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Abstract—We present two components of a computational
system for emotion detection. PEMs (Personalized Emotion Maps)
store links between bodily expressions and emotion values, and
are individually calibrated to capture each person’s emotion
profile. They are an implementation based on aspects of Scherer’s
theoretical complex system model of emotion [1], [2]. We also
present a regression algorithm that determines a person’s emo-
tional feeling from sensor measurements of their bodily expres-
sions, using their individual PEMs. The aim of this architecture
is to dissociate sensor measurements of bodily expression from
the emotion expression interpretation, thus allowing flexibility
in the choice of sensors. We test the prototype system using
video sequences of facial expressions and demonstrate the real-
time capabilities of the system for detecting emotion. We note
that, interestingly, the system displays the sort of hysteresis phe-
nomenon in changing emotional state as suggested by Scherer’s
psychological model.

I. INTRODUCTION

Recently there has been growing interest in computational
emotion detection [3]. Among potential applications are games
(both serious and otherwise), and human-machine interaction
in general, promising systems which are more responsive to
user behaviour. The work in this article falls squarely within
the domain of cognitive info-communications - displaying and
recognizing emotions can enable cognitive systems, artificial or
natural, to better understand each other [4]. Emotion detection
is something that seems natural for most people, but for
a computational system the process is complicated by the
huge variety of possible bodily expressions and interactions.
Based on the definitions of Kleinginna [5] and Cowie [6],
we propose a system able to detect episodic emotions in
real time. The system’s interpretation algorithm is designed
to be sensor agnostic, that is it will accept a wide variety
of emotion expression measurements without relying on any
specific sensor modalities.

A. Background

Computational emotion detection systems largely proceed
via successive steps, from sensor measurement interpretation
through an emotion model to the classification of emotional
feeling as one from among a set of category choices (fear,
joy, disgust, etc.) [7], [8], [9], [10]. In such classification
systems the model is often a set of pre-existing templates or
patterns to which the sensor output is matched. Our system
has no such generic information; we employ a calibration
step to personalize the system to individual users. This would
make it more suitable for the applications mentioned above
involving the willing cooperation of the participant, rather than
for airport security, say, based on detecting nervousness from

facial expression. (Note however that lie-detectors also involve
individual calibration.)

The obvious fact that people have no direct access to the
emotions of others makes the emotion detection task doubly
difficult for a computational system. First, we only have the
bodily expression of emotion (ignoring language here) from
which to infer the emotion that is being felt. Second, evaluating
performance is complicated by the absence of a definitive
objective ground truth against which to compare computed
emotions. The second point influences the notion of calibrating
or training the system with known examples, as we shall see
below.

Fig. 1. Global architecture of our appraisal

An overview of the architecture of our system is presented
in Figure 1. A key design consideration for our system was a
separation of concerns between feature selection and feature
handling of sensor data, which we consider as sensor-specific,
from the step of information aggregation and interpretation
which we would like to be sensor-independent. Interpretation
of sensor data is realized by the combination of a PEM
(Personalized Emotion Map), an implementation of Scherer’s
complex-system model of emotion, and a regression algorithm
allowing us to map emotion expression into a continuous



multi-dimensional emotion feeling space. This dimensional
measure is weighted by the emotional context through an
ontology to arrive at a categorial emotion label (this last step
is described elsewhere[11]).

Different people react differently (with different bodily ex-
pression) to the same stimulus. As implied by the name, a PEM
is personal to the individual. Its determination necessitates a
calibration step using controlled stimuli before it can be useful
for detecting that individual’s emotional response to general
stimuli.

Using Scherer’s work, and more specifically his psy-
chological model of emotion, as a theorical base for our
implementation allows us to treat emotion as a complex
system consisting of multiple components. Handling individual
components is relatively easy, but it’s the global interactions
between components which leads to the emergent behavior of
the system. Further, this model has roots in work by Thom on
the study of discontinuities, termed “catastrophes”, to describe
some emotion characteristics[12], particularly the transitions
between emotions.

