
HAL Id: hal-00908558
https://hal.science/hal-00908558v1

Submitted on 24 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an MDE Methodology to Develop Multi-Agents
Systems Including Mobile Agents
Tahar Gherbi, Isabelle Borne, Djamel Meslati

To cite this version:
Tahar Gherbi, Isabelle Borne, Djamel Meslati. Towards an MDE Methodology to Develop Multi-
Agents Systems Including Mobile Agents. 8th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE 2013), Jul 2013, Angers, France. pp.45-55. �hal-00908558�

https://hal.science/hal-00908558v1
https://hal.archives-ouvertes.fr

Towards an MDE Methodology to Develop Multi-Agents Systems
Including Mobile Agents

Tahar GHERBI1, Isabelle BORNE1 and Djamel MESLATI2
1IRISA Laboratory, South Brittany University, Vannes, France

2Department of Computing, University of Annaba, Annaba, Algeria
{tahar.gherbi, isabelle.borne}@univ-ubs.fr, meslati_djamel@yahoo.com

Keywords: Mobile Agent, MAS, MaSE, m-GAIA, AALAADIN, PIM, MDE.

Abstract: There is a need for agent oriented software engineering methodologies that support the conceptual modeling
of mobile-agents systems. For this reason, we have presented in a previous work, our meta-model to design
multi-agents systems including mobile agents and we have discussed it versus some formalisms extending
UML for mobile-agents modeling. The proposed meta-model serves as a platform independent meta-model
in our model-driven engineering approach under elaboration as a methodology for the development of
multi-agents systems including mobile-agents. This paper summarizes the different approaches for mobile-
agent modeling and situates our meta-model particularly versus three works supporting mobility by
extending a multi-agents systems methodology (MaSE, GAIA, and AALAADIN). It aims to justify the
choices that have guided our meta-model construction.

1 INTRODUCTION

Mobile agents are a promising paradigm for the
design and implementation of distributed
applications. They have known considerable
enthusiasm in the research community, although
they have not been translated into a significant
number of real-world applications.

Research on mobile agents has been underway
for over a decade, particularly in the areas of
network management and electronic commerce.
Then with, among others, the rapid development of
wireless networks, the spread of mobile devices
using networks, the development of new networks
(such as the Wireless Sensor Networks) and the
innovation in the field of Cloud Computing, there
was an increase in the use of mobile agents.
Applications based on mobile agents are being
developed in industry, government and academia;
and experts predict that mobile agents will be used
in many Internet applications in the coming years
(Rajguru et al., 2012).

A mobile agent is a software agent that can,
during its execution, move from one site to another,
to access data and/or resources. It moves with its
own code and data, but possibly with its execution
state also. The agent decides independently about its

movements. Therefore, mobility is controlled by the
application itself and not by the runtime system as is
the case of processes migration in operating systems.

There are no specific applications for mobile
agents (Milojicic, 1999). In fact, mobile agents are
likely to complete or replace the traditional
paradigms of client-server architecture, such as
message passing, remote procedure call, remote
object invocation and remote evaluation. Thus, any
application made with mobile agents can be made
with any traditional paradigm. The use of mobile
agents is, however, advantageous in heterogeneous
and dynamic environments that are the trend of
modern Internet applications (Cao et al., 2012).
Indeed, mobility is of great interest for applications
whose performance varies depending on the
availability and quality of services and resources, as
well as the volume of data moved over network links
subject to long delays or disconnections; running on
ad hoc networks, or including mobile devices.

However, mobility is not an interaction as an
agent does not need to be mobile to communicate.
This motivated the inclusion of the mobility model
in the design phase (Sutandiyo et al., 2004). Indeed,
the development of mobile-agents applications was
generally done without considering the mobility
aspect in the analysis and design phases. It was often
treated in the implementation phase (Belloni et al.,

2004). Including this aspect in the analysis and
design phases allow for a better design of this kind
of applications: it gives to the designer the ability to
use mobility to fulfil the goals of his mobile-agents
application (Self et al., 2003).

For this reason, we have presented in (Gherbi et
al., 2012), our meta-model for the design of MAS
(Multi-Agents Systems) including mobile agents and
we have discussed it versus some formalisms
extending UML (Unified Modeling Language) for
mobile agents modeling. In this paper we
summarize, in section 2, the different approaches for
mobile-agents modeling. In section 3, we situate our
meta-model versus particularly three works
extending MAS methodologies to support mobility:
(Self et al., 2003) extending MaSE (Multiagent
Systems Engineering), (Sutandiyo et al., 2004)
extending GAIA and (Mansour et al., 2007a)
extending the AGR (Agent, Group and Role) meta-
model of AALAADIN, which is a part of our meta-
model. The goal is to justify the choices that have
guided our meta-model construction. Section 4
presents a case study and section 5 concludes the
paper and evokes future work.

