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Abstract

Semi-Lagrangian guiding center simulations are performed on sinu-
soidal perturbations of cartesian grids, thanks to the use of a B-spline
finite element solver for the Poisson equation and the classical backward
semi-Lagrangian method (BSL) for the advection. We are able to repro-
duce the standard Kelvin-Helmholtz instability test on such grids. When
the perturbation leads to a strong distorted mesh, we observe that the
solution differs if one takes standard numerical parameters that are used
in the cartesian reference case. We can recover good results together with
correct mass conservation, by diminishing the time step.

1 Introduction

Semi-Lagrangian schemes often deal with cartesian mesh; the extension to curvi-
linear grids is important in order to be able to deal with specific geometries and
also for adapting the grid to save computational effort. This study is part
of a general work on adding curvilinear capabilities for the simulation of drift
kinetic and gyrokinetic equations in a semi-Lagrangian framework, and is in
current development in the SeLaLib library [17].
In order to treat the case of a general geometry, semi-Lagrangian schemes on un-
structured triangular meshes have been developed and applied to Vlasov-Poisson
simulations [5]. Recently, a new approach has been developed which permits to
stick on a cartesian mesh, with a suitable technique to treat boundary condi-
tions [12]. Another option is to use curvilinear grids, with analytical or discrete
transformation [1]. There, the choice has been made to keep the expressions
of the advection equations in the physical space, rather than to rewrite these
equations in the reference space. Here, we choose the other option (as in [3], for
PIC simulations), which permits to avoid the cost overhead of the localization
of the feet of the characteristics (which is also present on unstructured meshes),
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since the localisation is performed on the cartesian grid. The semi-Lagrangian
method can be adapted to the new equation, which is of similar nature, and
the cost of this step remains of the same order. We will use here the classical
backward semi-Lagrangian method (BSL) with cubic splines. Note that other
approaches can be developed [14]. There, conservative schemes are used and
applied in analytical cases and 1D × 1D Vlasov-Poisson simulations.
The work is devoted to the case of the 2D guiding center equation. The Poisson
solver has to be adapted; it is here 2D (and not 1D like in [14]). The use of
specific solvers on cartesian (or even polar) geometry with Fourier transform,
are here no more available, as we consider general curvilinear coordinates. We
use a B-spline finite element solver, which is a key point in order to solve the
Poisson equation in a curvilinear grid.
To see the robustness of the numerical method, we test the method on some
Colella grids found in [9], which are sinusoidal perturbations of cartesian grids.
Note that preliminary work has been performed in [7]; but there the mesh
was only made oblic and the Poisson solver was solved on cartesian grid. We
refer also to [2], for recent work on curvilinear semi-Lagrangian schemes, in the
context of Navier-Stokes equations.
In Section 2, we write the equations in curvilinear coordinates. We then detail
the numerical method (in Section 3), which is here the classical semi-Lagrangian
method for the advection and a B-spline finite element solver for the Poisson
equation. In Section 4, we give the numerical results. Conclusion and perspec-
tives are presented in Section 5.

2 Curvilinear framework

2.1 Mapping

We denote Ω ∈ R2 the physical domain where the Physic equations are valid.
To solve these equations, we consider a curvilinear coordinates system which is
a mapping F , defined on a logical domain Q:

F : Q = [η1min
, η1max

]× [η2min
, η2max

] → Ω (1)

[

η1
η2

]

→
[

x(η1, η2)
y(η1, η2)

]

.

We can define the Jacobian matrix of the transformation:

DF(η1, η2) =

(

∂x
∂η1

∂x
∂η2

∂y
∂η1

∂y
∂η2

)

,

and we denote by
√
g the jacobian of the matrix DF :

√
g (η1, η2) = Det(DF) =

∂x

∂η1

∂y

∂η2
− ∂x

∂η2

∂y

∂η1
,
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Figure 1: Representation of a mapped mesh in two dimensions.

also we can write the jacobian matrix:

DF = (DF−1)−1 =

(

∂η1

∂x
∂η1

∂y
∂η2

∂x
∂η2

∂y

)−1

=
√
g

(

∂η2

∂y −∂η1

∂y

−∂η2

∂x
∂η1

∂x

)

,

And DF−1 can be also written by

DF−1 =
1√
g

(

∂y
∂η2

− ∂x
∂η2

− ∂y
∂η1

∂x
∂η1

)

. (2)

In the following section, we need to use the expression of the gradient operator
∇ in the new coordinates system (η1, η2):

∇ = DF−t∇̃

where ∇̃ = ∇(η1,η2).

