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Introduction and main results

For a Galton-Watson process (Z n ) with offspring mean m = EZ 1 ∈ (1, ∞), the moments of W = lim Z n /m n have been studied by many authors: see for example [START_REF] Harris | The theory of branching processes[END_REF], [START_REF] Athreya | Branching Processes[END_REF], [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF], [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF], [START_REF] Iksanov | On some moments of the limit random variable for a normalized supercritical Galton-Watson process[END_REF]. Of particular interest is the following comparison theorem about weighted moments of W and Z 1 , first proved by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF] via Tauberian theorems: when α > 1 is not an integer and ℓ is a positive function slowly varying at ∞, EW α ℓ(W ) < ∞ if and only if EZ α 1 ℓ(Z 1 ) < ∞. [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF] showed that the equivalence remains true when α is not of the form 2 n for some integer n ≥ 1, by a nice martingale argument. In this paper, we show that the equivalence is always true whenever α > 1, and that a similar result holds for a branching process in an independent and identically distributed random environment. Our approach is a refinement of the martingale argument of [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF]. We mention that the adaptation of the argument to the random environment case is not evident; actually in this case the study of the existence of the moments of order α is already delicate, see for example Afanasyev (2001, Sect. 3) and Guivarc'h and Liu (2001) where this problem has been considered.

Let ζ = (ζ 0 , ζ 1 , . . .) be a sequence of independent and identically distributed (i.i.d.) random variables, taking values in some space Θ, whose realization corresponds to a sequence of probability distributions on N = {0, 1, 2, ...}:

p(ζ n ) = {p i (ζ n ) : i ≥ 0}, where p i (ζ n ) ≥ 0, ∞ i=0 p i (ζ n ) = 1.
(1.1)

A branching process (Z n ) n≥0 in the random environment ζ (BPRE) is a family of time-inhomogeneous branching processes (see e.g. [START_REF] Athreya | Branching processes with random environments I: Extinction Probabilities[END_REF][START_REF] Athreya | Branching processes with random environments II: Limit Theorems[END_REF][START_REF] Athreya | Branching Processes[END_REF]): given the environment ζ, the process (Z n ) n≥0 acts as a Galton-Watson process in varying environments with offspring distributions p(ζ n ) for particles in the nth generation, n ≥ 0. By definition, Z 0 = 1 and

Z n+1 = u∈Tn X u for n ≥ 0, (1.2) 
where conditioned on ζ, {X u : |u| = n} are integer-valued random variables with common distribution p(ζ n ); all the random variables X u , indexed by finite sequences of integers u, are conditionally independent of each other. Here T n denotes the set of all individuals of generation n, marked by sequences u of positive integers of length |u| = n: as usual, the initial particle is denoted by the empty sequence ø (of length 0); if u ∈ T n , then ui ∈ T n+1 if and only if 1 ≤ i ≤ X u . The classical Galton-Watson process corresponds to the case where all ζ n are the same constant. Let (Γ, P ζ ) be the probability space under which the process is defined when the environment ζ is given. Therefore under P ζ , the random variables X u are independent of each other, and have the common law p(ζ n ) if |u| = n. The probability P ζ is usually called quenched law. The total probability space can be formulated as the product space (Θ N × Γ, P), where P = P ζ ⊗ τ in the sense that for all measurable and positive function g, we have

gdP = g(ζ, y)dP ζ (y)dτ (ζ),
where τ is the law of the environment ζ. The total probability P is called annealed law. The quenched law P ζ may be considered to be the conditional probability of the annealed law P given ζ. The expectation with respect to P ζ (resp. P ) will be denoted E ζ (resp. E).

For n ≥ 0, write

m n = ∞ i=0 ip i (ζ n ), Π 0 = 1 and Π n = m 0 • • • m n-1 if n ≥ 1. (1.3) Then E ζ X u = m n if |u| = n, and E ζ Z n = Π n for each n.
We consider the supercritical case where

E ln m 0 ∈ (0, ∞].
It is well-known that under P ζ ,

W n = Z n Π n (n ≥ 0)
forms a nonnegative martingale with respect to the filtration

E 0 = {∅, Ω} and E n = σ{ζ, X u : |u| < n} for n ≥ 1.
It follows that (W n , E n ) is also a martingale under P. Let

W = lim n→∞ W n and W * := sup n≥0 W n , (1.4) 
where the limit exists a.s. by the martingale convergence theorem, and EW ≤ 1 by Fatou's lemma. We are interested in asymptotic properties of W. Recall that in [START_REF] Guivarc'h | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF], Guivarc'h and Liu gave a necessary and sufficient condition for the existence of moments of W of order α > 1:

Lemma 1.1 ([14, Theorem 3]) Let (Z n ) be a supercritical branching process in an i.i.d. random environ- ment. Let α > 1. Then 0 < EW α < ∞ if and only if Em -(α-1) 0 < 1 and EW α 1 < ∞.
This result suggests that under a moment condition on m 0 , W 1 and W have similar tail behavior. In the following, we shall establish comparison theorems between weighted moments of W 1 and W .

Recall that a positive and measurable function ℓ defined on [0, ∞) is called slowly varying at ∞ if lim x→∞ ℓ(λx)/ℓ(x) = 1 for all λ > 0. (Throughout this paper, the term "positive" is used in the wide sense.) By the representation theorem (see [START_REF] Bingham | Regular Variation[END_REF]Theorem 1.3.1]), any slowly varying function ℓ is of the form

ℓ(x) = c(x) exp x a0 ǫ(t)dt/t , x > a 0 , (1.5) 
where a 0 ≥ 0, c(•) and ǫ(•) are measurable with c(x) → c for some constant c ∈ (0, ∞), and ǫ(x) → 0, as x → ∞. The value of a 0 and those of ℓ(x) on [0, a 0 ] will not be important; we always assume that ℓ is bounded on compact sets of [0, ∞). For convenience, we often take a 0 = 1. We search for conditions under which W has weighted moments of the form EW α ℓ(W ), where α ≥ 1, ℓ ≥ 0 is a function slowly varying at ∞. Notice that the function c(x) in the representation of ℓ(x) has no influence on the finiteness of the moments, so that we can suppose without loss of generality that c(x) = 1.

We first consider the case where α > 1. As usual, for a set A, we write IntA for its interior.