2 RELATED WORKS

According to (Loukil et al., 2006), mobile-agents
applications modeling can be done by three
approaches: design patterns approaches, as in
(Aridor et al., 1998; Lima et al., 2004), formal
approaches, as in (Picco et al., 1999), and semi
formal approaches, in which we distinguish two
classes (Bahri, 2010) : formalisms extending UML
notations, as in (Belloni et al., 2004; Da Silva et al.,
2005; Kusek et al., 2005; Loukil et al., 2006)1, and
approaches extending a MAS methodology, as in
(Self et al., 2003; Sutandiyo et al., 2004; Mansour et
al., 2007a).

Weary of inventing and re-inventing solutions to
recurrent problems, agent design patterns can help
by capturing solutions to common problems in agent
design (Aridor et al., 1998). However, design
patterns have fields of action which are more or less
restricted and need to be known. In addition, most of
the mobile-agent design patterns presented in
literature are difficult to apply in practice due to the
lack of a suitable approach to identify, document and
apply them (Lima et al., 2004). Formal approaches
are good in formalizing simple systems, but for large

1 Other formalisms were discussed in (Gherbi et al., 2012).

systems a visual notation is needed to easily grasp
the specifications and to specify the system from
different points of views. Therefore, we were
interested in semi-formal approaches.

Most of the works on semi-formal approaches
propose formalisms extending UML. Some address
only one aspect of mobility, such as the mobility
path, as in (Kusek et al., 2005); some fix the set of
sites where the agent can move, as in (Belloni et al.,
2004); some include details from MASIF (Mobile
Agent System Interoperability Facility), as in
(Belloni et al., 2004), or from FIPA2 (Foundation for
Intelligent Physical Agents) standard for interaction,
as in (Da Silva et al., 2005). (Belloni et al., 2004)
suggest to work more on methodological aspects, by
exploring how an existing software development
process can be extended to incorporate notations.
They recommend the exploration of the Unified
Process which seems to be the most appropriate.
These formalisms are useful, good contributions and
sources of inspiration. However, to contribute in
bridging the gap between AOSE (Agent Oriented
Software Engineering) methodologies and mobile-
agent systems, as suggested in (Milojicic, 1999) and
realized in (Self et al., 2003; Sutandiyo et al., 2004;
Mansour et al., 2007a), we were interested to extend
a MAS methodology. Merging these two areas
provides more capacity to solve complex problems
in distributed computing becoming increasingly
mobile (Self et al., 2003).

Only few works on semi-formal approaches
extend a MAS methodology to support mobility. We
have encountered three in literature (Self et al.,
2003; Sutandiyo et al., 2004; Mansour et al., 2007a).
(Self et al., 2003) have extended the MaSE
methodology. Figure 1 presents a graphical
overview of MaSE which consists of two phases and
several steps. The progression over steps occurs with
outputs from one step becoming inputs for the next.
The result of the MaSE analysis phase is a set of
roles that agents will play, a set of tasks that define
the behavior of specific roles, and a set of
coordination protocols between those roles. The
design phase models consist of agent classes,
communications defined between them and

2 FIPA proposed a set of specification with main emphasis on

higher level issues like communication language, while OMG
(Object Management Group) focused on mobile agents. Since,
the two organizations worked independently without any
coordination, the end result was the evolution of two parallel
standards i.e. FIPA and MASIF. These standards provide
specifications and guidelines to developers of frameworks in
constructing any agent framework.

components that comprise them. Typically, tasks
from the analysis phase are transformed into
components in the design phase. These, possibly
multiple, components define the internal agent
architecture for each agent defined by the designer.

Figure 1: MaSE methodology (Self et al., 2003).

To support mobility, Self et al. have added in the
analysis phase a move command (to use it in
Concurrent Task Diagrams describing the behaviors
of Concurrent Tasks), and in the design phase,
mobile components that allow the specification of
the activities that result from the move command.
Consequently, an agent is composed of components
which are stationary or mobile (a mobile component
contains at least one move activity). To control and
coordinate these components, each agent contains an
Agent Component, which fulfils also much of the
agent mobility functions.

Figure 2: Structure of m-GAIA’s models (Sutandiyo et al.,
2004).