2.2 Transport equation

We first consider as model, a 2D transport equation in cartesian geometry:

∂f

∂t
(t, x, y) + a1(t, x, y)

∂f

∂x
(t, x, y) + a2(t, x, y)

∂f

∂y
(t, x, y) = 0, (3)

with
∂a1

∂x
(t, x, y) +

∂a2

∂x
(t, x, y) = 0.

Equation (3) can be written in the space (x, y) as standard advective:

∂f

∂t
+A · ∇f = 0, (4)
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∇ ·A = 0,

where A = (a1, a2)
t and since the divergence of A is zero then there exists a

scalar potential Φ such that:
A = ∇× Φ.

In other words, we have

A =

[

a1
a2

]

=

[ ∂Φ
∂y

−∂Φ
∂x

]

. (5)

The advection term of the transport equation (4) can be written in the curvi-
linear coordinates (η1, η2) and using

∇f = DF−t∇̃ f̃ ,

we have that:

A · ∇f = A · (DF−t∇̃ f̃)

= At(DF−t∇̃ f̃)

= (DF−1A)t∇̃ f̃

= Ã · ∇̃ f̃ . (6)

In the following we will denote f̃ by the functions composition f ◦ F and so

f̃(t, η1, η2) = f(t, x(η1, η2), y(η1, η2)) = f(t,F(η1, η2)).

Moreover with help of the equalities (2),(5) and (6), we obtain:

Ã(t, η1, η2) =
1√
g

[

∂Φ̃
∂η2

− ∂Φ̃
∂η1

]

.

Using (6) the transport equation can be written in the curvilinear coordinates
(η1, η2) as :

∂f̃

∂t
+

1√
g

∂Φ̃

∂η2

∂f̃

∂η1
− 1√

g

∂Φ̃

∂η1

∂f̃

∂η2
= 0. (7)

2.3 Poisson equation

On the physical domain, the Poisson equation has the form:

−∇ · (b(x, y)∇Φ(x, y)) + c(x, y)Φ(x, y) = f(x, y),

where f is the function given by solving the transport equation, Φ is the electric
potential, b and c are scalar functions.
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We want to write the Poisson equation on curvilinear coordinates thanks to the
transformation F defined in (1) and we have:

∇ · b(x, y)∇Φ(x, y) =
1√
g

2
∑

i=1

2
∑

j=1

∂

∂ηi
(b̃(η1, η2)

√
g gij ∂Φ̃

∂ηj
(η1, η2)), (8)

where Φ̃ = φ ◦ F and gij is the contravariant components of the metric tensor
g which are the dot products of the contravariant basis vectors (∇η1,∇η2):

g =

(

g11 g12

g21 g22

)

= DF−1DF−t.

Furthermore, the matrix g has the following properties:

• g is symmetric,

• g is a positive definite matrix (because DF is invertible),

• since det(DF−1) = det(DF−t) = 1√
g we have

det(g) =
1

g
.

By (8), the new Poisson equation on curvilinear coordinates has the form:

−
2
∑

i=1

2
∑

j=1

∂

∂ηi
(b̃

√
g gij ∂Φ̃

∂ηj
) +

√
g c̃ Φ̃ =

√
g f̃ . (9)

By developing the left hand side of (8),(9), takes the form:

−∇̃ · (√g b̃ g ∇̃ Φ̃) +
√
g c̃ Φ̃ =

√
g f̃ . (10)

where c̃ = c ◦ F and b̃ = b ◦ F .

3 Numerical method

3.1 The Semi-Lagrangian method for the guiding center

model

According to the study in the previous section, the equation of the guiding-center
on a general mesh can be written in the form (7). Characteristics associated
with this equation are given by the following system of differential equations:

∂γ1(t)

∂t
=
∂η2

Φ̃(t, (γ1(t), γ2(t)))
√

g(γ1(t), γ2(t))
,

∂γ2(t)

∂t
= −∂η1

Φ̃(t, (γ1(t), γ2(t)))
√

g(γ1(t), γ2(t))
,
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and at time s we assume that γ1(s) = η1 and γ2(s) = η2. So let us denote the
solution of this system by:

Γ(t; η, s) =

[

γ1(t; η1, s)
γ2(t; η2, s)

]

.