Theorem 1.1 Let α ∈ Int{a > 1 : Em 1-a 0 < 1} and ℓ : [0, ∞) → [0, ∞
) be a function slowly varying at ∞. Then the following assertions are equivalent:

(a) EW α 1 ℓ(W 1 ) < ∞ ; (b) EW * α ℓ(W * ) < ∞ ; (c) 0 < EW α ℓ(W ) < ∞ .
The result is sharp even for the classical Galton-Watson process (where ζ n are the same constant): in this case, it improves the corresponding result of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF] in the sense that they needed the additional assumption that ℓ(x) = x 1 ℓ 0 (x)/xdx for some function ℓ 0 slowly varying at ∞ (which is equivalent to the hypothesis that the function ǫ(.) in (1.5) is positive and slowly varying at ∞) when α is an integer. [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF] showed that this additional condition can be removed if α is not a dyadic power; our result shows that it can be removed for all α and that the same conclusion holds even in the random environment case.

We now consider the case where α = 1, where the situation is different as already shown by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF] in the Galton-Watson case.

For a measurable function ℓ

: [0, ∞) → [0, ∞), we set l(x) = x 1 ℓ(t) t dt if x > 1; 0 if x ≤ 1. (1.6)
We essentially deal with the case where ℓ is concave, which covers the case of slowly varying functions considered by [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF]. (cf. Corollary 1.1 below)

Theorem 1.2 Let ℓ : [0, ∞) → [0, ∞) be concave on [a 0 , ∞) for some a 0 ≥ 0. If Em -1 0 < 1 and EW 1 l(W 1 ) < ∞, then EW * ℓ(W * ) < ∞ and EW ℓ(W ) < ∞ .
Moreover, in the case where ℓ is also slowly varying at ∞, the moment condition Em -1 0 < 1 can be relaxed to Em -δ0 0 < ∞ for some δ 0 > 0.

Notice that when ℓ is positive and concave on [a 0 , ∞), ℓ must be increasing, since otherwise there would exist x 0 > a 0 such that ℓ ′ (x 0 ) < 0, where ℓ ′ denotes the left (or right) derivative (which is well-defined), so that for x > x 0 , ℓ(x) ≤ ℓ(x 0 ) + ℓ ′ (x 0 )(xx 0 ) → -∞ as x → ∞. If lim x→∞ ℓ(x) = ∞, the conclusion for EW ℓ(W ) was obtained by [START_REF] Iksanov | On some moments of the limit random variable for a normalized supercritical Galton-Watson process[END_REF] in the Galton-Watson case; a similar result was shown by [START_REF] Iksanov | Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities[END_REF] for branching random walks. If lim x→∞ ℓ(x) = c ∈ (0, ∞), the conclusion about W * leads to a new proof for the non-degeneration of W : cf. the comments before Theorem 1.3 below.

As a corollary of Theorem 1.2, we obtain:

Corollary 1.1 Let ℓ : [0, ∞) → [0, ∞
) be nondecreasing and slowly varying at ∞, such that ℓ(x) =

x 1 ℓ 0 (t)dt/t for some function ℓ 0 ≥ 0 slowly varying at ∞. Assume that Em -δ0

0 < ∞ for some δ 0 > 0. If EW 1 l(W 1 ) < ∞, then EW * ℓ(W * ) < ∞ and EW ℓ(W ) < ∞ .
Corollary 1.1 extends the sufficiency of Theorem 7 of [START_REF] Bingham | Asymptotic properties of supercritical branching processes I: The Galton-Watson processes[END_REF] where the classical Galton-Watson process was considered; see also Corollary 2.3 of [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF]. As information, we mention that [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF] gave sufficient conditions for EW b(ln + W ) < ∞ in the case of branching random walks, where b > 0 is a regular function of order a > 0. Notice that their theorem does not cover our Corollary 1.1. For example, our Corollary 1.1 applies for ℓ(x) = ln ln x (which corresponds to (1.5) with c(x) = 1 and ǫ(t) = (ln t • ln ln t) -1 ) to obtain a sufficient condition for EW ℓ(W ) < ∞; but this result is not covered by Theorem 1.4 of [START_REF] Alsmeyer | A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks[END_REF], as b(x) = ℓ(e x ) = ln x is slowly varying at ∞ (a regular function of order 0 rather than order a > 0).

Notice that ℓ(x) =

x 1 ℓ 0 (t)dt/t for some function ℓ 0 slowly varying at ∞ if and only if the function xℓ ′ (x) is slowly varying at ∞; when ℓ is of the canonical form ℓ(x) = exp( x 1 ǫ(t)dt/t) with ǫ(t) → 0, this is exactly the case where ǫ(.) is slowly varying at ∞. [START_REF] Bingham | Regular Variation[END_REF]Theorem 1.5.3]), where ψ is positive and nonincreasing; so ℓ(x) ≍ ℓ 1 (x) := x 1 ψ(t)dt (x ≥ 1), and ℓ 1 is a positive and concave function on [1, ∞). Here, as usual, we write

Corollary 1.1 is a direct consequence of Theorem 1.2. Notice that xℓ ′ (x) = ℓ 0 (x). Let ψ(x) = inf{ℓ ′ (t) : 1 ≤ t ≤ x}, for x ≥ 1. Since ℓ ′ (x) is a regularly varying function of order -1 (xℓ ′ (x) is slowly varying), we have ℓ ′ (x) ∼ ψ(x) when x → ∞ (see
f (x) ≍ g(x) if 0 < lim inf x→∞ f (x) g(x) ≤ lim sup x→∞ f (x) g(x) < ∞ , (1.7) and f (x) ∼ g(x) if lim x→∞ f (x)/g(x) = 1.
Therefore we can apply Theorem 1.2 to ℓ 1 to obtain the conclusion of the corollary.

By the same method, we can consider some slightly different classes of functions. For example, we can show the following result similar to Theorem 1.1 of [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF] where the Galton-Watson case was considered.