In Figure 2, hysteresis (a behaviour of Thom’s catastro-
phes) is used to model the fact that for a same stimilus value
we can’t uniquely determine the emotion. We need to use
previous emotion to know the direction of emotion evolution
to determine which emotion is felt.

Fig. 2. Use of hysteresis in case of emotion modelization. The same stimulus
value can give rise to different degrees of anger at the given point, depending
on whether the point was approached by increasing or decreasing the stimulus
(eg, using task where we can modulate difficulty to elicit boredom or anger). At
the stimulus corresponding to the red vertical bar, under increasing stimulus,
the system discontinuously jumps to the higher anger value (experiences a
catastrophic increase in anger). Similarly at the green vertical bar, under
decreasing stimulus, the system discontinuously drops to a lower value of
anger.

In this paper, our aim is to present our modelization
and especially the algorithm allowing us to interpret bodily
expression into continuous emotion space. We choose a very
simple two-dimensional emotion space, Russel’s arousal /
valence model [13]. This dimensional model is continuous,
assigning numerical values along each dimension of the target
space. In other work [11], we present mapping from this
dimensional space into a categorial space of emotion labels
and names.

We first present an overview of the PEM models, and focus
on the algorithm used to exploit them. Second, we present
an implementation of this work based on facial expression
and an evaluation of this prototype computational system.
The evaluation consists of a comparison between the system’s
determination of emotion from a video sequence and manual

annotation of the same sequence. Interestingly, the experiment
suggests a hysteresis effect as predicted by Scherer’s model.

II. PERSONALIZED EMOTIONAL MAP

A person feels emotion, but someone else can only see the
bodily expression of that emotion. Our PEMs are designed as
a link between emotion expression and emotion, calibrated for
a particular person. They are used by our regression algorithm
to predict emotion feeling, for that specific person. Bodily
expression is measured by a variety of sensors, and a goal
behind the development of the PEMs was that they should be
suitable for use with different types of sensors. As well, they
should be sufficiently lightweight to enable the algorithms to
run in real-time.

As already mentioned, our model is inspired by the psycho-
logical work of Scherer, where complex system theory explains
the emergence of emotions as a result of the combination of
a number of bodily (and cognitive, we ignore those here, but
see[11]) expressions. We describe below the formalism of the
PEMs.

A. Model

Consider a heart-rate sensor - an increase in the sen-
sor readings corresponds to an increase in heart-rate, which
can indicate increased emotional arousal. However, feeling
emotion is a complex phenomenon involving multiple body
responses. According to emotion theory, each response by
itself is emotionally non-specific [14], and in fact may arise
independently of emotion. For example, increasing heart-rate
can also be caused by exercise; pupil dilation can be caused
by decreasing light. Emotion arises from the set of bodily
responses rather than individual reactions. However, within the
framework of real-time detection based on emotion expression
sensors, it is not possible to implement this model directly. We
thus modify Scherer’s model, shown in Figure 3, to fit with our
implementation constraints. Without getting into details here
(we refer the interested reader to [11] for a more complete
description), we cannot directly modify the control variables
(power, facilitation) to influence the person’s emotion, but
we can modify the environment which will in turn indirectly
vary the control variables. An example would be to increase
obstructiveness by making gameplay increasingly difficult.
Continuously modifying the control variables will trace a path
over the behaviour surface. This will vary between individuals,
and the PEMs are designed to capture individual emotion
profiles.

We present here a brief formalization of the PEMs, and give
implementation details below when describing the regression
algorithm.

1) Calibration: PEMs are built during a calibration phase
where:

(i) the person is presented with varying stimuli;
(ii) their reactions are indexed by IC ∈ [1, 2, 3...] cor-

responding to a sequence indexing sensor measure-
ments; and

(iii) emotion values are associated with the sequence.

Somewhat more formally,

IC 7→ R
M for M sensors (ii)



Fig. 3. Emotional surface from Scherer complex model with hysteresis.

