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Abstract—This paper introduces a Swarm-Intelligence based
Routing protocol (SIR) that aims to efficiently route information
in content centric Delay Tolerant Networks (CCDTN) also dubbed
pocket switched networks. First, this paper formalizes the notion
of optimal path in CCDTN and introduces an original and
efficient algorithm to process these paths in dynamic graphs. The
properties and some invariant features of these optimal paths are
analyzed and derived from several real traces. Then, this paper
shows how optimal path in CCDTN can be found and used
from a fully distributed swarm-intelligence based approach of
which the global intelligent behavior (i.e. shortest path discovery
and use) emerges from simple peer to peer interactions applied
during opportunistic contacts. This leads to the definition of
the SIR routing protocol of which the consistency, efficiency
and performances are demonstrated from intensive representative
simulations.

Keywords—Delay Tolerant Networks, Content-Centric Net-
works, Routing Protocol, Swarm Intelligence.

I. INTRODUCTION

With billions of increasingly processing and networking
efficient nodes at the edge of the Internet, the question to use
the fabulous capacity of this ”peripheral computing, storage
and networking cloud”, in complement and independently
of the traditional communication infrastructure and services
offered by the legacy Internet, makes sense. The efficient
use of this pervasive huge cloud of processing, storage and
communication resources, potentially available ”for free” but
underlaid by security, power consumption and performance
issues, has lead to a thread of researches in new communication
paradigms and protocols adapted to this type of spontaneous
and highly dynamic ad-hoc networks. Specially, two new
complementary communication paradigms play a key role in
this specific type of communication context, that is, pocket
switched [6] and content centric communication [8]. Indeed,
according to the dynamic topology, intensive churn, potentially
huge space of nodes and nodes diversity intrinsic to this type
of networks, classical end to end communication paradigms
cannot be applied anymore. This leads to consider these
networks as a source of content and to replace classical address
resolution and management mechanisms by the pivotal concept
of content id. In such networking context, the end to end
paradign can be profitably replaced by the publish/subscribe
paradigm. Moreover, considering that end to end connectivity
between content providers and users cannot be insured, the
store-carry and forward paradigm intrinsic to delay tolerant
networks must be applied in this type of networks. This paper

aims to contribute to the definition and design of new com-
munication architectures, protocols and mechanism adapted to
content centric delay tolerant networks (CCDTN) by proposing
a new routing paradigm and protocol for the efficient routing
of information between content providers and content users
in pocket switched networks. Indeed, this original protocol
aims to keep track and to follow optimal routes in CCDTN.
This protocol, called Swarm Intelligence based Routing (SIR),
rests on a ”swarm intelligence based approach” of which
the collective routing ”intelligent” behavior results from the
conjunction of nodes’ simple individual fully decentralized
behaviors. In this paper we push further the preleminary
simulation based results introduced in [11].

The rest of this paper is structured as follows. In Section II,
we formalize the notion of optimal path in DTN, III analyze
several representative real traces to exhibit properties and
invariant of these optimal paths. In Section IV, we introduce
Swarm-Intelligence based Routing (so called SIR) protocol.
Via simulation results, Section V demonstrates the consistency,
efficiency and performances of SIR . Section VI reviews the
most salient contributions on the issue of routing in DTN.
Finally, Section VII concludes the paper.

II. FINDING SHORTEST PATHS IN DTNS

A. Definition

In a static graph, the classical shortest path problem
consists in finding a path between two nodes such that the
sum of the weights of its constituent edges is minimal. This
definition of shortest path is adapted to static networks but
cannot be applied to DTNs and dynamic networks in which
links between nodes vary in time. A more suitable model for
this type of network are temporal graphs [14], i.e. graphs in
which a link represents an opportunistic contact at a given
instant between two nodes. A path in a temporal graph can be
seen as an ordered set of temporal links that allow a message to
be transferred using the store-move-forward paradigm between
two nodes. Formally, let ltij be a link between node i and node
j at instant t. A path from A to B is described by a time
ordered set lt0Ai, l

t1
ij , . . . , l

td
kB , with ti+1 > ti . Note that this

definition is asymmetric (i.e. the existence of a path from A to
B doesn’t mean there exists a path from B to A). This is due to
the temporal order (i.e. appearence) of the links that constitute
a dynamic path. We consider the two following metrics on
dynamic paths :

• Delay : the sum of the inter-contact times between



consecutive links constituting the path we consider
that the communication delay is neglectible with re-
gard to inter-contact delays).

