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Comparison of three scattering models for

ultrasound blood characterization

Emilie Franceschini, Member IEEE, Ratan K. Saha, and Guy Cloutier, Senior Member IEEE,

Abstract

Ultrasonic backscattered signals from blood contain frequency-dependent information that can be used to obtain

quantitative parameters reflecting the aggregation level of red blood cells (RBCs). The approach consists in estimating

structural aggregate parameters by fitting the spectrum of the backscattered radio-frequency echoes from blood to an

estimated spectrum considering a theoretical scattering model. In this study, three scattering models were examined: a

new implementation of the Gaussian Model (GM), the Structure Factor Size Estimator (SFSE) and the new Effective

Medium Theory combined with the Structure Factor Model (EMTSFM). The accuracy of the three scattering models

in determining mean aggregate size and compactness was compared by two- and three-dimensional (2D and 3D)

computer simulations where RBC structural parameters are controlled. Two clustering conditions were studied: (1)

when the aggregate size varied and the aggregate compactness was fixed in both 2D and 3D cases, and (2) when the

aggregate size was fixed and the aggregate compactness varied in the 2D case. For both clustering conditions, the

EMTSFM was found more suitable than the GM and SFSE for characterizing RBC aggregation.
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Comparison of three scattering models for

ultrasound blood characterization

I. INTRODUCTION

Quantitative ultrasound (US) techniques are mainly based on the frequency analysis of backscattered signals

by biological tissues to determine physical properties of the average tissue microstructure. These techniques rely

on theoretical scattering models to fit the spectrum of backscattered echoes to an estimated spectrum using an

appropriate model. The theoretical scattering model most frequently used for this purpose is the Gaussian model

(GM) [1] [2] that yields two tissue properties: the average scatterer size and the acoustic concentration (i.e., the

product of the scatterer number density by the square of the relative impedance difference between scatterers and the

surrounding medium). This approach was used to characterize dilute scattering media such as the eye [3], prostate

[4] and breast [5]. Blood has also been studied with this technique [6], although estimations could be biased.

An important contribution of ultrasonic blood characterization is to assess the level of red blood cell (RBC)

aggregation, which is a surrogate marker of inflammation [7]. It is well known that when RBCs are under low

shear rates (<10 s−1), they interact strongly with each other and form complex rouleaux or three-dimensional

(3D) structures. When the shear rate increases, these rouleaux or compact structures disaggregate. The aggregation

phenomenon in human blood is normal, however hyperaggregation is a pathological state associated with several

circulatory diseases, such as deep venous thrombosis, atherosclerosis and diabetes mellitus. Blood characterization

using US backscatter techniques provides the unique opportunity of monitoring RBC aggregation non-invasively

and in vivo within blood vessels. This quantification may help to elucidate the role of RBC aggregation in the

etiology of such diseases.

US backscatter by blood is mainly due to RBCs that constitute the vast majority (97%) of the blood cellular

content. Blood can thus be described as a biphasic fluid composed of RBCs immersed in plasma. Since RBCs

are acoustically considered as weak scatterers (impedance contrast between RBCs and plasma being around 13%),

multiple scattering can be neglected. However, for such tissue, it is not straightforward to develop a theoretical

scattering model because of the high density of RBCs (their volume fraction or hematocrit varies between 30

and 50%) and their ability to form aggregates. The Structure Factor Model (SFM) [8] [9] is an US scattering

model proposed to simulate the backscatter coefficient (BSC) of aggregated RBCs. The SFM sums the acoustic

contributions from individual RBCs and models their interaction by a statistical mechanics structure factor, which

is by definition the Fourier transform of the spatial distribution of RBCs [8] [9]. However, the SFM can hardly be

implemented to estimate the structural aggregate parameters in the framework of an inverse problem formulation

because of the intensive computational time to assess the structure factor by realizing distributions of aggregating

RBCs. That is why Yu and Cloutier [10] developed the SFSE scattering theory that approximates the SFM by

August 20, 2013 DRAFT



2

using a second-order Taylor expansion of the structure factor. The SFSE is thus not as accurate as the SFM. The

SFSE estimates two physical parameters describing the microstructure of RBC aggregates: the packing factor that

increases with erythrocyte clustering and the average aggregate isotropic radius. However, experiments with pig

blood in controlled flow devices [10] and 3D numerical simulations of isotropic monodisperse aggregates [11]

recently showed that the two indices are correlated and follow a quadratic relationship, thus reducing the BSC

parameterization to one structural index.

Another scattering model called the Effective Medium Theory combined with the SFM (EMTSFM) was recently

proposed to better approximate the SFM [12]. It assumes that aggregates of RBCs can be treated as individual

homogeneous scatterers, which have effective properties determined by the acoustical characteristics and concen-

tration of RBCs within aggregates. The EMTSFM allows characterizing the radius, and for the first time in the

quantitative US field, the compactness of RBC aggregates [12]. In the field of clinical hemorheology [13], assessing

the compactness of RBC aggregates is of high clinical importance since it is related to the binding energy between

cells. Normal RBC aggregates form rouleaux type structures, whereas pathologies associated with stronger binding

energies result in clumps of RBCs (close to a spherical isotropic packing) [14] [15].

In our previous study [12], the EMTSFM and the SFM were compared in the framework of a forward problem

study to determine the BSC from a known distribution of RBCs with known acoustical parameters. The goodness

of the approximation of the EMTSFM in comparison with the SFM was examined as a function of frequency and

structural aggregate parameters (aggregate size and compactness). Based on a two-dimensional (2D) simulation

study, the EMTSFM was found to approximate the SFM with relative errors less than 30% for a product of the

wavenumber times the mean aggregate radius krag≤1.32 [12]. The aims of the present paper are :

1) to evaluate the EMTSFM in an inverse problem framework, i.e. to determine RBC structural features from the

measured BSC, and

2) to compare the EMTSFM with two other scattering models: the SFSE and a new implementation of the GM

slightly modified to treat aggregating scatterers.

