∣∣

1{(1−ε)ehtA∞≤teb(t)≤(1+ε)ehtA∞}

]
e−udu, (4.34)
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where we used |(1E1−1E2)1E3 | = 1E1
1E21E3 +1E11E2

1E3 , for events Ei with 1E11E2
1E3 = 0 in

our case. The same calculations as for S±4 give |S±5 | ≤
(8λ)κ

eκφ(t)

∫∞
0

∫∞
0 (|Ft(u, y, ε)|+|Ft(u, y,−ε)|dydu

for large t, with

Ft(u, y, z) := 1
{ 4λue−θφ(t)

(1+ε)
≤y≤ 4λue−θφ(t)

(1−ε) }
uκe−u

[
E
(
e−(1−z)2yI−1 /2

)2
−
(

1 +
(1 + z)2y

(κ+ 1)

)−2 ]
y−κ−1

Γ(κ)
.

Using the same domination as before, the dominated convergence theorem gives S±5 = o(e−κφ(t)).

Conclusion: Consequently, lim supt→+∞[(S±4 + S±5 )eκφ(t)λ−κ] ≤ (1− 2ε)8κΥε, then

lim sup
t→+∞

[
(S±1 − S

±
3 )eκφ(t)λ−κ

]
≤ (1− 2ε)8κΥε

by (4.29). We prove with the same method that lim inft→+∞
[
(S±1 − S

±
3 )eκφ(t)λ−κ

]
≥ (1 +

2ε)8κΥ−ε. Moreover limx→0 Υx = Υ0 which yields (S±1 − S
±
3 ) ∼t→+∞ 8κΥ0λ

κe−κφ(t). Since we
already proved that S±2 + S±3 = 1− C08κλκe−κφ(t) + o(e−κφ(t)), we get

1− E
(
e−

λ
t
U
)
∼t→+∞ 8κ(C0 −Υ0)λκe−κφ(t),

which proves the proposition. �

5. Proof of the main results

5.1. The renewal results : In this section we prove Propositions 1.4, 1.6 and Corollary 1.5.
We start with the following important intermediate result on the first exit time U.
In what follows, we mainly use the same ideas as in [16] pages 18 to 22, inspired from the book
[20] pages 470-472. We first need a lemma and give its proof for the sake of completeness. Recall
that for all i ≥ 1, Ui = H(L̃i)−H(m̃i).

Lemma 5.1. For t > 0, let µt be the positive measure on R+ such that for all x ≥ 0, µt([0, x]) =

e−κφ(t)
∑nt−2

j=1 P(
∑j

i=1 Ui/t ≤ x). Then, (µt)t converges vaguely, as t → +∞, to the measure
µ defined by dµ(x) := (CκΓ(κ))−1xκ−11(0,+∞)(x)dx. Moreover, on every compact subset in
(0,+∞), x 7→ eκφ(t)P(U/t ≥ x) converges uniformly when t→ +∞ to x 7→ Cκx

−κ/Γ(1− κ).

Proof: First, let us prove that for all λ > 0, we have as t→ +∞,∫ +∞

0
e−λxdµt(x) =

∫ +∞

0

e−λxxκ−1

CκΓ(κ)
dx+ o(1), (5.1)∫ +∞

0
e−λxeκφ(t)P(U/t ≥ x)dx =

∫ +∞

0
e−λx

Cκ
Γ(1− κ)xκ

dx+ o(1). (5.2)

Let λ > 0. First, we have, by Proposition 3.2,∫ +∞

0
e−λxdµt(x) =

1

eκφ(t)

nt−2∑
j=1

E
(
e−λ

∑j
i=1

Ui
t

)
=

nt−2∑
j=1

(
1

eκφ(t)

(
E
(
e−λ

U
t

))j)
+O

(
ntu(t, nt)

eκφ(t)

)
.

We notice that, by Proposition 4.7, [E
(
e−λU/t

)
]nt−1 = o(1), since nte−κφ(t) →t→+∞ +∞ and

Cκ > 0. Hence, again by Proposition 4.7, we get since ntu(t, nt)e
−κφ(t) → 0 as t→ +∞,∫ +∞

0
e−λxdµt(x) =

e−κφ(t)(1 + o(1))

1− E
(
e−λU/t

) + o(1) =
1

Cκλκ
+ o(1) =

∫ +∞

0

e−λxxκ−1

CκΓ(κ)
dx+ o(1),
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which gives (5.1). This implies the pointwise convergence of the Laplace transforms of (µt)t to
that of µ, and then the vague convergence of (µt)t to µ. Now, we have by Fubini,

E
(

1− e−
λ
t
U
)

=

∫ ∞
0

∫ u

0
λe−λxdxP(U/t ∈ du) = λ

∫ +∞

0
e−λxP (U/t ≥ x) dx.