(Sutandiyo et al., 2004) have criticized the extended
MaSE as it does not distinguish conceptually
between mobile and stationary agents (even if it
does it at the components’ level), and because it

extends the object-oriented approach rather than
starting with a “pure” multi-agents background.
They have proposed (figure 2) m-GAIA (mobile
GAIA), which distinguishes between mobile and
stationary agents in the Agent model and defines
three role types (system, interface and user) in the
Role Model. In addition, a mobility model was
added; it manages concepts of place types
(locations), atomic movement (the smallest
granularity movement required to accomplish the
task assigned) and travel path (a combination of
atomic movements). Agent’s moves occur at the end
of atomic movements.

Figure 3: MAGR meta-model (Mansour et al., 2007a).

(Mansour et al., 2007a) note that the existing meta-
models and methodologies do not provide any
organizational solution for designing and
administrating mobile agents in an agent society,
and propose MAGR (Mobile AGR) to support the
agent’s mobility at the organizational level. MAGR
enriches the AGR (Agent, Group, Role) meta-model
with concepts of place, mobile agent and persistent
role (figure 3). A place (MASIF concept) represents
in MAGR a group joined by only mobile agents; it
proposes to them necessary services to move and
perform actions. Agents join groups to play roles.
When a mobile agent plays a role, it specifies if it is
persistent or not. When it moves, all skills associated
to a persistent role remain available; however, it will
be automatically deleted from any list of agents
playing a non-persistent role in the place.

In the presence of mobility, the MAGR’s meta-

model deals with the social aspect of the agent’s life
cycle. This is not the case with m-GAIA and the
extended MaSE: when an agent moves nothing is
done at organizational level. Indeed the role concept
is not used after the analysis phase in both
methodologies. In addition, social aspects (group,
organization) are not clearly defined in MaSE,
unlike organizational rules or conversations; and the

developed architectures are static3. Similarly in Gaia,
the organization and services offered by the agents
are clearly static in time, as there is no hierarchical
presentation. (Bernon et al., 2009)

Finally and according to (Amor et al., 2004;
Jarraya, 2006), MDE (Model Driven Engineering)
helps in bringing the gap between MAS’s
methodologies (as the majority does not include the
implementation phase4) and platforms5. However,
we have not encountered an approach based on
MDE and extending a MAS methodology to support
mobility. Indeed, MaSE uses RUP (Rational Unified
Process), m-GAIA uses the cascade model and
MAGR does not propose an elaborated process6.
Therefore, our goal is to propose an MDE
methodology to develop mobile-agents applications.

The choice of MDE is justified also by its
benefits (know-how durability, productivity grain
and heterogeneous platforms consideration), which
explain its adoption in many works on various fields,
including MAS, as in AMDD for INGENIAS
(Pavon et al., 2005), MDAD (Jarraya et al., 2007),
ASPECS (Cossentino et al., 2009) and ASEME
(Spanoudakis et al., 2010). In addition using MDE
may facilitate the mobile agent moves across
heterogeneous platforms: rather than sending the
agent’s code, we send its model which can be
transformed into code on target sites.

3 CHOICES THAT HAVE
GUIDED OUR META-MODEL
CONSTRUCTION

Choosing a MAS methodology is difficult (Amor et
al., 2004; Jarraya, 2006). In the absence of a
consensus on a meta-model to design MAS (despite
the unification efforts of well-known MAS meta-

3 O-MaSE (Organization-based MaSE), an extended version of

MaSE (DeLoach, 2005), defines a meta-model for agents to
adapt their organization during execution.

4 Meta-models in GAIA and AGR are generic: i.e. they make
abstraction on the internal architecture and the behavior of
agents. The passage to the implementation phase of such
methodologies remains informal and manual. (Jarraya, 2006)

5 MAS methodologies and platforms generally represent multi-
agents concepts differently. (Jarraya, 2006)

6 AGR can be seen as complementary to other agents centered
methodologies, because it is insufficient alone to represent all
aspects of multi-agents (Jarraya, 2006). Indeed MAGR (as
AGR) does not provide meta-models for agents, roles and
domain.

models, as in (Cossentino et al., 2005; Beydoun et
al., 2009)), we have looked for a meta-model which
is simple to use, modular and evolutive, in order to
extend it and supports agents mobility.

Our choice fell on the PIM (Platform
Independent Model) meta-model of MDAD (Model
Driven Agent Development) for several reasons.
Firstly, it is based on the AEIO decomposition (from
the VOYELLES approach (Demazeau, 2001)) which
considers a MAS as composed of four bricks (or
vowels A,E,I,O)7: Agent, Environment, Interaction
and Organization. This provides modularity at the
models’ level, rather than at the level of agents and
agent’s skills. The ability to interchange and reuse
models of each brick has a strong potential for reuse
and versatility, as there is no presupposition to use a
particular model a priori (Jarraya et al., 2007).
Secondly, its organizational meta-model, based on
AGR, does not imposes constraints about the
internal architecture of the agent, its behavior, or its
capabilities. Thirdly, MDAD is already a model
driven methodology illustration for the stationary-
agents applications development.