Corollary 1.2 Let φ be positive and convex on [0, ∞) with positive concave derivative φ ′ on (0, ∞). Define

φ(x) = x 1 φ ′ (t) t dt if x > 1; 0 if x ≤ 1. If Em -1 0 < 1 and EW 1 φ(W 1 ) < ∞, then Eφ(W * ) < ∞ and Eφ(W ) < ∞ .
Notice that Theorem 1.2 also gives an information about the integrability of W * and thus the nondegeneration of W . In fact, taking ℓ(x) ≡ 1 in Theorem 1.2, we see that if

EW 1 ln + W 1 < ∞ and Em -δ0 0 < ∞ for some δ 0 > 0, then EW * < ∞.
Here and hereafter, we write ln + x = max(0, ln x) and ln -x = max(0,ln x). Actually, by the argument in the proof of Theorem 1.2, the above moment condition on m 0 can be relaxed, as shown in the following theorem.

Theorem 1.3 Assume that E( ln -m 0 ) 2 < ∞. If EW 1 ln + W 1 < ∞, then EW * < ∞.
Notice that EW * < ∞ implies EW = 1 by the dominated convergence theorem. Therefore Theorem 1.3 implies the classical theorem (the sufficiency) of [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF] on the Galton-Watson process. It gives a new proof of the corresponding result of Athreya and Karlin (1971b) (see also [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]) for a branching process in a random environment, under the extra condition that E(ln -m 0 ) 2 < ∞. (Notice that the supercritical condition E ln m 0 > 0 implies E ln -m 0 < ∞.) Although we need this extra condition, the conclusion that EW * < ∞ may be useful in applications; we do not know whether this conclusion is equivalent to EW = 1. (It is known (see [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]) that the condition EW 1 ln + W 1 < ∞ is equivalent to EW = 1; in the Galton-Watson case, it is also known that this condition is also equivalent to EW * < ∞. But we do not know whether the same conclusion remains true for the random environment case; Theorem 1.3 shows that this is indeed the case if E( ln -m 0 ) 2 < ∞.)

In the Galton-Watson case, Alsmeyer and Rösler (2004) used a similar argument (also based on convex inequalities for martingales) to show the non-degeneration of W . But our approach is more direct, as we do not use their Lemma 4.5.

The rest of the paper is organized as follows. In Section 2, we establish key inequalities based on convex inequalities for martingales. In Section 3, we give smoothed versions of regularly varying functions in order to use the key inequalities of Section 2. Theorem 1.1 is proved in Section 4, while Theorems 1.2 and 1.3 are proved in Sections 5 and 6, respectively.

In enclosing the introduction, we mention that the argument of this paper can be adapted to weighted branching processes, thus enabling us to improve the results of [START_REF] Bingham | Asymptotic properties of supercritical branching processes II: Crump-Mode and Jirina processes[END_REF] for Crump-Mode and Jirina processes, those of Alsmeyer and Kuhlbusch (2009) for branching random walks, and to extend their results to the random environment case (including the weighted branching processes considered by [START_REF] Kuhlbusch | On weighted branching processes in random environment[END_REF]). This will be done in the forthcoming paper [START_REF] Liang | Weighted moments for Mandelbrot's martingales in random environments[END_REF].

Key Inequalities

In this section, we show key inequalities that will be used for the proof of main theorems. As in [START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF], our argument is based on convex inequalities for martingales.

We first introduce some notations. For a finite sequence u ∈

∞ n=0 N * n (N * 0 = {∅} by convention), set Xu = Xu m |u| -1. For n ≥ 1, write D n = W n -W n-1 = 1 Π n-1 |u|=n-1
Xu .

(2.1)

Then W * = sup n≥0 W n can be written as

W * = 1 + sup n≥1 (D 1 + . . . + D n ).
For convenience, let Xn = X1n where 1 n denotes the sequence of length n whose components are all equal to 1, with the convention that 1 0 = ∅. Thus when u is a sequence of length n, Xu has the same distribution as Xn under P ζ and P. Define

F 0 = {∅, Ω} and F n = σ{ζ k , Xu : k < n, |u| < n} for n ≥ 1. (2.2)
Then (W n , F n ) n≥0 also forms a nonnegative martingale under P, as

E(W n |F n-1 ) = E(E(W n |E n-1 )|F n-1 ) = E(W n-1 |F n-1 ) = W n-1 .
For technical reasons, we will use the martingale (W n , F n ), rather than the more frequently used one (W n , E n ). We will explain this after the proof of Theorem 1.1. For convenience, we shall write for n ≥ 0,

P n (•) = P(•|F n ) and E n (•) = E(•|F n ). (2.3) 
The terms "increasing" and "decreasing" will be used in the wide sense.

Theorem 2.1 Let φ be convex and increasing with φ(0) = 0 and φ(2x) ≤ cφ(x) for some constant c ∈ (0, ∞) and all x > 0.

Let β ∈ (1, 2]. (i) If the function x → φ(x 1/β ) is convex and E| X1 | β < ∞, then writing A = ∞ n=1 1 Π β-1 n-1
which is a.s.

finite, we have

Eφ(W * -1) ≤ C ∞ n=1 E 1 AΠ β-1 n-1 φ(A 1/β W 1/β n-1 ) +Eφ | Xn-1 | Π (β-1)/β n-1 • W 1/β n-1 , (2.4) 
where C > 0 is a constant depending only on c, β and

E| X1 | β . (ii) If the function x → φ(x 1/β ) is concave, then Eφ(W * -1) ≤ C ∞ n=1 EΠ n-1 φ | Xn-1 | Π n-1 , (2.5) 
where C > 0 is a constant depending only on c.

For the proof, as in Alsmeyer and Rösler (2004), we shall use the BDG (Burkholder-Davis-Gundy) inequalities. For convenience of readers let us first recall these inequalities and state some consequences that we will use. For a martingale sequence {(f n , G n ) : n ≥ 1} defined on some probability space (Ω, G, P), .

set f 0 = 0, G 0 = {∅, Ω}, d n = f n -f n-1 for n ≥ 1, f * = sup
Moreover, for any β ∈ (0, 2],

EΦ(f * ) ≤ BEΦ(S(β)), where S(β) = ∞ n=1 |d n | β 1/β .
If additionally, for some β ∈ (0, 2] the function

Φ 1/β (x) := Φ(x 1/β ) is sub-additive on [0, ∞), then EΦ(f * ) ≤ BE ∞ n=1 Φ(|d n |).
In fact, in Part (a), the first inequality is the general form of the BDG inequality (cf. [START_REF] Chow | Probability Theory: Independence, Interchangeability, Martingales[END_REF], Chap. 