Since λκ = λ
∫ +∞

0 e−λxx−κdx/Γ(1−κ) and using Proposition 4.7, we get (5.2). From this point-
wise convergence of the Laplace transform of eκφ(t)P (U/t ≥ x), we get the uniform convergence
of eκφ(t)P (U/t ≥ x) when t goes to infinity as in [16]. �

Proof of Proposition 1.4 and Corollary 1.5: Let Ñt be the unique integer such that
H(m̃Ñt

) ≤ t < H(m̃Ñt+1).

First, by Lemma 2.3 and (3.22), P(Nt ≥ nt) ≤ P(
∑nt−1

j=1 Uj ≤ H(m̃nt) ≤ t) + C1wt. By the

exponential Markov inequality, this is ≤ eE(e−
∑nt−1
i=1 Ui/t) +C1wt. Finally, Propositions 3.2 and

4.7 give since φ(t) = o(log t),

P(Nt ≥ nt) ≤ e
(
E(e−U/t)

)nt
+C1wt +C2u(t, nt) ≤ C+e

−c−nte−κφ(t) + 2C2u(t, nt) = o(1). (5.3)

Assume first that 0 < r < s < 1, and a > 0. Then, Lemmata 2.3, 3.5 and (5.3) yield to

P[1− s ≤ H(mNt)/t ≤ 1− r,H(mNt+1)/t ≥ 1 + a] (5.4)

≤
nt−1∑
j=1

P
(

1− s ≤
H(m̃Ñt

)

t
≤ 1− r,H(m̃Ñt+1)/t ≥ 1 + a, Ñt = j,Vt

)
+ P(Nt /∈ [1, nt)) + P (Vt)

≤
nt−1∑
j=1

P
(

1− st ≤
j−1∑
l=1

Ul/t ≤ 1− r,
j∑
l=1

Ul/t > 1 + a− 2/ log ht

)
+ o(1).

where st := s+ 2/ log ht. We now use (3.9) of Proposition 3.2 and get for any ε > 0, for large t,

(5.4) ≤
∫ 1−r

1−s−ε
eκφ(t)P(U/t > 1 + a− x− ε)dµt(x) + o(1). (5.5)

Let 0 < r′ < s′ < 1 and a′ > 0. Using first the uniform convergence of u 7→ eκφ(t)P(U/t > u) on
the compact [a′+ r′, a′+ s′] ⊂ (0,∞) and then the vague convergence of µt (see Lemma 5.1), we
get

lim
t→+∞

∫ 1−r′

1−s′
eκφ(t)P(U/t > 1 + a′ − x)dµt(x) =

∫ 1−r′

1−s′

xκ−1(1 + a′ − x)−κ

Γ(κ)Γ(1− κ)
dx.

Consequently, by letting ε→ 0, we obtain the first inequality of the following line

lim sup
t→+∞

(5.4) ≤
∫ 1−r

1−s

∫ ∞
a

κ

Γ(1− κ)Γ(κ)
(1 + y − x)−κ−1xκ−1dydx ≤ lim inf

t→+∞
(5.4).

We prove similarly the second inequality. Since we consider probability measures, the cases
r = 0, s = 1 or a = 0 follow, which concludes the proof of Proposition 1.4. Corollary 1.5 follows
by straightforward computations. �

Proof of Proposition 1.6: Let us denote by νt a positive measure on R+, such that for every

x ≥ 0, νt([0, x]) = e−κφ(t)
∑nt−1

j=2 e
−Cκλ

κj

eκφ(t) P (
∑j−1

i=1 Ui/t ≤ x). We have, with the arguments
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already used between (5.4) and (5.5), for any a > 0 and ε > 0,

E
[
e
−Cκλ

κNt

eκφ(t) , H(mNt+1)/t ≥ 1 + a

]
≤

nt−1∑
j=1

e
−Cκλ

κj

eκφ(t) P

[
j−1∑
i=1

Ui/t ≤ 1, 1 + a− 2/ log ht ≤
j∑
i=1

Ui/t

]
+ o(1)

≤
∫ 1

0
dνt(x)eκφ(t)P

(
U

t
> 1 + a− ε− x

)
+ o(1).