To our knowledge, there is no means to experimentally assess aggregate sizes at a normal physiological hematocrit

of 40% because RBCs at that hematocrit are opaque to light. It would thus not be feasible to quantitatively

evaluate the performance of the different models with real experimental data. In the field of blood imaging and

characterization, the assessment of accuracy of a scattering model was only performed at a low hematocrit of 6%

by comparing optical and acoustic measurements of RBC aggregate sizes [10]. In the current paper, we thus aim to

determine the performance of three theoretical scattering models (the new implementation of the GM, the SFSE and

the EMTSFM) to extract the aggregation parameters from computer simulations where RBC structural parameters

(such as the hematocrit, the aggregate size and compactness) are known.

The important contribution of the EMTSFM is the parameterization of the BSC with the aggregate compactness

[12], which is a structural parameter not available in any other modeling strategies proposed in quantitative US.

The potential of the EMTSFM and of the two other scattering models in estimating the aggregate compactness

was examined by 2D computer simulations based on the SFM in controlled clustering configurations (when the
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aggregate compactness varies and the aggregate radius is fixed). This clustering condition was only conducted in 2D

because of the computational load required to generate three-dimensional RBC distributions with various aggregate

compactnesses with the SFM [12]. Some 3D computer simulations were also used in the controlled clustering

configurations as those performed in 2D (when the aggregate size vary and the aggregate compactness is fixed) in

order to compare the BSC behavior between 2D and 3D simulations, and estimated structural aggregate parameters

with the three scattering models.

II. COMPUTER SIMULATIONS BASED ON THE STRUCTURE FACTOR MODEL (SFM)

This section presents computer simulations performed to predict the frequency dependence of the BSC from

aggregated RBCs based on the SFM. In the following, it is assumed that the incident wavelength λ is large

compared to the RBC size. Consequently, the RBC shape could be approximated by a simple geometry having an

equivalent surface in 2D or having an equivalent volume of a RBC in 3D [16]. RBCs were modeled as parallel

infinite cylinders in the 2D case and as spheres in the 3D case of radius a, that have small contrast in acoustical

properties relatively to the plasma (see Table I). This RBC shape approximation has some limitations for larger

frequencies (>20 MHz) and will be discussed later in Section V-C.

The SFM describing US backscatter by biological tissues consists of summing contributions from cells and

modeling the cellular interaction by a statistical mechanics structure factor [8] [9]. By considering a collection of

N identical and weak scattering RBCs, the BSC expression can be written as:

BSCSFM (−2k) = mσb(−2k)S(−2k), (1)

where k is the wavenumber and m the number density of RBCs that is related to the systemic hematocrit φ as

m = φ/Ap (where Ap is the RBC area) for 2D modeling, or as m = φ/Vp (where Vp is the RBC volume) for 3D

modeling. The backscattering cross section σb of a single weak RBC was calculated using the fluid infinite cylinder

expression in the 2D case [12] or using the fluid-filled sphere expression in the 3D case [17] [18] given by:

σb(−2k) =
k3A2

pγ
2
z

2π

(

J1(2ka)

ka

)2

in the 2D case

=
k4V 2

p γ2
z

4π2

(

3
sin(2ka) − 2ka cos(2ka)

(2ka)3

)2

in the 3D case

(2)

where J1 is the first order Bessel function of the first kind and γz is the relative impedance difference between the

RBC and its suspending medium (i.e., the plasma). The function S is the structure factor representing the spatial

positioning of RBCs and is defined by:

S(−2k) = E





1

N

∣

∣

∣

∣
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N
∑
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e−i2kri

∣

∣

∣

∣

∣

2


 (3)

where E represents the expected value of a random variable and ri the position vectors defining the center of the

ith RBC in space. In general, the structure factor of a medium containing RBCs distributed in the 2D space (or in

the 3D space) can be determined from the 2D Fourier transform (or 3D Fourier transform) of the spatial distribution
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of particles (see the Appendix of Ref. [19]).

The computation of the BSCSFM using the SFM requires an intensive computation because of the calculation

of the structure factor S as described in Eq. (1). Since the structure factor is by definition a statistical quantity, an

average of structure factors from several RBC spatial distributions can give an estimated value of S. Because of

the computational load to generate aggregating RBC distributions, a simple and fast method was used to randomly

generate non-overlapping RBC aggregates which were isotropic and similar in size. For the 2D and the 3D computer

simulations, the simulated BSCSFM were obtained from the method described in section III of Refs. [12] and

[11], respectively. Note that 2D simulations are computationally less expensive but significant insights can be gained

by studying 2D systems. On the other hand, 3D simulations are intuitively appealing because they better mimic

experimental situations but are computationally expensive. These methods are briefly summarized in the following.

Random distributions for aggregating RBCs were computed within the simulated surface area of 600 × 600 µm2

in the 2D case and within the simulated volume of 1000 × 125 × 125 µm3 in the 3D case. The RBC radius

a was set to 2.75 µm for all simulations. We first specified the systemic hematocrit φ, the aggregate radius rag

and the aggregate compactness φi (i.e. the RBC concentration within aggregate). Aggregates of identical radii rag

and of identical compactness φi were then randomly distributed with non-overlapping positions to give the desired

concentration of aggregates φag = φ/φi. Note that in the case of the 3D study, a small number of non-aggregated

RBCs was added to reach the desired systemic hematocrit. It means that all the RBCs were aggregated in blood in

the 2D case, whereas a fraction of RBCs were aggregated while the rest remained disaggregated in the 3D case.

Finally, RBC distributions within aggregates were then generated as follows:

• in the 2D case, the locations of the RBCs were generated using external and repulsive forces to obtain random

RBC positions inside each aggregate, such that the distribution of RBCs within each aggregate was different

[12]. This technique allowed to study several aggregation configurations (1) when the aggregate size varied

and the aggregate compactness was fixed to 0.6, and (2) when the aggregate compactness varied from 0.3 to

0.6 and the aggregate size was fixed.

• in the 3D case, the RBCs were stacked by following a hexagonal close packing (HCP) structure for each

aggregate, such that the distribution of RBCs within each aggregate was identical. This HCP structure provides

the highest compactness that is about 0.74 for spheres [11]. Therefore, this technique allowed to study several

aggregation configurations when the aggregate size varied and the aggregate compactness was fixed to 0.74.