Φ(S(β)) = Φ 1/β ( ∞ n=1 |d n | β ) ≤ ∞ n=1 Φ 1/β (|d n | β ) = ∞ n=1 Φ(|d n |).
The second inequality of Part (b) may be considered as a counter part of the first inequality of Part (a). Assuming the concavity of the derivative of Φ instead of the subadditivity of Φ 1/β , Topchii and Vatutin (cf. [START_REF] Topchii | The maximum of critical Galton-Watson processes, and left-continuous random walks (Russian)[END_REF], Theorem 2) also established the third inequality of Part (b).

Proof of Theorem 2.1 (i)

We first notice that by the law of large numbers, lim n ( 1 Πn ) 1/n = e -E ln m0 < 1 a.s., so that A < ∞ a.s. (for β > 1). We now begin with the proof of inequality (2.4). By Lemma 2.1 (a),

Eφ(W * -1) ≤ B   Eφ   ∞ n=1 E n-1 |D n | β 1 β   + ∞ n=1 Eφ(|D n |)   , (2.6) 
where B > 0 is a constant depending only on c and β. Let X(1), . . . , X(Z n-1 ) be an enumeration of { Xu : u ∈ T n-1 }. By the fact that E ζ X(k) = 0 and the independence of { Xu } under P ζ , it can be easily seen that, under P n-1 , { X(1), . . . , X(Z n-1 )} is a sequence of martingale differences with respect to the natural filtration

Fk = σ{ζ l , X u : l < n -1, |u| < n -1, X(1), . . . , X(k)}, k ≥ 1. (2.7)
To this martingale difference sequence, using Lemma 2.1 (b) (the third inequality of Part (b) applied to Φ(x) = x β , noting that Φ 1/2 (x) = x β/2 is sub-additive), we obtain

E n-1 |D n | β = E n-1 |u|=n-1 Xu Π n-1 β ≤ BE n-1 |u|=n-1 | Xu | β Π β n-1 = B Z n-1 Π β n-1 • E n-1 | Xn-1 | β = C W n-1 Π β-1 n-1 , (2.8) 
where

C = BE| X1 | β < ∞.
(This can also be shown by the usual Marcinkiewicz-Zygmund inequality first conditional on E n , or by Topchii and Vatutin's inequality ( [START_REF] Topchii | The maximum of critical Galton-Watson processes, and left-continuous random walks (Russian)[END_REF], Theorem 2).) Since φ 1/β (x) := φ(x 1/β ) is convex and

∞ n=1 1 AΠ β-1 n-1 = 1, it follows that Eφ   ∞ n=1 E n-1 |D n | β 1 β   = Eφ 1/β ( ∞ n=1 E n-1 |D n | β ) ≤ Eφ 1/β ( ∞ n=1 1 AΠ β-1 n-1 • ACW n-1 ) ≤ E ∞ n=1 1 AΠ β-1 n-1 φ 1/β (ACW n-1 ) = E ∞ n=1 1 AΠ β-1 n-1 • φ C 1/β A 1/β W 1/β n-1 ≤ C 1 E ∞ n=1 1 AΠ β-1 n-1 • φ A 1/β W 1/β n-1 , (2.9) 
where C 1 > 0 is a constant depending only on C and c. For the second part of (2.6), by Lemma 2.1 (b) and the convexity of φ 1/β (x) = φ(x 1/β ), we have (using the fact that |u|=n-1

Zn-1 = 1):

E n-1 φ(|D n |) ≤ BE n-1 φ 1/β   |u|=n-1 | Xu | β Π β n-1   = BE n-1 φ 1/β   |u|=n-1 1 Z n-1 Z n-1 | Xu | β Π β n-1   ≤ BE n-1 |u|=n-1 1 Z n-1 φ 1/β ( Z n-1 | Xu | β Π β n-1 )) = BE n-1 |u|=n-1 1 Z n-1 φ | Xu | Π n-1 • Z 1/β n-1 = BE n-1 φ | Xn-1 | Π (β-1)/β n-1 • W 1/β n-1 . (2.10) Therefore Eφ(|D n |) ≤ BEφ | Xn-1 | Π (β-1)/β n-1 W 1/β n-1 . (2.11) 
(ii) Notice that the concavity of φ 1/β (x) = φ(x 1/β ) implies its subadditivity. Therefore by the third inequality of Part (b) of Lemma 2.1,

Eφ(W * -1) ≤ B n≥1 Eφ(|D n |), (2.12) 
where B > 0 is a constant depending only on c. By the same reason,

E n-1 φ(|D n |) = E n-1 φ   1 Π n-1 |u|=n-1 Xu   ≤ BE n-1 |u|=n-1 φ | Xu | Π n-1 = BZ n-1 E ζ φ | Xn-1 | Π n-1 . (2.13) 
Hence

Eφ(|D n |) ≤ BE[Z n-1 E ζ φ | Xn-1 | Π n-1 ] = EΠ n-1 φ | Xn-1 | Π n-1 . (2.14)
Combining (2.12) and (2.14), we get (2.5).

Smoothed versions of regularly varying functions

In this section, for a regularly varying function, we find some smoothed versions with nice properties that we will need in order to use convex inequalities for martingales.

Lemma 3.1 Let φ(x) = x α ℓ(x), with α > 1, and ℓ(x) = exp x a0 ǫ(u)du/u (x ≥ a 0 ≥ 0) with ǫ(x) → 0 (x → 0). Then for each β ∈ (1, 2] with β < α, there is a function φ 1 (x) ≥ 0 such that:

(i) φ 1 (x) ∼ φ(x);
(ii) φ 1 (x) and φ 1 (x 1/β ) are convex on [0, ∞);

(iii) φ 1 (x) = x α ℓ 1 (x), where ℓ 1 (x) is slowly varying at ∞ and ℓ 1 (x) > 0 ∀x ≥ 0. Proof. Fix β ∈ (1, 2] with β < α. Notice that the derivative φ ′ (x) = x α-1 ℓ(x)(α + ǫ(x)) behaves like αx α-1 ℓ(x) as x → ∞. It is therefore natural to define φ 1 (x) = α x 0 t α-1 ℓ(t)dt, x > a, (3.1) 
where a ≥ max(1, a 0 ) is large enough such that ∀ x > a, αβ + ǫ(x) > 0, so that

d dx (x α-1 ℓ(x)) = x α-2 ℓ(x)(α -1 + ǫ(x)) > 0 ∀x > a, (3.2) and d dx x α β -1 ℓ(x 1 β ) = x α β -2 ℓ(x 1 β ) ( α β -1) + ǫ(x 1 β ) β > 0 ∀x > a β . (3.3) Therefore, φ 1 (x) is convex on (a, ∞) as φ ′ 1 (x) = αx α-1 ℓ(x) is increasing; and φ 1 (x 1/β ) is convex on [a β , ∞) as d dx φ 1 (x 1/β ) = φ ′ 1 (x 1/β ) • 1 β x 1 β -1 = α β x α β -1 ℓ(x 1/β ) (x > a β )
is also increasing on (a β , ∞). Define