We prove similarly the lower bound. We now show that the Laplace transform of the measure
νt converges when t goes to infinity. We consider α such that 0 < λ < α. We get,

∫ +∞

0
e−αudνt(u) =

E
(
e−

α
t
U
) [

1−
[
e
− Cκλ

κ

eκφ(t) E
(
e−

α
t
U
) ]nt−2]

e
κφ(t)+ 2Cκλκ

eκφ(t)

[
1− e−

Cκλκ

eκφ(t) E
(
e−

α
t
U
)] + o(1) =

1

Cκ(ακ + λκ)
+ o(1),

by Propositions 3.2 and then 4.7. We also notice that

1

ακ + λκ
=

+∞∑
j=0

(−λκ)j

ακ(1+j)
=

+∞∑
j=0

(−λκ)j

Γ[κ(1 + j)]

∫ +∞

0
e−αuuκ(1+j)−1du.

So Fubini gives, since
∫∞

0

∑∞
j=0 |

e−αuuκ(1+j)−1

Cκ

(−λκ)j

Γ[κ(1+j)] |du <∞,

∀α > λ, lim
t→+∞

∫ +∞

0
e−αudνt(u) =

∫ +∞

0
e−αudν(u) + o(1),

where ν is the measure defined by dν(u) = 1
Cκ

∑+∞
j=0(−λκ)j u

κ(1+j)−1

Γ[κ(1+j)]1R+(u)du. This pointwise
convergence of the Laplace transform of νt leads to the vague convergence of νt to ν. Using the
uniform convergence of x 7→ eκφ(t)P (U/t > 1 + a− x) on [0, 1] provided by Lemma 5.1, we get

lim
t→+∞

E
[
e
−Cκλ

κNt

eκφ(t) ,
H(mNt+1)

t
≥ 1 + a

]
=

+∞∑
j=0

(−λκ)j
∫ 1

0

(1 + a− x)−κxκ(1+j)−1

Γ[κ(1 + j)]Γ(1− κ)
dx.

and this remains true for a = 0. Since
∫ 1

0 x
a−1(1− x)b−1dx = Γ(a)Γ(b)/Γ(a+ b) for every a > 0

and b > 0, changing Cκλκ into u gives the pointwise convergence of E[exp(−uNt/e
κφ(t))] to the

right hand side of (1.4), which ends the proof of Proposition 1.6. �

5.2. The localization : proof of Theorem 1.3. Let φ∗(t) := φ(t)/ζ, where 0 < ζ < 1 will be
chosen later. Let us define Hx→y := H(y)−H(x) for 0 < x < y, t∗ := t− eφ∗(t)(1+2δ),

A0 := {1 ≤ Ñt < nt}, A1 := ∩nt−1
j=1 {HL̃j→m̃j+1

≤ 2t/ log ht},
A2 := ∩nt−1

j=1 {Hm̃j→m̃j+1 < Hm̃j→L̃−j
}, A3 := {H(m̃Ñt

) ≤ t∗}.

We also introduce Ij := [m̃j − φ∗(t)/ζ, m̃j + φ∗(t)/ζ], j ∈ N∗. Let ε > 0. We have:

P
(
X(t) /∈ IÑt

)
≤ P

(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
+ P(Ñt 6= Ñt(1+ε))

+ P
(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
+ P

(
A0

)
+ P

(
A1

)
+ P

(
A2

)
.

We split the proof into three parts. We start with:
28
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Part 1: we prove that there exists c4 > 0 such that for large t,

P
(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
≤ C+nt

(
hte
−3φ∗(t) + φ∗(t)e−c4δφ

∗(t)
)
. (5.6)

Let Bj := {Ñt = Ñt(1+ε) = j} ∩ A1 ∩ A2 ∩ A3. We have

P
(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
=

nt−1∑
j=1

P (X(t) /∈ Ij ,Bj) . (5.7)

If t is large enough, on Bj , after first hitting m̃j , X stays in [L̃−j , L̃j ] at least until time t(1+ε/2).
Therefore, conditioning on H(m̃j) and using the strong Markov property,

P (X(t) /∈ Ij ,Bj) ≤ E(PWκ(X(t) /∈ Ij , H(m̃j) ≤ t∗,∀u ∈ [H(m̃j), t(1 + ε/2)], X(u) ∈ [L̃−j , L̃j ]))

= E
(∫ t∗

0
PWκ

(
X(t) /∈ Ij , H(m̃j) ∈ ds,∀u ∈

[
s, t
(
1 +

ε

2

)]
, X(u) ∈ [L̃−j , L̃j ]

))
≤ E

(
sup

0≤s≤t∗
PWκ
m̃j

(
X(t− s) /∈ Ij ,∀u ∈ [0, t(1 + ε/2)− s], X(u) ∈ [L̃−j , L̃j ]

))
.

