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EXISTENCE AND CONVERGENCE OF AN MHD APPROXIMATE

DECONVOLUTION MODEL

Luigi C. Berselli1, Davide Catania2 and Roger Lewandowski3

Résumé. On considère un modèle pour la simulation des tourbillons à grande échelle
pour les équations de la magnétohydrodynamique (MHD). On étudie un modèle alpha
obtenu par la méthode de Stolz et Adams, qui utilisent des opérateurs de déconvolution
à la van Cittert pour l’approximation des équations. On considère des conditions au
bord périodiques et on utilise le filtre de Helmholtz. On montre l’existence et l’unicité
d’une solution faible régulière pour un système avec filtre et déconvolution dans les deux
équations. On montre aussi que la solution converge à la solution des équations filtrées
de la MHD, au sens approprié, lorsque le paramètre de la déconvolution va à l’infini.
On peut étendre ces résultats au problème avec le filtre seulment pour l’équation de la
vitesse.

Abstract. We consider a Large Eddy Simulation (LES) model for the equations of
Magnetohydrodynamics (MHD). We study an α-model that is obtained by adapting to
the MHD the approach by Stolz and Adams with van Cittert approximate deconvolution
operators. We work with periodic boundary conditions and use the Helmholtz filter. We
prove existence and uniqueness of a regular weak solution for a system with filtering and
deconvolution in both equations. We show that when the deconvolution parameter goes
to infinity, then the solution converges — in an appropriate sense — to the solution of
the filtered MHD equations. These results can be extended to the problem with filtering
acting only on the velocity.

Introduction

Let us consider the equations of (double viscous) incompressible Magnetohydrodynamics (MHD),

∂tu+∇ · (u⊗ u)−∇ · (B⊗B) +∇p = ν∆u+ f,

∂tB+∇ · (B⊗ u)−∇ · (u⊗B) = µ∆B,

∇ · u = ∇ ·B = 0,

u(0,x) = u0(x), B(0,x) = B0(x),

(1)

where ν > 0 is the kinematic viscosity, while µ > 0 is the magnetic diffusivity. The field u is the
velocity, the field B is the magnetic field, while the scalar p is the pressure. We assume the three
dimensional setting, and the technical difficulties are at least those known for the 3D Navier–Stokes
equations. Examples of fluids that can be described by the equations (1) are plasmas, liquid metals,
and salt water or electrolytes [8]. In particular, we want to study some turbulence MHD models,
originally developed for the Navier–Stokes equations by Stolz and Adams [1, 17,18].
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In the recent years, the topic has attracted the interest of many researchers and, especially for
the study of existence, uniqueness, regularity, and estimates on the number of degrees of freedom,
we recall [6, 7, 10–13,16].

In the context of Approximate Deconvolution Models for turbulent flows, see the recent overviews
in [14,15]. The issue of the limiting behavior of solutions in terms of the deconvolution parameter
is a very recent topic [2, 5]. As to MHD, the topic seems not explored yet, hence we consider here
equations with the magnetic field.

To briefly introduce the problem, we recall that the main underlying idea of LES [4, 5] is to
compute at least the “mean values” of the flow fields, which are the velocity field u = (u1, u2, u3),
the magnetic field B = (B1, B2, B3) and the scalar pressure field p. This is heuristically motivated
from the fact that some gross characteristics of the flow behave in a more orderly manner. In the
spirit of the work started probably with Reynolds, this corresponds to find a suitable computational
decomposition

u = u+ u′ B = B+B′ and p = p+ p′,

where the primed variables are fluctuations around the over-lined mean fields. In practical appli-
cations, knowledge of the mean flow is enough to extract relevant information on the motion.

In our context, the “mean values” are defined by applying the inverse of a differential operator.
Denoting the mean fields by u, B and p, and by assuming that the averaging operation commutes
with differential operators, one gets the filtered MHD equations

∂tu+∇ · (u⊗ u)−∇ · (B⊗B)− ν∆u+∇p = f,

∂tB+∇ · (B⊗ u)−∇ · (u⊗B) = µ∆B,

∇ · u = ∇ ·B = 0,

u(0,x) = u0(x), B(0,x) = B0(x).

(2)

This raises the question of the interior closure problem, that is the modeling of the tensors

(c⊗ d) with c, d = u or B

in terms of the filtered variables (u,B, p). The model that we study in this paper is the Approximate
Deconvolution Model (ADM), introduced by Adams and Stolz [1, 17]. This model is defined by
approximating the filtered bi-linear terms as follows :

(c⊗ d) ∼ (DNc⊗DNd) .