φ 1 (x) = x α ℓ(a), ∀x ∈ [0, a]. (3.4) Then d dx φ 1 (x) = αx α-1 ℓ(a) ∀x ∈ [0, a], (3.5) 
and

d dx φ 1 (x 1/β ) = d dx x α/β ℓ(a) = α β x α β -1 ℓ(a) ∀x ∈ [0, a β ]. (3.6)
It follows that both d dx φ 1 (x) and d dx φ 1 (x 1/β ) are increasing on [0, ∞). Therefore both φ 1 (x) and

φ 1 (x 1/β ) are convex on [0, ∞). Moreover, lim x→∞ φ 1 (x) φ(x) = lim x→∞ φ ′ 1 (x) φ ′ (x) = 1, (3.7) 
so that φ 1 (x) = x α ℓ 1 (x) for some slowly varying function

ℓ 1 . If x > a, then ℓ 1 (x) > 0 as φ 1 (x) > 0; if x ≤ a, then ℓ 1 (x) = ℓ(a) > 0. Therefore, ℓ 1 (x) > 0 ∀x ≥ 0.
Lemma 3.2 Let ℓ be a positive and increasing function on [0, ∞), concave on (a 0 , ∞) for some a 0 ≥ 0.

Then there is a convex increasing function φ 1 (x) ≥ 0 such that:

(i) φ 1 (x) ≍ xℓ(x); (ii) φ 1 (2x) ≤ cφ 1 (x)
for some constant c ∈ (0, ∞) and all x > 0;

(iii) φ 1 (x 1/2 ) is concave on (0, ∞). Proof. Let ℓ 1 (x) = ℓ ′ (a)x if x ∈ [0, a], ℓ(x) + c 0 if x ∈ (a, ∞), (3.8) 
where a > a 0 > 0, c 0 = ℓ ′ (a)aℓ(a), and φ 1 (x) =

x 0 ℓ 1 (t)dt. We will show that φ 1 satisfies the stated properties.

First, φ 1 is convex as φ ′ 1 (x) = ℓ 1 (x) is increasing on [0, ∞); φ 1 is increasing as ℓ 1 is positive on [0, ∞). Next, for x > 2a, as ℓ is increasing, we have ℓ

1 (t) ≥ ℓ 1 ( x 2 ) = ℓ( x 2 ) + c 0 if t ∈ [ x 2 , x], and ℓ 1 (t) ≤ ℓ 1 (x) if t ∈ [0, x]; therefore x 2 ℓ( x 2 ) + c 0 ≤ φ 1 (x) ≤ x(ℓ(x) + c 0 ). (3.9)
By the concavity of ℓ, for all x > a,

ℓ(2x) = ℓ(x) + 2 x x 2 ℓ ′ (2s)ds ≤ ℓ(x) + 2 x 0 ℓ ′ (s)ds ≤ 3ℓ(x). (3.10) 
(3.9) and (3.10) imply that φ 1 (x) ≍ xℓ(x) and that there is a constant c ∈ (0, ∞) such that ℓ 1 (2x) ≤ cℓ 1 (x) for all x > 0. Moreover, we can prove that φ 1 (x 1/2 ) is concave. In fact,

d dx φ 1 (x 1/2 ) = φ ′ 1 (x 1 2 ) • 1 2 x -1 2 = 1 2 ℓ 1 (x 1 2 ) • x -1 2 . (3.11) 
Notice that ℓ1(t) t is decreasing as ℓ 1 is concave with ℓ 1 (0) = 0; hence d dx φ 1 (x 1/2 ) is decreasing, so that φ 1 (x 1/2 ) is concave.

Proof of Theorem 1.1

In this section, the letter C will denote a finite and positive constant whose value is not important and may differ from line to line.

Proof of Theorem 1.1. Let β ∈ (1, 2] with β < α. Write φ(x) = x α ℓ(x). By Lemma 3.1, we can assume that the functions φ(x) and φ(x 1/β ) are convex on [0, ∞), and ℓ(x) > 0 ∀ x ≥ 0.

(i) We first show that (a) implies (b). By Theorem 2.1(i), we obtain

Eφ(W * -1) ≤ C ∞ n=1 E 1 AΠ β-1 n-1 φ A 1/β W 1/β n-1 +Eφ | Xn-1 | Π (β-1)/β n-1 • W 1/β n-1 . (4.1) 
Notice that ℓ > 0 on any compact subset of [0, ∞), so by Potter's Theorem (see [START_REF] Bingham | Regular Variation[END_REF]), for δ > 0 which will be determined later, there exists C = C(ℓ, δ) > 1 such that ℓ(x) ≤ C max(x δ , x -δ ) for all x > 0. Hence for the first part of (4.1), we have

E 1 AΠ β-1 n-1 φ A 1/β W 1/β n-1 = E Π 1-β n-1 A α β -1 W α β n-1 ℓ A 1/β W 1/β n-1 ≤ C(I + 1 (n) + I - 1 (n)), (4.2) 
where

I + 1 (n) = EΠ 1-β n-1 A α+δ β -1 W α+δ β n-1 , I - 1 (n) = EΠ 1-β n-1 A α-δ β -1 W α-δ β n-1 . Recall that Z n-1 is an integer-valued random variable with E ζ Z n-1 = Π n-1 . Choose δ > 0 small enough such that β -1 -2δ > 0.
Then by Hölder's inequality, we obtain

E ζ Z α+δ β n-1 = E ζ Z α+δ-(β-1) β n-1 • Z β-1 β n-1 ≤ (E ζ Z α+δ-(β-1) n-1
)