(5.8)

So, as in ([5], proof of Prop. 4.1) we now introduce a coupling between X (under PWκ
m̃j

) and a

reflected process Yj defined below. To this aim, let (Y
(x)
j (u), u ≥ 0) be the process defined by

Y
(x)
j (u) := A−1

(
B̂

(x)
j (T̂−1

x,j (u))
)
for any x ∈ [L̃−j , L̃j ] and u ≥ 0, where B̂(x)

j is a one-dimensional

Brownian motion starting from A(x) and reflected at A(L̃−j ) and A(L̃j) and independent from

Wκ, and T̂x,j is defined like T replacing B by B̂(x)
j . In words, Y (x)

j is a diffusion in the potential
Wκ, starting from x ∈ [L̃−j , L̃j ] and reflected at L̃−j and L̃j . We denote its law by P̂Wκ

j,x .

This enables us to define Yj by P̂Wκ
j (Yj ∈ .) :=

∫ L̃j
L̃−j

P̂Wκ
j,x (.)dµ̃j(x), where

dµ̃j(x) := exp(−Ṽ (j)(x))1[L̃−j ,L̃j ]
(x)dx

(∫ L̃j

L̃−j

exp(−Ṽ (j)(y))dy

)−1

. (5.9)

As in ([5], proof of Prop. 4.1), µ̃j is invariant for the semi-group of Yj ; in particular P̂Wκ
j (Yj(s) ∈

U) = µ̃j(U) for every s ≥ 0 and U ⊂ [L̃−j , L̃j ]. We can now, as in [5], build a coupling QWκ
m̃j

of

X and Yj , such that QWκ
m̃j

(Yj ∈ .) = P̂Wκ
j (Yj ∈ .), and QWκ

m̃j
(X ∈ .) = PWκ

m̃j
(.), these two Markov

processes Yj and X move independently until the first collision Ĥj := inf{u ≥ 0, X(u) = Yj(u)},
then X(u) = Yj(u) until Ĥe

j := inf{u > Ĥj , X(u) /∈ [L̃−j , L̃j ]} and then X and Yj move
independently again.

We now prove that, with a large probability, under QWκ
m̃j

, X and Yj first meet before time

t1 := t− t∗ = eφ
∗(t)(1+2δ). To this aim, we introduce L̂+

j := τ̃+
j (φ∗(t)) and L̂−j := τ̃−j (φ∗(t)), and

we first prove a result concerning only X:

Lemma 5.2. With a probability larger than 1− C+e
−c−δφ∗(t), and with x ∨ y := max(x, y),

PWκ
m̃j

(
H(L̂+

j ) ∨H(L̂−j ) ≤ e(1+δ)φ∗(t)
)
≥ 1− C+φ

∗(t)e−c−δφ
∗(t). (5.10)
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Proof: We introduce L̂++
j := τ̃+

j [φ∗(t)(1 + δ/2)] and L̂−−j := τ̃−j [φ∗(t)(1 + δ/2)]. Then with a

method similar as for (3.12), we get PWκ
m̃j

(
H(L̂+

j ) > H(L̂−−j )
)

= Q̂j/D̂j , where

Q̂j ≤ (L̂+
j − m̃j) exp[ max

[m̃j ,L̂
+
j ]
Ṽ (j)(s)] ≤ 8κ−1φ∗(t) exp(φ∗(t)),

D̂j ≥ [τ̃−j ((1 + δ/4)φ∗(t))− τ̃−j ((1 + δ/2)φ∗(t))]e(1+δ/8)φ∗(t) ≥ e(1+δ/8)φ∗(t)

with a probability larger than 1− e−c−δφ∗(t), by (2.4) for the first line and by (3.2) and (3.3) for
the second one this together with Lemma 2.3. Hence, with such a probability, PWκ

m̃j
(H(L̂+

j ) <

H(L̂−−j )) ≥ 1− C+φ
∗(t)e−δφ

∗(t)/8.

Moreover, as in (3.13), we can write under PWκ
m̃j

on the event {H(L̂+
j ) < H(L̂−−j )},

H(L̂+
j )
L
= Ãj(L̂

+
j )

∫ L̂+
j

L̂−−j

e−Ṽ
(j)(u)LB[τB(1), Ãj(u)/Ãj(L̂

+
j )]du =: Hj .

