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Abstract:

Potentialities are investigated for using acousto-optic cells based on a TeO2 crystal to stabilize a 

microwave signal generated by an optoelectronic oscillator (OEO). Bulk acoustic waves at  two 

radio frequencies (RF) near 60 MHz are launched in the two identical cells providing a required 

locking on of a microwave signal. Differences between RF signals are up to 400 kHz to follow 

quality factor of the optic resonator typically in the range of 5x108. Critical alignment of the two 

cells is performed thanks to an extraordinary polarized laser beam launched at very low Bragg angle 

of  light  incidence.  Moreover,  the  system is  operating  for  any resonator  to  be  inserted  into the 

optoelectronic oscillator with a Q factor in the range 2x107 – 1011.
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1. Introduction 

In order to improve stability of an optoelectronic oscillator (OEO) based on an optical resonator 

[1−7], it is necessary to stabilize optical frequency of the input laser at 1.55 µm. Although Pound-

Drever-Hall technique [8,  9] can be used for the purpose, we  investigate  in  this  work  the 

opportunity of using  acousto-optic cells (AOC) based on a paratellurite TeO2 crystal [10−12] to 

stabilize the  microwave signal generated by the OEO. Although  Acousto-optic  modulator  was 

already proposed for frequency stabilization of a diode laser system for atom trapping [13], to our 

knowledge, it is the first time that it was proposed the use of AOC pairs for OEO stabilization. Bulk 

acoustic waves at two radio (RF) frequencies near 60 MHz are launched in the two identical cells 

providing a required locking of the microwave signal. For an optical resonator with quality factor of 

the order 2x107 – 1011, the difference between the two RF signals should be varied from 2 kHz to 10 

MHz as it is explained in section 4. In our case [10, 11], an extraordinary polarized laser beam on 

the cells ultrasound is sent at Bragg angle of light incidence corresponding, at the RF frequency 60 

MHz, to a deflector regime of the cells operation. It helped to perform a critical alignment of the 

two cells. To generate radio frequency (RF) signals, a  Voltage Controlled Oscillator (VCO) is 

locked to a micro-controller following the microwave frequency generated by the OEO.

2. Operation of the optoelectronic oscillator

An OEO is generally an oscillator based on an optical delay line and delivering a microwave signal 

[1]. This delay line is equivalent to an optical resonator with a quality factor Q=2πFT where F is the 

microwave frequency and T the delay induced by the delay line [3].  The loop of the oscillator 

consists of an optic and an electric part as schematically represented in figure 1. Light from the laser 

goes through a modulator driven by a signal from the detected light at its output, hence generating 

the oscillation. This light is then stored in the resonant element or delay line, and detected by a fast 

photodiode. The resulting microwave is then amplified and filtered.  OEO can have optical output 
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with the modulated optical signal and microwave output through a directional coupler. Instead of an 

optical delay line, an ultra-high Q whispering gallery-mode optical resonator allows a much more 

compact setup and an easier temperature stabilization. In order to be introduced into the loop, the 

fabricated resonator has to be coupled to the optical light coming from a fiber. When OEO begins to 

work, some phenomena limit the ability to keep the resonance. In  a  previous  publication,  we 

reported difficulties in stabilizing the generated signal [3].  Thermal effects can certainly cause a 

drift of the the frequency so it is even possible to loose quickly the resonance after few minutes, 

making the measure of the phase noise too difficult. Therefore it is necessary to stabilize the laser 

by locking it on the generated microwave frequency. AOCs are inserted to drive the laser frequency 

in order to improve its stability.  It  has  to  be underlined that  a  Erbium Doped Fiber  Amplifier 

(EDFA) is needed to amplify the optical signal.