Here the filtering operators Gi are defined thanks to the Helmholtz filter by G1(u) = u, G2(B) = B,
where in the paper Gi := (I−α2

i∆)−1, i = 1, 2. Let us observe that we can then have two different
filters corresponding to the equation for the velocity and for the magnetic field. There are two
interesting values for the couple (α1, α2) ∈ R

+ × R
+.

(1) α1 = α2 > 0 : in this case the approximate equations conserve Alfvén waves [12].
(2) α1 > 0, α2 = 0, which means no filtering in the equation for B ; this is possible since the

equation for the magnetic field turns out to behave much better than that for the velocity.

For simplicity, we will present here just the first case with double filtering (see [3] for the other
case). In order to handle better the approach with two filters, we will use the notation associated to
the operators Gi. Consequently, the deconvolution operator DN , defined through the van Cittert

algorithm, has the following expression : DNi
:=

∑Ni

n=0(I − Gi)
n. We use this notation since also

the deconvolution order of the two operators can be different.
Therefore, the initial value problem that we consider is :

∂tw+∇ ·G1

(

DN1
w⊗DN1

w
)

−∇ ·G1

(

DN2
b⊗DN2

b
)

+∇q − ν∆w = G1f,

∂tb+∇ ·G2

(

DN1
w⊗DN2

b
)

−∇ ·G2

(

DN2
b⊗DN1

w
)

− µ∆b = 0,

∇ ·w = ∇ · b = 0,

w(0,x) = G1u0(x), b(0,x) = G2B0(x),

α1 > 0, α2 ≥ 0,

(3)



ESAIM: PROCEEDINGS 27

and we will work with periodic boundary conditions. As usual, we observe that the equations (3) are
not the equations (2) satisfied by (u,B), but we are aimed at considering (3) as an approximation
of (2), hence w ≃ G1u and b ≃ G2B. This is mathematically sound since, at least formally,

DNi
→ Ai := I− α2

i∆ in the limit Ni → +∞,

and hence, again formally, (3) will become the filtered MHD equations (2).

1. Main results

Existence and uniqueness issues apart, which are treated (even if without the search for estimates
independent of Ni) for instance in [11,12], for the arbitrary deconvolution order equations (3), what
is challenging is to understand whether this convergence property is true or not. One would like to
show that as the approximation parameters Ni grow, then (as recently proved for the Navier–Stokes
equations in [5])

w → G1u, b → G2B, and q → G1p.

Our main topic is then to study what happens when N1 and N2 go to infinity in (3). We prove that
the sequence of models (3) converges, in some sense, to the averaged MHD equations (2), when the
typical scales of filtration (called α1 > 0, α2 ≥ 0) remain fixed and the boundary conditions are the
periodic ones. Before analyzing such convergence, we need to prove the existence of smooth enough
solutions. To this end, we follow the same approach from [5], which revisits the approach in [9]
(NSE) and now also [12] (MHD). To be more precise, let T3 be the 3D torus and let (wN ,bN , qN ),
with N = (N1, N2),

wN , bN ∈ L2([0, T ]; H2(T3)
3) ∩ L∞([0, T ]; H1(T3)

3),

qN ∈ L2([0, T ]; H1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)),

denote the solution of the ADM model (3). We are able to prove existence in such a class and our
main result is the following one.

Théorème 1.1. From the sequence {(wN ,bN , qN )}N∈N2 , one can extract a diagonal sub-sequence
(still denoted {(wN ,bN , qN )}N∈N2) such that

wN −→ w

bN −→ b







weakly in L2([0, T ]; H2(T3)
3),

weakly∗ in L∞([0, T ]; H1(T3)
3),

strongly in Lp([0, T ]; H1(T3)
3) ∀ 1 ≤ p < ∞,

qN −→ q weakly in L2([0, T ]; H1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)),

when N1, N2 → +∞, and such that the system

∂tw+∇ ·G1(A1w⊗A1w)−∇ ·G1(A2b⊗A2b)− ν∆w+∇q = G1f,

∂tb+∇ ·G2(A2b⊗A1w)−∇ ·G2(A1w⊗A2b) = µ∆b,

∇ ·w = ∇ · b = 0,

w(0,x) = G1u0(x), b(0,x) = G2B0(x)

(4)

holds in the distributional sense, where we recall that Ai = G−1
i = I− α2

i∆.
Moreover, the following energy inequality holds :

1

2

d

dt

(

‖A1w‖2 + ‖A2b‖
2
)

+ ν‖∇A1w‖2 + µ‖∇A2b‖
2 ≤ 〈f , A1w〉. (5)

As a consequence of Theorem 1.1, we deduce that the field (u,B, p) = (A1w, A2b, A1q) is a
dissipative (of Leray–Hopf’s type) solution to the MHD equations (1).