1 β • (E ζ Z n-1 ) β-1 β ≤ E ζ Z α+δ-(β-1)+(β-1-2δ) n-1 1 β • (E ζ Z n-1 ) β-1 β = Π α+β-1-δ β n-1 E ζ W α-δ n-1 1 β . (4.3) 
Therefore,

I + 1 (n) = E   Π 1-β n-1 A α+δ β -1 • Z α+δ β n-1 Π α+δ β n-1   ≤ E Π - (β-1) 2 +2δ β n-1 A α+δ β -1 E ζ W α-δ n-1 1 β . (4.4) 
Using Hölder's inequality twice, we see that

I + 1 (n) ≤ EW α-δ n-1 1 β • EΠ - (β-1) 2 +2δ β-1 n-1 A α+δ-β β-1 β-1 β ≤ EW α-δ n-1 1 β • EΠ - (β-1) 2 +2δ β-1 p n-1 β-1 pβ • EA α+δ-β β-1 p * β-1 p * β , (4.5) 
where p > 1, p * > 1 and 1 p + 1 p * = 1. By Potter's Theorem, there exists C = C(ℓ, δ) > 0 such that ℓ(x) ≥ Cx -δ for all x ≥ 1. This yields

E| X| α-δ ≤ C(1 + Eφ(| X|)) < ∞ . (4.6) 
Since α ∈ Int{a > 1 : Em 1-a 0 < 1}, there exists δ 0 ∈ (0, 1) such that

Em 1-(α+δ0) 0 < 1.
Notice that the function ρ(x) = Em 1-x 0 is convex with ρ(1) = 1, so ρ(α + δ 0 ) < 1 implies ρ(x) < 1 for all 1 < x < α + δ 0 ; in particular, ρ(αδ) < 1. Hence, by Lemma 1.1,

sup n≥1 EW α-δ n-1 < ∞ . (4.7) 
We choose p = 1 + (α+δ-β)(β-1) (β-1) 2 +2δ so that p 1 := α+δ-β β-1 p * = (β-1) 2 +2δ (β-1) 2 p. As p 1 (β -1) ∈ (1, α + δ 0 ) when δ is small enough, we get EΠ -p1(β-1) n-1 = a n-1 with a = Em -p1(β-1) 0 < 1; moreover, by the triangular inequality for the norm

• p1 in L p1 , A p1 ≤ ∞ n=1 Π -(β-1) n-1 p1 = ∞ n=1 a (n-1)/p1 < ∞ .
Therefore,

∞ n=1 I + 1 (n) < ∞ . (4.8)
We use a similar argument to estimate I - 1 (n). This time, instead of (4.4), we have

I - 1 (n) ≤ E Π 1-β A α-δ β -1 (E ζ W α-δ n-1 ) 1 β . (4.9) 
Proceeding in the same way as before, we obtain

∞ n=1 I - 1 (n) < ∞ . (4.10) Hence ∞ n=1 E 1 AΠ β-1 n-1 φ A 1/β W 1/β n-1 < ∞ . (4.11) 
We now consider the second part of (4.1). Again by Potter's theorem and the fact that Xn-1 is independent of W n-1 and Π n-1 (under P), we have

Eφ | Xn-1 | Π (β-1)/β n-1 • W 1/β n-1 = E W n-1 Π β-1 n-1 α β | Xn-1 | α ℓ   W n-1 Π β-1 n-1 1 β | Xn-1 |   ≤ CEφ(| X0 |) • (I + 2 (n) + I - 2 (n)), (4.12) 
where

I + 2 (n) = E W n-1 Π β-1 n-1 α+δ β , I - 2 (n) = E W n-1 Π β-1 n-1 α-δ β , δ ≤ δ 0 , C = C(ℓ 1 , δ, β)
> 0 is a constant depending only on ℓ 1 , δ and β. Here we have used the fact that under P, each Xn-1 has the same distribution as X0 . We can estimate I + 2 (n) as we have done for I + 1 (n):

we have

I + 2 (n) = E Π -(α+δ) n-1 • E ζ Z α+δ β n-1 ≤ E Π -(α+δ-β-1 β ) n-1 • E ζ Z α+δ-(β-1) n-1 1 β (E ζ W n-1 ) β-1 β = E Π -(α+δ-β-1 β ) n-1 • E ζ Z α+δ-(β-1) n-1 1 β ≤ E Π -(α+δ-β-1 β ) n-1 E ζ Z α+δ-(β-1)+(β-1-2δ) n-1 1 β = E Π - (α+δ-1)(β-1) β n-1 • E ζ W α-δ n-1 1 β ≤ EW α-δ n-1 1 β EΠ 1-(α+δ) n-1 β-1 β (4.13)
It follows that

∞ n≥1 I + 2 (n) ≤ sup n≥1 EW α-δ n-1 1 β • ∞ n=1 Em 1-(α+δ) 0 n(β-1) β < ∞ . (4.14) 
Similarly we obtain

I - 2 (n) ≤ (EW α-δ n-1 ) 1 β EΠ 1-(α-δ) n-1 β-1 β (4.15)
and

∞ n≥1 I - 2 (n) ≤ sup n≥1 EW α-δ n-1 1 β • ∞ n=1 Em 1-(α-δ) 0 n(β-1) β < ∞ . (4.16) 
Therefore,

∞ n=1 Eφ | Xn-1 | Π (β-1)/β n-1 W 1/β n-1 < ∞. (4.17) 
Combining (4.1), (4.11) and (4.17), we get

Eφ(W * -1) < ∞, (4.18) 
which is equivalent to Eφ(W * ) < ∞.

(ii) We next show that (b) implies (c). Obviously,

Eφ(W ) ≤ Eφ(W * ) < ∞ ;
by Jensen's inequality, for any n ≥ 1,

Eφ(W n ) ≥ φ(EW n ) = φ(1) > 0.
So by the dominated convergence theorem, we see that

Eφ(W ) = lim n→∞ Eφ(W n ) ≥ φ(1) > 0.
(iii) We finally show that (c) implies (a). Notice that the limit W satisfies the equation

W = Z1 i=1 W (i) m 0 , (4.19) 
where under P ζ , (W (i) ) are independent of each other, and have the same law as W under P T ζ : Remark.