3. Main principle of the acousto-optic cell operation

Our goal is to use a radio frequency signal to generate acoustic waves in the crystals. The AOCs are 

to be inserted at output of the laser and in front of the modulator. Concretely, the incident light 

delivered by the laser is diffracted by the phase grating created in the cell by the acousto-optic 

effect. It diffracts and shifts the frequency of light using sound waves at radio-frequency.  We are 

especially interested in one property. The light beam is scattered from the moving periodic planes of 

expansion and compression that change the index of refraction. Consequently, the frequency of the 

diffracted  beam  in  a  diffraction  order  m  will  be  Doppler-shifted  by  an  amount  equal  to  the 

frequency of the sound wave F, which is a radio frequency signal. The drift of the frequency of the 

light wave υ  = c/λ will be:  υ →  υ + mF, where  m = ...−3, −2, −1, 0, 1, 2, 3 ... is the order of 

diffraction. We must take into account that light will not only be shifted in terms of frequency, but 

also deflected at an angle θ depending on the wavelength of light λ relative to the wavelength of the 

sound Λ. The light beam emerges from the cell in form of a diffracted beam. The Bragg regime 
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corresponds to a particular incidence angle where only one diffraction order is produced. In that 

case, the other diffraction orders are annihilated by destructive interference. The refractive indexes 

of the incident and diffracted beams are different in an anisotropic medium because of a change in 

polarization direction associated with the interaction.

4. Installation of acousto-optic cells in the oscillator

4.1. Alignment of the AOCs

As mentioned, AOCs are driven by RF signals. To shift the optic frequencies, we must choose the 

RF signal according to the quality factor of the resonator described in section 2 of this manuscript. 

The wavelength of light is λ = 1.55 µm. The velocity of light in the vacuum is c ≈ 3x108 m/s. So the 

frequency of light is υ = c/λ ≈ 2x1014 Hz. Considering a resonator with its Q ≈ 5.108, we typically 

need to apply two RF signals to the cells in the range of F1 = 60 MHz and F2 = F1 + ΔF, where  ΔF = 

υ/Q = 400 kHz. At this acoustic frequency, we need to apply only 6 Volts to each cell.

One of the difficulty is to select the good mode. If α is the angle of the incident beam arriving of 

the cell, we get:

n0 = sinα/sinα0 = 2.2597                                   (i)

for the TeO2 cell.  ne = 2.4119 at  630 nm [14].  For the wavelengths close to 1.55 µm, we find 

interesting to select the first order extraordinary polarized mode (+1e mode) because the Bragg 

angle versus RF frequency presents a floor at zero incidence angle for RF frequency between 55 

and 65 MHz as shown in figure 2.

The curves reported in this figure present the Bragg angle. They are obtained by measuring the 

deviation of the laser spot after  going through an AOC. It  has been determined for  first order 

ordinary and extraordinary polarized modes –1o, –1e, +1o and +1e by applying RF frequencies 

between 10 and 65 MHz.
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The RF signals can then be shifted between 55 and 65 MHz. This 10 MHz maximal amplitude 

between the two RF signals allows to work with a resonator with Q-factor no worse than 2x107. If 

we can expect ultra high Q-factor in the range 1011 to be achieved and inserted in the OEO, it should 

require a 2 kHz difference between the two RF signals. So  the system is operating for any resonator 

inserted in the OEO while its Q-factor stay in the range 2x107 – 1011.

Another difficulty is alignment of the two cells and their insertion between the laser and the 

modulator. The light is in the orange-red at 630 nm but it is not visible at 1.55 µm. Furthermore, the 

diameter of the beam delivered by the laser must be in the range of 1.0 − 1.5 mm. This value is 

larger than the core diameter 10 µm in the fiber. This fact impacts the dimension of the system: 30 

to 50 mm are necessary in front and after the cells, and a typical distance of 50 mm separates the 

two cells. Even if the +1e mode enables better alignment of the acousto-optic cells, the two cells are 

slightly misaligned and need to be rectified with a rotation stage. The optical frequency at output of 

the first cell after the first cell driven by F1 RF signal is υ + F1 while the diffracted light propagates 

at a narrow angle relatively to the incident beam. Similarly, after the second cell mounted at output 

of the first cell, the frequency of light is υ + F1 − F2 while the diffracted light at output of the two 

cells propagates along a direction only slightly different from the direction of the radiation incident 

on the first cell. So it is easy to understand that the alignment is relatively a critical step. The beam 

is then focused into an optical fiber at the input of the modulator.