For each distribution of RBCs, the 2D or 3D Fourier transformation of the spatial organization of RBCs was then

computed to obtain the corresponding structure factor. A mean structure factor was determined from 400 different

tissue realizations in the 2D case (see section III.B in Ref. [12]) and from 250 different tissue realizations in the

3D case (see section III.B in Ref. [11]).
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III. ULTRASOUND BACKSCATTERING MODELING FOR THE ESTIMATION OF STRUCTURAL AGGREGATE

PARAMETERS

As seen previously in section II, the SFM allows to simulate the BSC from RBCs whatever the RBC spatial

distribution (i.e. disaggregated or aggregated RBCs and/or with various aggregate sizes and compactnesses). How-

ever, the SFM can hardly be implemented to estimate structural parameters in the framework of an inverse problem

formulation because of the intensive computational time to assess the structure factor by realizing distributions of

RBCs with simulations. That is why two scattering theories, named the SFSE and the EMTSFM, have been recently

developed to approximate the SFM for practical assessments of RBC structural features (i.e., in an inverse problem

formulation). This section presents these two scattering theories (the SFSE and the EMTSFM) as well as the GM

also used for tissue characterization. In this work, we present a new implementation of the GM model inspired by

our development on EMTSFM. All three theories fit a curve to the simulated BSCSFM from blood to estimate

aggregation parameters using the minimization routine ”fminsearch” in MATLAB (The MathWorks, Inc., Natick,

MA), i.e. a Nelder-Mead simplex method. Note that this fit was realized in the frequency bandwidth from 4 MHz

to the frequency corresponding to the first minimum of the BSCSFM (i.e., after the frequency-dependent increase

in BSC followed by a peak and a reduction to its first minimum).

A. The Structure Factor Size Estimator (SFSE)

The SFSE developed by Yu and Cloutier [10] approximates the SFM with a second-order Taylor expansion of

the structure factor in k as follows:

S(−2k) ≈ W − 4(kRga)2 in the 2D case

≈ W − 4(kRga)2 ≈ W −
12

5
(kRspa)2 in the 3D case

(4)

where W is the low-frequency limit of the structure factor (S(k)|k→0) called the packing factor [20] [21] and

Rg is the radius of gyration of RBC aggregates assumed to be isotropic and expressed in number of RBCs [10].

Note that in the 3D case, Rg is related to the isotropic radius Rsp of an aggregate (expressed in number of RBCs)

by Rg =

√

3

5
Rsp [11] [22]. By assuming identical RBCs, and recombining Eqs. (1) and (4), the SFSE model

approximates the BSC as follows:

BSCSFSE(−2k) =
1

2π
mk3A2

pγ
2
z

(

J1(2ka)

ka

)2
(

W − 4(kRga)2
)

in the 2D case

=
1

4π2
mk4V 2

p γ2
z

(

3
sin(2ka) − 2ka cos(2ka)

(2ka)3

)2 (

W −
12

5
(kRspa)2

)

in the 3D case

(5)

The SFSE assumes that the hematocrit φ, the RBC radius a and the acoustical properties of plasma and RBCs are

known a priori. Therefore, Eq. (5) presents only two unknowns that characterize the aggregate structure: W and

Rg (or equivalently, W and Rsp in the 3D case). Estimated values of W ∗ and R∗

g (or equivalently, W ∗ and R∗

sp in

the 3D case) were determined by fitting the simulated BSCSFM given by Eq. (1) with BSCSFSE given by Eq.

(5).

August 20, 2013 DRAFT



6

B. The Effective Medium Theory Combined with the Structure Factor Model (EMTSFM)

The EMTSFM assumes that all the scatterers are aggregated, that the aggregates are identical and isotropic and

that the scatterers within aggregates are evenly distributed [12]. In the case of blood backscatter, the model consists

of treating the RBC aggregates as individual homogeneous particles of radius rag . These homogeneous particles are

characterized by a density ρag and a compressibility κag derived from the acoustical properties of the two fluids

constituting them (i.e., ρ1, ρ2, κ1 and κ2, where 1 indicates properties of RBCs and 2 those of plasma), and from

the internal concentration of RBCs within the aggregates, defined as the aggregate compactness φi, as follows:

ρag = φiρ1 + (1 − φi)ρ2

1

κag
=

φi

κ1
+

1 − φi

κ2

(6)

The BSC from blood is then obtained by summing contributions from individual effective particles of radius rag

and modeling the effective particle interaction by a statistical mechanics structure factor Sag . The equivalent BSC

expression is thus given by [12]:

BSCEMTSFM (−2k) = magσag(−2k)Sag(−2k), (7)

where Sag is the structure factor of a collection of Nag identical particles of radius rag randomly distributed and

mag is the number density of aggregates that is related to the effective aggregate concentration φag . The effective

aggregate concentration is equal to the RBC concentration in blood φ divided by the aggregate compactness φi:

φag = φ/φi. The backscatter cross-section of an effective single particle σag was calculated using the fluid infinite

cylinder expression in the 2D case [12] or using the fluid-filled sphere expression in the 3D case [17] [18] given

by:

σag(−2k) =
k3πr4

agγ
2
zag

2

(

J1(2krag)

krag

)2

in the 2D case

=
4k4r6

agγ
2
zag

9

(

3
sin(2krag) − 2krag cos(2krag)

(2krag)3

)2

in the 3D case

(8)

where zag is the impedance of the equivalent particle and γzag
the relative impedance difference between the

equivalent particle and the plasma (γzag
= (zag − z2)/z2). For a random distribution of hard-cylinders in 2D, the

structure factor was numerically computed as described in the appendix A. For a random distribution of hard-spheres

in 3D, the structure factor can be analytically calculated as established by Wertheim [23]. The analytical expression

for the structure factor in the 3D case is described in the appendix B.