P ζ (W (i) ∈ •) = P T ζ (W ∈ •), T being the usual translation: T ζ = (ζ 1 , ζ 2 , . . .) if ζ = (ζ 0 , ζ 1 , . . .). By Jensen's inequality, writting E ζ,1 (•) = E ζ (•|F 1 ), we have E ζ φ(W ) = E ζ φ Z1 i=1 W (i) m 0 ≥ E ζ φ E ζ,1 Z1 i=1 W (i) m 0 = E ζ φ(Z 1 /m 0 ) = E ζ φ(W 1 ). ( 4 
For technical reasons, in the proof of Theorem 1.1, we have used the martingale (W n , F n ) under P rather than the more natural martingale (W n , E n ) under P ζ . In fact, if we take the later martingale, then instead of (2.6), we have

E ζ φ(W * -1) ≤ B   E ζ φ   ∞ n=1 E ζ (|D n | β |E n-1 ) 1 β   + ∞ n=1 E ζ φ(|D n |)   ; (4.22)
instead of (2.8), we obtain

E ζ (|D n | β |E n-1 ) ≤ B σ β n-1 (β) Π β-1 n-1 W n-1 . (4.23) 
Taking expectations and using the same argument as in part (i) of the proof of Theorem 1.1, we obtain

Eφ(W * -1) ≤ C ∞ n=1 ( Ĩ+ 1 (n) + Ĩ- 1 (n)) + ∞ n=1 Eφ(|D n |) , (4.24) 
where

Ĩ+ 1 (n) = EΠ 1-β n-1 A α+δ-β β [σ n-1 (β)] α+δ W α+δ β n-1 , Ĩ- 1 (n) = EΠ 1-β n-1 A α-δ-β β [σ n-1 (β)] α-δ W α-δ β n-1 .
The problem here is that we have to deal with the extra term σ n-1 (β) in Ĩ± 1 (n). We can do this by Hölder's inequality, but we then need an extra moment condition on σ n-1 (β). Elementary calculations show that if for some positive number δ 0 , either (a) α < 2 and E[σ 0 (α)] α(α+δ0) < ∞, or (b) α ≥ 2 and

E[σ 0 (2)] 2(α+δ0) < ∞, then ∞ n=1 Ĩ± 1 (n) < ∞, provided that EW α 1 ℓ(W 1 ) < ∞.
This leads a proof of Theorem 1.1 under the preceding extra moment condition.

Proofs of Theorem 1.2 and Corollary 1.2

As in the preceding section, we still use the letter C to denote a finite and positive constant whose value is not important and may differ from line to line.

Proof of Theorem 1.2. Let φ be φ 1 and ℓ be ℓ 1 defined in Lemma 3.2 (the new function ℓ 1 is still denoted ℓ for simplicity; we can replace ℓ by ℓ 1 as l(x) ≍ l1 (x) ).

Notice that under P, Xn-1 is independent of Π n-1 . As ℓ is concave, we have

EΠ n-1 φ | Xn-1 | Π n-1 ≤ CE| Xn-1 |ℓ | Xn-1 | Π n-1 ≤ CE| Xn-1 |ℓ(b n | Xn-1 |) = CE| X|ℓ(b n | X|), (5.1) 
where X is a random variable having the same distribution as ( Xn ) n≥0 and b = Em -1 0 < 1. According to the inequality (2.5), we have

Eφ(W * -1) ≤ C ∞ n=1 EΠ n-1 φ | Xn-1 | Π n-1 ≤ C ∞ n=1 E| X|ℓ(b n | X|) ≤ C ∞ n=1 E| X| b n-1 | X| b n | X| ℓ(t) t dt = CE| X| | X| 0 ℓ(t) t dt ≤ CE| X|(1 + l(| X|)) < ∞ . (5.2) 
This yields EW * ℓ(W * ) < ∞, and

EW ℓ(W ) ≤ EW * ℓ(W * ) < ∞ .
If in addition, ℓ is slowly varying at ∞, then we can use Potter's theorem to replace the Jensen's inequality in (5.1), to relax the assumption Em -1 0 < 1. Recall that for this ℓ, we have shown that

Eφ(W * -1) ≤ C ∞ n=1 E| X|ℓ | X| Π n-1 (5.3) = C ∞ n=1 (I 3 (n) + I ′ 3 (n)), (5.4) 
where

I 3 (n) = E| X|ℓ | X| Π n-1 1 {Π -1 n-1 ≤a n-1 } , I ′ 3 (n) = E| X|ℓ | X| Π n-1 1 {Π -1 n-1 >a n-1 } ,
a ∈ (0, 1) will be determined later. By the same argument as above, we get We now estimate I ′ 3 (n). For fixed n, we divide it into two parts:

I ′ 3,1 (n) = E| X|ℓ | X| Π n-1 1 {Π -1 n-1 >a n-1 } 1 {| X|a n-1 >1} ; I ′ 3,2 (n) = E| X|ℓ | X| Π n-1 1 {Π -1 n-1 >a n-1 } 1 {| X|a n-1 ≤1} .
As ℓ is increasing and slowly varying at ∞, by Potter's theorem, we have: for δ > 0,

I ′ 3,1 (n) ≤ CE| X|ℓ(| X|a n-1 )(Π n-1 a n-1 ) -δ ≤ CE| X|ℓ(| X|)(Π n-1 a n-1 ) -δ = CE| X|ℓ(| X|) • (Em -δ 0 • a -δ ) n a δ .
(5.6)

Let ρ(x) = Em -x 0 . Since ρ(δ 0 ) < ∞ and ρ(x) is convex on (0, δ 0 ) with ρ(0) = 1 and ρ ′ (0) = -E ln m 0 < 0, there exists some γ 0 > 0 such that Em -x 0 < 1, ∀x ∈ (0, γ 0 ).

Choose δ ∈ (0, γ 0 ), and let 0 < a < 1 be defined by Em -δ 0 = a 2δ . Notice that E| X|ℓ(| X|) ≤ CE| X|( l(| X|) + 1) < ∞. Therefore,

∞ n=1 I ′ 3,1 (n) ≤ CE| X|ℓ(| X|) • ∞ n=1
a δ(n+1) < ∞ .

(5.7)

Similarly, using Potter's theorem in I ′ 3,2 (n), we get

I ′ 3,2 (n) ≤ E| X|ℓ(Π -1 n-1 a 1-n )1 {Π -1
n-1 >a n-1 } ≤ CE| X|ℓ(1)(Π n-1 a n-1 ) -δ ≤ CE| X| • (Em -δ 0 a -δ ) n a δ ≤ CE| X| • a δ(n+1) .