The distribution function f̃ is constant along the characteristic curves (γ1(t), γ2(t))

f̃(t,Γ(t; η, s)) = f̃(s,Γ(s; η, s)) = f̃(s, η), ∀ t, s, η. (11)

This property will be used to solve a discrete problem, which is defined by
introducing mesh points ηij = (η1,i, η2,j) for i = 1, . . . , N1 and j = 1, . . . , N2

where N1 and N2 the numbers of points in each direction η1 and η2 respectively.
Using the property (11), the classical semi-Lagrangian method, or backward
(BSL: Backward Semi Lagrangian see the article [18]) is divided into two steps
to compute the distribution function f̃n+1

ij = f̃(tn+1, ηij) at time tn+1 from the

distribution function f̃nij = f̃(tn, ηij) at time tn:
For each mesh point ηij

1. Calculating Γ(tn; ηij , t
n+1) the value of the characteristic at tn which is

equal to ηij at time tn+1.

2. As the distribution function solution of the guiding center equation reads:

f̃n+1
ij = f̃n(Γ(tn; ηij , t

n+1)),

and since usually the point Γ(tn; ηij , t
n+1) is not a point of the logic grid,

the value of f̃n+1
ij is obtained by interpolation of the function f̃(tn, ·) at

mesh points Γ(tn; ηij , t
n+1) for i = 1, . . . , N1 and j = 1, . . . , N2 at time tn.

The interpolation that is used here is cubic splines. For the computation of the
origin of the characteristics, we use Verlet algorithm, and cubic splines for the
field An.

Computational algorithm

We define a uniform mesh for logical mesh [η1min , η1max ]× [η2min , η2max ] whose
coordinates of points ηi,j are defined by:

η1,i = η1min + i∆η1, η2,j = η2min + j∆η2

where ∆η1 =
η1max−η1min

N1
, ∆η2 =

η2max−η2min

N2
and N1, N2 are respectively

the number of cells in each direction η1 et η2. We define also a coordinates
transformation F : (η1, η2) → (x, y) and its Jacobian matrixDF . The algorithm
for solving (7) with a predictor corrector-time scheme can be written as follows.

1. Initialization:
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• compute the initial distribution: f̃(0, η1, η2) = f̃0(η1, η2) at grid
points ηi,j of the logical mesh,

• compute the spline coefficients of f̃0,

• solve the Poisson equation with f̃0 as a source term to get the po-
tential electric on logical mesh Φ̃(0, η1, η2) = Φ̃0(η1, η2).

2. Time loop:

• tn → tn+1/2

– compute Φ̃n (solving the Poisson equation),

– compute ∂Φ̃n

∂η1
, ∂Φ̃

n

∂η2
at grid points (here derivatives of the cubic

splines)

– find the feet (η1(t
n), η2(t

n)) of the characteristics

∂η1(t)

∂t
=

1√
g

∂Φ̃n

∂η2
,

∂η2(t)

∂t
= − 1√

g

∂Φ̃n

∂η1
,

ending at grid points (η1(t
n+1/2), η2(t

n+1/2)).

– interpolate f̃n at feet (η1(t
n), η2(t

n)) to have f̃n+1/2 at grid
points,

– compute the spline coefficients of f̃n+1/2,

– compute Φ̃n+1/2 (solving the Poisson equation).

• tn+1/2 → tn+1

– compute ∂Φ̃n+1/2

∂η1
, ∂Φ̃

n+1/2

∂η2
at grid points.

– find the feet (η1(t
n), η2(t

n)) of the characteristics

∂η1(t)

∂t
=

1√
g

∂Φ̃n+1/2

∂η2
,

∂η2(t)

∂t
= − 1√

g

∂Φ̃n+1/2

∂η1
,

ending at grid points (η1(t
n+1), η2(t

n+1)).

