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Abstract

Let (Zn) be a supercritical branching process in an independent and identically distributed random
environment ζ = (ζ0, ζ1, . . .), and let W be the limit of the normalized population size Zn/E(Zn|ζ).
We show a necessary and sufficient condition for the existence of weighted moments of W of the form
EWαℓ(W ), where α ≥ 1, ℓ is a positive function slowly varying at ∞. In the Galton-Watson case, the
results improve the corresponding ones of Bingham and Doney (1974) and Alsmeyer and Rösler (2004).
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1 Introduction and main results

For a Galton-Watson process (Zn) with offspring meanm = EZ1 ∈ (1,∞), the moments ofW = limZn/m
n

have been studied by many authors: see for example Harris (1963), Athreya and Ney (1972), Bingham
and Doney (1974), Alsmeyer and Rösler (2004), Iksanov (2006). Of particular interest is the following
comparison theorem about weighted moments of W and Z1, first proved by Bingham and Doney (1974)
via Tauberian theorems: when α > 1 is not an integer and ℓ is a positive function slowly varying at ∞,
EWαℓ(W ) < ∞ if and only if EZα

1 ℓ(Z1) < ∞. Alsmeyer and Rösler (2004) showed that the equivalence
remains true when α is not of the form 2n for some integer n ≥ 1, by a nice martingale argument. In this
paper, we show that the equivalence is always true whenever α > 1, and that a similar result holds for a
branching process in an independent and identically distributed random environment. Our approach is a
refinement of the martingale argument of Alsmeyer and Rösler (2004). We mention that the adaptation of
the argument to the random environment case is not evident; actually in this case the study of the existence
of the moments of order α is already delicate, see for example Afanasyev (2001, Sect. 3) and Guivarc’h
and Liu (2001) where this problem has been considered.

Let ζ = (ζ0, ζ1, . . .) be a sequence of independent and identically distributed (i.i.d.) random variables,
taking values in some space Θ, whose realization corresponds to a sequence of probability distributions on
N = {0, 1, 2, ...}:

p(ζn) = {pi(ζn) : i ≥ 0}, where pi(ζn) ≥ 0,

∞
∑

i=0

pi(ζn) = 1. (1.1)

A branching process (Zn)n≥0 in the random environment ζ (BPRE) is a family of time-inhomogeneous
branching processes (see e.g. [5, 6, 7]): given the environment ζ, the process (Zn)n≥0 acts as a Galton-
Watson process in varying environments with offspring distributions p(ζn) for particles in the nth generation,
n ≥ 0. By definition,

Z0 = 1 and Zn+1 =
∑

u∈Tn

Xu for n ≥ 0, (1.2)
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where conditioned on ζ, {Xu : |u| = n} are integer-valued random variables with common distribution
p(ζn); all the random variables Xu, indexed by finite sequences of integers u, are conditionally independent
of each other. Here Tn denotes the set of all individuals of generation n, marked by sequences u of positive
integers of length |u| = n: as usual, the initial particle is denoted by the empty sequence ø (of length 0); if
u ∈ Tn, then ui ∈ Tn+1 if and only if 1 ≤ i ≤ Xu. The classical Galton-Watson process corresponds to the
case where all ζn are the same constant.

Let (Γ,Pζ) be the probability space under which the process is defined when the environment ζ is given.
Therefore under Pζ , the random variables Xu are independent of each other, and have the common law
p(ζn) if |u| = n. The probability Pζ is usually called quenched law. The total probability space can be
formulated as the product space (ΘN × Γ,P), where P = Pζ ⊗ τ in the sense that for all measurable and
positive function g, we have

∫

gdP =

∫ ∫

g(ζ, y)dPζ(y)dτ(ζ),

where τ is the law of the environment ζ. The total probability P is called annealed law. The quenched law
Pζ may be considered to be the conditional probability of the annealed law P given ζ. The expectation
with respect to Pζ (resp. P ) will be denoted Eζ (resp. E).

For n ≥ 0, write

mn =

∞
∑

i=0

ipi(ζn), Π0 = 1 and Πn = m0 · · ·mn−1 if n ≥ 1. (1.3)

Then EζXu = mn if |u| = n, and EζZn = Πn for each n.
We consider the supercritical case where

E lnm0 ∈ (0,∞].

It is well-known that under Pζ ,

Wn =
Zn

Πn
(n ≥ 0)

forms a nonnegative martingale with respect to the filtration

E0 = {∅,Ω} and En = σ{ζ,Xu : |u| < n} for n ≥ 1.

It follows that (Wn, En) is also a martingale under P. Let

W = lim
n→∞

Wn and W ∗ := sup
n≥0

Wn, (1.4)

where the limit exists a.s. by the martingale convergence theorem, and EW ≤ 1 by Fatou’s lemma.
We are interested in asymptotic properties of W. Recall that in [14], Guivarc’h and Liu gave a necessary

and sufficient condition for the existence of moments of W of order α > 1:

Lemma 1.1 ([14, Theorem 3]) Let (Zn) be a supercritical branching process in an i.i.d. random environ-

ment. Let α > 1. Then 0 < EWα <∞ if and only if Em
−(α−1)
0 < 1 and EWα

1 <∞.

This result suggests that under a moment condition on m0, W1 and W have similar tail behavior. In
the following, we shall establish comparison theorems between weighted moments of W1 and W .

Recall that a positive and measurable function ℓ defined on [0,∞) is called slowly varying at ∞ if
lim
x→∞

ℓ(λx)/ℓ(x) = 1 for all λ > 0. (Throughout this paper, the term ”positive” is used in the wide sense.)

By the representation theorem (see [11, Theorem 1.3.1]), any slowly varying function ℓ is of the form

ℓ(x) = c(x) exp

(∫ x

a0

ǫ(t)dt/t

)

, x > a0, (1.5)

where a0 ≥ 0, c(·) and ǫ(·) are measurable with c(x) → c for some constant c ∈ (0,∞), and ǫ(x) → 0, as
x → ∞. The value of a0 and those of ℓ(x) on [0, a0] will not be important; we always assume that ℓ is
bounded on compact sets of [0,∞). For convenience, we often take a0 = 1.

We search for conditions under which W has weighted moments of the form EWαℓ(W ), where α ≥ 1,
ℓ ≥ 0 is a function slowly varying at ∞. Notice that the function c(x) in the representation of ℓ(x) has no
influence on the finiteness of the moments, so that we can suppose without loss of generality that c(x) = 1.

We first consider the case where α > 1. As usual, for a set A, we write IntA for its interior.
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Theorem 1.1 Let α ∈ Int{a > 1 : Em1−a
0 < 1} and ℓ : [0,∞) 7→ [0,∞) be a function slowly varying at ∞.

Then the following assertions are equivalent:

(a) EWα
1 ℓ(W1) <∞ ;

(b) EW ∗αℓ(W ∗) <∞ ;

(c) 0 < EWαℓ(W ) <∞ .