Then using the work to get Lemma 4.6, we can prove using the same arguments that with a
probability greater than 1 − C+e

−c−δφ∗(t), PWκ
m̃j

(Hj ≥ e(1+δ)φ∗(t)) ≤ C+e
−c−δφ∗(t) and there-

fore PWκ
m̃j

(
H(L̂+

j ) ≤ e(1+δ)φ∗(t)
)
≥ 1 − C+φ

∗(t)e−c−δφ
∗(t) . We get the same result for H(L̂−j ),

collecting both estimations we obtain (5.10). �

We deduce from (5.10) that

QWκ
m̃j

(
Ĥj > t1

)
≤ QWκ

m̃j

(
Ĥj > H(L̂+

j ) ∨H(L̂−j )
)

+QWκ
m̃j

(
H(L̂+

j ) ∨H(L̂−j ) > t1

)
≤ QWκ

m̃j

(
Ĥj > H(L̂−j ), Yj(0) < m̃j

)
+QWκ

m̃j

(
Ĥj > H(L̂+

j ), Yj(0) ≥ m̃j

)
+C+φ

∗(t)e−c−δφ
∗(t).

Hence, since X and Y are continuous,

QWκ
m̃j

(
Ĥj > t1

)
≤ QWκ

m̃j

(
Yj [H(L̂−j )] ∈ [L̃−j , L̂

−
j ], Ĥj > H(L̂−j )

)
+QWκ

m̃j

(
Yj [H(L̂+

j )] ∈ [L̂+
j , L̃j ], Ĥj > H(L̂+

j )
)

+ C+φ
∗(t)e−c−δφ

∗(t)

≤ µ̃j([L̃
−
j , L̂

−
j ]) + µ̃j([L̂

+
j , L̃j ]) + C+φ

∗(t)e−c−δφ
∗(t), (5.11)

where the last line comes from the independence of X and Yj until Ĥj and the fact that µ̃j is
the invariant probability measure for Yj .

Let s ∈ [0, t∗]. Since X(u) = Yj(u) for every Ĥj ≤ u ≤ Ĥe
j and t1 ≤ t− s ≤ t(1 + ε/2)− s,

QWκ
m̃j

(
X(t− s) /∈ Ij , ∀u ∈ [0, t(1 + ε/2)− s], X(u) ∈ [L̃−j , L̃j ]

)
≤ QWκ

m̃j

(
Ĥj ≤ t1, X(t− s) /∈ Ij , Ĥ

e
j ≥ t(1 + ε/2)− s

)
+QWκ

m̃j
(Ĥj > t1)

≤ µ̃j([L̃
−
j , L̃j ] r Ij) +QWκ

m̃j
(Ĥj > t1), (5.12)

and notice that we can replace QWκ
m̃j

by PWκ
m̃j

in the first line. We now prove a Lemma about µ̃j :

Lemma 5.3. For all j ≤ nt, with a probability greater than 1− C+e
−c−δφ∗(t),

µ̃j([L̃
−
j , L̂

−
j ]) + µj([L̂

+
j , L̃j ]) ≤ C+hte

−κ(1−δ)φ∗(t)/16, (5.13)

µ̃j([L̃
−
j , L̃j ] r Ij) ≤ C+hte

−κ(1−δ)φ∗(t)/16. (5.14)
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Notice that for any ζ, the right hand sides of (5.13) and (5.14) go to 0 as t→ +∞.

Proof: Working on Vt (and then using Lemma 2.3, Fact 2.2 and Remark 2.4) we only have to
prove (5.13) and (5.14) replacing µ̃j by µ defined by

dµ(x) :=
1

Z̃
[e−R

(1)(−x)1
[−τR(1)

(h+t ),0)
(x) + e−R

(2)(x)1
[0,τR

(2)
(ht)]

(x)

+e−W̃
ht
κ (x−τR(2)

(ht))1
[τR

(2)
(ht),τR

(2)
(ht)+τW̃

ht
κ (ht/2)]

(x)]dx,

where Z̃ :=
∫ 0

−τR(1)
(ht)

e−R
(1)(−y)dy +

∫ τR(2)
(h+t )

0 e−R
(2)(y)dy +

∫ τW̃ht
κ (ht/2)

0 e−W̃
ht
κ (y)dy. Also re-

place (L̃−j , L̂
−
j , L̂

−
j , L̃j) by (−τR(1)

(h+
t ),−τR(1)

(φ∗(t)), τR
(2)

(φ∗(t)), τ W̃
ht
κ (ht/2)), and Ij by I :=

[−φ∗(t)/ζ, φ∗(t)/ζ].