– interpolate f̃n at feet (η1(t
n), η2(t

n)) to have f̃n+1 at grid points,

– compute the spline coefficients of f̃n+1.

3. End of time loop.

3.2 Finite element method with B-spline for the Poisson

equation on curvilinear coordinates

The equation (10) leads to the elliptic equation:

−∇̃ · √g A∇̃ Φ̃ + c̃
√
g Φ̃ = f̃

√
g , (12)
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where the matrix A corresponds to

A = b̃ g.

We discretize this equation using B-splines basis. For N points in an one
dimension mesh, we construct a B-splines family (Bi)16i6N of degree k. It can
be generated using a non-decreasing sequence of knots T = (ti)16i6N+k+1, also
called knots vector.

Definition 3.1 (B-Splines series). The i-th B-Spline of order k (or of degree
k − 1) is defined by the recurrence relation:

Bk
i (x) = wk

i (x)B
k−1
i (x) + (1− wk

i+1(x))B
k−1
i+1 (x),

where

wk
i (x) =

x− ti

ti+k−1 − ti
, B0

i (x) = χ[ti,ti+1[(x),

for k ≥ 1, 1 ≤ i ≤ n and χ is the characteristic function of [ti, ti+1[. The
B-spline Bk

i has a compact support [ti, ti+k+1].

We construct the knots vector as the article [4] and [6] and we introduce a
B-spline discretization of Φ̃

Φ̃h(η1, η2) =
∑

16i6N1

∑

16j6N2

Φ̃i,jB
k1

i (η1)B
k2

j (η2),

where N1 and N2 correspond to the number of points in the grid in each direc-
tion, k1 and k2 the degree of spline in each direction respectively and Φ̃i,j are

spline coefficients of Φ̃. We take (12) with Φ̃ = Φ̃h, f̃ = f̃h, we multiply it by
Bk1

k Bk2

l and integrate it over our logical grid Q, which leads, by integrating by
part, the following variational equation:

−
∑

i,j

Φ̃i,j

∫

Q

[(

A1,1(B
α1

i )′Bα2

j +A1,2B
α1

i (Bα2

j )′
)

(Bα1

k )′Bα2

l

]

|√g |dη

−
∑

i,j

Φ̃i,j

∫

Q

[(

A2,1(B
α1

i )′Bα2

j +A2,2B
α1

i (Bα2

j )′
)

Bα1

k (Bα2

l )′
]

|√g |dη

+
∑

i,j

Φ̃i,j

∫

Q

Bα1

i Bα2

j Bα1

k Bα2

l c̃|√g |dη

=
∑

i,j

f̃i,j

∫

Q

Bα1

i Bα2

j Bα1

k Bα2

l |√g |dη,

where Ai,j is the coefficient (i, j) of the matrix A. We obtain a linear system

on spline coefficients of Φ̃h such that

MΦ̃h = f̃h, (13)

where the matrix M is equal to
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Mi+(j−1)N1,k+(l−1)N1
= −

∫

Q

[(

A1,1(B
α1

i )′Bα2

j +A1,2B
α1

i (Bα2

j )′
)

(Bα1

k )′Bα2

l

]

|√g |dη

−
∫

Q

[(

A2,1(B
α1

i )′Bα2

j +A2,2B
α1

i (Bα2

j )′
)

Bα1

k (Bα2

l )′
]

|√g |dη

+

∫

Q

Bα1

i Bα2

j Bα1

k Bα2

l c̃|√g |dη,

and Φ̃h,i+(j−1)N1
= Φ̃i,j and

f̃h,k+(l−1)N1
=
∑

i,j

f̃i,j

∫

Q

Bα1

i Bα2

j Bα1

k Bα2

l |√g |dη.

In the next section, we use the Poisson equation with c = 0 in (12). In that
case, dealing with periodic boundary conditions leads to non invertible matrix.
Penalization method, conjugate gradient method or Lagrange multipliers can
be used to overcome this problem.

Penalization method

It consists in introducing a small parameter ǫ in the Poisson equation which
leads to:

−∇̃ · √g A∇̃ Φ̃ǫ + ǫΦ̃ǫ = f̃
√
g . (14)

This method is attractive but poses problems numerically. In fact the choice of
the penalization parameter ǫ is not easy: too big, Φ̃ǫ is a bad approximation to
the exact solution Φ̃, too small, the problem (14) presents numerical instabilities.