The result is sharp even for the classical Galton-Watson process (where ζn are the same constant): in
this case, it improves the corresponding result of Bingham and Doney (1974) in the sense that they needed
the additional assumption that ℓ(x) =

∫ x

1
ℓ0(x)/xdx for some function ℓ0 slowly varying at ∞ (which is

equivalent to the hypothesis that the function ǫ(.) in (1.5) is positive and slowly varying at ∞) when α is
an integer. Alsmeyer and Rösler (2004) showed that this additional condition can be removed if α is not a
dyadic power; our result shows that it can be removed for all α and that the same conclusion holds even
in the random environment case.

We now consider the case where α = 1, where the situation is different as already shown by Bingham
and Doney (1974) in the Galton-Watson case.

For a measurable function ℓ : [0,∞) 7→ [0,∞), we set

ℓ̂(x) =

{

∫ x

1
ℓ(t)
t dt if x > 1;

0 if x ≤ 1.
(1.6)

We essentially deal with the case where ℓ is concave, which covers the case of slowly varying functions
considered by Bingham and Doney (1974). (cf. Corollary 1.1 below)

Theorem 1.2 Let ℓ : [0,∞) 7→ [0,∞) be concave on [a0,∞) for some a0 ≥ 0. If Em−1
0 < 1 and

EW1ℓ̂(W1) <∞, then
EW ∗ℓ(W ∗) <∞ and EWℓ(W ) <∞ .

Moreover, in the case where ℓ is also slowly varying at ∞, the moment condition Em−1
0 < 1 can be relaxed

to Em−δ0
0 <∞ for some δ0 > 0.

Notice that when ℓ is positive and concave on [a0,∞), ℓ must be increasing, since otherwise there would
exist x0 > a0 such that ℓ′(x0) < 0, where ℓ′ denotes the left (or right) derivative (which is well-defined),
so that for x > x0, ℓ(x) ≤ ℓ(x0) + ℓ′(x0)(x − x0) → −∞ as x → ∞. If lim

x→∞
ℓ(x) = ∞, the conclusion

for EWℓ(W ) was obtained by Iksanov (2006) in the Galton-Watson case; a similar result was shown by
Iksanov and Rösler (2006) for branching random walks. If lim

x→∞
ℓ(x) = c ∈ (0,∞), the conclusion about

W ∗ leads to a new proof for the non-degeneration of W : cf. the comments before Theorem 1.3 below.
As a corollary of Theorem 1.2, we obtain:

Corollary 1.1 Let ℓ : [0,∞) 7→ [0,∞) be nondecreasing and slowly varying at ∞, such that ℓ(x) =
∫ x

1
ℓ0(t)dt/t for some function ℓ0 ≥ 0 slowly varying at ∞. Assume that Em−δ0

0 < ∞ for some δ0 > 0. If

EW1ℓ̂(W1) <∞, then
EW ∗ℓ(W ∗) <∞ and EWℓ(W ) <∞ .

Corollary 1.1 extends the sufficiency of Theorem 7 of Bingham and Doney (1974) where the classical
Galton-Watson process was considered; see also Corollary 2.3 of Alsmeyer and Rösler (2004). As informa-
tion, we mention that Alsmeyer and Iksanov (2009) gave sufficient conditions for EWb(ln+W ) <∞ in the
case of branching random walks, where b > 0 is a regular function of order a > 0. Notice that their theorem
does not cover our Corollary 1.1. For example, our Corollary 1.1 applies for ℓ(x) = ln lnx (which corre-
sponds to (1.5) with c(x) = 1 and ǫ(t) = (ln t · ln ln t)−1) to obtain a sufficient condition for EWℓ(W ) <∞;
but this result is not covered by Theorem 1.4 of Alsmeyer & Iksanov (2009), as b(x) = ℓ(ex) = lnx is slowly
varying at ∞ (a regular function of order 0 rather than order a > 0).

Notice that ℓ(x) =
∫ x

1
ℓ0(t)dt/t for some function ℓ0 slowly varying at ∞ if and only if the function

xℓ′(x) is slowly varying at ∞; when ℓ is of the canonical form ℓ(x) = exp(
∫ x

1
ǫ(t)dt/t) with ǫ(t) → 0, this

is exactly the case where ǫ(.) is slowly varying at ∞.
Corollary 1.1 is a direct consequence of Theorem 1.2. Notice that xℓ′(x) = ℓ0(x). Let ψ(x) = inf{ℓ′(t) :

1 ≤ t ≤ x}, for x ≥ 1. Since ℓ′(x) is a regularly varying function of order −1 (xℓ′(x) is slowly varying),
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we have ℓ′(x) ∼ ψ(x) when x → ∞ (see [11, Theorem 1.5.3]), where ψ is positive and nonincreasing; so
ℓ(x) ≍ ℓ1(x) :=

∫ x

1
ψ(t)dt (x ≥ 1), and ℓ1 is a positive and concave function on [1,∞). Here, as usual, we

write

f(x) ≍ g(x) if 0 < lim inf
x→∞

f(x)

g(x)
≤ lim sup

x→∞

f(x)

g(x)
<∞ , (1.7)

and f(x) ∼ g(x) if lim
x→∞

f(x)/g(x) = 1. Therefore we can apply Theorem 1.2 to ℓ1 to obtain the conclusion

of the corollary.
By the same method, we can consider some slightly different classes of functions. For example, we can

show the following result similar to Theorem 1.1 of Alsmeyer and Rösler (2004) where the Galton-Watson
case was considered.

Corollary 1.2 Let φ be positive and convex on [0,∞) with positive concave derivative φ′ on (0,∞). Define

φ̃(x)=

{
∫ x

1
φ′(t)
t dt if x > 1;

0 if x ≤ 1.

If Em−1
0 < 1 and EW1φ̃(W1) <∞, then

Eφ(W ∗) <∞ and Eφ(W ) <∞ .

Notice that Theorem 1.2 also gives an information about the integrability of W ∗ and thus the non-
degeneration of W . In fact, taking ℓ(x) ≡ 1 in Theorem 1.2, we see that if EW1 ln

+W1 < ∞ and
Em−δ0

0 < ∞ for some δ0 > 0, then EW ∗ < ∞. Here and hereafter, we write ln+ x = max(0, lnx)
and ln− x = max(0,− lnx). Actually, by the argument in the proof of Theorem 1.2, the above moment
condition on m0 can be relaxed, as shown in the following theorem.

Theorem 1.3 Assume that E( ln−m0)
2 <∞. If EW1 ln

+W1 <∞, then EW ∗ <∞.