Inspired from the related works, we have
enriched its PIM meta-model with the stereotypes
(figure 4): «MobileAgent», «Site», «Migration» (to
prepare the agent before calling the Jump Action),
«Jump» (to move effectively the agent to another
site), «Clone» and «AfterMigration» (to integrate
correctly the agent in the MAS, after its move to a
new site).
The concepts in gray boxes, the two associations
between «SendMessage» and «ReceiveMessage»
(added to ease code generation (Gherbi et al.,
2012)), the transfearable tagged-value in the
«DomainConcept» stereotype, and the stop tagged-
value in the «Role» stereotype are those we have
added. According to figure 4, a group contains
several roles and an agent (which may be stationary
or mobile) may play several roles. However to play
a role, the agent must join the group containing this
role, and then ask for authorisation.

We assume that the agent determines when it is
necessary to move. However, other agents, or the
agent platform itself, may advise the agent to move
(for example, for shutdown, load balancing, etc.); in
this case, the agent’s autonomous nature allows it to
determine whether it will actually move (section 4
gives some guidelines to help treating this case). We
also assume that the agent platform handles the
effective move of agents: when it receives an agent’s

7 A fifth vowel (U for User) has been added in (Demazeau, 2003).

move request (generated from the «Jump» action), it
terminates the agent and sends it to the destination
platform where it is restored.

Figure 4: A PIM meta-model for MAS including mobile
agents.

Unlike MDAD, agents and roles goals are not
expressed explicitly, but implicitly via theirs
behaviors (they can also be noted as comments).
However, if an explicit expression is needed, one
can use for example OCL (Object Constraint
Language) constraints as in MDAD (figure 5).

Figure 5: Goals modelling in MDAD.

In another hand, unlike MDAD, we describe
behaviors with state-charts diagrams, as in (Self et
al., 2003; Loukil et al., 2006), to save transformation
effort (because we will use state-charts diagrams to
model behaviors at the PSM level also)8.

Compared to the published version in (Gherbi et
al., 2012), we have added the «MobileAgent»
stereotype to distinguish between stationary and
mobile agents and have a direct mapping from PIMs
to PSMs (Platform Specific Model) of mobile-agents
platforms: Indeed, if some mobile-agent platforms,
like JavAct, do not make this distinction, others like
Grasshopper, do. We have also added an association
between «Clone» and «Site» stereotypes to allow
flexible cloning independently of migration. The
clone concept, which importance was mentioned in
(Self et al., 2003), was not modeled in the extended
MaSE, m-GAIA and MAGR. Finally, we have
added a stop tagged-value (with false as default
value) in the «Role» stereotype to be able (when an
agent want to move) to end roles held in parallel (see
the case study).

In some related works, the mobile-agent itinerary
is modeled to capture its movements’ path, as in
(Belloni et al., 2004), or to describe its mission by
defining tasks to do on each site of the itinerary, as
in (Sutandiyo et al., 2004; Da Silva et al., 2005;
Loukil et al., 2006). We do not model this, because
mobile-agents platforms normally maintain
information on agents movements path, which can
be requested; and for the agent’s mission, it is
described via its behavior.
We also do not fix the set of sites where a mobile
agent can move, as in (Belloni et al., 2004): we
assume that agents are intelligent enough to sense
their environment and discover sites where they may
(if necessary) move. Otherwise, the model may
become unreadable in presence of lot of sites; in
addition, sites are not usually all known for all
applications at the design phase (e.g. in ad-hoc
networks).
Finally, we encourage local communications
between agents and so we support only non-
persistent roles. Consequently before leaving a site,
a mobile agent must release all held roles, as in (Da
Silva et al., 2005). The persistent roles of MAGR
generate distant communications: indeed, queries for
a service provided by a persistent role will be
relayed to a mirror agent representing the mobile

8 To model behaviors, MDAD uses, at PIM level, activity

diagrams and, at PSM level, ATN (Augmented Transition
Network); thus, it defines transformation rules between them.

agent playing this role. Knowing that one of the
mobility goals is to reduce the network traffic, is it
really efficient for a requesting agent to see its
requests relayed to a mirror agent residing on a
remote site (the mobile-agent native site) rather that
interacting with the concerned mobile agent by
sending messages directly to it or by moving up to
it?