This is not exactly what we want, rather we need a sequence
of emotion values, eg, arousal / valence,

IC 7→ R
N for N emotion dimensions (iii)

Now define the PEM as a composite mapping:

PEM : IC → R
M → R

N

︸ ︷︷ ︸

Complete details of the parenthesized mapping which assigns
emotion values to sensor measurements are not described here
(see [11]), but in overview it register the expressions displayed
by a person while feeling certain emotions.

Since IC is fixed once the calibration is done, one can in
fact consider a PEM as a set of points PEM ⊂ R

M+N .

A calibrated PEM is presented in Figure 4, with only
two sensor dimensions and one emotion dimension displayed
for visibility. Dimensions M and N can be flexible, adding
more sensors or emotion dimensions does not change the basic
model formalism.

Fig. 4. Points represent valence values in PEM for sensor measurements.
Temporal information not shown, and the data has been projectd onto two
sensor dimensions for visibility

For our approach to emotion detection, the calibration
registers emotion as a temporal sequence, ie, a path in R

M+N

space, in order to observe changes in emotion. A sequence then
is a succession of states in the PEM corresponding to a given
emotion. For example, to calibrate the system for joy, a new
emotion sequence is created in the PEM corresponding to the
expressions of the person while feeling joy, see Figure 4. PEMs
may contain several sequences for the same emotion. Figure 5
shows some identified sequences in a PEM used during our
experiments.

Fig. 5. Sequences in PEM for different emotions, eg, green - joy, grey -
disgust, etc

2) Detection: Once the PEMs are calibrated, the task
is to detect emotions when the person is confronted with
different stimuli. Now we have another sequence of sensor
measurements:

ID 7→ R
M (ii)

and again we want a sequence of emotion values:

ID 7→ R
N (iii)

where now the emotion values are to be determined automat-
ically by the system. Detection is then defined as a mapping:

DETECTION : ID → R
M → R

N

︸ ︷︷ ︸

The algorithm implementing the parenthesized mapping, which
uses the calibrated PEMs, is described in the next section, and
§ III presents a demonstration of the system implementing this
calibration / detection formalism.

B. Expression interpretation

The PEMs described above are used as the calibrated
basis for our emotion detection algorithm. We use a KNN (k
nearest neighbour) algorithm modified to work in a regression
framework. We use regression to determine emotion in a
continuous space R

N , rather than a classification algorithm
to pick a discrete emotion label or name based on previously-
identified states.

Figure 6 shows the key point of our algorithm. A new
sensor data point Dt, where t ∈ ID will become a point in
(M + N)-dimensional space. We already have M measured
sensor values for Dt, we need to calculate the N unknown
emotion values.

The algorithm determines the emotion values by using the
PEM ⊂ R

M+N . Conceptually (the actual implementation has
a few tweaks to deal with initialization issues and such):



Fig. 6. Regression algorithm based on KNN

(i) the N emotion values already found for the previous
data point Dt−1 are initially assigned as the values
for Dt so that Dt ∈ R

M+N ;
(ii) the KNN algorithm determines new emotion values

for Dt as the weighted barycenter of the set of
K nearest neighbour points in the PEM on each
sequencies.

The value of K, the number of neighbours to consider for
each data point, is a parameter of the system that remains to
be determined. We fix it empirically, as explained in § III-B1.

The emotion measure values are assigned a confidence
value produced by the algorithm. Let K be the number of
nearest neighbours, Ei the emotion state of neighbour i, Sj the
unknown emotion state of the new data, and M the number
of sensors. Then

confidence =
1

∑K

i=1

(√
∑M

j=1

(
Eij − Sj

)2
)

/K

(1)

As we said, our algorithm is executed on each PEM’s
sequences (see figure 4). We use confidence to determine the
best result from each execution.

