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Optimization-based Motion Retargeting Integrating Spatial and

Dynamic Constraints

Thomas Moulard1, Eiichi Yoshida1 and Shin’ichiro Nakaoka2

Abstract— In this paper, we present an optimization-based
retargeting method for precise reproduction of captured human
motions by a humanoid robot. We take into account two impor-
tant aspects of retargeting simultaneously: spatial relationship
and robot dynamics model. The former takes care of the spatial
relationship between the body parts based on “interaction
mesh” to follow the human motion in a natural manner, whereas
the latter adapts the resulting motion in such a way that the
dynamic constraints such as torque limit or dynamic balance
are being satisfied. We have integrated the interaction mesh and
the dynamic constraints in a unified optimization framework,
which is advantageous for generation of natural motions by a
humanoid robot compared to previous work that performs those
processes separately. We have validated the basic effectiveness
of the proposed method with a sequence of postures converted
from captured human data to a humanoid robot.

I. INTRODUCTION

One of the advantages of human-size humanoid robots

is its ability to generate whole-body motions maintaining

similar dynamics to humans. This ability allows a humanoid

robot to serve as an entertainer like a dancer of an actor

[1], or also to use various machines and devices designed

for humans [2]. As an extension of the latter use, a new

application has recently been studied: a humanoid robot as an

evaluator of human assistive devices [3], [4]. If a humanoid

reproduces human motions faithfully, it can be used to test

the devices instead of human subjects. This brings several

benefits such as no need for ethical process, repeated test

with exactly the same motions under the same conditions,

and qualitative evaluation through sensory measurement like

torque and force. It has been demonstrated that the human-

size humanoid HRP-4C [5] can evaluate the effect of load

reduction quantitatively by estimating motor torque [4],

taking an example of a supportive wear called “Smart Suit

Lite” [6] designed to reduce load at the lower back with

embedded elastic bands.

The important issue in those applications is how to gener-

ate natural motions of a humanoid robot. There have been a

number of studies on “motion retargeting” techniques in or-

der to generate humanoid motions based on those of a human

measured by a motion capture system. Retargeting captured

motion to humanoids has been actively studied during the last

decade, thanks to the progress of their dynamic capability.

The work of Pollard [7] is one of the pioneering studies that
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enable reproduction of human motions by a humanoid, in

this case the upper body of Sarcos humanoid robot, by taking

into account various constraints. Nakaoka et al. developed a

technique to transfer Japanese traditional dancing motions to

a humanoid by introducing a notion of leg task model [8],

[9]. Miura et al. [10] devised a walking pattern generator

that allows the humanoid robot HRP-4C to walk in a manner

extremely close to humans, including stretched knees, swing-

leg trajectory and single support phase on the toe. Other

imitation methods have been proposed based on a dynamic

controller [11], [12], motion recognition and primitives [13]

and extraction of upper-body motion from markerless motion

input [14], [15].

On the other hand, motion retargeting has been investi-

gated intensively in computer graphics domain, typically to

generate motions for new characters based on motion capture

data using space-time constraints solver [16]. Recently, Ho

et al. proposed a new retargeting method called “interaction

mesh” that preserves the spatial relationship between closely

interacting body parts and objects in the environments [17].

Nakaoka and Komura extended this method for retargeting

to a humanoid robot by taking advantage of its capacity to

adapt motions to a character with highly different physical

properties [18]. Usage of interaction mesh brings natural

following of original human motion and self-collision avoid-

ance. Although this method includes balance consideration

by shifting the waist, this approach remains specific instead

of general whole-body motion optimization and does not deal

with dynamic constraints such as torque limits. In addition,

those constraints are treated separately after generating re-

targeted motion to adapt to the humanoid.