We now prove simultaneously both inequalities. Let E5.3
1 := {τR(1)

(κφ∗(t)/8ζ) ≤ φ∗(t)/ζ}
and E5.3

2 := {τR(2)
(κφ∗(t)/8ζ) ≤ φ∗(t)/ζ}. Using formula (3.6) with h = κφ∗(t)/8ζ, P

(
E5.3

1

)
=

P
(
E5.3

2

)
≤ C+e

−κ2φ∗(t)/(16
√

2ζ). Also we have

µ(−τR(1)
(h+
t ),−τR(1)

(φ∗(t))) + µ(τR
(2)

(φ∗(t)), τ W̃
ht
κ (ht/2)) ≤ (J3(1) + J4(1) + J5)/Z̃, (5.15)

where for all x > 0,

J3(x) :=

∫ τR
(1)

(h+t )

τR
(1)

(κφ∗(t)/8x)
e−R

(1)(y)dy, J4(x) :=

∫ τR
(2)

(ht)

τR
(2)

(κφ∗(t)/8x)
e−R

(2)(y)dy,

J5 :=

∫ τW̃
ht
κ (ht/2)

0
e−W̃

ht
κ (y)dy.

Moreover on E5.3
1 ∩ E5.3

2 ,

µ([−τR(1)
(h+
t ), τ W̃

ht
κ (ht/2)] r I) ≤ (J3(ζ) + J4(ζ) + J5)/Z̃. (5.16)

We now estimate J3(1) and J4(1) similarly. We introduce E5.3
3 :=

{
inf{R(1)(s), τR

(1)
(κφ∗(t)/8) ≤

s ≤ τR
(1)

(h+
t )} > (1 − δ)κφ∗(t)/8

}
and E5.3

4 := {τR(1)
(h+
t ) ≤ 8h+

t /κ}. Using (3.7) with h =

κφ∗(t)/8, γ = 1− δ and α = 1 and ω = h+
t /h for t large enough we have P

(
E5.3

3

)
≤ 2e−δκ

2φ∗(t)/8,
and by (3.6), P

(
E5.3

4

)
≤ C+e

−κh+t /2
√

2. On E5.3
3 ∩ E5.3

4 , we have

J3(1) ≤ e−(1−δ)κφ∗(t)/8τR
(1)

(h+
t ) ≤ C+h

+
t e
−(1−δ)κφ∗(t)/8 = o(1),

as log log t = o(φ∗(t)).With the same method, replacing h+
t by ht and R(1) by R(2), we get the

same inequality for J4(1) on an event E5.3
5 satisfying P(E5.3

5 ) ≤ C+e
−c−δφ∗(t).

Let E5.3
6 := {τ W̃

ht
κ (ht/2) ≤ 2ht/κ}. Equation (2.7) gives P (E5.3

6 ) = P (τWκ(−ht/2) ≥ 2ht/κ) ≤
e−κht/16. We have on E5.3

6 ,

J5 ≤ e−ht/2τ W̃
ht
κ (ht/2) ≤ C+hte

−ht/2. (5.17)

Define E5.3
7 := {τR(1)

[αφ∗(t)]− τR(1)
[αφ∗(t)/2] ≥ 1} with α := (1− δ)κ/16. By (3.3) P (E5.3

7 ) ≤
c+e
−c−α2φ∗(t)2/4. On E5.3

7 ,

Z̃ ≥
∫ τR

(1)
[αφ∗(t)]

τR
(1)

[αφ∗(t)/2]
e−R

(1)(y)dy ≥ e−αφ∗(t)(τR(1)
[αφ∗(t)]− τR(1)

[αφ∗(t)/2]) ≥ e−αφ∗(t). (5.18)
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We get on ∩7
i=1E5.3

i for large t since φ∗(t) = o(ht),

(J3(1) + J4(1) + J5)/Z̃ ≤ C+[2h+
t e
−(1−δ)κφ∗(t)/8 + hte

−ht/2]eαφ
∗(t)

≤ C+hte
−αφ∗(t)/2. (5.19)

Since P(∩7
i=1E5.3

i ) ≥ 1 − C+e
−c−δφ∗(t), this together with (5.15) and Lemma 2.3 proves (5.13).

Since ζ < 1, replacing φ∗(t) by φ∗(t)/ζ in this proof also gives (5.19) with J3(ζ) and J4(ζ)
instead of J3(1) and J4(1), which together with (5.16) and Lemma 2.3 proves (5.14). �

Finally collecting (5.7) to (5.14), we obtain (5.6), which ends the proof of this Part 1.