4.2. Locking the AOCs

Both  RF signals set to the acousto-optic cells must be driven by a Voltage Controlled Oscillator 

(VCO) as the frequency need to be adjustable. We use a synthesizer to change both frequencies. 

Micro-controller Atmel "ATMega48" is  used to control the  synthesizer and also to measure the 

frequency if we do not use a Phase Lock Loop (PLL). ADF4001 is a  frequency synthesizer 

produced by Analog Devices.  It consists of a low noise digital Phase Frequency Detector (PFD), a 

precision charge pump, a programmable reference divider, and a programmable 13-bit N counter. In 
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addition, the 14-bit reference counter (R Counter), allows selectable reference frequencies at the 

PFD input. A complete PLL can be implemented if the synthesizer is used with an external loop 

filter and VCO or Voltage Controlled Crystal Oscillator (VCXO). To control ADF4001 we use 

Serial Peripheral Interface (SPI). We need to have an access to 24-bit register to set values of the N-

counter and the R-counter.

4.3. Estimation of the benefit on OEO stabilization

The reference frequency is taken from the special clock output of the micro-controller. Stability of 

the frequency of our VCO is limited by the quartz stability. Yet it is enough for driving the acousto-

optic cells. Indeed the best quartz oscillators are very stable [15, 16].  Concretely, when operating 

with a frequency stability of 10-13 at 1 s at 60 MHz, in such a good case, it corresponds to  –130 

dB.rad²/Hz at 1 Hz from the carrier in terms of phase noise. RF reference signal is to be driven by a 

synthesis chain described in reference [17]. Thanks to this synthesis chain, the spectral density of 

phase noise SφS can then be expressed in equation (ii), by considering a time constant τ that depends 

on the characteristics of the synthesis chain:
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where f is the Fourier frequency, τ the integration time, and Sφ0 , Sref , SDDS , SSPD , Sx2 are spectral 

density of phase noise respectively of the OEO, the VCXO, the Direct Digital Synthesis (DDS) 

referenced to a 200MHz signal coming from the VCXO frequency multiplied by 2,  the sampling 

phase detector (SPD), the x2-multiplier.

The microwave signal of the OEO should be the main limiting contribution according to the best 

expected phase noise considered in microwaves for such a device: in case an OEO reaches the noise 

mentioned in reference [7], phase noise is still respectively in the range of -110 and -160 dBc/Hz at 

100 Hz and 10 kHz from the 60 MHz signal. It is much more than the noise introduced by the 

synthesis  chain  which  can  be  respectively  better  than  -135  and  -165  dBc/Hz  at  these  Fourier 
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frequencies.  Thanks to the use of the synthesis chain to drive AOCs, the expected phase noise 

should not be degraded by the electronics.

5. Conclusion and further work

We have  presented  here  a  description  of  advantages  and  disadvantages  of  a  pair  of  AOCs  to 

stabilize a signal delivered by an OEO. Without any stabilization, we see that this signal is not 

sufficiently stable to allow phase noise measurement close to the carrier. The system operates in a 

proper manner only when the OEO is kept locked on the resonance. As result of this study, two RF 

signals in the range of 60 MHz presenting a difference no higher than 400 kHz were demonstrated 

to allow a significant better alignment of the two inserted AOC cells thanks to the +1e mode. We 

would like to underline the fact that the use of AOCs for locking an OEO is particularly interesting 

in case of testing various resonator with different Q factors between 2x107 and 1011. The RF to be 

applied on the cells just need to be adjusted. Electronics is ready and will soon be useful for locking 

the loop and stabilize the OEO with the cells.  A further goal is to measure phase noise of the 

stabilized OEO at  Fourier  frequencies  between 10 Hz and 100 kHz away from the  carrier.  To 

achieve our goal, we plan to use a dedicated optoelectronic phase noise measurement bench [18–

20]. Although the phase noise measurements are not yet available experimentally, we expect the 

noise of the signal to be better matched with respect to the carrier. 
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Legends: 

Fig. 1. Schematic representation of an OEO stabilized by acousto-optic cells.

Fig. 2. Bragg angle (radian) versus RF frequency (MHz) for λ = 1.55 µm for first order ordinary 

and extraordinary polarized modes +1o, –1o, +1e, –1e.
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