Patrice Salzenstein 
email: patrice.salzenstein@femto-st.fr
  
Vitaly B Voloshinov 
  
Arseniy S Trushin 
  
Investigation in acousto-optic laser stabilization for crystal resonator based optoelectronic oscillators

Keywords: Integrated optics, acousto-optics, optoelectronics, oscillators, engineering, micro-optics

Potentialities are investigated for using acousto-optic cells based on a TeO 2 crystal to stabilize a microwave signal generated by an optoelectronic oscillator (OEO). Bulk acoustic waves at two radio frequencies (RF) near 60 MHz are launched in the two identical cells providing a required locking on of a microwave signal. Differences between RF signals are up to 400 kHz to follow quality factor of the optic resonator typically in the range of 5x10 8 . Critical alignment of the two cells is performed thanks to an extraordinary polarized laser beam launched at very low Bragg angle of light incidence. Moreover, the system is operating for any resonator to be inserted into the optoelectronic oscillator with a Q factor in the range 2x10 7 -10 11 .

Introduction

In order to improve stability of an optoelectronic oscillator (OEO) based on an optical resonator [1][START_REF] Ilchenko | High-Q microsphere cavity for laser stabilization and optoelectronic microwave oscillator[END_REF][START_REF] Volyanskiy | Compact Optoelectronic Microwave Oscillators using Ultra-High Q Whispering Gallery Mode Disk-Resonators and Phase Modulation[END_REF][START_REF] Tavernier | Magnesium Fluoride Whispering Gallery Mode Disk-Resonators for Microwave Photonics Applications[END_REF][START_REF] Schliesser | Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators[END_REF][START_REF] Chiasera | Spherical whispering-gallery-mode microresonators[END_REF][START_REF] Maleki | The optoelectronic oscillator[END_REF], it is necessary to stabilize optical frequency of the input laser at 1.55 µm. Although Pound-Drever-Hall technique [START_REF] Drever | Laser phase and frequency stabilization using an optical resonator[END_REF][START_REF] Black | An introduction to Pound-Drever-Hall laser frequency stabilization[END_REF] can be used for the purpose, we investigate in this work the opportunity of using acousto-optic cells (AOC) based on a paratellurite TeO 2 crystal [START_REF] Voloshinov | Acousto-optic cell based on paratellurite crystal with surface excitation of acoustic waves[END_REF][START_REF] Gupta | Optical transmission of single crystal tellurium for application in acousto-optic cells[END_REF][START_REF] Bechtold | Analytic and experimental investigations on influence of harmonic generation on acousto-optical modulation[END_REF] to stabilize the microwave signal generated by the OEO. Although Acousto-optic modulator was already proposed for frequency stabilization of a diode laser system for atom trapping [START_REF] Mcdowall | Acousto-optic modulator based frequency stabilized diode laser system for atom trapping[END_REF], to our knowledge, it is the first time that it was proposed the use of AOC pairs for OEO stabilization. Bulk acoustic waves at two radio (RF) frequencies near 60 MHz are launched in the two identical cells providing a required locking of the microwave signal. For an optical resonator with quality factor of the order 2x10 7 -10 11 , the difference between the two RF signals should be varied from 2 kHz to 10 MHz as it is explained in section 4. In our case [START_REF] Voloshinov | Acousto-optic cell based on paratellurite crystal with surface excitation of acoustic waves[END_REF][START_REF] Gupta | Optical transmission of single crystal tellurium for application in acousto-optic cells[END_REF], an extraordinary polarized laser beam on the cells ultrasound is sent at Bragg angle of light incidence corresponding, at the RF frequency 60 MHz, to a deflector regime of the cells operation. It helped to perform a critical alignment of the two cells. To generate radio frequency (RF) signals, a Voltage Controlled Oscillator (VCO) is locked to a micro-controller following the microwave frequency generated by the OEO.

Operation of the optoelectronic oscillator

An OEO is generally an oscillator based on an optical delay line and delivering a microwave signal [1]. This delay line is equivalent to an optical resonator with a quality factor Q=2πFT where F is the microwave frequency and T the delay induced by the delay line [START_REF] Volyanskiy | Compact Optoelectronic Microwave Oscillators using Ultra-High Q Whispering Gallery Mode Disk-Resonators and Phase Modulation[END_REF]. The loop of the oscillator consists of an optic and an electric part as schematically represented in figure 1. Light from the laser goes through a modulator driven by a signal from the detected light at its output, hence generating the oscillation. This light is then stored in the resonant element or delay line, and detected by a fast photodiode. The resulting microwave is then amplified and filtered. OEO can have optical output with the modulated optical signal and microwave output through a directional coupler. Instead of an optical delay line, an ultra-high Q whispering gallery-mode optical resonator allows a much more compact setup and an easier temperature stabilization. In order to be introduced into the loop, the fabricated resonator has to be coupled to the optical light coming from a fiber. When OEO begins to work, some phenomena limit the ability to keep the resonance. In a previous publication, we reported difficulties in stabilizing the generated signal [START_REF] Volyanskiy | Compact Optoelectronic Microwave Oscillators using Ultra-High Q Whispering Gallery Mode Disk-Resonators and Phase Modulation[END_REF]. Thermal effects can certainly cause a drift of the the frequency so it is even possible to loose quickly the resonance after few minutes, making the measure of the phase noise too difficult. Therefore it is necessary to stabilize the laser by locking it on the generated microwave frequency. AOCs are inserted to drive the laser frequency in order to improve its stability. It has to be underlined that a Erbium Doped Fiber Amplifier (EDFA) is needed to amplify the optical signal.