Another related domain is the optimization technique that

is more and more employed to generate robot trajectories

minimizing certain cost function under mechanical or dy-

namic constraints. Miossec et al. applied nonlinear optimiza-

tion to dynamic whole-body motion like a kicking motion

of a human-size humanoid [19]. Recently the optimization

is utilized for generation of multi-contact dynamic motion

through modeling of dynamic constraints using Taylor ex-

pansion [20]. For dynamic trajectory optimization for digital

human, an efficient algorithm has been proposed [21], [22].

Suleiman et al. proposed another trajectory optimization

technique based on Lie algebra that allows efficient com-

putation through analytic integration of dynamics [23] and

applied it to human motion imitation [24]. The latter research

aims at optimizing the humanoid trajectory to be as close as

human motion, but self-collision avoidance is incorporated as

a post-processing to the optimized motion like previous work
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Fig. 1. The two step retargeting process. The final inverse kinematics step is only here to convert the final motion to joints trajectory.

[18]. This is disadvantageous because separate application of

collision avoidance may lead to unnatural motions.

Methods in previous research are, therefore, still lacking

the capability to optimize humanoid motions by taking into

account the associated problems for retargeting in a unified

manner. The main contribution of the paper is the optimiza-

tion process integrating retargeting, dynamics constraints

and self-collision at the same time, in order to create the

humanoid motion as close to human motions as possible. In

this paper, we address this retargeting by formulating it as

a nonlinear optimization problem under spatial and dynamic

constraints. First, the captured motion is pre-processed to

provide better initial guess for the optimization. Then the

full optimization problem is solved considering the spatial

relationship and dynamic robotic constraints simultaneously.

The spatial relationship between body parts of captured mo-

tion is reserved by using interaction mesh as introduced by

[17], which achieves self-collision avoidance in consequence.

This paper is organized as follows. Section II describes

the overall method and in particular how the retargeting is

performed. Section III describes the details of each step of

the optimization-based retargeting method. Section IV in-

troduces RobOptim, an optimization framework for robotics

used to implement the proposed method. Section V presents

the results of retargeting with validation of dynamic simula-

tions, before concluding the paper.

II. METHOD OVERVIEW

The proposed retargeting framework consists of three steps

as shown in Fig. 1 and takes a time series of captured marker

positions to generate a retargeted robot joint trajectory. The

main part of the retargeting is the second step, which is the

main optimization process whereas the first and last steps

are additional data processing for efficient optimization and

motion conversion respectively.

The first pre-processing takes care of initial guess for

the optimization. It takes care of retargeting problem only

to fit the marker positions to the target robot structure, to

obtain the initial state that helps the optimization process

converge quickly. This geometric problem can be represented

as a linear problem using the interaction mesh [17] with a

quadratic cost rendering its resolution extremely efficient.

The main optimization process is initialized using the

result of the first step and then takes the full problem

into consideration. This optimization incorporates robotic

constraints such as motion balance and torque constraints

together with the spatial relationship modeled also by in-

teraction mesh. The previous work [18] adopts a two-

step approach for this optimization: first the markers were

optimized before adapting the motion by optimizing joint

angles for the robot in order to satisfy robotic constraints. In

contrast, in the proposed method the optimization variables

are the marker position throughout the retargeting process

until it is converted to joint angles at the last step. This is

advantageous to make the constraint matrix sparse [17] and

also to maintain a global optimization framework unifying

all the constraints simultaneously. Inverse kinematics compu-

tation of the target robot is employed in order to estimate the

nearest robot configuration from the marker positions at each

time step. This allows evaluating robotic constraints such

as dynamic balance or joint torque limit by using deduced

joint velocity and acceleration. The robotic constraints being

non-linear, this main optimization problem is much more

computationally intensive.

The third post-processing step is conversion of the resul-

tant marker positions into the robot joint configurations that

is done in a straightforward manner using inverse kinematics.

Fig. 2. Examples of interaction mesh representing the spatial relationship
between body parts, applied to a digital character and a humanoid [18].