III. TESTING

A. Methodology

1) Building the calibration database: Using facial expres-
sion videos was chosen because the expressions are relatively
easy to control for calibration, as opposed to heart-rate or
GSR (Galvanic Skin Response, ie, sweat), and emotions are
relatively easy for most people to determine from a sequence.

The experimental emotion expression test set was prepared
from a video sequence of a subject (in fact an actor, in
order to be able to generate canonical emotion expressions)
displaying the six basic emotions identified by Ekman [15], see
Figure 7. Between sequences displaying emotion, the subject’s
expression returned to neutral. Each “feature” of the face used
in detection was considered as a separate sensor, eg, left corner
of the mouth, middle of right eyebrow where we gather shifting
as a descriptor for the facial expression and stored in our PEMs
(see § II-A1).

To identify different emotion intensity, the subject dis-
played a range for each emotion from almost neutral to

Fig. 7. Images from the video calibration sequences displaying Ekman’s
six basic emotions from top left to bottom right : joy, sadness, fear, surprise,
disgust and anger.

extreme, see Figure 8. Each emotion sequence was repeated
several times. All data were collected in one session to
minimize potential problems with lighting and position.

Fig. 8. Images from the video calibration sequences displaying emotion
intensity variation for joy

2) System performance: To quantify the emotion detection
performance of the system, we define a notion of deviation.
This corresponds to the difference between emotion detection
by hand in the video sequences and automatic detection by the
system. We calculate average deviation by component (arousal
and valence), by emotion and for the whole set of emotions.

We define the deviation for each emotion component as
follows:

∆ =

∑n

i (annomani
− annoautoi)

n
(2)

Where anno are the emotion values defined by human
(annoman) or automatically by the system (annoauto).

For the average deviation of an emotion we use:

µemotion =

∑n

i |∆i|

n
(3)

The average deviation is defined by:

µ =

∑n

i |µemotioni
|

n
(4)

The first measure is used to observe system variation as a
function of the emotion to detect. The second gives some idea
of the robustness of the system to certain internal parameter
changes, ie, the neighbourhood size parameter K, or the
number of states at system initialization.

Figure 9 represents the methodology used for quantifying
system performance. Only the first bloc needs the subject
present, the rest is a posteriori processing. This allowed us
to determine performance while performing internal system
modifications.



Fig. 9. Experimentation methodologie

B. Results

1) Determining the value of K: The graph in Figure 10
shows the average deviation for each emotion and the overall
average deviation for different values of K.

Fig. 10. Deviation function of K parameter

The figure shows the drop in deviation for fear (green
curve) with increasing K, up to about K = 6. Thereafter
increasing K leads to generally increasing deviation. We have
therefore fixed the value K = 6 for experiments as this seemed
a reasonable compromise.

2) Emotion detection in the test video: After calibration,
we tested the system on the whole facial expression video,
containing 5757 images representing sequences of the six basic
emotions. In all, each emotion was repeated a variable number
of times as there were 17 separate sequences. Figure 11
presents the results obtained; blue is valence and red is arousal.
The figure shows that there were indeed roughly 17 sharp
changes in the labeling corresponding to the 17 different
sequences.

Fig. 11. Automatic emotion annotation based on facial expression

Looking closely at the results we have identified two
emotion mis-identification errors, between anger and disgust.
In all other cases the automatic labeling is coherent with the
emotion expressed by the subject.

3) Hysteresis observation during emotion detection: Bas-
ing our emotion detection system on the complex system
model proposed by Scherer[1], [2] is not without risk. As far
as we know, this is the first attempt at turning the psycho-
logical model into a computational implementation. One of
our goals was to experimentally test the underlying theoretical
hypotheses of the model. Here we are not proposing a full
validation of the model, but our system does display behaviour
which suggests the that it is performing as predicted by the
model. This is the notion of emotion hysteresis. The theory
predicts that under variable anger-producing stimulus, the point
at which a person would jump from calm to anger with
increasing stimulus is not the same point at which they would
return from anger to calm for decreasing stimulus. This insight
is easy to show diagramatically (see Figure 2), but the multi-
dimensionality of our PEMs renders this difficult. As well,
the effect is easily shown for a response curve or surface
containing a fold, but the PEMs consist of a cloud of points.