• Number of hops : the number of temporal links
which constitutes the path. This metric is related to
the ressources (memory, communication, processing,
energy...) used by the dynamic path.

Let p
d,h
AB be a path which allows a message from a node

A to reach its destination B in d time units and via h hops.
From this point of view, two definitions of optimal path can
be derived, depending on the optimization objective. For delay
constrained communication the optimal path is the path giving
the minimum amount of delay. If there are several paths giving
the same delay, then the one giving the minimum number of
hops is selected. On the resource constrained communication
the optimal path could be the path giving the minimum number
of hops. In this case, if there are several paths with the same
number of hops, the one giving the minimum delay is selected.
In the following, we will focus on delay-constrained path only,
in this case the delay is also called the path length.

B. Pairwise Shortest Paths Algorithm

The pairwise shortest path problem consist of finding the
shortest path between every pairs of vertices in a graph.
We propose here an algorithm to solve this problem in a
temporal graph with the notion of shortest path as defined in
the previous section. This algorithm leverages on the property
of the adjacency matrix in static graphs.

In graph theory, the adjacency matrix is defined as the
matrix A in which the element aij ∈ {0, 1} denotes the
existence of a link between node i and node j. This matrix has
the following interesting property : if we process the power n
of matrix A, B=An, then its element bij gives the number of
paths of length n between i and j. Indeed, for example, when
n = 2, bij =

∑
k aik × akj sums all the possibilities to go

from i to j through an intermediate node k.

This property can be easily extended to temporal graph.
Let A(t), t = 0, 1, . . . , n be the adjacency matrix of a temporal
graph at time t. The matrix C(t) obtained as follows

C(t) = A(t)b ∧A(t)2b ∧A(t)3b . . . ∧A(t)nb , (1)

where A(t)ib denotes the binary version of the matrix A(t)i (i.e.
the element a(t)b equals to 1 if a(t) > 0 and 0 otherwise) has
its elements cij(t) ∈ {0, 1} that indicate if there is a direct or
indirect (i.e. via multiple hops) link between i and j at instant
t. Indeed, cij(t) is the logical sum of all possibilities to have
a direct or indirect link (up to n hops) between i and j at time
t.

In consequence, the product

D(t) = C(0)× C(1) . . .× C(t) (2)

results in a matrix in which the element dij(t) specifies, when
not null, that there is temporal path of delay t between i and
j. As a consequence, the shortest path length from node i to
node j is given by the smallest value of t such as dij(t) equals
to 1.

It is trivial to demonstrate that if a node C belongs to
a shortest path between node A and node B then the AC

time1 2
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(a) Illustration of a temporal graph
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1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1











, A(2) =











1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1











⇒C(1) =











1 1 1 0
1 1 1 0
1 1 1 0
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1 1 1 0
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D(2) = C(1)× C(2) =











1 1 1 1
1 1 1 1
1 1 1 1
0 0 1 1
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0 1 1 2
1 0 1 2
1 1 0 2
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(b) Shortest path length computation

Fig. 1. Example of all-pairs shortest paths algorithm

sub path gives the shortest path between A and C. Therefore
the shortest path between two nodes A and B can be easily
backwardly reconstructed.

Finally, an example of the algorithm is illustrated in Figure
1. In this example, the final matrix L contains the shortest paths
lengths of all pairs of nodes in the network.

In practice, as it’s unlikely to have a large number of
nodes connected to each other at a given moment, we can
optimize the algorithm by limiting the number of iterations n
in Equation 1 to an upper bound of the network diameter.

III. SHORTEST PATHS PROPERTIES IN DTNS

A. Real Traces Analysis

In this section, with the help of the algorithm previously
introduced, we will study the evolution and properties of
shortest paths that can be observed on real mobility traces.
Indeed, the understanding of these properties is important to
design efficient routing protocols adapted to DTNs. To study
the properties of shortest paths in real DTNs, we analyzed the
traces from the Haggle project [2] which consists of records
of Bluetooth range contacts between devices held by attendees
during a conference or within a group of students/researchers
in a laboratory. First, temporal snapshots of the network state
are taken and the related adjacency matrix is processed with
a 200s periodicity. Then, the shortest paths between all pairs
of nodes are computed. Three salient properties of the shortest
path length can be observed from these traces.
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(a) Intel trace
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(b) Cambridge trace
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(c) Infocom2005 trace
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(d) Infocom2006 trace