Main principle of the acousto-optic cell operation

Our goal is to use a radio frequency signal to generate acoustic waves in the crystals. The AOCs are to be inserted at output of the laser and in front of the modulator. Concretely, the incident light delivered by the laser is diffracted by the phase grating created in the cell by the acousto-optic effect. It diffracts and shifts the frequency of light using sound waves at radio-frequency. We are especially interested in one property. The light beam is scattered from the moving periodic planes of expansion and compression that change the index of refraction. Consequently, the frequency of the diffracted beam in a diffraction order m will be Doppler-shifted by an amount equal to the frequency of the sound wave F, which is a radio frequency signal. The drift of the frequency of the light wave υ = c/λ will be: υ → υ + mF, where m = ...-3, -2, -1, 0, 1, 2, 3 ... is the order of diffraction. We must take into account that light will not only be shifted in terms of frequency, but also deflected at an angle θ depending on the wavelength of light λ relative to the wavelength of the sound Λ. The light beam emerges from the cell in form of a diffracted beam. The Bragg regime corresponds to a particular incidence angle where only one diffraction order is produced. In that case, the other diffraction orders are annihilated by destructive interference. The refractive indexes of the incident and diffracted beams are different in an anisotropic medium because of a change in polarization direction associated with the interaction.

Installation of acousto-optic cells in the oscillator

Alignment of the AOCs

As mentioned, AOCs are driven by RF signals. To shift the optic frequencies, we must choose the RF signal according to the quality factor of the resonator described in section 2 of this manuscript.

The wavelength of light is λ = 1.55 µm. The velocity of light in the vacuum is c ≈ 3x10 8 m/s. So the frequency of light is υ = c/λ ≈ 2x10 14 Hz. Considering a resonator with its Q ≈ 5.10 8 , we typically need to apply two RF signals to the cells in the range of F 1 = 60 MHz and F 2 = F 1 + ΔF, where ΔF = υ/Q = 400 kHz. At this acoustic frequency, we need to apply only 6 Volts to each cell.

One of the difficulty is to select the good mode. If α is the angle of the incident beam arriving of the cell, we get:

n 0 = sinα/sinα 0 = 2.2597 (i)
for the TeO 2 cell. n e = 2.4119 at 630 nm [START_REF] Shakolskaya | Acoustic crystals" (Акустические кристаллы)[END_REF]. For the wavelengths close to 1.55 µm, we find interesting to select the first order extraordinary polarized mode (+1e mode) because the Bragg angle versus RF frequency presents a floor at zero incidence angle for RF frequency between 55 and 65 MHz as shown in figure 2.

The curves reported in this figure present the Bragg angle. They are obtained by measuring the deviation of the laser spot after going through an AOC. It has been determined for first order ordinary and extraordinary polarized modes -1o, -1e, +1o and +1e by applying RF frequencies between 10 and 65 MHz.

The RF signals can then be shifted between 55 and 65 MHz. This 10 MHz maximal amplitude between the two RF signals allows to work with a resonator with Q-factor no worse than 2x10 7 . If we can expect ultra high Q-factor in the range 10 11 to be achieved and inserted in the OEO, it should require a 2 kHz difference between the two RF signals. So the system is operating for any resonator inserted in the OEO while its Q-factor stay in the range 2x10 7 -10 11 .

Another difficulty is alignment of the two cells and their insertion between the laser and the modulator. The light is in the orange-red at 630 nm but it is not visible at 1.55 µm. Furthermore, the diameter of the beam delivered by the laser must be in the range of 1.0 -1.5 mm. This value is larger than the core diameter 10 µm in the fiber. This fact impacts the dimension of the system: 30 to 50 mm are necessary in front and after the cells, and a typical distance of 50 mm separates the two cells. Even if the +1e mode enables better alignment of the acousto-optic cells, the two cells are slightly misaligned and need to be rectified with a rotation stage. The optical frequency at output of the first cell after the first cell driven by F 1 RF signal is υ + F 1 while the diffracted light propagates at a narrow angle relatively to the incident beam. Similarly, after the second cell mounted at output of the first cell, the frequency of light is υ + F 1 -F 2 while the diffracted light at output of the two cells propagates along a direction only slightly different from the direction of the radiation incident on the first cell. So it is easy to understand that the alignment is relatively a critical step. The beam is then focused into an optical fiber at the input of the modulator.