Notice that EW ∗ <∞ implies EW = 1 by the dominated convergence theorem. Therefore Theorem 1.3
implies the classical theorem (the sufficiency) of Kesten-Stigum (1966) on the Galton-Watson process. It
gives a new proof of the corresponding result of Athreya and Karlin (1971b) (see also Tanny (1988)) for a
branching process in a random environment, under the extra condition that E(ln−m0)

2 <∞. (Notice that
the supercritical condition E lnm0 > 0 implies E ln−m0 < ∞.) Although we need this extra condition,
the conclusion that EW ∗ < ∞ may be useful in applications; we do not know whether this conclusion is
equivalent to EW = 1. (It is known (see [25]) that the condition EW1 ln

+W1 <∞ is equivalent to EW = 1;
in the Galton-Watson case, it is also known that this condition is also equivalent to EW ∗ <∞. But we do
not know whether the same conclusion remains true for the random environment case; Theorem 1.3 shows
that this is indeed the case if E( ln−m0)

2 <∞.)
In the Galton-Watson case, Alsmeyer and Rösler (2004) used a similar argument (also based on convex

inequalities for martingales) to show the non-degeneration of W . But our approach is more direct, as we
do not use their Lemma 4.5.

The rest of the paper is organized as follows. In Section 2, we establish key inequalities based on convex
inequalities for martingales. In Section 3, we give smoothed versions of regularly varying functions in order
to use the key inequalities of Section 2. Theorem 1.1 is proved in Section 4, while Theorems 1.2 and 1.3
are proved in Sections 5 and 6, respectively.

In enclosing the introduction, we mention that the argument of this paper can be adapted to weighted
branching processes, thus enabling us to improve the results of Bingham and Doney (1975) for Crump-Mode
and Jirina processes, those of Alsmeyer and Kuhlbusch (2009) for branching random walks, and to extend
their results to the random environment case (including the weighted branching processes considered by
Kuhlbusch (2004)). This will be done in the forthcoming paper [24].

2 Key Inequalities

In this section, we show key inequalities that will be used for the proof of main theorems. As in Alsmeyer
and Rösler (2004), our argument is based on convex inequalities for martingales.
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We first introduce some notations. For a finite sequence u ∈
⋃∞

n=0 N
∗n (N∗0 = {∅} by convention), set

X̃u=
Xu

m|u|
− 1. For n ≥ 1, write

Dn=Wn −Wn−1 =
1

Πn−1

∑

|u|=n−1

X̃u. (2.1)

Then W ∗ = supn≥0Wn can be written as

W ∗ = 1 + sup
n≥1

(D1 + . . .+Dn).

For convenience, let X̃n = X̃1n where 1n denotes the sequence of length n whose components are all equal
to 1, with the convention that 10 = ∅. Thus when u is a sequence of length n, X̃u has the same distribution
as X̃n under Pζ and P. Define

F0 = {∅,Ω} and Fn = σ{ζk, X̃u : k < n, |u| < n} for n ≥ 1. (2.2)

Then (Wn,Fn)n≥0 also forms a nonnegative martingale under P, as

E(Wn|Fn−1) = E(E(Wn|En−1)|Fn−1) = E(Wn−1|Fn−1) =Wn−1.

For technical reasons, we will use the martingale (Wn,Fn), rather than the more frequently used one
(Wn, En). We will explain this after the proof of Theorem 1.1. For convenience, we shall write for n ≥ 0,

Pn(·) = P(·|Fn) and En(·) = E(·|Fn). (2.3)

The terms ”increasing” and ”decreasing” will be used in the wide sense.

Theorem 2.1 Let φ be convex and increasing with φ(0) = 0 and φ(2x) ≤ cφ(x) for some constant c ∈
(0,∞) and all x > 0. Let β ∈ (1, 2].

(i) If the function x 7→ φ(x1/β) is convex and E|X̃1|
β < ∞, then writing A =

∑∞
n=1

1

Πβ−1
n−1

which is a.s.

finite, we have

Eφ(W ∗ − 1) ≤ C

∞
∑

n=1

(

E

(

1

AΠβ−1
n−1

φ(A1/βW
1/β
n−1)

)

+Eφ

(

|X̃n−1|

Π
(β−1)/β
n−1

·W
1/β
n−1

))

, (2.4)

where C > 0 is a constant depending only on c, β and E|X̃1|
β.

(ii) If the function x 7→ φ(x1/β) is concave, then

Eφ(W ∗ − 1) ≤ C

∞
∑

n=1

EΠn−1φ

(

|X̃n−1|

Πn−1

)

, (2.5)

where C > 0 is a constant depending only on c.

For the proof, as in Alsmeyer and Rösler (2004), we shall use the BDG (Burkholder-Davis-Gundy)
inequalities. For convenience of readers let us first recall these inequalities and state some consequences
that we will use. For a martingale sequence {(fn,Gn) : n ≥ 1} defined on some probability space (Ω,G,P),
set f0 = 0, G0 = {∅,Ω}, dn = fn − fn−1 for n ≥ 1,

f∗ = sup
n≥1

|fn| and d∗ = sup
n≥1

|dn|.

Lemma 2.1 Let Φ be an increasing and continuous real function on [0,∞), with Φ(0) = 0 and Φ(2λ) ≤
cΦ(λ) for some c in (0,∞) and all λ > 0.
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(a) For every β ∈ [1, 2], there exists a constant B = Bc,β ∈ (0,∞) depending only on c and β such that
for any martingale {(fn,Gn) : n ≥ 1},

EΦ(f∗) ≤ BEΦ(s(β)) +BEΦ(d∗), where s(β) =

(

∞
∑

n=1

E{|dn|
β |Gn−1}

)1/β

,

and

EΦ(f∗) ≤ BEΦ(s(β)) +B

∞
∑

n=1

EΦ(|dn|).

(b) If Φ is convex on [0,∞), then there exist some constants A = Ac ∈ (0,∞) and B = Bc ∈ (0,∞)
depending only on c such that for any martingale {(fn,Gn) : n ≥ 1},

AEΦ(S) ≤ EΦ(f∗) ≤ BEΦ(S), where S =

(

∞
∑

n=1

d2n

)1/2

.

Moreover, for any β ∈ (0, 2],

EΦ(f∗) ≤ BEΦ(S(β)), where S(β) =

(

∞
∑

n=1

|dn|
β

)1/β

.

If additionally, for some β ∈ (0, 2] the function Φ1/β(x) := Φ(x1/β) is sub-additive on [0,∞), then

EΦ(f∗) ≤ BE

∞
∑

n=1

Φ(|dn|).

In fact, in Part (a), the first inequality is the general form of the BDG inequality (cf. [12], Chap. 11,
p.427, Theorem 2); the second follows from the first because Φ(d∗) ≤

∑∞
n=1 Φ(|dn|). In Part (b), the first

inequality is the usual form of the BDG inequality (cf. [12], Chap. 11, p.425, Theorem 1); the second

follows from the first because
(
∑∞

n=1 d
2
n

)1/2
≤
(
∑∞

n=1 |dn|
β
)1/β

for any β ∈ (0, 2] (this can be seen by the

sub-additivity of the function x 7→ xβ/2); the third follows from the second because

Φ(S(β)) = Φ1/β(

∞
∑

n=1

|dn|
β) ≤

∞
∑

n=1

Φ1/β(|dn|
β) =

∞
∑

n=1

Φ(|dn|).