Fig. 2. Evolution over time of the average shortest path length of real DTNs

1) Periodic Pattern of the Shortest Path Length: Figure 2
shows a typical example of the temporal evolution of the
shortest path average length. This figure shows the periodic
evolution of the average shortest path length observed in
different traces. The approximately 24 hours period with two
opposite phases results from night/day variations in human
activities and the resulting high change in shortest path lengths.
Indeed, during the day, peoples’alternate movements and meet-
ings leading to shorter path length than during static night
periods. On the contrary, at night, they are more static and
have less chance to meet each other, leading to longer path
lengths. An adaptive communication stack can leverage on this
periodic behavior to switch, for instance, from a DTN oriented
communication scheme to a point to point one during phases
with low mobility and meeting rates.

2) Symmetry of the Shortest Path Length: As defined in
Section II-A, paths in DTNs are generally asymmetric due
to the temporal ordering of the links constituting the path. It
is interesting to check on real traces if this property entails
differences between the shortest path length of a path and the
one simultaneously observed for the reverse path. In order to
check this feature, on several traces, for each couple of nodes
(ni, nj) we measured the shortest path length between ni and
nj and simultaneously in parallel for the reverse path between
nj and ni. Figure 3(a) shows a typical evolution over time
of these two shortest path lengths between two nodes and
Figure 3(b) shows the correlation between the two time series
of values with the related regression line. Interestingly, the
result shows a nearly permanent symetry of the shortest path
lengths. In the CCDTN context, this symmetry entails that
if the shortest path is built from content user to the content
publisher and if we suppose some stationarity of this length
(as observed in the traces during day phases) then the content
can be delivered from the publisher to the user along a path
with approximately the same length.

3) Pairwise Inter-contact Time vs the Shortest Path: The
characterization of the nodes involved in shortest paths is an
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Fig. 3. Symmetry of the shortest paths in Infocom05 trace
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Fig. 4. The involvement of a node on the shortest path of another node
is inversely proportional to the average inter-contact time between these two
nodes

important issue. Indeed, an efficient routing algorithm should
take advantage of this characterization to forward content to
the best candidate nodes. Using our algorithm, we process,
in the Infocom05 traces, the shortest paths between all nodes
and a selected node A . Then, for each node, we count the
number of its occurrences on the shortest paths to A. At the
same time, we compute the pairwise inter-contact time between
these nodes and A. Figure 4 shows the correlation between
the average number of occurrences in the set of shortest paths
and the average inter-contact time for all the nodes of the
considered trace. This figures shows that the shorter is the
inter-contact time between a node and the destination, the
higher is its frequency of occurrence on the whole set of the
shortest paths. This means, according to the spatiotemporal
correlation observed in human mobility patterns [5], that
shortest paths have a tendency to converge towards the nodes
that the destination frequently meets.

IV. SWARM-BASED INTELLIGENT ROUTING (SIR)

Leveraging on the definition of shortest path in dynamic
networks and the properties of this path introduced in the
previous sections, we have introduced in [11] SIR, Swarm-
based Intelligent Routing (SIR) a novel routing protocol in-
spired by the collective swarm intelligence that can emerge
from basic individual behaviors applied by each element of
a swarm of autonomous agents. In SIR, network nodes, via
opportunistic contacts, maintain for each subscription they
have heard of an utility function which sums up how close (as
defined in Section II) this node is from a content subscriber.
We will show that the distributed set of scalars associated
to a given subscription forms across the network a gradient
field in which the maximum value is carried by the content
provider and the minimum value by the content user. Therefore



content routing with SIR simply consists in following the
steepest slope towards the minima of the gradient field where
content users are located. Such algorithm works in a complete
distributed way, so that nodes do not need to maintain any
knowledge about the global topology of the network.This
section, briefly introduces the SIR protocol of which a more
detailed description can be found in [11].

Putting in synergy the DTN and publish/subscribe
paradigms, SIR is composed of two phases.