Part 2 : we prove that there exists c5 > 0 such that if ζ ≤ κ/(16(1 + 2δ)),

P
(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
≤ C+nte

−c5φ∗(t)/ζ . (5.20)

First, we prove similarly as in Part 1 that

P
(
X(t) /∈ IÑt , Ñt = Ñt(1+ε),A0,A1,A2,A3

)
(5.21)

≤
nt−1∑
j=1

E

(
sup

t∗≤s≤t
PWκ
m̃j

(
X(t− s) /∈ Ij , ∀u ∈ [0, t(1 + ε/2)− s], X(u) ∈ [L̃−j , L̃j ]

))
+ o(1)

≤
nt−1∑
j=1

E
(

sup
0≤s≤eφ∗(t)(1+2δ)

PWκ
m̃j

(H(m̃j − φ∗(t)/ζ) ∧H(m̃j + φ∗(t)/ζ) ≤ s)
)

+ o(1). (5.22)

Notice that under PWκ
m̃j

on {τ̃+
j [κφ∗(t)/(8ζ)]−m̃j ≤ φ∗(t)/ζ}∩{m̃j− τ̃−j [κφ∗(t)/(8ζ)] ≤ φ∗(t)/ζ},

which has probability greater than 1 − C+e
−κ2φ∗(t)/(16ζ

√
2) by (2.4) and Lemma 2.3, we have

H(m̃j − φ∗(t)/ζ) ≥ H(τ̃−j [κφ∗(t)/(8ζ)]), and so there exists a Brownian motion B̃, independent
of Wκ, such that

H
(
m̃j −

φ∗(t)

ζ

)
≥
∫ m̃j

τ̃−j [κφ∗(t)/(8ζ)]
e−V

(j)(u)LB̃
[
τ B̃
(
Ãj

(
τ̃−j

[κφ∗(t)
8ζ

]))
, Ãj(u)

]
du := H−j , (5.23)

H
(
m̃j +

φ∗(t)

ζ

)
≥
∫ τ̃j [κφ

∗(t)/(8ζ)]

m̃j

e−V
(j)(u)LB̃

[
τ B̃
(
Ãj

(
τ̃j

[κφ∗(t)
8ζ

]))
, Ãj(u)

]
du := H+

j , (5.24)

where for all L̃−j ≤ z ≤ L̃j , Ãj(z) :=
∫ z
m̃j
eṼ

(j)(x)dx. So we get, recalling that t− t∗ = eφ
∗(t)(1+2δ),

(5.21) ≤ nt max
1≤j≤nt−1

[
P
(
H−j ≤ e

φ∗(t)(1+2δ)
)

+ P
(
H+
j ≤ e

φ∗(t)(1+2δ)
)

+ C+e
−κ2φ∗(t)/(16ζ

√
2)
]
.

(5.25)

Lemma 5.4. P
(
H±j ≤ eφ

∗(t)(1+2δ)
)
≤ e−c−φ∗(t)/ζ for large t if ζ ≤ κ/(16(1 + 2δ)).

Proof: First, let ε > 0, define δ∗t := e−(1−3ε)φ∗(t)/(2ζ), x∗j := Ã−1
j (δ∗t τ̃

+
j [κφ∗(t)/(8ζ)]) − m̃j , and

notice that as in (4.13),

H+
j ≥ Ãj

(
τ̃+
j [κφ∗(t)/(8ζ)]

)(∫ x∗j

0
e−Ṽ

(j)(x+m̃j)dx
)

inf
u∈[0,δ∗t ]

LB̃(1, u) =: J6J7J8.

Now, for large t, we have as before by (4.6), J8 ≥ [1− (δ∗t )
1/3]e1 ≥ e1/2 with probability ≥ 1−

(δ∗t )
1/30, with e1 = LB̃(1, 0) ≥ e−6−1κφ∗(t)/(8ζ) with probability ≥ 1− e−6−1κφ∗(t)/(8ζ). Moreover,

by Lemma 2.3, William’s decomposition and (3.5), J6 ≥ exp[(1−ε)κφ∗(t)/(8ζ)] with probability
≥ 1 − 3e−κ

2εφ∗(t)/(16ζ). Finally, as in (4.15), Ãj(τ̃+
j [2−1κφ∗(t)/(8ζ)]) ≤ e2−1(1+ε)κφ∗(t)/(8ζ) with
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probability ≥ 1− C+e
−εκφ∗(t)/(16ζ), which gives x∗j ≥ τ̃+

j [2−1κφ∗(t)/(8ζ)] as in (4.16), and then
J7 ≥ τ̃+

j (6−1κφ∗(t)/(8ζ))e−6−1κφ∗(t)/(8ζ) ≥ e−6−1κφ∗(t)/(8ζ) with probability ≥ 1 − e−φ∗(t)/ζ by

(3.3) and Lemma 2.3. Taking ε = 1/6, this gives P
(
H+
j ≥ eκφ

∗(t)/(16ζ)
)
≥ 1− e−c−φ∗(t)/ζ . This

proves the lemma for H+
j . The proof for H−j is similar. �.