The second inequality of Part (b) may be considered as a counter part of the first inequality of Part (a).
Assuming the concavity of the derivative of Φ instead of the subadditivity of Φ1/β , Topchii and Vatutin
(cf. [26], Theorem 2) also established the third inequality of Part (b).

Proof of Theorem 2.1 (i) We first notice that by the law of large numbers, limn(
1
Πn

)1/n = e−E lnm0 < 1
a.s., so that A <∞ a.s. (for β > 1). We now begin with the proof of inequality (2.4). By Lemma 2.1 (a),

Eφ(W ∗ − 1) ≤ B



Eφ





(

∞
∑

n=1

En−1|Dn|
β

)
1
β



+
∞
∑

n=1

Eφ(|Dn|)



 , (2.6)

where B > 0 is a constant depending only on c and β.
Let X̃(1), . . . , X̃(Zn−1) be an enumeration of {X̃u : u ∈ Tn−1}. By the fact that EζX̃(k) = 0 and the

independence of {X̃u} under Pζ , it can be easily seen that, under Pn−1, {X̃(1), . . . , X̃(Zn−1)} is a sequence
of martingale differences with respect to the natural filtration

F̃k = σ{ζl, Xu : l < n− 1, |u| < n− 1, X̃(1), . . . , X̃(k)}, k ≥ 1. (2.7)

6



To this martingale difference sequence, using Lemma 2.1 (b) (the third inequality of Part (b) applied to
Φ(x) = xβ , noting that Φ1/2(x) = xβ/2 is sub-additive), we obtain

En−1|Dn|
β = En−1

∣

∣

∣

∣

∣

∑

|u|=n−1 X̃u

Πn−1

∣

∣

∣

∣

∣

β

≤ BEn−1

∑

|u|=n−1

|X̃u|
β

Πβ
n−1

= B
Zn−1

Πβ
n−1

· En−1|X̃n−1|
β

= C
Wn−1

Πβ−1
n−1

, (2.8)

where C = BE|X̃1|
β < ∞. (This can also be shown by the usual Marcinkiewicz-Zygmund inequality first

conditional on En, or by Topchii and Vatutin’s inequality ([26], Theorem 2).) Since φ1/β(x) := φ(x1/β) is

convex and
∑∞

n=1
1

AΠβ−1
n−1

= 1, it follows that

Eφ





(

∞
∑

n=1

En−1|Dn|
β

)
1
β



 = Eφ1/β(

∞
∑

n=1

En−1|Dn|
β)

≤ Eφ1/β(

∞
∑

n=1

1

AΠβ−1
n−1

·ACWn−1)

≤ E

∞
∑

n=1

1

AΠβ−1
n−1

φ1/β(ACWn−1)

= E

∞
∑

n=1

1

AΠβ−1
n−1

· φ
(

C1/βA1/βW
1/β
n−1

)

≤ C1E

∞
∑

n=1

1

AΠβ−1
n−1

· φ
(

A1/βW
1/β
n−1

)

, (2.9)

where C1 > 0 is a constant depending only on C and c. For the second part of (2.6), by Lemma 2.1 (b)
and the convexity of φ1/β(x) = φ(x1/β), we have (using the fact that

∑

|u|=n−1
1

Zn−1
= 1):

En−1φ(|Dn|) ≤ BEn−1φ1/β





∑

|u|=n−1

|X̃u|
β

Πβ
n−1





= BEn−1φ1/β





∑

|u|=n−1

1

Zn−1

Zn−1 |X̃u|
β

Πβ
n−1





≤ BEn−1

∑

|u|=n−1

1

Zn−1
φ1/β(

Zn−1|X̃u|
β

Πβ
n−1

))

= BEn−1

∑

|u|=n−1

1

Zn−1
φ

(

|X̃u|

Πn−1
· Z

1/β
n−1

)

= BEn−1φ

(

|X̃n−1|

Π
(β−1)/β
n−1

·W
1/β
n−1

)

. (2.10)

Therefore

Eφ(|Dn|) ≤ BEφ

(

|X̃n−1|

Π
(β−1)/β
n−1

W
1/β
n−1

)

. (2.11)
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(ii) Notice that the concavity of φ1/β(x) = φ(x1/β) implies its subadditivity. Therefore by the third
inequality of Part (b) of Lemma 2.1,

Eφ(W ∗ − 1) ≤ B
∑

n≥1

Eφ(|Dn|), (2.12)

where B > 0 is a constant depending only on c. By the same reason,

En−1φ(|Dn|) = En−1φ





∣

∣

∣

∣

∣

∣

1

Πn−1

∑

|u|=n−1

X̃u

∣

∣

∣

∣

∣

∣





≤ BEn−1

∑

|u|=n−1

φ

(

|X̃u|

Πn−1

)

= BZn−1Eζφ

(

|X̃n−1|

Πn−1

)

. (2.13)

Hence

Eφ(|Dn|) ≤ BE[Zn−1Eζφ

(

|X̃n−1|

Πn−1

)

] = EΠn−1φ

(

|X̃n−1|

Πn−1

)

. (2.14)

Combining (2.12) and (2.14), we get (2.5).

3 Smoothed versions of regularly varying functions

In this section, for a regularly varying function, we find some smoothed versions with nice properties that
we will need in order to use convex inequalities for martingales.

Lemma 3.1 Let φ(x) = xαℓ(x), with α > 1, and ℓ(x) = exp
(

∫ x

a0
ǫ(u)du/u

)

(x ≥ a0 ≥ 0) with ǫ(x) → 0

(x→ 0). Then for each β ∈ (1, 2] with β < α, there is a function φ1(x) ≥ 0 such that:

(i) φ1(x) ∼ φ(x);

(ii) φ1(x) and φ1(x
1/β) are convex on [0,∞);

(iii) φ1(x) = xαℓ1(x), where ℓ1(x) is slowly varying at ∞ and ℓ1(x) > 0 ∀x ≥ 0.