(5.8)

Hence ∞ n=1 I ′ 3,2 (n) ≤ CE| X| • ∞ n=1
a δ(n-1) < ∞ .

(5.9)

Therefore, we have shown that Eφ(W * -1) < ∞ , (5.10) which is equivalent to Eφ(W * ) < ∞.

Proof of Corollary 1.2. Let

φ 1 (x) = φ ′ (1) 2 x 2 if x ≤ 1; φ(x) + c 0 if x > 1 (5.11)
where φ(1) + c 0 = φ ′ (1) 2 . Then it is easily seen that φ 1 ≍ φ, φ 1 (0) = 0, φ ′ 1 (0+) = 0 and

1 0 φ ′ 1 (t)
t dt = φ ′ (1) < ∞. Moreover, φ 1 is convex with positive concave derivative φ ′ 1 on (0, ∞), so that the function x → φ 1 (x 1/2 ) is concave on (0, ∞). Applying the BDG-inequality and the concavity of φ 1 (x 1/2 ) (which implies the subadditivity), we obtain

Eφ 1 (W * -1) ≤ CEφ 1   ∞ n=1 |D n | 2 1 2   ≤ C ∞ n=1 Eφ 1 (|D n |), (5.12) 
where C = C(φ 1 ) > 0 is a constant depending only on φ 1 .

Recalling that under P n-1 , D n is a sum of a sequence of martingale differences with respect to ( Fk ). Hence, again by the BDG-inequality applied to D n , and the concavity of φ 1 (x 1/2 ), we get

E n-1 φ 1 (|D n |) ≤ CE n-1 φ 1      |u|=n-1 | X| 2 Π 2 n-1   1 2    ≤ CE n-1 |u|=n-1 φ 1 | X| Π n-1 = CZ n-1 • E n-1 φ 1 | Xn-1 | Π n-1 (5.13)
where C > 0 is independent of n. Taking integral on both sides of the inequality above, and noting that

  n≥1 |f n | and d * = sup n≥1 |d n |.Lemma 2.1 Let Φ be an increasing and continuous real function on [0, ∞), with Φ(0) = 0 and Φ(2λ) ≤ cΦ(λ) for some c in (0, ∞) and all λ > 0.

  (a) For every β ∈[START_REF] Afanasyev | On the maximum of a subcritical branching process in a random environment[END_REF][START_REF] Alsmeyer | On the existence of φ-moments of the limit of a normalized supercritical Galton-Watson process[END_REF], there exists a constant B = B c,β ∈ (0, ∞) depending only on c and β such that for any martingale{(f n , G n ) : n ≥ 1}, EΦ(f * ) ≤ BEΦ(s(β)) + BEΦ(d * ), where s(β) = ∞ n=1 E{|d n | β |G n-1 } 1/β ,andEΦ(f * ) ≤ BEΦ(s(β)) + B ∞ n=1 EΦ(|d n |). (b) If Φ is convex on [0, ∞),then there exist some constants A = A c ∈ (0, ∞) and B = B c ∈ (0, ∞) depending only on c such that for any martingale {(f n , G n ) : n ≥ 1}, AEΦ(S) ≤ EΦ(f * ) ≤ BEΦ(S), where S =

d 2 n 1 / 2 ≤

 212 11, p.427, Theorem 2); the second follows from the first because Φ(d * ) ≤ ∞ n=1 Φ(|d n |). In Part (b), the first inequality is the usual form of the BDG inequality (cf. [12], Chap. 11, p.425, Theorem 1); the second follows from the first because ∞ n=1 ∞ n=1 |d n | β 1/β for any β ∈ (0, 2] (this can be seen by the sub-additivity of the function x → x β/2 ); the third follows from the second because

∞ n=1 I 3

 n=13 (n) ≤ CE| X|( l(| X|) + 1) < ∞ . (5.5)
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φ ′ 1 is concave, we obtain:

where X is a random variable having the same distribution as ( Xn ) n≥0 and b = Em -1 0 < 1. Similarly to (5.2), combining (5.12) and (5.14), we obtain

As φ ≍ φ 1 and φ ≍ φ1 , this yields

Therefore Eφ(W * ) < ∞, and

6 Proof of Theorem 1.3

For the proof of Theorem 1.3, we shall need an extension of a theorem of Hsu and Robbins (1947) (see also [START_REF] Erdös | On the theorem of Hsu and Robbins[END_REF] or [START_REF] Baum | Convergence rates in the law of large numbers[END_REF]). As usual, for a random variable X, we write X + = max(X, 0) and X -= max(-X, 0).

The result is due to Hsu and Robbins (1947) if EX 2 1 < ∞, and due to Heyde (1964, Theorem A; 1966, Theorem 1) if E|X 1 | < ∞. The present form is a consequence of Theorem 2.1 of [START_REF] Kesten | Two renewal theorems for general random walks tending to infinity[END_REF] which is more precise. As the theorem of Kesten and Maller is not easy to prove, for reader's convenience we give a short proof based of the theorem of Hsu and Robbins.

Proof of Lemma 6.1. Notice that for all a, a 1 , a 2 ∈ R with a 1 + a 2 = a,

By the theorem of [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF],

Now for all C > 0, P -

Therefore, again by the theorem of [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF]

1 by the monotone convergence theorem, (6.4) holds for all a 2 > -EX - 1 . Together with (6.2) and ( 6.3), this implies that (6.1) holds for all a > EX +

Then φ(x) = xℓ(x) is convex, and the function x → φ(x 1/2 ) is concave. By an argument similar to that in the proof of Theorem 1.2, we get (cf. (5.3))

Let b ∈ (e -E ln m0 , 1) (by convention e -E ln m0 = 0 if E ln m 0 = +∞). For n ≥ 0, we divide the domain of integration above into two parts according to

where

We first estimate I 4 (n). Noting that ℓ is increasing on [0, ∞), we get

To estimate I ′ 4 (n), as ℓ is bounded by 1, we have

By Lemma 6.1, the sum on the right side of (6.8) is finite if E ln + 1 m0 2 < ∞. Therefore, Eφ(W * ) < ∞ , (6.9)

which is equivalent to EW * < ∞.