This leads to (5.20), which ends this Part 2.

Part 3: We prove that P
(
Ñt 6= Ñt(1+ε)

)
+P

(
A0

)
+P

(
A1

)
+P

(
A2

)
≤ ε1−κ + o(1). First, with

Lemma 2.3 and then (1.3), P
(
Ñt 6= Ñt(1+ε)

)
= P[H(mNt+1) < t(1 + ε)] + o(1) ≤ ε1−κ + o(1).

Moreover, we have P(A0) = o(1) by (5.3) and Lemma 2.3. The fact that P(A1) = o(1) comes
from Lemma 3.5. Moreover, by Markov property,

PWκ
m̃j

(
H(m̃j+1) < H(L̃−j )

)
= PWκ

m̃j

(
H(L̃j) < H(L̃−j )

)
× PWκ

L̃j

(
H(m̃j+1) < H(L̃−j )

)
≥ PWκ

m̃j

(
H(L̃j) < H(L̃−j )

)
× PWκ

L̃j

(
H(m̃j+1) < H(L̃∗j )

)
.

Both probabilities of the last line have already been estimated, in (3.12) with probability 1 −
o(1/nt) for the first one, and in Lemma 3.5 for the second one (since Q∗i /D

∗
i ≤ 2e−ht/8 with

probability 1− o(1/nt), as proved between (3.23) and (3.25)). This proves that P
(
A2

)
= o(1).

Finally combining (5.6), (5.20) with Part 3, choosing ζ small enough, using Lemma 2.3 back
again to transform the m̃. in m. letting t goes to infinity and ε to zero, we get Theorem 1.3.

5.3. The aging : Proof of Proposition 1.2. We fix α > 1. We recall that the r.v. (mi)i
depend on t. In what follows, we apply Theorem 1.3 first at time t with function φ, and second
at time αt with a function φα defined by log(αt)− φα(αt) = log t− φ(t), so that the r.v. mi are
the same in both cases. Let 0 < ζ < 1. By Theorem 1.3 and since P(A0)→t→+∞ 1, we get

P(|X(αt)−X(t)| ≤ C1φ(t)/ζ,Nt < Nαt)

≤ P(|mNαt −mNt | ≤ C1(1 + 1/ζ)φ(t) + C1φα(αt), 1 ≤ Nt < Nαt ≤ nαt, Nt ≤ nt) + o(1)

≤
nt∑
i=1

nαt∑
j=i+1

P(|mi −mj | ≤ C1(1 + 1/ζ)φ(t) + C1φα(αt)) + o(1),

as t → +∞. So, using Lemma 2.3 and (2.3), we get P(|X(αt)−X(t)| ≤ C1φ(t), Nt < Nαt) =
o(1). Consequently,

P(|X(αt)−X(t)| ≤ C1φ(t)/ζ) = P(|X(αt)−X(t)| ≤ C1φ(t)/ζ,Nt = Nαt) + o(1)

≤ P(Nt = Nαt) + o(1). (5.26)

Moreover, by Theorem 1.3, we have for large t,

P(|X(αt)−X(t)| > C1φ(t)/ζ,Nt = Nαt)

≤ P(|X(αt)−mNt | > C1φ(t)/ζ − C1φ(t), Nt = Nαt) + o(1)

≤ P(|X(αt)−mNαt | > C1φ(t)(1/ζ − 1)) + o(1)

≤ P(|X(αt)−mNαt | > C1φα(αt)) + o(1).

for large t if we choose ζ = 1/3. Hence P(|X(αt)−X(t)| > C2φ(t), Nt = Nαt) = o(1) by Theorem
1.3 applied at time αt and C2 := 3C1. Therefore,

P(Nt = Nαt) = P(|X(αt)−X(t)| ≤ C2φ(t), Nt = Nαt)+o(1) ≤ P(|X(αt)−X(t)| ≤ C2φ(t))+o(1).
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This together with (5.26) gives P(|X(αt)−X(t)| ≤ C2φ(t)) = P(Nt = Nαt)+o(1) = P(H(mNt+1) >
αt) + o(1). This, combined with (1.3), the change of variables u = 1/(1 + x) proves Proposition
1.2, since φ is choosen up to a multiplicative constant. �

Acknowledgment : We would like to thank Dominique Lepingle for pointing out the reference
[30].
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