Proof. Fix β ∈ (1, 2] with β < α. Notice that the derivative

φ′(x) = xα−1ℓ(x)(α+ ǫ(x))

behaves like αxα−1ℓ(x) as x→ ∞. It is therefore natural to define

φ1(x) = α

∫ x

0

tα−1ℓ(t)dt, x > a, (3.1)

where a ≥ max(1, a0) is large enough such that ∀ x > a, α− β + ǫ(x) > 0, so that

d

dx
(xα−1ℓ(x)) = xα−2ℓ(x)(α− 1 + ǫ(x)) > 0 ∀x > a, (3.2)

and
d

dx

(

x
α
β
−1ℓ(x

1
β )
)

= x
α
β
−2ℓ(x

1
β )

(

(
α

β
− 1) +

ǫ(x
1
β )

β

)

> 0 ∀x > aβ . (3.3)

Therefore, φ1(x) is convex on (a,∞) as φ′1(x) = αxα−1ℓ(x) is increasing; and φ1(x
1/β) is convex on [aβ ,∞)

as
d

dx
φ1(x

1/β) = φ′1(x
1/β) ·

1

β
x

1
β
−1 =

α

β
x

α
β
−1ℓ(x1/β) (x > aβ)
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is also increasing on (aβ ,∞). Define

φ1(x) = xαℓ(a), ∀x ∈ [0, a]. (3.4)

Then
d

dx
φ1(x) = αxα−1ℓ(a) ∀x ∈ [0, a], (3.5)

and

d

dx
φ1(x

1/β) =
d

dx

(

xα/βℓ(a)
)

=
α

β
x

α
β
−1ℓ(a) ∀x ∈ [0, aβ ]. (3.6)

It follows that both d
dxφ1(x) and

d
dxφ1(x

1/β) are increasing on [0,∞). Therefore both φ1(x) and φ1(x
1/β)

are convex on [0,∞). Moreover,

lim
x→∞

φ1(x)

φ(x)
= lim

x→∞

φ′1(x)

φ′(x)
= 1, (3.7)

so that φ1(x) = xαℓ1(x) for some slowly varying function ℓ1. If x > a, then ℓ1(x) > 0 as φ1(x) > 0; if
x ≤ a, then ℓ1(x) = ℓ(a) > 0. Therefore, ℓ1(x) > 0 ∀x ≥ 0.

�

Lemma 3.2 Let ℓ be a positive and increasing function on [0,∞), concave on (a0,∞) for some a0 ≥ 0.
Then there is a convex increasing function φ1(x) ≥ 0 such that:

(i) φ1(x) ≍ xℓ(x);

(ii) φ1(2x) ≤ cφ1(x) for some constant c ∈ (0,∞) and all x > 0;

(iii) φ1(x
1/2) is concave on (0,∞).

Proof. Let

ℓ1(x) =

{

ℓ′(a)x if x ∈ [0, a],
ℓ(x) + c0 if x ∈ (a,∞),

(3.8)

where a > a0 > 0, c0 = ℓ′(a)a − ℓ(a), and φ1(x) =
∫ x

0
ℓ1(t)dt. We will show that φ1 satisfies the stated

properties.
First, φ1 is convex as φ′1(x) = ℓ1(x) is increasing on [0,∞); φ1 is increasing as ℓ1 is positive on [0,∞).
Next, for x > 2a, as ℓ is increasing, we have ℓ1(t) ≥ ℓ1(

x
2 ) = ℓ(x2 ) + c0 if t ∈ [x2 , x], and ℓ1(t) ≤ ℓ1(x) if

t ∈ [0, x]; therefore
x

2

(

ℓ(
x

2
) + c0

)

≤ φ1(x) ≤ x(ℓ(x) + c0). (3.9)

By the concavity of ℓ, for all x > a,

ℓ(2x) = ℓ(x) + 2

∫ x

x
2

ℓ′(2s)ds

≤ ℓ(x) + 2

∫ x

0

ℓ′(s)ds

≤ 3ℓ(x). (3.10)

(3.9) and (3.10) imply that φ1(x) ≍ xℓ(x) and that there is a constant c ∈ (0,∞) such that ℓ1(2x) ≤ cℓ1(x)
for all x > 0.

Moreover, we can prove that φ1(x
1/2) is concave. In fact,

d

dx
φ1(x

1/2) = φ′1(x
1
2 ) ·

1

2
x−

1
2

=
1

2
ℓ1(x

1
2 ) · x−

1
2 . (3.11)

Notice that ℓ1(t)
t is decreasing as ℓ1 is concave with ℓ1(0) = 0; hence d

dxφ1(x
1/2) is decreasing, so that

φ1(x
1/2) is concave. �
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4 Proof of Theorem 1.1

In this section, the letter C will denote a finite and positive constant whose value is not important and
may differ from line to line.

Proof of Theorem 1.1. Let β ∈ (1, 2] with β < α. Write φ(x) = xαℓ(x). By Lemma 3.1, we can assume
that the functions φ(x) and φ(x1/β) are convex on [0,∞), and ℓ(x) > 0 ∀ x ≥ 0.

(i) We first show that (a) implies (b). By Theorem 2.1(i), we obtain

Eφ(W ∗ − 1) ≤ C

∞
∑

n=1

(

E

(

1

AΠβ−1
n−1

φ
(

A1/βW
1/β
n−1

)

)

+Eφ

(

|X̃n−1|

Π
(β−1)/β
n−1

·W
1/β
n−1

))

. (4.1)

Notice that ℓ > 0 on any compact subset of [0,∞), so by Potter’s Theorem (see [11]), for δ > 0 which will
be determined later, there exists C = C(ℓ, δ) > 1 such that ℓ(x) ≤ Cmax(xδ, x−δ) for all x > 0. Hence for
the first part of (4.1), we have

E

(

1

AΠβ−1
n−1

φ
(

A1/βW
1/β
n−1

)

)

= E

(

Π1−β
n−1A

α
β
−1W

α
β

n−1ℓ
(

A1/βW
1/β
n−1

))

≤ C(I+1 (n) + I−1 (n)), (4.2)

where

I+1 (n) = EΠ1−β
n−1A

α+δ
β

−1W
α+δ
β

n−1 ,

I−1 (n) = EΠ1−β
n−1A

α−δ
β

−1W
α−δ
β

n−1 .

Recall that Zn−1 is an integer-valued random variable with EζZn−1 = Πn−1. Choose δ > 0 small enough
such that β − 1− 2δ > 0. Then by Hölder’s inequality, we obtain

EζZ
α+δ
β

n−1 = Eζ

(

Z
α+δ−(β−1)

β

n−1 · Z
β−1
β

n−1

)

≤ (EζZ
α+δ−(β−1)
n−1 )

1
β · (EζZn−1)

β−1
β

≤
(

EζZ
α+δ−(β−1)+(β−1−2δ)
n−1

)
1
β

· (EζZn−1)
β−1
β

= Π
α+β−1−δ

β

n−1

(

EζW
α−δ
n−1

)

1
β . (4.3)

Therefore,

I+1 (n) = E



Π1−β
n−1A

α+δ
β

−1 ·
Z

α+δ
β

n−1

Π
α+δ
β

n−1





≤ E

(

Π
−

(β−1)2+2δ
β

n−1 A
α+δ
β

−1
(

EζW
α−δ
n−1

)

1
β

)

. (4.4)

Using Hölder’s inequality twice, we see that

I+1 (n) ≤
(

EWα−δ
n−1

)

1
β ·

(

EΠ
−

(β−1)2+2δ
β−1

n−1 A
α+δ−β
β−1

)

β−1
β

≤
(

EWα−δ
n−1

)

1
β ·

(

EΠ
−

(β−1)2+2δ
β−1 p

n−1

)

β−1
pβ

·
(

EA
α+δ−β
β−1 p∗

)
β−1
p∗β

, (4.5)

where p > 1, p∗ > 1 and 1
p + 1

p∗ = 1. By Potter’s Theorem, there exists C = C(ℓ, δ) > 0 such that

ℓ(x) ≥ Cx−δ for all x ≥ 1. This yields

E|X̃|α−δ ≤ C(1 + Eφ(|X̃|)) <∞ . (4.6)
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Since α ∈ Int{a > 1 : Em1−a
0 < 1}, there exists δ0 ∈ (0, 1) such that

Em
1−(α+δ0)
0 < 1.