Remarque 1.2. If one rewrites system (2) in terms of the variables w = u and u = Au = Aw,
one obtains exactly the system (4). This is not a LES model, since it is just a change of variables.
The LES modeling comes into the equations with the approximation of the operators Ai by means
of the family {DNi

}Ni∈N.
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2. Brief sketch of the proof

We briefly present the main ideas of the proof ; for further details and extensions, and for a
wider bibliography, see [3].

2.1. Existence and uniqueness

We use the usual Galerkin method working with divergence-free finite dimensional approximate
velocities and magnetic fields. We start by constructing approximate solutions (wm,bm) solving or-
dinary differential equations. Next, we look for bounds on {(wm,bm)}m∈N and {(∂twm, ∂tbm)}m∈N,

uniform with respect to m ∈ N, by using energy-type equalities for (A
1/2
1 D

1/2
N1

(wm), A
1/2
2 D

1/2
N2

(bm))
and the Fourier representation of the involved operators. We get

1

2

d

dt

(

‖A
1

2

1 D
1

2

N1
(wm)‖2 + ‖A

1

2

2 D
1

2

N2
(bm)‖2

)

+ ν‖∇A
1

2

1 D
1

2

N1
(wm)‖2 + µ‖∇A

1

2

2 D
1

2

N2
(bm)‖2

= (A
1

2

1 D
1

2

N1

(

G1f1/m), A
1

2

1 D
1

2

N1
(wm)

)

and some a priori estimates that we organize in the table below (6). In the first column we have
labeled the estimates, while the second column specifies the variable under concern. The third one
explains the bound in term of function spaces. Finally, the fourth column states the order in terms
of α, m and N for each bound. Of course, each bound is of order of magnitude

O
(

‖u0‖L2 + ‖B0‖L2 +
1

ν
‖f‖L2([0,T ];L2)

)

,

and this is the reason why we do not mention it in the table. All bounds except (6-g) are uniform
in N as well, where N ∈ N is the index related to the order of deconvolution of the model.

Label Variable Bound Order

(a) A
1

2

1 D
1

2

N1
(wm), A

1

2

2 D
1

2

N2
(bm) L∞([0, T ]; H0(T3)

3) ∩ L2([0, T ]; H1(T3)
3) O(1)

(b) D
1/2
N1

(wm), D
1/2
N2

(bm) L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3) O(1)

(c) D
1/2
N1

(wm), D
1/2
N2

(bm) L∞([0, T ]; H1(T3)
3) ∩ L2([0, T ]; H2(T3)

3) O(α−1)

(d) wm, bm L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3) O(1)

(e) wm, bm L∞([0, T ]; H1(T3)
3) ∩ L2([0, T ]; H2(T3)

3) O(α−1)

(f) DN1
(wm), DN2

(bm) L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3) O(1)

(g) DN1
(wm), DN2

(bm) L∞([0, T ]; H1(T3)
3) ∩ L2([0, T ]; H2(T3)

3) O(
√
Ni+1
α )

(h) ∂twm, ∂tbm L2([0, T ]; H0(T3)
3) O(α−1).

(6)

In the previous table, α = α1 for wm, α = α2 for bm, while in (h) we can take α := min{α1, α2}
for both wm and bm.

Next, we use Aubin-Lions compactness result on the sequence of Galerkin approximate solutions
to pass to the limit when m → ∞ and N is fixed and to obtain a solution to the model. Finally,
we check the question of initial data and of the uniqueness of the solution.

2.2. Convergence

We now denote by (wN ,bN , qN ), for a given N ∈ N , the unique “regular weak” solution to
Problem 3, where N = N(N1, N2) → +∞ as N1, N2 → +∞. We need to prove that the sequence
{(wN ,bN , qN )}N∈N has at least a sub-sequence which converges to some (w,b, q) that is a solution
to the averaged MHD equations (4).

First, we look for additional estimates, uniform in N , to get compactness properties about the
sequences {DN1

(wN ), DN2
(bN )}N∈N and {wN ,bN}N∈N ; see Table 7, where α = min{α1, α2}.