Conjugate gradient method

The system (13) is well-understood non-reversible, and checks (II is the vector
whose components are 1):

• Im(M) = II⊥ (The kernel of M is composed of constants).

• f̃ ∈ Im(M) (The compatibility condition
∫

Q
f̃h|

√
g |dη = 0 of the second

member of (12)).

Under these conditions, conjugate gradient method satisfies the following prop-
erty: if we initialize with an orthogonal vector Φ̃0

h to the vector II, then it is
the same for all the iterates. In the case where the mesh is a regular grid, this
leads to a numerical solution with zero mean, which corresponds to the desired
solution. However, if the mesh is not regular, it is sufficient to subtract from
Φ̃h its mean to find an approximation of the solution.
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Lagrange multipliers method

This method consists in introducing the zero mean constraint using a Lagrange
multiplier. We multiply (12) by a test function ψ(η) vanishing on the boundary
and we integrate it by part over the logical domain Q, thats give us:

−
∫

Q

A∇̃ Φ̃ · ∇̃ ψ|√g |dη =

∫

Q

f̃ψ|√g |dη. (15)

Specifically, the variational formulation (15) (in which ψ = Bα1

k Bα2

l ) with the
constraint

∫

Q

Φ̃|√g |dη = 0,

is equivalent to the problem

{

MΦ̃h +λBh = f̃h

BT
h Φ̃h = 0

with λ ∈ R and where the vector Bh is defined by

(Bh)i =

∫

Q

Bα1

k Bα2

l |√g |dη.

Thus the new linear system

(

M Bh

BT
h 0

)(

Φ̃h

λ

)

=

(

f̃h
0

)

is invertible and provides both the zero mean solution and the associated mul-
tiplier.

4 Numerical results

We first give the expression of the mass and energy in this curvilinear context.

Proposition 4.1. We define the electric energy in the cartesian case by:

E(t) =
∫

Ω

(∇Φ)T∇Φ dxdy

and the mass

M(t) =

∫

Ω

fdxdy.

The expressions on the curvilinear geometry are

E(t) =
∫

Q

(∇̃ Φ̃)Tg∇̃ Φ̃ |√g |dη1dη2,
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and

M(t) =

∫

Q

f̃ |√g |dη1dη2,

with √
g = det(DF).

Proof 4.1. Let remind that we have

∇φ = (DF)−t∇̃ φ,

so we deduce that

E(t) =

∫

Ω

(∇Φ)T∇Φ dxdy

=

∫

Q

(∇̃ Φ)T (DF)−1(DF)−t∇̃ Φ|√g |dη

=

∫

Q

(∇̃ Φ)Tg∇̃ Φ|√g |dη.

Kelvin-Helmholtz instability in a periodic box with Colella

mesh

We refer for example to [11] for this test case. The initial distribution f0 is given
by the formula :

f0(x, y) = sin(y) + β cos(σx)

where β = 0.015 and σ = 0.5. Periodic conditions are considered both in x and
y direction. The domain is [0, Lx]× [0, Ly], with Lx = 2π

σ , Ly = 2π. B-splines
of order k = 4 are taken for the Poisson solver.
Such test case has been proposed in [11] for example. We test here the robustness
of the numerical method on a Colella mesh [9] in order to see the influence of
the mesh. The mapping is given by

x(η1, η2) = η1 + α sin(
2π

Lx
η1) sin(

2π

Ly
η2), y(η1, η2) = η2 + α sin(

2π

Lx
η1) sin(

2π

Ly
η2)