Notice that the function ρ(x) = Em1−x
0 is convex with ρ(1) = 1, so ρ(α + δ0) < 1 implies ρ(x) < 1 for all

1 < x < α+ δ0; in particular, ρ(α− δ) < 1. Hence, by Lemma 1.1,

sup
n≥1

EWα−δ
n−1 <∞ . (4.7)

We choose p = 1+ (α+δ−β)(β−1)
(β−1)2+2δ so that p1 := α+δ−β

β−1 p∗ = (β−1)2+2δ
(β−1)2 p. As p1(β − 1) ∈ (1, α+ δ0) when δ is

small enough, we get EΠ
−p1(β−1)
n−1 = an−1 with a = Em

−p1(β−1)
0 < 1; moreover, by the triangular inequality

for the norm ‖ · ‖p1 in Lp1 ,

‖A‖p1
≤

∞
∑

n=1

‖Π
−(β−1)
n−1 ‖p1

=

∞
∑

n=1

a(n−1)/p1 <∞ .

Therefore,
∞
∑

n=1

I+1 (n) <∞ . (4.8)

We use a similar argument to estimate I−1 (n). This time, instead of (4.4), we have

I−1 (n) ≤ E

(

Π1−β
n−1A

α−δ
β

−1(EζW
α−δ
n−1 )

1
β

)

. (4.9)

Proceeding in the same way as before, we obtain

∞
∑

n=1

I−1 (n) <∞ . (4.10)

Hence
∞
∑

n=1

E

(

1

AΠβ−1
n−1

φ
(

A1/βW
1/β
n−1

)

)

<∞ . (4.11)

We now consider the second part of (4.1). Again by Potter’s theorem and the fact that X̃n−1 is
independent of Wn−1 and Πn−1 (under P), we have

Eφ

(

|X̃n−1|

Π
(β−1)/β
n−1

·W
1/β
n−1

)

= E

(

Wn−1

Πβ−1
n−1

)
α
β

|X̃n−1|
αℓ





(

Wn−1

Πβ−1
n−1

)
1
β

|X̃n−1|





≤ CEφ(|X̃0|) · (I
+
2 (n) + I−2 (n)), (4.12)

where

I+2 (n) = E

(

Wn−1

Πβ−1
n−1

)
α+δ
β

,

I−2 (n) = E

(

Wn−1

Πβ−1
n−1

)
α−δ
β

,

δ ≤ δ0, C = C(ℓ1, δ, β) > 0 is a constant depending only on ℓ1, δ and β. Here we have used the fact that
under P, each X̃n−1 has the same distribution as X̃0. We can estimate I+2 (n) as we have done for I+1 (n):
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we have

I+2 (n) = E

(

Π
−(α+δ)
n−1 · EζZ

α+δ
β

n−1

)

≤ E

(

Π
−(α+δ− β−1

β
)

n−1 ·
(

EζZ
α+δ−(β−1)
n−1

)
1
β

(EζWn−1)
β−1
β

)

= E

(

Π
−(α+δ− β−1

β
)

n−1 ·
(

EζZ
α+δ−(β−1)
n−1

)
1
β

)

≤ E

(

Π
−(α+δ− β−1

β
)

n−1

(

EζZ
α+δ−(β−1)+(β−1−2δ)
n−1

)
1
β

)

= E

(

Π
−

(α+δ−1)(β−1)
β

n−1 ·
(

EζW
α−δ
n−1

)

1
β

)

≤
(

EWα−δ
n−1

)

1
β

(

EΠ
1−(α+δ)
n−1

)
β−1
β

. (4.13)

It follows that
∞
∑

n≥1

I+2 (n) ≤

(

sup
n≥1

EWα−δ
n−1

)
1
β

·

(

∞
∑

n=1

(

Em
1−(α+δ)
0

)

n(β−1)
β

)

<∞ . (4.14)

Similarly we obtain

I−2 (n) ≤ (EWα−δ
n−1 )

1
β

(

EΠ
1−(α−δ)
n−1

)
β−1
β

(4.15)

and
∞
∑

n≥1

I−2 (n) ≤

(

sup
n≥1

EWα−δ
n−1

)
1
β

·

(

∞
∑

n=1

(

Em
1−(α−δ)
0

)

n(β−1)
β

)

<∞ . (4.16)

Therefore,
∞
∑

n=1

Eφ

(

|X̃n−1|

Π
(β−1)/β
n−1

W
1/β
n−1

)

<∞. (4.17)

Combining (4.1), (4.11) and (4.17), we get

Eφ(W ∗ − 1) <∞, (4.18)

which is equivalent to Eφ(W ∗) <∞.
(ii) We next show that (b) implies (c). Obviously,

Eφ(W ) ≤ Eφ(W ∗) <∞ ;

by Jensen’s inequality, for any n ≥ 1,

Eφ(Wn) ≥ φ(EWn) = φ(1) > 0.

So by the dominated convergence theorem, we see that

Eφ(W ) = lim
n→∞

Eφ(Wn) ≥ φ(1) > 0.