By assuming that the hematocrit φ, the RBC radius a and the acoustical properties of plasma and RBCs are

known a priori, the unknown parameters are the radius of aggregates rag and their compactness φi. The unknown

parameters were estimated by matching the simulated BSCSFM given by Eq. (1) with the theoretical BSCEMTSFM

given by Eq. (7).

C. The Gaussian Model (GM)

Using the GM, the BSC is modeled with a spatial autocorrelation function describing the shape and distribution

of scatterers in the medium. The scattering sites are assumed to be randomly distributed and of simple geometric
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shapes, represented as gaussian scatterers mimicking continuous changes in impedance. In this framework, the BSC

can be written as the product of the theoretical BSC under Rayleigh scattering and the backscatter form factor (see

Eqs. (74)-(76) of Ref. [18] for the GM formulation in 3D). The form factor describes the frequency dependence

of BSC attributed to the size and shape of the prototype scatterer. The Gaussian form factor has been used for

many applications [3]–[6]. It represents tissue structures as continuously varying distributions of acoustic impedance

fluctuations about the mean value, and the effective radius is related to the impedance distribution of the scatterers.

The BSC for the GM formulation is written as the product of the BSC in the Rayleigh limit and the backscatter

form factor as follows [18]:

BSCGM (−2k) =
k3S2

snz

2π
e−2k2d2

=
πk3a4

effnz

2
e−k2a2

eff in the 2D case

=
k4V 2

s nz

4π2
e−2k2d2

=
4k4a6

effnz

9
e−0.827k2a2

eff in the 3D case

(9)

where nz is the acoustic concentration (i.e., the product of the number density of scatterers times the square of

the relative impedance difference γz between scatterers and the surrounding tissue). In the 2D case (or respectively

in the 3D case), the characteristic dimension d is related to the area of the effective scatterer Ss by: Ss = 2πd2

(or related to the volume of the effective scatterer Vs by: Vs = (2πd2)3/2). Continuous isotropic media can be

characterized by the correlation distance d, in the same way as discrete isotropic media are characterized by a

scatterer radius [18]. The effective radius of the scatterer aeff is related to the correlation distance d by setting

values of Ss (or Vs, respectively) for a continuum model equal to the area of an effective cylinder (or equal to the

volume of an effective scatterer) of radius aeff : Ss = 2πd2 = πa2
eff or Vs = (2πd2)3/2 = (4/3)πa3

eff .

Estimates of the effective radius a∗

eff and acoustic concentration n∗

z were determined by fitting the simulated

BSCSFM given by Eq. (1) with BSCGM given by Eq. (9). Effective radii aeff estimated with the GM have been

hypothesized to be related to the aggregate radii, and the acoustic concentration nz is postulated to be the product

of the number density of aggregates times the square of the relative impedance difference between aggregates and

the plasma as follows:

nz = γ2
zag

φag

πa2
eff

=

(

zag − z2

z2

)2
φ

φiπa2
eff

, in the 2D case

= γ2
zag

3φag

4πa3
eff

=

(

zag − z2

z2

)2
3φ

4φiπa3
eff

, in the 3D case

(10)

where zag is the effective impedance of the aggregates approximated by the mixing law: zag = φiz1 + (1− φi)z2.

Since the hematocrit φ and the acoustical properties of plasma and RBCs are assumed to be known a priori, the

aggregate compactness can be deduced from the estimated parameters a∗

eff and n∗

z by using Eq. (10) as follows:

φ∗

i =
πa∗

eff
2n∗

zz
2
2

φ(z2 − z1)2
in the 2D case

=
4πa∗

eff
3n∗

zz
2
2

3φ(z2 − z1)2
in the 3D case

(11)

It means that the new proposition of the GM was employed in our study as an effective medium model, but contrary

to the EMTSFM, the GM is not combined with the SFM (such that the GM is assumed to be accurate only at low
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systemic hematocrits). In the following, we thus give the estimated parameters a∗

eff and φ∗

i with the GM, instead

of the classical estimated parameters a∗

eff and n∗

z .

IV. RESULTS

This section gives the results of the inverse problem obtained for 2D and 3D computer simulations with the three

backscattering models aforementioned: SFSE, EMTSFM and GM.

A. Results obtained from the 2D computer simulations

For the 2D computer simulations, we first studied clustering configurations where the aggregate compactness

was fixed to φi=60% and the aggregate radius rag/a varied, and then clustering configurations where the aggregate

radius was fixed to rag/a=6.32 and the aggregate compactness φi varied.

1) Results for the SFSE: The SFSE was first examined for systemic hematocrits of 10, 20 and 30% when

the aggregate size varied and the aggregate compactness was fixed to a high value: φi=60%. Figure 1 shows

BSCSFM as a function of frequency for different aggregate sizes and systemic hematocrits. The symbols represent

the BSCSFM computation for the disaggregated case (rag/a=1) and for aggregation with radii rag/a=3.16, 5.0

and 7.07. Also represented in dashed lines in Fig. 1 are corresponding BSCSFSE fitted curves. The first peaks

of the simulated BSCSFM occur at lower frequencies as the aggregate radius increases. Since the fitting curves

with the SFSE were realized in the frequency bandwidth from 4 MHz to the frequency corresponding to the first

minimum of the BSCSFM (except for the disaggregated case for which the frequency bandwidth is from 4 to 50

MHz), the bandwidth used for the fitting becomes smaller as the aggregate radius increases. It is clear from the

figure that the SFSE provided better fits for the lower hematocrit of 10%. As the hematocrit increases, the SFSE

model is insufficient to predict the behavior of BSCSFM , especially in the low frequency range. The estimated

values of W ∗ and R∗

g are given in Table II for systemic hematocrits of 10, 20 and 30%. In this table, the relative

error for parameter R∗

g corresponds to: ǫR∗

g
=

(

R∗

g − (rag/a)
)

/(rag/a). Figure 2a shows the estimated values of

R∗

g as a function of the actual aggregate radii rag/a for all hematocrits. Also represented are the corresponding

linear regression lines showing good correlation r2≥0.95 at all hematocrits. For radii rag/a between 4.47 and 7.95,

relative errors ǫR∗

g
were less than 30% for hematocrits of 10 and 20%. It is interesting to notice that estimated

parameters W ∗ and R∗

g follow a linear relation for all hematocrits (see Fig. 2b).