However, we have extracted an automatically labeled se-
quence from the test video where the emotion displayed went
from calm to joy and back to calm again. Intermediate states
were labeled during the sequence. This is shown graphically
as the path in Figure 12 starting with calm at the blue dot and
returning to calm at the black dot. The striking observation is
that the return to calm follows a somewhat different series of
intermediate states than does the path toward joy.

Fig. 12. Automatic annotation based on facial expression. The emotion paths
from neutral to joy and joy to neutral are different

To show that this is not just an artefact of the system,
we duplicated and reversed the neutral-to-joy subsequence to
produce a symmetric sequence. Running it through our system
produced the results shown in Figure 13, where the to and
fro paths are much closer. We are planning work to further
investigate this phenomenon.

C. Discussion

The experiment tested the performance of our system in
interpreting emotion expression in a video sequence of facial
images by comparing its emotion assessment with that of a
human. Calibrating the system allowed us to tune certain pa-
rameters for more robust results, eg, fixing the value of K = 6
in the KNN algorithm. We are quite satisfied with the KNN



Fig. 13. Automatic annotation based on facial expression, with a symmertic
sequence. The emotion paths from neutral to joy and joy to neutral are similar

based regression algorithm as it seems well-adapted to our
case. While perhaps not highly considered for classification,
it enabled our algorithm to run at between 8 and 12 images
per second on a run-of-the-mill laptop. This is sufficient for
our ends as emotions tend to last on the order of seconds. At
this speed, the system can follow the evolution and changes
in emotions through the PEMs.

When run over a video containing 17 sequences of dis-
tinct emotion expressions, with transition through a neutral
emotion expression, the system only missed identifying two
sequences. The system has difficulty deciding between anger
and disgust. The images expressing these emotions are actually
quite similar, but perhaps with more and better calibration the
system would be able to distinguish them. We suspect that
adding further sensors like heart-rate would also lead to better
performance. This probably applies to other emotions as well
and is the subject of future work.

The experiments also suggest evidence for emotion hys-
teresis, an asymmetry in the transition between emotions. This
effect is hypothesized by Scherer’s complex system model of
emotions which forms the basis model for our implementation.
The effect is not present in an artificially created symmetric
sequence, and so seems not to be an artefact of our system
implementation.

IV. CONCLUSION

We have presented an architecture for a system for deter-
mining emotion from multi-sensor input. A design goal was to
abstract specific sensor information away from the algorithmic
heart of the system. The only constraint on the sensors is that
they provide continuous measures. We introduced Personalized
Emotion Maps (PEMs) to map sensor input into emotion
values. The model behind our maps is from a psychological
theory of emotion based on complex system theory. Once
calibrated for individual responses (hence the name), PEMs
are used by a KNN based regression algorithm to associate
emotion values with sensor input.

An experiment on emotion determination from a video
sequence of facial images demonstrated the performance of the

system. The system performed remarkably well, only missing
out on two of 17 different emotion sequences in the video.
The system also demonstrated a hysteresis effect in emotion
transition, as predicted by the model.

Currently the system is just a prototype and quite rough
around the edges. Much work remains to be done to refine
the different system components. More work is also needed to
determine the variability in the PEM calibration over a larger
range of stimuli than presented in this paper. We are exploring
using personal emotion ontologies to take into account some
of the expected variability in emotion measurements between
users faced with the same stimulus[11]. We are also studying
the emotions solicited within a same user by different types
of stimuli which are expected to provoke similar emotions, eg,
satisfaction or joy at either succeeding at a computer game, or
while watching a favourite movie sequence.
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données expressives et contextuelles,” Ph.D. dissertation, University of
Nice-Sophia Antipolis, In progress.
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