A. Interest Dissemination Phase

In this phase, nodes register their interest for a content
by disseminating efficiently this interest into the network. We
leverage on this interest dissemination to dynamically establish
a gradient field of which the intensity decreases from the
content providers to the content users. The Binary-Spray-and-
Wait protocol [15] well known to offer a good trade-off in term
of delay, delivery ratio and resources use, is selected for the
efficient diffusion of subscription messages. In SIR, a relaying
node receives not only copies of subscription messages but
also a couple of metric values defined in the previous section
(i.e. delay and number of hops). SIR relay nodes update their
utility values through opportunistic contacts according to their
encounter’s delays and number of hops from the content users.
Hence, this behavior contributes to establish gradient fields that
keep track of the shortest path between content producers and
content users. Relay nodes utility is updated according to the
following behavior:

• If a relay meet a content user, it resets its delay to 0
and updates its number of hops to 1.

• If two relays meet each other, the node with the higher
delay sets its delay equal to the delay of the other node
and its number of hops equal to the number of hops
of the other node plus 1

• If two relays meet each other and have the same delay,
then they keep theirs utility values unchanged.

• Otherwise delays progresses according to time evolu-
tion.

Figure 5 illustrates graphically this mechanism. On this
figure, t and h are respectively the delay and the number of
hops.

B. Content Dissemination Phase

When a content publisher receives the interest message,
the second phase consists in sending back the content to the
user by following, ideally, a path as close as possible to the
shortest path between the content provider and the content
user. The Binary Spray and Wait protocol is also used as
the underlying diffusion mechanism. The content forwarding
decision mechanism consists in always selecting a relay node
of which the delay is smaller (i.e. a node closer in time to the
content user). If the delays are equal, the content is forwarded
if the encountered relay has a smaller number of hops (i.e.
closer to the content user in space).

Fig. 5. Example of the interest dissemination phase

V. SIMULATION RESULTS

This section pushes further the preliminary results intro-
duced in [11] by focusing on a more complete and in depth
simulation-based evaluation of the SIR routing protocol. First,
we verify the hypothesis that the utility function synthetizes
coherently the proximity of a node to a content subscriber.
Secondly, we run the protocol on real traces and compare the
delay of the paths found by SIR with the shortest path found
by the algorithm given in Section IV. This makes it possible
to assess how close paths taken by SIR are to shortest paths.
Finally, we compare SIR performances with two classical
DTN-oriented routing protocols : PROPHET and Spray-and-
Wait.

A. Consistency and Efficiency Issues

1) Consistency of the Utility Function: As introduced in
the previous section, the utility function aims to sum up the
proximity of a node to a related content subscriber. Therefore, a
positive correlation between these two parameters should entail
a linear relationship between the utility value and the shortest
path length. To verify this hypothesis, we have implemented
the SIR algorithm in MATLAB and we ran it on Infocom2005
traces which record Bluetooth connectivity of 41 handheld
devices carried by conference attendees during 3 days. In
the selected scenario, one content user sends his interest
for this content to one content publisher and then receives
the periodically refreshed content from the later. 41 interest
message copies, initially disseminated by the subscribing node,
allows one to establish a gradient field which is maintained
and reinforced by all the nodes during the simulation. On one
hand, we measure the evolution of nodes’ utility values and
on the other hand we process the shortest path length between
the content subscriber and every other nodes. Then, we take
the average value over 10 simulation runs. Figure 6 shows the
correlation between these two time series. One can observe
that the utility values and the shortest path length are highly
correlated with 68% of correlation coefficient higher than 0.8,
which reinforces our hypothesis.

2) SIR vs Optimal Solution: The goal of this evaluation is
to show that by using the gradient field maintained and used
by SIR one can achieve a nearly optimal solution. We conduct
the same experiment described in the previous section. Then,
we measure the content delivery delay at different instants
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Fig. 6. Correlation between the utility values of a node and the shortest path
length from that node to the content subscriber

of the day. This procedure is repeated with different pairs of
user/publisher. On the other hand, we run our pairwise shortest
paths algorithm to find the shortest path between these pairs
of nodes. Figure 7 shows the average result over 10 pairs of
nodes. These results show that SIR finds paths with delivery
delays very close to the optimal paths.