The SFSE was also evaluated at systemic hematocrits of 10 and 20% when the aggregate size rag/a was fixed to

6.32 and the aggregate compactness φi varied from 30 to 60%. It is important to emphasize that 2D random particle

distributions could be easily generated using a random number generator up to an area fraction of approximatively

0.5. For the 20% systemic hematocrit, aggregate compactnesses smaller than 40% could not be computed because

the corresponding area fractions of aggregates were too high: φag > 0.5. Similarly, the variation of the aggregate

compactness could not be performed at a systemic hematocrit of 30% because the area fractions of aggregates

is already equal to 0.5 for an aggregate compactness φi=60%. Figure 3 displays BSCSFSE in dashed lines for

the following clustering conditions: rag/a=6.32 and φi varying from 30 to 60%. One can notice large differences

August 20, 2013 DRAFT



9

between simulated and fitted SFSE curves, especially at low frequencies where the fitted curves over-estimate the

BSCSFM amplitude. These differences are larger at φ=20%. The estimated values of R∗

g for different aggregate

compactnesses are plotted in Fig. 4a. Although the true radius is fixed, estimated R∗

g increases with the aggregate

compactness at both hematocrits. We found no correlation between the actual fixed radius and the estimated radii

(r2 <0.06). Notice the linear relation between W ∗ and R∗

g when the aggregate compactness varies (see Fig. 4b),

as observed previously in Fig. 2b when the aggregate radius rag/a was changed.

2) Results for the EMTSFM: The BSC curves fitted with the EMTSFM are shown in solid lines in Fig. 1 for the

case of varying values of rag/a, and in Fig. 3 for varying φi. In both cases, the EMTSFM provided good fittings

to the simulated BSCSFM curves for all systemic hematocrits. For the clustering conditions where the aggregate

radius varied and the aggregate compactness was constant, the estimated values r∗ag/a and φ∗

i , and corresponding

relative errors are given in Fig. 5 for systemic hematocrits of 10, 20 and 30%. For the clustering conditions where

the aggregate compactness varied and the aggregate radius was constant, the results are shown in Fig. 6 for systemic

hematocrits of 10 and 20%. For the EMTSFM, the relative errors for each parameter correspond to:

ǫr∗

ag
=

(r∗ag/a) − (rag/a)

(rag/a)
and ǫφ∗

i
=

φ∗

i − φi

φi
. (12)

In both sub-studies where the aggregate radius and compactness varied, a very good correspondence can be observed

between true and estimated aggregate sizes and compactnesses. The relative errors for the estimated aggregate radii

and compactnesses were less than 13% and 14%, respectively, for all hematocrits and for all studied aggregating

configurations.

3) Results for the GM: Figure 7 presents the BSCSFM curves fitted with the GM for several aggregate sizes

at the same clustering conditions as in Fig. 1. The GM provided over-estimates in the low frequency range for

all systemic hematocrits. Excellent correlations (r2 ≥0.92) were found between the estimated and true aggregate

radii for all hematocrits (data not shown). The estimated values a∗

eff/a and φ∗

i from the GM, and corresponding

relative errors are given in Fig. 8. For systemic hematocrits of 10 and 20%, the estimated radii and compactnesses

are quantitatively satisfactory with relative errors less than 15%. However, for φ=30%, the relative errors increase

up to 40%.

For the clustering conditions where the aggregate compactness varied and the aggregate radius was constant, the

results are shown in Fig. 9 for systemic hematocrits of 10 and 20%. As previously observed with the SFSE, the

estimated effective radius increases as the aggregate compactness increases. The estimated radii and compactnesses

matched the true parameters at φ=10% with relative errors less than 17%. However, for φ=20%, large relative errors

(up to 74%) were obtained.

4) Comparison of the errors between the simulated BSC and the fitted curves with the three scattering models:

The errors (i.e. differences) between the simulated BSC and the fitted curves with the three scattering models

(SFSE, EMTSFM and GM) are presented in Fig. 10. The logarithm of the error is shown to enhance reading. The

error reveals how the models fit the data. It is clear from the figure that errors were smaller with the EMTSFM

and larger with the GM, for each hematocrit. For the aggregating conditions where the aggregate radius varied, the
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error decreases as the radius increases. When the aggregate radius increases, the bandwidth frequency used for the

fit becomes smaller and therefore, the number of frequencies used for the error computation decreases.

B. Results obtained from the 3D computer simulations

For the 3D computer simulations, the GM, SFSE and EMSTFM were examined when the aggregate size varied

and the aggregate compactness was fixed to a high value: φi=74%.

It is important to note that the 3D simulated aggregates were highly packed leaving small numbers of particles

as non-aggregated RBCs. For each tissue realization, the actual mean aggregate radius rag was computed using Eq.

(6) in Ref. [11], and then the concentration of aggregated RBCs φ′ was computed as:

φ′ =
φiNag(4/3)πr3

ag

1000 × 125 × 125 × (10−6)3
. (13)

Figure 11a shows the values of φ′ as a function of the mean aggregate radius rag/a for the three systemic hematocrits

of 20, 30 and 40%. The percentage of disaggregated RBCs was between 20 and 30% for the systemic hematocrit of

20% and between 27 and 37% for the systemic hematocrit of 40%. Note that the three models presented in section

III assumed that all RBCs were aggregated in blood and that aggregates had identical shape and size. Consequently,

during the inversion procedure of the 3D BSC data, we neglected the contribution of the disaggregated RBCs on

the simulated BSCSFM and we replaced the hematocrit φ by the value of the concentration of aggregated RBCs

φ′.

Figure 11b and c shows BSCSFM as a function of frequency for several aggregate sizes and systemic hematocrits

of 30 and 40%. Also represented in Fig. 11b and c are corresponding fitted curves obtained with the SFSE, EMTSFM

and GM. The fitted GM and SFSE curves did not produce good fits to the 3D data and overestimated the BSCSFM

amplitude (especially in the low frequency range), as observed in the 2D case (see Figures 1 and 7). At the opposite,

the EMTSFM provided good fittings to the simulated BSCSFM curves.