III. OPTIMIZATION-BASED RETARGETING METHOD

As described in the previous section, our retargeting

method has two main components: motion retargeting and

robotic motion generation that are integrated in the optimiza-

tion. This section will detail their computational aspects.

A. Motion retargeting

The retargeting algorithm employed in the first two steps

in the framework of Fig. 1 relies on the notion of “interaction

mesh” to ensure that spatial relationship between bodies is

preserved. We will briefly describe how it is incorporated in

the optimization based on previous work by Ho et al [17].

By applying Delaunay Tetrahedralization [25] on the

marker set, one can generate a mesh which is parameterized

by the marker positions Vi = (pi
1 · · ·p

i
m) where 1 ≤ i ≤ n.

n denotes here the number of frame composing the motion

and m the number of markers in each frame. pi
1 represents

the position of the first marker in the i-th frame.

Given a particular interaction mesh, one can compute the

“Laplacian Coordinate” of one marker as follows:

L(pij) = p
j
i −

∑

l∈Nj

w
j
l p

i
l (1)

In Eq. (1), Nj is the one-hop neighborhood of the marker

j in the interaction mesh and w
j
l is the weight of the marker l

when computing the Laplacian Coordinate of marker j. This

weight is inversely proportional to the distance between j

and l.

Considering these two notions, it is possible to introduce

the “Laplacian Deformation Energy” associated to a marker

set which serve as a cost function in this problem:

EL(V
′
i) =

∑

j

||L(pi
j)− L(pi

j
′)||2 (2)

The Laplacian Deformation Energy is the square of the

norm of the difference between the Laplacian Coordinates

of the original marker set and the updated marker set V′

i =
(pi

1 · · ·p
i
m).

In practice, this cost function penalizes motion of highly-

connected markers whereas isolated ones will move for a

lower cost.

A second cost function is added to the first one to smooth

the motion. To achieve this goal, the marker set acceleration

energy is considered:

EA(V
′

i−1,V
′

i,V
′

i+1) =
1

2
||V′

i−1 − 2V′

i +V′

i+1||
2 (3)

V′

i−1, V′

i, V
′

i+1 being the new marker set position for the

frame i− 1, i and i+ 1. Acceleration energy is always null

for first and last frame.

The final cost function C is by consequence expressed by:

C(V′

i−1,V
′

i,V
′

i+1) = EL(V
′

i) + αEA(V
′

i−1,V
′

i,V
′

i+1)
(4)

where α is the weighting coefficient. Additionally, a link

length constraint is defined. This constraint aims at retar-

geting the motion so that it fits the robot morphology. It is

defined as follows:

||p1
e − p2

e||
2 = le (5)

Whenever there is a need for some part of the robot

body to stay fixed, an optional positional constraint is also

provided through an equality constraint:

V′

i = Pi (6)

With 0 ≤ i ≤ m.

The quadratic problem is then solved to generate a new

set of marker positions. The goal of the first pre-processing

step in Fig. 1 is to obtain the marker positions that fit the

robot structure sufficiently well. Of course, the resulting

motion may still not be feasible due to physical constraints.

The output marker positions from the pre-processing is

used as the initial guess for the main optimization process

considering robotic constraints and retargeting at the same

time, as explained in the next subsection.

B. Robotics motion generation

We here define a non-linear optimization problem using

the motion derived with the pre-processing. The same op-

timization variables, namely the set of marker positions,

are used also with the cost function and the constraints

introduced in the previous section. By keeping the previous

constraints, one can make sure that the good properties

ensured by the previous pre-processing are kept during this

optimization step. Moreover, the constraint matrix can be

kept sparse by using the marker positions as optimization

variables [17], which makes the optimization computation

efficient, whereas the joint Jacobian matrix for the robot is

dense.

To ensure that the motion is feasible by the robot, two

additional constraints are added in the main optimization

process:

• Dynamic balance constraint.

• Joint angle, velocity and torque constraints.