Our meta-model serves as a PIM meta-model for
an MDE approach which is under elaboration as a
methodology to develop MAS including mobile-
agents. Figure 6 shows its steps. We have elaborated
a PSM meta-model for JavAct (a mobile-agent
platform), represented the PIM and PSM meta-
models with respect to Ecore format (using
Eclipse/EMF and UML2Profiles), and defined the
transformation rules from PIM to PSM, as well as,
the code generation rules from PSM to JavAct’s
code. The parts which remain under development
are: automation of transformations (using ATL:
Atlas Transformation Language) and code
generation (especially, from stereotyped state-charts
diagrams).

Figure 6: an MDE development process9 for MAS.

4 CASE STUDY

Consider (figure 7) a simple library database
distributed on site1, site2 and site3. On each site, a
stationary agent (Librarian) deliver the list of all
books stored locally. Using a laptop, we create on
site1 a mobile agent (MobileBookSeeker) to search
for the locations of a given book over a given
itinerary (e.g. site1, site2 and site3); then the laptop
can disconnect. The mobile agent visits all sites,
asks on each one for the local books list and filters it
to check if it contains the searched book. When it
finishes, it moves to its final destination (the laptop
when it is connected) to deliver its results. Using

9 MDAD has not proposed a CIM (Computation Independent

Model) meta-model.

mobile agents is obviously advantageous in this
case.

Figure 7: A book searcher application example.

A PIM for this example is given in figure 8. The
LibraryManagement group contains three roles. The
Librarian agent plays the BooksListDeliver role; and
the MobileBookSeeker agent plays, on each visited
site, the BookChecker role which interacts with the
BooksListDeliver role to get the local books list.
When the MobileBookSeeker finishes its mission, it
plays the ResultsDeliver role to deliver the list of
repositories of the searched book.

Figure 8: The classes diagram for the application example.

Each agent (or role) has an attribute itsBehavior (not
presented in figure 8 for a better readability)
pointing to the state-chart describing (in a separate
figure) the agent (or role) behavior.

The behaviors of the Librarian agent and the
BooksListDeliver role are given in figures 9 and 10
respectively.

Figure 9: Librarian behaviour.

Figure 10: BooksListDeliver behaviour.

The Librarian (figure 9) joins the
LibraryManagement group, asks to play the
BooksListDeliver role and leaves the group when the
role ends. When playing the BooksListDeliver role

(figure 10), it waits unlimitedly for requests to
deliver its local books list.

The behaviors of the MobileBookSeeker agent,
the BookChecker role, and the ResultsDeliver role
are given in figures 11, 12 and 13 respectively.

Figure 11: MobileBookSeeker behavior.

The MobileBookSeeker agent joins the
LibraryManagement group (figure 11), then checks
if its mission is terminated. If yes, it plays the
ResultsDeliver role and leaves the group when the
role ends; else, it plays the BookChecker role and
then moves to the next site in the itinerary.

Migration and AfterMigration actions have their
own behaviors (state-chart), where the designer may
include actions which he judges necessary. For our
example, the Migration action leaves the group,
determines the next site, and jumps to it; where the
AfterMigration action does nothing.

Migration and AfterMigration actions may become
complex, for example if a mobile agent playing roles
in parallel is needed. The agent may inside the
Migration action ask the currently held roles to stop,
wait for them to end, note from the stopped services
(furnished by these roles) those it judges necessary
for its activity after the move, and leaves the groups
of held roles. Inside the AfterMigration action, the
agent may search, as described in (Mansour et al.,
2007b), for roles furnishing the noted services, joins
their groups and plays them.
To stop a role, its stop tagged-value must be made to
true; and inside its behavior, this attribute must be
checked to know if the role can continue or if it must
stop and end.

Moves requested by an external entity (another
agent or the agent platform), can be considered, for
example, by adding an externalMoveRequest tagged-
value in the «Agent» stereotype (with False as
default value). Thus an external entity can request an
agent to move by setting its tagged-value to True.
When entering in any state (in its state-chart diagram
representing its behavior), the agent checks this
tagged-value: if it is True, its saves the name of the
current state10 and launches the Migration action.
Tthe AfterMigration action terminates by passing the
agent into the saved state.

Figure 12: BookChecker behaviour.

When playing the BookChecker role (figure 12), the
agent sends a sendGetBooksList message, waits to
receive the list, then checks if it contains the
searched book. When playing the ResultsDeliver
role (figure 13), the agent waits until it deliver its
results.

10 Or the name of the next state if the current state is to wait for

the end of a role (i.e. if its name has the form
WaitForrolenameRoleEnding).

Figure 13: ResultsDeliver behaviour.