The results obtained with the SFSE were already presented in a previous article [11]. Excellent correlations

(r2 ≥0.94) were found between the estimated and true aggregate radii for all hematocrits (see Fig. 5a in Ref. [11]).

It can also be seen in Fig. 5a of Ref. [11] that for each hematocrit there is an aggregate size range where the SFSE

method works at its best. For example, relative errors for estimated radii were less than 20% for true radius values

between 14 and 17 µm at the hematocrit of 40%. The parameters W ∗ and R∗

sp followed a quadratic relationship

(as in Fig. 5b of Ref. [11]).

Figure 12 gives the values of r∗ag and φ∗

i estimated with the EMTSFM and corresponding relative errors that were

less than 15% and 23%, respectively, for all hematocrits. Figure 13 gives the values of a∗

eff and φ∗

i estimated with

the GM and corresponding relative errors. The estimated radii with the new formulation of the GM are quantitatively

satisfactory with relative errors less than 9% for all hematocrits. The relative errors for the estimated compactnesses

with the GM are larger with relative errors up to 32% for the hematocrits of 20 and 30%, and up to 76% for the

hematocrit of 40%.
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V. DISCUSSION AND CONCLUSIONS

Three scattering models for the characterization of RBC aggregation were examined. From these models, the gold

standard simulated BSCSFM was fitted and aggregation parameters were extracted. The SFSE has been developed

for blood characterization and the GM is a model that has been used in various tissue studies. Herein, the radius

estimates Rg from the SFSE and aeff from the GM were hypothesized to represent the aggregate size.

A. Clustering conditions where the aggregate radius varied and the aggregate compactness was constant (2D and

3D computer simulations)

The 2D and 3D computer simulations were performed on the same clustering configuration where the aggregate

radius varied and the aggregate compactness was constant. It is interesting to observe the same BSCSFM behavior

for both 2D and 3D studies. Indeed, the simulated BSCSFM amplitude increases with the size of aggregates and

the BSCSFM first peaks occur at lower frequencies as the aggregate radius increases (see Fig. 1 in the 2D case,

and Fig. 11b and c of the present paper and Fig. 4 of Ref. [11] in the 3D case). Moreover, as it can be observed

in Figures 1 and 7 in the 2D case and in Figure 11 in the 3D case, the data fitting quality obtained with the three

models were quite similar. In both 2D and 3D cases, it is clear that the GM and the SFSE are insufficient to model

the complex behavior of BSC and that the EMTSFM was the model that better fitted the BSC data for all studied

hematocrits.

Although the SFSE model did not produce good spectral fits to the BSC data for 2D and 3D computer simulations,

significant correlations were found between the estimated and true radii with r2 superior to 0.95 at all hematocrits

(see Fig. 2a in the present paper and see Fig. 5a of Ref. [11]). However, the estimated aggregation parameters W ∗

and R∗

g followed a linear relationship in our 2D simulation study. This relation was also found to be quadratic in

3D numerical simulations [11] and under experimental conditions [10]. It means that the BSC parameterization can

be reduced to one parameter and that no new information can be obtained with the parameter W ∗.

The EMTSFM and the GM used as effective medium models gave quantitatively satisfactory radius estimates

with relative errors less than 15% for the 10 and 20% hematocrits in the 2D case, and for all hematocrits in the 3D

case. For the highest systemic hematocrit, the aggregate compactnesses were better estimated with the EMTSFM

with relative errors less than 14% in the 2D case (and less than 23% in the 3D case), whereas the relative errors

were between 19 and 36% in the 2D case (and between 59 and 76% in the 3D case) for the GM. These results with

the EMTSFM and the GM were somewhat anticipated since the assumption of a random distribution of scatterers

used by the GM fails due to the spatial correlation between scatterers in a dense medium [24]. To conclude, the

EMTSFM was more suitable than the GM and SFSE for characterizing the aggregate microstructure in both 2D

and 3D studies.
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B. Clustering conditions where the aggregate compactness varied and the aggregate radius was constant (2D

computer simulations)

For the highest simulated hematocrit of 20%, the aggregate radii normalized by the RBC radius were estimated

between 4.34 and 8.55 using the SFSE model and between 3.83 and 5.33 using the GM (see Fig. 4a and Fig. 9),

whereas the actual aggregate radius was rag/a=6.32. Therefore, we found no correlation between the actual fixed

aggregate radius and the estimated radii. The GM and SFSE cannot take into account a variation in the aggregate

compactness at a large hematocrit, since it is interpreted as a change in the aggregate size.

In the case of the SFSE, one could have expected a fixed value of the estimated radius R∗

g and a variation of the

estimated packing factor W ∗, when the aggregate radius was fixed and the aggregate compactness varied. However,

both R∗

g and W ∗ increased as the true aggregate compactness was raised. The estimated parameters R∗

g and W ∗

followed linear relations for all hematocrits (see Fig. 4b), as observed previously in Fig. 2b when the aggregate

radius rag/a was changed. It means that W ∗ and R∗

g carry the same information and that the BSC parametrization

is reduced to one parameter.

The estimated parameters using the EMTSFM presented in Fig. 6 show that the model gave quantitatively

satisfactory estimates for all aggregate compactnesses and for all studied hematocrits. Contrary to the GM and

SFSE, the EMTSFM provided a quasi-constant aggregate radii between 5.7 and 5.9 for both studied hematocrits.

Moreover, the aggregate compactnesses were estimated with relative errors less than 12% at both studied hematocrits

for that model. The errors between simulated BSCSFM and the fitted curves were also smaller with the EMTSFM,

as it can be observed in Fig. 10b. To conclude, the EMTSFM was the model that explained better the simulated

BSCSFM .