We here need robot configuration q from the marker

positions to calculate the following constraints with dynamic

property like mass and moment of inertia of each link. Since

the output marker positions from the pre-processing are close

enough to the feasible robot configuration, we can benefit

from the joint angle fitting using damped least square method

introduced in [18]. Figure 3 shows the kinematic structure

of the humanoid HRP-4C [5] the proposed retargeting is

applied to. Once the robot configurations are obtained, the

following constraints are evaluated on the numerical basis,

by using joint velocity and acceleration computed with finite

difference.

The first constraint constrains the ZMP (zero moment

point) position so that it stays into the robot support polygon:

xZMP = xG −
σ̇y + m zG ẍG

m (z̈G+g)

yZMP = yG + σ̇x − m zG ÿG

m (z̈G+g)

(7)
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Fig. 3. Humanoid robot HRP-4C and its structure.

where (xZMP , yZMP ) is the ZMP position on the ground

with the coordinate system shown in Fig. 3, σ̇ the variation

of the kinetic momentum around the center of mass, and

(xG, yG, zG) the center of mass position. The gravitational

constant is denoted by g. Here we assume that the robot

is moving on a flat floor. The ZMP acts as a criterion that

allows deciding whether a motion can be executed stably

or not. As long as it stays inside the convex hull of the

robot contact points with the floor, the motion is dynamically

stable. Knowing which foot of the robot is in contact with

the floor and the foot geometry, it is possible to insert this

as an inequality constraint

(xZMP , yZMP ) ⊂ S(xrfoot, ylfoot) (8)

to make sure that the ZMP is staying inside the current sup-

port polygon, denoted by S(xrfoot, ylfoot) that is determined

by the right and left positions (xrfoot, ylfoot).
The second robotic constraint we take into account in this

problem is the joint limitations. Given (q, q̇, q̈), the set of

torques τ = (τ1, · · · , τo) applied to each robot joint can be

computed using the classical equation of motion:

M(q)q̈+C(q, q̇) +G(q) = τ (9)

where M(q) is the system mass matrix, C(q, q̇) is the vector

of Coriolis and centrifugal forces and G(q) the vector of

gravitational forces. Other robotic constraints for limits of

joint rotation, velocity and torque are expressed as:

qmin ≤ q ≤ qmax

dqmin ≤ q̇ ≤ dqmax

τmin ≤ τ ≤ τmax

(10)

As mentioned earlier, the output of the main optimization

process is the set of marker positions. As we have already

applied the robotic constraints, the resultant motion can be

easily converted to the joint trajectory to be executed by the

robot through inverse kinematics.

IV. IMPLEMENTATION OF THE OPTIMIZATION PROBLEM

USING ROBOPTIM

RobOptim is a general framework to assist the develop-

ment and resolution of optimization problems applied to

robotics. The optimization is more and more applied to

robotics field to solve complex problems of motion planning

and generation with many constraints, as mentioned earlier.

Although number of state-of-the-art optimization solver tools

and libraries are now available, they are not necessarily ready

for immediate use for robotics.

RobOptim has been developed to allow roboticists to

prototype their optimization applications easily by providing

necessary interfaces specific to robotic problems in the form

of C++ libraries. It has a three-layer architecture: the core,

the solver and the application layers. The core layer provides

a way to define mathematical function and their associated

derivatives, while the solver layer encapsulates different

state-of-the-art solvers so that they can solve problems de-

fined using the representation proposed by the core layer. The

application layer contains dedicated mathematical functions

which can be embedded into different optimization problems.

An overview of the framework architecture is shown in

Fig. (4).