for (η1, η2) ∈ [0, Lx]× [0, Ly] and for 0 ≤ α < 1.
Distribution function f(t, x, y) is plotted for different meshes at time t = 45, on
Figure 2 and at time t = 60 on Figure 3. The curvilinear mesh is depicted on
a 64 × 64 grid for α = 0.9 (Figure 2 top left) and α = 0.7 (Figure 3 top left).
Note that the mesh corresponding to α = 0.9 is quite distorted.
Reference run is given bottom right, with an almost uniform mesh (α = 10−6)
and 256 × 256 grid. Note that the results are non distinguishable with those
obtained with a uniform mesh (α = 0), which are not shown here to gain
place. Using α up to 0.7 leads to similar result until time t = 60, with the same
numerical parameters (see Figure 3 top right). When the mesh is more distorted
(α = 0.9), we observe that the results differ (see Figure 2 top right). The effect
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of refining the grid does not help (see Figures 2 and 3 middle right) but by
refining the time step, we observe a better behavior (see Figures 2 and 3 middle
left). Nevertheless the numerical method gives raise to numerical dispersion
which is diminished by taking a finer grid (see Figures 2 and 3 middle/bottom
left). It is known that cubic splines lead to numerical dispersion, when the time
step is small (see e.g. [8]). One remedy could be to use Lagrange/Hermite
interpolation with odd degree reconstruction of the derivatives (see [19]).
On Figure 4 and 5, 1D diagnostics are shown. We observe the same features
as on the 2D plots, for the mass conservation: mass is increasing for α = 0.9
(Figure 4 top left). We see on logarithmic plot (Figure 4 top right) that it is
also the case for the other values of α, but the amplitude is smaller. It seems
that if the amplitude is big enough, we observe a change in the solution. On
the other hand, we also see that by taking a smaller ∆t, the mass conservation
is enhanced; the evolution is similar, but with a much lower amplitude, which
seems to permit not to affect the 2D plots (see Figure 4 top left and right).
The curves of energy conservation are similar, when the mesh is not too distorted
(Figure 4 middle left), and again for α = 0.9 we observe a different behavior.
By refining the grid and above all by taking a smaller time step, the energy is
also better conserved. L1 and L2 norms have a standard behavior (Figure 4
and 4 bottom). We can also note, that L∞ norm is not good preserved (Figure
4 and 4 middle right), especially with fine grids, but this does not much affect
the 2D plots; we can observe some pics that appear in the simulation.

5 Conclusion and perspectives

First semi-Lagrangian simulations have been performed on curvilinear grids for
the guiding center model, with both Poisson and advection solved on the curvi-
linear grid. For not too large deformations of the mesh, we are able to reproduce
the right results and we notice that time step has to be diminished in order to
handle more distorted meshes. Further work will be continued in order to deal
with other geometries (like D-shape or polygonal shape) and different boundary
conditions (like Neumann for the diocotron instability test [10, 13]). Note that
one strength of the method is that we can use the same code and just implement
the mapping for dealing with another geometry (if the latter can be described by
a mapping). We plan also to work on the conditions which lead to conservation
properties. We are also interested in better computing the characteristics when
the mesh is strongly distorted; this could have an impact on the numerical re-
sults. Finally, we can also compare with eulerian approaches which are subject
to a CFL condition.
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Figure 2: Distribution function f(t = 45, x, y) for different grid sizes, ∆t and α
parameter of the Colella mesh. From left to right, top to bottom:
64× 64 grid, ∆t = 0.1, α = 0.9, 256× 256 grid, ∆t = 0.1, α = 0.9,
256× 256 grid, ∆t = 0.01, α = 0.9, 512× 512 grid, ∆t = 0.1, α = 0.9,
512× 512 grid, ∆t = 0.01, α = 0.9, 256× 256 grid, ∆t = 0.1, α = 10−6.
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Figure 3: Distribution function f(t = 60, x, y) for different grid sizes, ∆t and α
parameter of the Colella mesh. From left to right, top to bottom:
64× 64, ∆t = 0.1, α = 0.7, 256× 256, ∆t = 0.1, α = 0.7,
256× 256, ∆t = 0.01 α = 0.9, 512× 512, ∆t = 0.1, α = 0.9,
512× 512, ∆t = 0.01, α = 0.9, 256× 256, ∆t = 0.1, α = 10−6.
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Figure 4: Time evolution of theoretically conserved quantities on 256×256 grid
with ∆t = 0.1. From left to right, top to bottom: mass, absolute value of mass,
energy, L∞ norm, L1 norm, L2 norm.
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Figure 5: Time evolution of theoretically conserved quantities on 256 × 256 or
512 × 512 grid with ∆t ∈ {0.01, 0.1}. From left to right, top to bottom: mass,
absolute value of mass, energy, L∞ norm, L1 norm, L2 norm.
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