In sections 3 and 4, we have discussed the
similarities and differences between our proposed
meta-model and the studied works. To see this in
practise, let us model the same example using the
studied methodologies. We recall that we interest
only to the mobility modelling.

Using the extended MaSE, the modelling of our
example, produces the agent classes in figure 14
(showing the roles played by agents), and the roles
diagram in figure 15 (showing the association
between roles and the concurrent tasks searchBook,
deliverResults, and deliverBooksList).

Figure 14: Agent classes.

Figure 15: Roles diagram.

Bellow, we present only the concurrent task diagram
for the searchBook task (figure 16), and its
corresponding mobile-component (figure 17).
The task begins (figure 16) by testing if the mission
is completed. If yes, it sends a missionCompleted
message to the ResultsDeliver role. Else, it sends a
getBooksList() message to the BooksListDeliver role,
waits for the local books list, checks if it contains the
searched book (and eventually actualise the
repositories list), then tries to move to next site.

Figure 16: searchBook task.

Figure 17: Mobile searchBook component.

In the identifyNextSiteAndMove state (figure 17):
when a mobile component wants to move, it saves
its state, informs its Agent component and waits for
its decision. If the Agent component refuses, it
replies by a moveDenied response; else it terminates
the mobile component and orders all other
components to save their states and send them to it.
Every time it receives a state, it terminates the
sender component. The Agent Component

terminates, when all components terminate. Then the
agent moves with all components and theirs saved
states. At the target site, the Agent Component
restarts all components and communicates their
saved states to them. The restoreState state identifies
the state in which the component restarts after
migration; for the case of the searchBook task, the
component restarts always in the
isMissionCompleted state.

Using m-GAIA, we identify in the agent model
two types of agents: MobileBookSeekerm and
Librarian, where the index (m) indicates that the
agent is mobile. We also identify the following roles
in the role model: BooksListDeliver (system role),
BookChecker (interface role) and ResultsDeliver
(user role). Figure 18 illustrates the relationship
between the roles and the agent types.

Figure 18: Agent model for our example in m-GAIA.

In the mobility model, we distinguish two types of
places: mobilePlace (with instance=1, to represent
the laptop) and stationaryPlace (with instance=3, to
respresent site1, site2 and site3).
MobileBookSeekerm can run on the two types of
place where Librarian can run only on the
stationaryPlace type. The mobility model allows, in
addition, the elaboration of the travel schema for the
mobile agent, which defines its origin place type
(stationaryPlace: site1 for our example), its
destination place type (mobilePlace: the laptop for
our example) and a set of travel paths (each one is a
list of atomic movements). For our example, one
travel path suffices. However, details about the
syntax of atomic movements were not given in
(Sutandiyo et al., 2004): the authors have modelled
their application example, realized it separately on
Grasshopper, and then made manual correspondence
between the modelled example and its realisation.

The MAGR’s concepts (except place and
persistent role) are the base of the organization in
our proposed meta-model (see figure 4). Thus
(organizational) models realized with MAGR are
closer to ours. However, MAGR does not propose
meta-models for agent, role, and domain. After the
elaboration of the organizational model, it passes to
the development step where it proposes MASL
(Mobile Agent Script Language) to program MAS
on Madkit (a mobile agent platform, supporting
AGR and MAGR and compliant to MASIF). MASL
has a vision which is similar to the itinerary algebra

Table 1: Mobility modeling in MAS methodologies.

 before/after
migration’s
Treatment

Itinerary modeling Mobile/stationary
agent distinction

Considering
organizational

aspects with mobility

Development process

Extended
MaSE

yes by Agent
Component

no at level of
components

no RUP

m-GAIA not needed yes yes no Cascade
MAGR not needed no (and yes at level

of implementation)
yes yes do not propose an

elaborated process (*)
Our PIM

proposition
yes no yes yes MDE12

(*) The development cycle is quite limited. Gutknecht and Ferber have never wanted to propose a real process, in order to
keep AGR generic and not reduce its potential of integrating into ascendants or descendants processes. (Gauthier, 2004)

philosophy for which an itinerary describes which
actions the mobile agent should execute, where and
when (Mansour et al., 2007). With MASL, a mobile
agent seems as executing a mission (representing its
global goal). A mission is a set of operations
(representing sub goals of the mission). An
operation is a set of actions (each one is a treatment
executed on a different site). An action contains a
move instruction and a set of commands (the finest
elements of MASL).
The script describing the itinerary and activity of the
mobile agent in our example can be elaborated as
below11:

(Mission (Name findBookRepositiories)
(Operation (Name searchBookRepositiories)

(Action (MoveToPlace Librarian Site1) (Name
bookChecker) (Cmd (Name getBooksList)) (Cmd
(Name booksFilter) (Args searchedBook)))