The core layer offers some useful higher-level tools that

help users define the functions such as costs and constraints

introduced in the previous section. By implementing those

functions inherited from the basic mathematical functions

of the core layer, RobOptim ensures the compatibility with

a number of state-of-the-art solvers whose plug-ins are

provided in the solver layer. Those tools include function

definition itself and also differentiation of the functions

that can be computed analytically, or numerically when no

analytical gradient is provided by the user. Even if the

gradient is provided, numerical differentiation can be used

to ensure the computation correctness. The user can benefit

from the transparency of those higher level tools to prototype

their problem without thinking about individual solvers used

RobOptim Core layer
- generic interfaces
- mathematical tools

CFSQP
(proprietary)

IPOPT
(open source)

CMinPack
(open source)

RobOptim Trajectory
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(not yet publicly available)
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Fig. 4. RobOptim architecture.



for optimization.

Although not really utilized in our problem of retargeting,

the application layer is convenient especially for planning

purpose. One of the practical tools is the trajectory toolbox,

which allows representation of robot motion using B-spline.

Since these are associated with mathematical functions of

the core layer and others like of minimal-time optimization.

RobOptim is distributed as an open-source library

(LGPL-3) through its website: http://www.roboptim.net/

V. RETARGETING RESULTS

The proposed algorithm has been applied to a whole

body motion taken from CMU motion capture database

[26]. We have integrated a RobOptim plug-in for nonlinear

optimization tools of NAG optimization library [27] to solve

the problem while using sparse matrices computation. This

is particularly useful for trajectory optimization where large

matrices are involved as some constraints are only consider-

ing one frame and thus associated Jacobian are containing a

large proportion of null values.

Fig. 5. The marker set before (purple markers) and after (white markers)
the initial preprocessing phase.

(a) (b)

Fig. 6. Optimized posture for HRP-4C before (a) and after (b) the
optimization.

Fig. 7. ZMP values during the motion sequence of 10 frames.

In order to validate its basic capacity of dynamic constraint

consideration, we have applied the proposed method to a

sequence of several human postures to be converted into

stable humanoid configurations. In this validation we use

the Laplacian Deformation Energy EL in Eq. (2) only with

α = 0 in Eq. (4), with dynamic balance constraint with

ZMP of Eq. (7). The support polygon S(xrfoot, ylfoot) for

the stability is the square of 15 cm around the center of feet.

The result after the optimization process is illustrated by

Fig. 5 (pre-processing) and Fig. 6 (final result). In Fig. 5

we can observe that the markers positions are displaces

to fit to the robot whose size is much smaller than the

digital character. In the optimized posture in Fig. 6(b), the

configuration is modified so that robotic constraints such

as joint limits or link length can be satisfied. We also

verified the dynamic balance during the motion sequence

by computing the resultant ZMP as shown in Fig. 7. As

can be seen, the ZMP stays inside the support polygon of

the area ±7.5 cm along each x and y axis as specified in the

constraints. Although the profile in Fig. 7 is a bit shaky as we

have not yet integrated Acceleration Energy EA in Eq. (3),

the balance constraint itself is satisfied. We therefore believe

that more smooth trajectory will be obtained as the optimized

trajectory by taking account Acceleration Energy.

VI. CONCLUSION

This paper presented a unified approach combining re-

targeting and robotics constraints into one single nonlinear

optimization problem. For efficient computation, a three-step

approach is adopted including pre- and post-processing of

the motion. After obtaining pre-processed marker positions

approximately fitted to the robot structure, the main opti-

mization process generates also marker motions that respect

the original spatial relationship of body parts as much as

possible based on interaction mesh, by satisfying the robotic

dynamic constraints throughout the motion. The optimization

output motion can be converted to the robot trajectory in a

straightforward manner by the last step. The fundamental



effectiveness of the proposed method has been validated

by converting a sequence of human postures into humanoid

configurations by minimizing the cost of spatial relationship

with robotic constraints.

Future work includes extensions to take into account dif-

ferent cost functions such as human-likeliness, or additional

constraints such as collision avoidance or others depending

on the task of the humanoid. Application to walking motion

retargeting will also be addressed in future work.
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