(iii) We finally show that (c) implies (a). Notice that the limit W satisfies the equation

W =

Z1
∑

i=1

W (i)

m0
, (4.19)

where under Pζ , (W
(i)) are independent of each other, and have the same law as W under PTζ : Pζ(W

(i) ∈
·) = PTζ(W ∈ ·), T being the usual translation: Tζ = (ζ1, ζ2, . . .) if ζ = (ζ0, ζ1, . . .). By Jensen’s inequality,
writting Eζ,1(·) = Eζ(·|F1), we have

Eζφ(W ) = Eζφ

(

Z1
∑

i=1

W (i)

m0

)

≥ Eζφ

(

Eζ,1

Z1
∑

i=1

W (i)

m0

)

= Eζφ(Z1/m0) = Eζφ(W1). (4.20)
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Therefore

Eφ(W1) ≤ Eφ(W ). (4.21)

�

Remark. For technical reasons, in the proof of Theorem 1.1, we have used the martingale (Wn,Fn)
under P rather than the more natural martingale (Wn, En) under Pζ . In fact, if we take the later martingale,
then instead of (2.6), we have

Eζφ(W
∗ − 1) ≤ B



Eζφ





(

∞
∑

n=1

Eζ(|Dn|
β |En−1)

)
1
β



+

∞
∑

n=1

Eζφ(|Dn|)



 ; (4.22)

instead of (2.8), we obtain

Eζ(|Dn|
β |En−1) ≤ B

σβ
n−1(β)

Πβ−1
n−1

Wn−1. (4.23)

Taking expectations and using the same argument as in part (i) of the proof of Theorem 1.1, we obtain

Eφ(W ∗ − 1) ≤ C

(

∞
∑

n=1

(Ĩ+1 (n) + Ĩ−1 (n)) +
∞
∑

n=1

Eφ(|Dn|)

)

, (4.24)

where

Ĩ+1 (n) = EΠ1−β
n−1A

α+δ−β
β [σn−1(β)]

α+δW
α+δ
β

n−1 ,

Ĩ−1 (n) = EΠ1−β
n−1A

α−δ−β
β [σn−1(β)]

α−δW
α−δ
β

n−1 .

The problem here is that we have to deal with the extra term σn−1(β) in Ĩ±1 (n). We can do this by
Hölder’s inequality, but we then need an extra moment condition on σn−1(β). Elementary calculations
show that if for some positive number δ0, either (a) α < 2 and E[σ0(α)]

α(α+δ0) < ∞, or (b) α ≥ 2 and
E[σ0(2)]

2(α+δ0) < ∞, then
∑∞

n=1 Ĩ
±
1 (n) < ∞, provided that EWα

1 ℓ(W1) < ∞. This leads a proof of
Theorem 1.1 under the preceding extra moment condition.

5 Proofs of Theorem 1.2 and Corollary 1.2

As in the preceding section, we still use the letter C to denote a finite and positive constant whose value
is not important and may differ from line to line.

Proof of Theorem 1.2. Let φ be φ1 and ℓ be ℓ1 defined in Lemma 3.2 (the new function ℓ1 is still denoted

ℓ for simplicity; we can replace ℓ by ℓ1 as ℓ̂(x) ≍ ℓ̂1(x) ).
Notice that under P, X̃n−1 is independent of Πn−1. As ℓ is concave, we have

EΠn−1φ

(

|X̃n−1|

Πn−1

)

≤ CE|X̃n−1|ℓ

(

|X̃n−1|

Πn−1

)

≤ CE|X̃n−1|ℓ(b
n|X̃n−1|)

= CE|X̃|ℓ(bn|X̃|), (5.1)

where X̃ is a random variable having the same distribution as (X̃n)n≥0 and b = Em−1
0 < 1. According to
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the inequality (2.5), we have

Eφ(W ∗ − 1) ≤ C

∞
∑

n=1

EΠn−1φ

(

|X̃n−1|

Πn−1

)

≤ C

∞
∑

n=1

E|X̃|ℓ(bn|X̃|)

≤ C

∞
∑

n=1

E|X̃|

∫ bn−1|X̃|

bn|X̃|

ℓ(t)

t
dt

= CE|X̃|

∫ |X̃|

0

ℓ(t)

t
dt

≤ CE|X̃|(1 + ℓ̂(|X̃|)) <∞ . (5.2)

This yields EW ∗ℓ(W ∗) <∞, and

EWℓ(W ) ≤ EW ∗ℓ(W ∗) <∞ .

If in addition, ℓ is slowly varying at ∞, then we can use Potter’s theorem to replace the Jensen’s inequality
in (5.1), to relax the assumption Em−1

0 < 1. Recall that for this ℓ, we have shown that

Eφ(W ∗ − 1) ≤ C

∞
∑

n=1

E|X̃|ℓ

(

|X̃|

Πn−1

)

(5.3)

= C

∞
∑

n=1

(I3(n) + I ′3(n)), (5.4)

where

I3(n) = E|X̃|ℓ

(

|X̃|

Πn−1

)

1{Π−1
n−1≤an−1},

I ′3(n) = E|X̃|ℓ

(

|X̃|

Πn−1

)

1{Π−1
n−1>an−1},

a ∈ (0, 1) will be determined later. By the same argument as above, we get

∞
∑

n=1

I3(n) ≤ CE|X̃|(ℓ̂(|X̃|) + 1) <∞ . (5.5)

We now estimate I ′3(n). For fixed n, we divide it into two parts:

I ′3,1(n) = E|X̃|ℓ

(

|X̃|

Πn−1

)

1{Π−1
n−1>an−1}1{|X̃|an−1>1};

I ′3,2(n) = E|X̃|ℓ

(

|X̃|

Πn−1

)

1{Π−1
n−1>an−1}1{|X̃|an−1≤1}.

As ℓ is increasing and slowly varying at ∞, by Potter’s theorem, we have: for δ > 0,

I ′3,1(n) ≤ CE|X̃|ℓ(|X̃|an−1)(Πn−1a
n−1)−δ

≤ CE|X̃|ℓ(|X̃|)(Πn−1a
n−1)−δ

= CE|X̃|ℓ(|X̃|) · (Em−δ
0 · a−δ)naδ. (5.6)

Let ρ(x) = Em−x
0 . Since ρ(δ0) <∞ and ρ(x) is convex on (0, δ0) with ρ(0) = 1 and ρ′(0) = −E lnm0 < 0,

there exists some γ0 > 0 such that
Em−x

0 < 1, ∀x ∈ (0, γ0).
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Choose δ ∈ (0, γ0), and let 0 < a < 1 be defined by Em−δ
0 = a2δ. Notice that E|X̃|ℓ(|X̃|) ≤ CE|X̃|(ℓ̂(|X̃|)+

1) <∞. Therefore,
∞
∑

n=1

I ′3,1(n) ≤ CE|X̃|ℓ(|X̃|) ·
∞
∑

n=1

aδ(n+1) <∞ . (5.7)

Similarly, using Potter’s theorem in I ′3,2(n), we get

I ′3,2(n) ≤ E|X̃|ℓ(Π−1
n−1a

1−n)1{Π−1
n−1>an−1}

≤ CE|X̃|ℓ(1)(Πn−1a
n−1)−δ

≤ CE|X̃| · (Em−δ
0 a−δ)naδ

≤ CE|X̃| · aδ(n+1). (5.8)

Hence
∞
∑

n=1

I ′3,2(n) ≤ CE|X̃| ·
∞
∑

n=1

aδ(n−1) <∞ . (5.9)

Therefore, we have shown that
Eφ(W ∗ − 1) <∞ , (5.10)

which is equivalent to Eφ(W ∗) <∞.
�

Proof of Corollary 1.2. Let

φ1(x) =

{

φ′(1)
2 x2 if x ≤ 1;

φ(x) + c0 if x > 1
(5.11)

where φ(1) + c0 = φ′(1)
2 . Then it is easily seen that φ1 ≍ φ, φ1(0) = 0, φ′1(0+) = 0 and

∫ 1

0
φ′
1(t)
t dt =

φ′(1) < ∞. Moreover, φ1 is convex with positive concave derivative φ′1 on (0,∞), so that the function
x 7→ φ1(x

1/2) is concave on (0,∞). Applying the BDG-inequality and the concavity of φ1(x
1/2) (which

implies the subadditivity), we obtain

Eφ1(W
∗ − 1) ≤ CEφ1





(

∞
∑

n=1

|Dn|
2

)
1
2





≤ C

∞
∑

n=1

Eφ1(|Dn|), (5.12)

where C = C(φ1) > 0 is a constant depending only on φ1.
Recalling that under Pn−1, Dn is a sum of a sequence of martingale differences with respect to (F̃k).