(Action (MoveToPlace Librarian Site2) (Name
bookChecker) (Cmd (Name getBooksList)) (Cmd
(Name booksFilter) (Args searchedBook)))

(Action (MoveToPlace Librarian Site3) (Name
bookChecker) (Cmd (Name getBooksList)) (Cmd
(Name booksFilter) (Args searchedBook)))

)
(Operation (Name deliverBookRepositiories)

(Action (MoveToPlace clientAgency Laptop) (Name
resultsDeliver) (Cmd (deliverBookRepositories)))

)
)

As shown, only MAGR and our meta-model
consider organizational aspects (group, role) in the
presence of mobility.

11 Codes of mobile-agent, place and agency keepers are not

shown.
12 For details on MDA/MDE, see (Gherbi et al., 2009).

On another hand, m-GAIA and MAGR support the
agent mobility by structuring its behavior as an
itinerary which describes the task to do on each site;
consequently, no effort is needed before or after
moving. In contrast, the exended MaSE
(respectively, our meta-model) allows for more
flexibility in modeling the agent’s behavior, and
employs a move action (respectively, Migration
action); however, an effort is needed before moving
to save the states of the agent’s components
(respectively, to release roles and leave groups), and
after moving to restore components (respectively, to
eventually join groups and obtain roles).

Table 1 summarizes the discussion between
methodologies extending MAS to support mobility.
It interests only to the question of modelling
mobility in the presented methodologies; for a
comparison between MAS methodologies on others
criteria see, for example, section 2.5 in (Bernon et
al., 2009), section 6 in (Cossentino et al., 2009) and
section 6 in (DeLoach et al., 2010).

5 CONCLUSIONS

The complexity and scope of software systems
continue to grow. One approach to deal with this
growing complexity is to use intelligent MAS
(DeLoach et al., 2010).

This paper contributes to bridge the gap between
AOSE methodologies and mobile-agent systems, as
our proposed PIM meta-model serves to develop
MAS including mobile agents. In (Gherbi et al.,
2012), we have situated our meta-model versus
some formalism extending UML notations. In this
paper, we have summarized the different approaches
to model mobile-agents and particularly three works
extending MAS methodologies (MaSE, GAIA, and
AALAADIN) to support mobility; we have situated

our meta-model versus them and have discussed the
choices that have guided its elaboration.

Our meta-model was slightly updated, compared
to its published version in (Gherbi et al., 2012), to
distinguish between mobile and stationary agents, to
support flexible cloning and to treat, inside the
AfterMigration action, the case when a mobile agent
wants to move while holding (and eventually
playing) roles.

As a future work, we will first illustrate our
MDE approach by transforming the PIM example
built here into a PSM for JavAct, then into JavAct
code. We will also discuss the issue of mobile-
agents platforms compliance with MASIF and FIPA
specifications. After, it will be necessary to conduct
experiments with real applications using different
mobile-gents platforms to validate and enrich the
proposed approach.

REFERENCES

Amor, M., Fuentes, L., Vallecillo, A., 2004. Bridging the
Gap Between Agent-Oriented Design and
Implementation Using MDA. In AOSE, New York, pp.
93–108.

Aridor, Y., Lange, D. B., 1998. Agent design patterns:
elements of agent application design. In AGENTS'98,
USA, pp. 108-115.

Bahri, M. R., 2010. Une approche intégrée Mobile-
UML/Réseaux de Pétri pour l'analyse des systèmes
distribués à base d'agents mobiles. Doctoral thesis,
University of Constantine, Algeria.

Belloni, E., Marcos, C., 2004. MAM-UML: an UML
profile for the modeling of mobile-agent applications.
In the 24th SCCC, Arica, Chile, pp. 3-13.

Bernon, C., Gleizes, M.-P., Gauthier, P., 2009. Méthodes
orientées agent et multi-agent. Technologies des
systèmes multi-agents et applications industrielles.
chapter 2. A. El Fallah-Seghrouchni; J.-P. Briot (Ed.).

Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis,
H., Gomez-Sanz, J. J., Pavon, J., Gonzalez-Perez, C.,
2009. FAML: A Generic Metamodel for MAS
Development. In Journal of IEEE Transactions on
Software Engineering, Vol. 35(6), USA, pp. 841-863.

Cao, J., Das, S. K., 2012. Mobile Agents in Networking
and Distributed Computing. Wiley Series in Agent
Technology, John Wiley & Sons, Inc., USA.

Cossentino, M., Bernon, C., Pavon, J., 2005. Modelling
and meta-modelling issues in agent oriented software
engineering. The AgentLink AOSE TFG.