C. Computation of RBC distributions and of BSCSFM

The two methods we used here to obtain the RBC spatial distributions did not take into consideration realistic

interactions between RBCs. These methods were already presented in Ref. [12] and [11] for the 2D and 3D computer

simulations, respectively. They were simple and fast methods to generate samples containing non-overlapping,

identical and isotropic aggregates. The 3D computer simulations allowed to better mimic real data but they are

time consuming (see section III.A and section V of Ref. [11] to obtain a quick review of different approaches

to simulate compact RBC aggregates). In order to simulate the BSC data with the SFM reference model, the

method we chose to distribute RBCs in the 3D case allowed (1) to study various aggregate sizes with the same

aggregate compactness and (2) to reach the physiological hematocrit of 40% by mixing identical RBC aggregates

and disaggregated RBCs. Since studied scattering models assumed that all RBCs were aggregated in blood and

since the averaged percentage of disaggregated RBCs was small (around 25%), the influence of the disaggregated

RBCs on the simulated BSCSFM was neglected during the inversion procedure of the 3D BSC data. Contrary

to the 3D modeling, the method we chose to distribute RBCs in the 2D case allowed (1) to study the clustering

condition where the aggregate compactness vary and the aggregate size is fixed and (2) to have only aggregated

RBCs in blood. However, the 2D computer simulations were limited to a maximum hematocrit of 30% because of

August 20, 2013 DRAFT



13

the difficulty to simulate with the SFM values greater than 30%. To clarify, the main difficulty in the 2D case was

to distribute compact aggregates and to have only aggregated RBCs in blood. The maximum value of the aggregate

area fraction φagmax
was fixed to 0.5, corresponding to the maximum particle area fraction that can be easily

generated using a random number generator. The procedure we chose to distribute the RBCs within aggregates

allows reaching a maximum value of aggregate compactness φimax
equal to 0.6 (see section III.B. in Ref. [12]).

As a consequence, the maximum value of the systemic hematocrit was limited to: φmax= φagmax
φimax

=0.3.

We also modeled individual biconcave RBCs as spheres of equivalent volume in the 3D study and studied BSC

between 4 and 45 MHz. The impact of modeling a RBC by a sphere on the frequency dependence of the backscatter

cross-section has been studied and errors are introduced above 20 MHz [16] [25]. The impact of this simplification

on the simulated BSCSFM and structural aggregate estimates with the three models (SFSE, GM and EMTSFM)

is unknown and still needs to be explored.

D. On the use of the EMTSFM in vivo

The EMTSFM assumes that all RBCs are aggregated in blood and that aggregates are identical and isotropic.

Therefore, the BSC behavior obtained in our simulations have pronounced frequency peaks. In experimental

conditions [10], the BSC behavior was smoother and the peaks were less pronounced. The reason behind this

might be that real blood contains several sizes of aggregates, and since the location of BSC peaks are different

for different aggregate populations, a relatively smoother BSC curve can be obtained. Another important aspect to

consider is the assumption of isotropic aggregates. In human blood, low shear rates can promote the formation of

RBC aggregates having anisotropic (i.e. rouleaux) or isotropic (i.e. clump) structures. The rouleaux like pattern is

typically associated to normal blood. However, as the binding energy between RBCs increases with inflammation

[26], aggregates form clump structures such as in diabetes mellitus [14] [15]. The assumption of isotropic aggregates

in the EMTSFM is thus valid as far as we are concerned with the study of pathological states. In the case of normal

human rouleaux of RBCs, if the EMTSFM is applied to estimate structural parameters such as the aggregate size

and compactness, this assumption would obviously create a bias against the parameter estimation. Therefore, future

improvements should consider incorporating the aggregate anisotropy and the polydispersity in terms of aggregate

size and compactness to provide an optimal model for the inversion of experimental data. Future validations will

also evaluate the EMTSFM in a controlled Couette flow experiment with ghost RBCs (i.e., optically visible RBCs

with no hemoglobin and viable membrane properties) coated with dextran polymers to change attractive energies

between erythrocytes and thus modulate the aggregate compactness and size.

Another difficulty to apply the EMTSFM in vivo is that the spectral content of backscattered echoes is also affected

by attenuation caused by intervening tissue layers (such as the skin) between the probe and the blood flow. To

evaluate correctly microstructural parameters, it is thus of major interest to take into account tissue attenuation effects.

Note that the SFSE was slightly modified to introduce the attenuation term in the BSC expression and was named

the Structure Factor Size and Attenuation Estimator (SFSAE) [27]. The SFSAE allows to determine simultaneously
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blood structural parameters (i.e., W ∗ and R∗

g) and the total attenuation [28] [29]. Future improvements of the

EMTSFM should incorporate the tissue attenuation as for the SFSAE. It means that the EMTSFM should be slightly

modified by introducing the attenuation term to estimate simultaneously the RBC aggregate size, compactness and

the total attenuation.

APPENDIX A

NUMERICAL COMPUTATION OF THE STRUCTURE FACTOR Sag FOR HARD-CYLINDERS IN 2D

Since there is no analytical expression of the structure factor Sag for hard-cylinders in 2D [30] [31], Sag was

numerically computed for several values φag varying from 0.01 to 0.5 with a step of 0.01. It means that, in the

2D case, the cylinder concentration φag was rounded to the second decimal for the computation of Sag in Eq. (7).

Note that the computation of Sag depends not only on the area fraction φag but also on the effective particle radius

rag . That is why Sag that depends on rag was computed in a dimensionless way as described next.

For each specified value of φag , aggregates of an arbitrarily normalized (dimensionless) radius of 1/60 were

randomly distributed within a dimensionless surface area L′2 = 1× 1 using a random number generator with non-

overlapping positions. The corresponding density matrix D′ was computed by dividing the square simulation plane

L′2 in N2
p pixels (herein, Np=512) and by counting the number of particles falling into each pixel. The Fourier

transformation of the density matrix D′ was then computed to generate a structure factor Sag . A mean Sag was

determined by repeating 400 times this procedure. When the value of the effective particle radius rag was specified,

the centered grid of wavevectors for the structure factor Sag was computed between ±
πNp

2 × 60rag
with a step of

∆k =
π

60rag
(i.e., by putting the simulated surface length L′ = 60rag).