The main challenge in this process is to pass to the limit in the nonlinear terms.
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Label Variable Bound Order

(a) wN , bN L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3) O(1)

(b) wN , bN L∞([0, T ]; H1(T3)
3) ∩ L2([0, T ]; H2(T3)

3) O(α−1)

(c) DN1
(wN ), DN2

(bN ) L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3) O(1)

(d) ∂twN , ∂tbN L2([0, T ]× T3)
3 O(α−1)

(e) qN L2([0, T ]; H1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)) O(α−1)

(f) ∂tDN1
(wN ), ∂tDN2

(bN ) L4/3([0, T ]; H−1(T3)
3) O(1)

(7)

We can now pass to the limit. From the above estimates and classical rules of functional analysis,
we can infer that there exist

w,b ∈ L∞([0, T ]; H1(T3)
3) ∩ L2([0, T ]; H2(T3)

3),

z1, z2 ∈ L∞([0, T ]; H0(T3)
3) ∩ L2([0, T ]; H1(T3)

3),

q ∈ L2([0, T ]; H1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)),

such that, up to sub-sequences,

wN −→ w

bN −→ b







weakly in L2([0, T ]; H2(T3)
3),

weakly∗ in L∞([0, T ]; H1(T3)
3),

strongly in Lp([0, T ]; H1(T3)
3) ∀ 1 ≤ p < ∞,

∂twN −→ ∂tw
∂tbN −→ ∂tb

weakly in L2([0, T ]× T3)
3,

DN1
(wN ) −→ z1

DN2
(bN ) −→ z2







weakly in L2([0, T ]; H1(T3)
3),

weakly∗ in L∞([0, T ]; H0(T3)
3),

strongly in Lp([0, T ]× T3)
3 ∀ 1 ≤ p < 10/3,

∂tDN1
(wN ) −→ ∂tz1

∂tDN2
(bN ) −→ ∂tz2

weakly in L4/3([0, T ]; H−1(T3)
3),

qN −→ q weakly in L2([0, T ]; H1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)).

(8)

We notice that

DN1
wN ⊗DN1

wN −→ z1 ⊗ z1 strongly in Lp([0, T ]× T3)
9, ∀ 1 ≤ p < 5/3,

DN2
bN ⊗DN2

bN −→ z2 ⊗ z2 strongly in Lp([0, T ]× T3)
9, ∀ 1 ≤ p < 5/3,

DN1
wN ⊗DN2

bN −→ z1 ⊗ z2 strongly in Lp([0, T ]× T3)
9, ∀ 1 ≤ p < 5/3,

(9)

while all other terms in the equation pass easily to the limit as well. Our proof will be complete as
soon as we will have checked that z1 = A1w and z2 = A2b.

We prove just the first one being the other completely similar. Let us consider a vector field
v ∈ L2([0, T ]; H2(T3)

3) ; we have (DN1
(wN ),v) = (wN , DN1

(v)). We claim that DN1
(v) → A1v
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strongly in L2([0, T ]× T3)
3. If such a convergence result holds, we have

(

DN1
(wN ),v

) (

wN , DN1
(v)

)





y





y

(z1,v) (w, A1v)
∥

∥

∥

∥

∥

∥

(z1,v) (A1w,v)

yielding z1 = A1w. The convergence of DN1
to A1 follows by a direct calculation with Fourier

series expansion.
To conclude, we prove that the solution (w,b) satisfies an energy inequality. Observe that, from

the previous estimates, we obtain (as a consequence of the lower bound on the operator DN ) that

wN ,bN ∈ L2([0, T ]; H2(T3)
3) uniformly in N

wN ,bN ∈ L∞([0, T ]; H2(T3)
3) NON uniformly in N ;

hence, obtaining an estimate for w,b in L∞(0, T ; H2(T3)
3) is not trivial at all since it does not

derive directly from the various estimates collected in the tables.

Proposition 2.1. The solution (w,b, q) satisfies the energy inequality

1

2

d

dt
(‖A1w‖2 + ‖A2b‖

2) + ν‖∇A1w‖2 + µ‖∇A2b‖
2 ≤ (f , A1w),

in the sense of distributions. This implies that (w,b) is the average of a weak (in the sense of
Leray–Hopf) or dissipative solution (u,B) of the MHD equations (1). In fact, the energy inequality
can also be read as

1

2

d

dt
(‖u‖2 + ‖B‖2) + ν‖∇A1u‖

2 + µ‖∇A2b‖
2 ≤ (f ,u).

If we assume less regularity on the external force, as for instance f ∈ L2([0, T ]; H−1(T3)
3), the proof

remains the same and we obtain the corresponding inequality

1

2

d

dt
(‖A1w‖2 + ‖A2b‖

2) + ν‖∇A1w‖2 + µ‖∇A2b‖
2 ≤ 〈f , A1w〉.
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