Cossentino, M., Gaud, N., Hilaire, V., Galland, S.,
Koukam, A., 2009. ASPECS: an Agent-oriented
Software Process for Engineering Complex Systems,
How to design agent societies under a holonic
perspective. In AAMAS, Vol. 20(2), pp.260–304.

Da Silva, V. T., R. Noya, C., De Lucena, C. J. P., 2005.
Using the UML 2.0 Activity Diagram to Model Agent
Plans and Actions. In AAMAS'05, pp. 594-600.

DeLoach, S. A., 2005. Engineering Organization-Based
Multiagent Systems. SELMAS, USA, pp. 109-125.

DeLoach, S., A., Garcia-Ojeda, J., C., 2010. O-MaSE: a
customisable approach to designing and building
complex, adaptive multi-agent systems. Int. Journal of
AOSE, Vol. 4(3), pp. 244-280

Demazeau, Y., 2001. VOYELLES, HDR (Habilitation to
Direct Research) thesis, INP Grenoble, France.

Demazeau Y., 2003. Créativité émergente centrée
utilisateur. In Briot J., Khaled G. (dir.), Déploiement
des systèmes multi-agents – Vers un passage à
l’échelle. JFSMA’03, Hermès - Lavoisier (Reviue
RSTI Hors-série). pp. 31-36.

Gauthier, P., 2004. Méthodologie de développement de
systèmes multi-agents adaptatifs et conception de
logiciels à fonctionnalité émergente. Doctoral thesis,
University of Paul Sabatier, France.

Gherbi, T., Meslati, D., Borne, I., 2009. MDE between
Promises and Challenges. In the 11th Int. Conf.,
Comp. Modeling & Simulation, UKSim’09,
Cambridge. pp. 152-155.

Gherbi, T., Borne, I., Meslati, D., 2012. Un méta-modèle
pour les applications basées sur les agents mobiles. In
CIEL-2012, Rennes, France, pp. 1–6.

Jarraya, T., 2006. Réutilisation des protocoles
d’interaction et démarche orientée modèles pour le
développement multi-agents. Doctoral thesis,
University of Reims, France.

Jarraya, T., Guessoum, Z., 2007. Towards a model driven
process for multi-agent system. 5th Int. CEEMAS,Vol.
4696, Leipzig, Germany. pp. 256-265

Kusek M., Jezic, G., 2005. Modeling Agent Mobility with
UML Sequence Diagram. In AOSE, Ljubljana
(Slovenia), pp. 51-63

Loukil, A., Hachicha, H., Ghedira, K., 2006. A proposed
Approach to Model and to Implement Mobile Agents.
In IJCSNS, Vol. 6(3B), pp. 125-129.

Lima, E. F. A., Machado, P. D., Sampaio, F. R.,
Figueiredo, J. A., 2004. An approach to modeling and
applying mobile agent design patterns. In ACM
SIGSOFT, pp. 1-8.

Mansour, S., Ferber, J., 2007a. MAGR: Integrating
mobility of agents with organizations. In IADIS,
Portugal.

Mansour, S., Ferber, J., 2007b. Un modèle organisationnel
pour les systèmes ouverts déployés à grande échelle.
In JFSMA'07, Carcassonne, France, pp. 107-116

Milojicic, D., 1999. Mobile agent applications (trend
wars). In IEEE Concurrency, Vol. 7(3), pp. 80-90.

Pavon, J., Sanz, J. G., Fuentest, R., 2005. The INGENIAS
Methodology and Tools. In Agent-Oriented
Methodologies, B. Henderson-Sellers and P. Giorgini,
eds., pp. 236-276.

Picco, G. P., Murphy, A. L., Roman, G. C., 1999. Lime:
Linda Meets Mobility. In ICSE'99, pp. 368 – 377.

Rajguru. P. V., Deshmukh. S. B., 2012. Current trends and
analysis of mobile agent application. In proceedings of
NCETCT-2012, WJST, Vol. 2 (3), India, pp. 1-6.

Self, A., DeLoach, S. A., 2003. Designing and Specifying
Mobility within the Multiagent Systems Engineering
Methodology. In 18th ACM SAC, USA, pp. 50-55.

Spanoudakis, N., Moraitis, P., 2010. Using ASEME
methodology for model-driven agent systems
development. In AOSE conf., Toronto, pp. 106-127.

Sutandiyo, W., Chetri, M. B., Loke, S. W., Krishnaswamy,
S., 2004. Extending the Gaia Methodology to Model
Mobile Agent Systems. In ICEIS, Porto, pp. 515-518.