APPENDIX B

ANALYTICAL EXPRESSION OF THE STRUCTURE FACTOR Sag FOR HARD-SPHERES IN 3D

The structure factor S for hard-spheres is given by [23] [32]

S(k) =
1

1 − 4πmd3
∫ 1

0
z2 sin(2kz)

2kz c(z)dz
(14)

where m is the number density of hard-spheres, d is the hard-sphere diameter and c(z) is the direct correlation

function given by [23] [32]:

−c(z) = c0 + c1
z

d
+ c3

(z

d

)3

for z ≤ d

= 0 for z > d

(15)

The coefficients c0, c1 and c3 are given by [23] [32]

c0 =
(1 + 2φ)2

(1 − φ)4

c1 = −
6φ(1 + φ/2)2

(1 − φ)4

c3 =
φ

2
c0 =

φ(1 + 2φ)2

2(1 − φ)4

(16)
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TABLE CAPTION

Table I. Acoustical properties of blood found in [16] and [21].

Table II. Values of the aggregate radius and compactness used for computation of the simulated BSCSFM , and

values of parameters found with the SFSE. Aggregating conditions: rag/a varies, φ varies, φi=60% (except

in the case of diaggregated RBCs where φi=100%). The parameter ǫ indicates the relative error.
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TABLE I

Density Compressibility Impedance

ρ (kg.m−3) κ (Pa−1) Z (MRayl)

RBC 1092 3.41 × 10−10 1.766

Plasma 1021 4.09 × 10−10 1.580
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TABLE II

SFM φ=10% φ=20% φ=30%

rag/a φi W ∗ R∗

g ǫR∗

g
W ∗ R∗

g ǫR∗

g
W ∗ R∗

g ǫR∗

g

(%) (%) (%) (%)

1 100 0.61 0.39 -61.00 0.37 0.39 -61.00 0.17 0.38 -62.00

3.16 60 3.12 1.50 -52.53 3.29 1.56 -50.63 2.67 1.32 -58.23

5 60 7.41 3.81 -23.80 6.95 3.64 -27.20 5.31 3.04 -39.20

7.07 60 15.82 7.99 13.01 13.57 7.18 1.56 8.58 5.33 -24.61
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FIGURE CAPTIONS

Figure 1. Frequency-dependent BSCs for different aggregate sizes and a constant aggregate compactness

φi=60% at systemic hematocrits of 10, 20 and 30%. The symbols represent the BSCSFM computation.

The dashed lines represents the corresponding fitting with the SFSE, whereas the solid lines expresses the

fitting with the EMTSFM.

Figure 2. a) Comparison of R∗

g estimated with SFSE and the actual aggregate size rag/a for the three systemic

hematocrits 10, 20 and 30%. b) Linear relationships between W ∗ and R∗

g . Results presented here correspond

to the configuration where rag/a varies and φi is fixed.

Figure 3. Frequency-dependent BSCs computed with the SFM for different aggregate compactnesses and a

constant aggregate size rag/a=6.32 at systemic hematocrits of 10 and 20%, and corresponding fitting with the

SFSE (in dashed lines) and with the EMTSFM (in solid lines).

Figure 4. a) Aggregate size R∗

g estimated with the SFSE as a function of different aggregate compactnesses

for systemic hematocrits of 10 and 20%. The solid line represents the actual aggregate size rag/a=6.32. b)

Linear relationships between W ∗ and R∗

g . Results presented here correspond to the configuration where φi

varies and rag/a is fixed.

Figure 5. a) Values of r∗ag/a and φ∗

i estimated by the EMTSFM as a function of the actual aggregate radius

for the three systemic hematocrits of 10, 20 and 30%. Also represented are actual values of rag/a and φi. (b)

Corresponding relative errors of r∗ag/a and φ∗

i .

Figure 6. a) Values of r∗ag/a and φ∗

i estimated by the EMTSFM as a function of the actual aggregate

compactness for the systemic hematocrits of 10 and 20%. Also represented are actual values of rag/a and φi.

(b) Corresponding relative errors of r∗ag/a and φ∗

i .

Figure 7. Frequency-dependent BSCs computed with the SFM for different aggregate sizes and a constant

aggregate compactness φi=60% at systemic hematocrits of 10, 20 and 30%, and corresponding fitting with the

GM.

Figure 8. a) Values of a∗

eff/a and φ∗

i estimated by the GM as a function of the actual aggregate radius for

the three systemic hematocrits of 10, 20 and 30%. Also represented are actual values of rag/a and φi. (b)

Corresponding relative errors of a∗

eff/a and φ∗

i .

Figure 9. a) Values of a∗

eff/a and φ∗

i estimated by the GM as a function of the actual aggregate compactness for

the systemic hematocrits of 10 and 20%. Also represented are actual values of rag/a and φi. (b) Corresponding

relative errors of a∗

eff/a and φ∗

i .

Figure 10. Logarithm of the error between the simulated BSCSFM and the fitted curves with the three scattering

models GM, SFSE and EMTSFM. a) As a function of the actual aggregate size for the clustering configuration

where rag/a varies and φi is fixed. b) As a function of the actual aggregate compactness for the clustering

configuration where φi varies and rag/a is fixed.
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Figure 11. a) Concentration of aggregated RBCs φ′ as a function of the mean aggregate radius rag/a for

the three systemic hematocrits of 20, 30 and 40%. b) and c) Frequency-dependent BSCs computed with the

SFM in the 3D case for different aggregate sizes and a constant aggregate compactness φi=74% at systemic

hematocrits of 30 and 40%, and corresponding fitting with the SFSE model, the EMTSFM and the GM.

Figure 12. a) Values of r∗ag/a and φ∗

i estimated by the EMTSFM as a function of the actual aggregate radius

for the three systemic hematocrits of 20, 30 and 40%. Also represented are actual values of rag/a and φi. (b)

Corresponding relative errors of r∗ag/a and φ∗

i .

Figure 13. a) Values of a∗

eff/a and φ∗

i estimated by the GM as a function of the actual aggregate radius for

the three systemic hematocrits of 20, 30 and 40%. Also represented are actual values of rag/a and φi. (b)

Corresponding relative errors of a∗

eff/a and φ∗

i .
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