Locking the AOCs

Both RF signals set to the acousto-optic cells must be driven by a Voltage Controlled Oscillator (VCO) as the frequency need to be adjustable. We use a synthesizer to change both frequencies.

Micro-controller Atmel "ATMega48" is used to control the synthesizer and also to measure the frequency if we do not use a Phase Lock Loop (PLL). ADF4001 is a frequency synthesizer produced by Analog Devices. It consists of a low noise digital Phase Frequency Detector (PFD), a precision charge pump, a programmable reference divider, and a programmable 13-bit N counter. In addition, the 14-bit reference counter (R Counter), allows selectable reference frequencies at the PFD input. A complete PLL can be implemented if the synthesizer is used with an external loop filter and VCO or Voltage Controlled Crystal Oscillator (VCXO). To control ADF4001 we use Serial Peripheral Interface (SPI). We need to have an access to 24-bit register to set values of the Ncounter and the R-counter.

Estimation of the benefit on OEO stabilization

The reference frequency is taken from the special clock output of the micro-controller. Stability of the frequency of our VCO is limited by the quartz stability. Yet it is enough for driving the acoustooptic cells. Indeed the best quartz oscillators are very stable [START_REF] Kuna | Lowest Flicker-Frequency Floor Measured on BVA Oscillators[END_REF][START_REF] Salzenstein | Significant step in ultra high stability quartz crystal oscillators[END_REF]. Concretely, when operating with a frequency stability of 10 -13 at 1 s at 60 MHz, in such a good case, it corresponds to -130 dB.rad²/Hz at 1 Hz from the carrier in terms of phase noise. RF reference signal is to be driven by a synthesis chain described in reference [START_REF] Lardet-Vieudrin | Design and realisation of a 100 MHz synthesis chain from an X-band reference signal[END_REF]. Thanks to this synthesis chain, the spectral density of phase noise S φS can then be expressed in equation (ii), by considering a time constant τ that depends on the characteristics of the synthesis chain:
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where f is the Fourier frequency, τ the integration time, and S φ0 , S ref , S DDS , S SPD , S x2 are spectral density of phase noise respectively of the OEO, the VCXO, the Direct Digital Synthesis (DDS) referenced to a 200MHz signal coming from the VCXO frequency multiplied by 2, the sampling phase detector (SPD), the x2-multiplier.

The microwave signal of the OEO should be the main limiting contribution according to the best expected phase noise considered in microwaves for such a device: in case an OEO reaches the noise mentioned in reference [START_REF] Maleki | The optoelectronic oscillator[END_REF], phase noise is still respectively in the range of -110 and -160 dBc/Hz at 100 Hz and 10 kHz from the 60 MHz signal. It is much more than the noise introduced by the synthesis chain which can be respectively better than -135 and -165 dBc/Hz at these Fourier frequencies. Thanks to the use of the synthesis chain to drive AOCs, the expected phase noise should not be degraded by the electronics.

Conclusion and further work

We have presented here a description of advantages and disadvantages of a pair of AOCs to stabilize a signal delivered by an OEO. Without any stabilization, we see that this signal is not sufficiently stable to allow phase noise measurement close to the carrier. The system operates in a proper manner only when the OEO is kept locked on the resonance. As result of this study, two RF signals in the range of 60 MHz presenting a difference no higher than 400 kHz were demonstrated to allow a significant better alignment of the two inserted AOC cells thanks to the +1e mode. We would like to underline the fact that the use of AOCs for locking an OEO is particularly interesting in case of testing various resonator with different Q factors between 2x10 7 and 10 11 . The RF to be applied on the cells just need to be adjusted. Electronics is ready and will soon be useful for locking the loop and stabilize the OEO with the cells. A further goal is to measure phase noise of the stabilized OEO at Fourier frequencies between 10 Hz and 100 kHz away from the carrier. To achieve our goal, we plan to use a dedicated optoelectronic phase noise measurement bench [START_REF] Römisch | Performance evaluation of an optoelectronic oscillator[END_REF][START_REF] Salzenstein | Realization of a Phase Noise Measurement Bench Using Cross Correlation and Double Optical Delay Line[END_REF][START_REF] Salzenstein | Estimation of the uncertainty for a phase noise optoelectronic metrology system[END_REF]. Although the phase noise measurements are not yet available experimentally, we expect the noise of the signal to be better matched with respect to the carrier.
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 1 Fig. 1. Schematic representation of an OEO stabilized by acousto-optic cells.

Fig. 2 .

 2 Fig. 2. Bragg angle (radian) versus RF frequency (MHz) for λ = 1.55 µm for first order ordinary
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