Hence, again by the BDG-inequality applied to Dn, and the concavity of φ1(x
1/2), we get

En−1φ1(|Dn|) ≤ CEn−1φ1











∑

|u|=n−1

|X̃|2

Π2
n−1





1
2







≤ CEn−1

∑

|u|=n−1

φ1

(

|X̃|

Πn−1

)

= CZn−1 · En−1φ1

(

|X̃n−1|

Πn−1

)

(5.13)

where C > 0 is independent of n. Taking integral on both sides of the inequality above, and noting that
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φ′1 is concave, we obtain:

Eφ1(|Dn|) ≤ CEEζ

(

Zn−1 · En−1φ1

(

|X̃n−1|

Πn−1

))

= CEΠn−1φ1

(

|X̃n−1|

Πn−1

)

= CE|X̃n−1|

∫ 1

0

φ′1

(

|X̃n−1|

Πn−1
s

)

ds

≤ CE|X̃n−1|φ
′
1(b

n|X̃n−1|)

= CE|X̃|φ′1(b
n|X̃|), (5.14)

where X̃ is a random variable having the same distribution as (X̃n)n≥0 and b = Em−1
0 < 1. Similarly to

(5.2), combining (5.12) and (5.14), we obtain

Eφ1(W
∗ − 1) ≤ CE

∞
∑

n=1

|X̃|φ′1(b
n|X̃|)

≤ CE|X̃|

∫ |X̃|

0

φ′1(t)

t
dt

≤ CE|X̃|(φ̃1(|X̃|) + 1). (5.15)

As φ ≍ φ1 and φ̃ ≍ φ̃1, this yields

Eφ(W ∗ − 1) ≤ CE|X̃|(φ̃(|X̃|) + 1) <∞ . (5.16)

Therefore Eφ(W ∗) <∞, and
Eφ(W ) ≤ Eφ(W ∗) <∞ .

�

6 Proof of Theorem 1.3

For the proof of Theorem 1.3, we shall need an extension of a theorem of Hsu and Robbins (1947) (see also
Erdös (1949) or Baum and Katz (1965)). As usual, for a random variable X, we write X+ = max(X, 0)
and X− = max(−X, 0).

Lemma 6.1 Let (Xi) be i.i.d. with EX1 ∈ [−∞,∞). If E(X+
1 )2 <∞, then for all a > EX1,

∞
∑

n=1

P

(

n
∑

i=1

Xi > na

)

<∞ . (6.1)

The result is due to Hsu and Robbins (1947) if EX2
1 <∞, and due to Heyde (1964, Theorem A; 1966,

Theorem 1) if E|X1| <∞. The present form is a consequence of Theorem 2.1 of Kesten and Maller (1996)
which is more precise. As the theorem of Kesten and Maller is not easy to prove, for reader’s convenience
we give a short proof based of the theorem of Hsu and Robbins.

Proof of Lemma 6.1. Notice that for all a, a1, a2 ∈ R with a1 + a2 = a,

P

(

n
∑

i=1

Xi > na

)

≤ P

(

n
∑

i=1

X+
i > na1

)

+ P

(

−
n
∑

i=1

X−
i > na2

)

. (6.2)

By the theorem of Hsu and Robbins (1947), ∀ a1 > EX+
1 ,

∞
∑

n=1

P

(

n
∑

i=1

X+
i > na1

)

<∞. (6.3)
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Now for all C > 0, P
(

−
∑n

i=1X
−
i > na2

)

≤ P
(
∑n

i=1 −min(X−
i , C) > na2

)

. Therefore, again by the

theorem of Hsu and Robbins (1947), ∀ a2 > −Emin(X−
1 , C),

∞
∑

n=1

P

(

−
n
∑

i=1

X−
i > na2

)

<∞. (6.4)

Since lim
C→∞

Emin(X−
1 , C) = EX−

1 by the monotone convergence theorem, (6.4) holds for all a2 > −EX−
1 .

Together with (6.2) and (6.3), this implies that (6.1) holds for all a > EX+
1 − EX−

1 = EX1. �

Proof of Theorem 1.3. Let

ℓ(x) =

{

1− 1
2x , if x > 1;

x
2 , if x ≤ 1.

Then φ(x) = xℓ(x) is convex, and the function x 7→ φ(x1/2) is concave. By an argument similar to that in
the proof of Theorem 1.2, we get (cf. (5.3))

Eφ(W ∗ − 1) ≤ C
∞
∑

n=1

E|X̃|ℓ

(

|X̃|

Πn−1

)

. (6.5)

Let b ∈ (e−E lnm0 , 1) (by convention e−E lnm0 = 0 if E lnm0 = +∞). For n ≥ 0, we divide the domain
of integration above into two parts according to {Π−1

n ≤ bn} or {Π−1
n > bn}, so that

Eφ(W ∗ − 1) ≤ C

∞
∑

n=0

(I4(n) + I ′4(n)), (6.6)

where

I4(n) = E|X̃|ℓ(|X̃|Π−1
n )1{Π−1

n ≤bn},

I ′4(n) = E|X̃|ℓ(|X̃|Π−1
n )1{Π−1

n >bn}.

We first estimate I4(n). Noting that ℓ is increasing on [0,∞), we get I4(n) ≤ E|X̃|ℓ(|X̃|bn); moreover,

∞
∑

n=0

I4(n) ≤ CE|X̃|

∫ |X̃|

0

ℓ(t)

t
dt

≤ CE|X̃|(1 + ln+ |X̃|) <∞ . (6.7)

To estimate I ′4(n), as ℓ is bounded by 1, we have

∞
∑

n=0

I ′4(n) ≤ E|X̃| ·
∞
∑

n=0

E1{Π−1
n >bn}

= E|X̃| ·
∞
∑

n=0

P(Π−1
n > bn). (6.8)

By Lemma 6.1, the sum on the right side of (6.8) is finite if E
(

ln+ 1
m0

)2

<∞. Therefore,

Eφ(W ∗) <∞ , (6.9)

which is equivalent to EW ∗ <∞.
�
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