B. Performance Issues

In this section, from a simulation-based point of view, we
compare the SIR routing performances with the ones given
by a basic Binary Spray and Wait (BSW) protocol and the
ones delivered by PROPHET - a probabilistic based routing
protocol. The performances delivered by the BSW routing
protocol have to be considered as floor performances that SIR,
by extending BSW with an utility function, should overtake
in every situation. PROPHET can be considered as a swarm
inspired protocol based on the distributed processing of an
inter-node encounter probability. Therefore, the comparison
of SIR and PROPHET performances allows one to classify
our approach in comparison with a probabilistic approach
known to perform well in DTN networks. Although Binary
Spray and Wait and PROPHET were designed according to
an end-to-end communication paradigm, these protocols can
also be adapted to pub/sub systems with address based routing
replacing content routing.
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Fig. 8. Initial spatial distribution of nodes in STEPS simulations

TABLE II. SIMULATION CONFIGURATIONS

Number of nodes 100
Number of content subscriber 1
Number of content provider 1

Network size 300 × 300 m2

Number of zones 10 × 10
Duration 10000 s

Warm up 2000 s

Radio range 10 m

Node speed [3, 5] km/h

Content release frequency 100 s

Number of content copies 10
(for SIR and BSW)

In order to reproduce at the simulation level realistic human
mobility patterns, we have used the STEPS mobility model
and simulator [10]. As we have shown in a previous work,
this flexible parametric model can express a large spectrum
of mobility patterns: from highly nomadic ones to localized
ones; allowing us to evaluate routing protocols in different
mobility contexts. Moreover, this model was shown to reflect
accurately at the simulation level the routing performances
observed with real traces. In the following scenarios, the
network area is modeled as a torus divided in a number
of square zones. Inside these zones, nodes move following
the Random Waypoint model. Each node is attached to one
preferential zone. The movement of nodes between these zones
is driven by a parameter of the STEPS model which allows
the nodes nomadism to be enforced or reduced according
to a power law distribution (i.e. the probability that a mode
moving outside his preferential zone has to return to that zone).
Figure 8 illustrates the initial nodes’ spatial distribution and
Table II summarizes the main simulation parameters.

The communication protocol stack used in these simula-
tions is simplified and focuses mainly on the network layer.
For the sake of simplicity, we assume that the connections
between nodes have an infinite bandwidth and that nodes have
an infinite buffering capacity. The communication channel
is modeled as a unicast channel. When two nodes are in
communication range, they exchange instantly their buffers
containing interests, contents and utilities.

We chose to simulate 3 different scenarios to study the
impact of three fundamental factors on the protocols: mobility,
connectivity and scalability. In these scenarios, we use the
average delivery delay and the average delivery ratio (i.e. the
ratio between the number of messages received and the number
of messages sent) as performance measures.

1) Scenario A - Impact of Mobility: Mobility is known to
have a significant impact on routing performances. In partic-
ular, in Pocket Switched Networks, human mobility plays an
important role in routing protocol design because it contributes



to packets mobility and packet routing. We exposed the three
protocols to two different mobility contexts. The first one
corresponds to a ”sedentary” mobility behavior where people
tend to spend the main part of their time in specific locations
(i.e. home, workplace...) and move barely far from these
preferential places. In STEPS, this characteristic is expressed
with nodes having a strong attraction towards their preferential
zones. The second mobility context corresponds to a more
”nomadic one”, such as human movements during a social
event or in shopping areas. This behavior is modeled with
nomadic nodes that are weakly attached to any preferential
zone and tend to move quite randomly in the simulation area.

Simulating each protocol on these two mobility contexts,
we measured the content delivery delay and the content deliv-
ery ratio between different pairs of nodes. In our simulations,
the same mobility trace was used to ensure that the different
protocols run exactly on the same mobility scenario. In each
scenario, contents are sent periodically by publishers to the
subscriber every 100 seconds. Then, we measured the average
delivery delay and average delivery ratio between different
pairs of nodes. The final result is averaged over 10 simulation
runs. Figure 9 shows the bar plot of these measures. The
segment on top of each bar represents the 95% confidence
interval of the estimated mean value.

These results show that that in ”sedentary” mobility con-
text, SIR outperforms the other protocols by significantly
decreasing delivery delay and increasing delivery ratio. It
is interesting to see that even in the ”nomadic” context, a-
priori less favorable to SIR which leverages on spatiotemporal
correlations, SIR still slightly outperforms the other protocols.
On the other hand, as intuitively understandable, for the three
protocols, the nomadic context contributes to increase routing
performances and entails much higher delivery ratio and lower
delivery delay than the more ”sedentary” scenario. In the
following scenarios, for comparison purpose, we will use the
”sedentary” mobility context only, which conform to real life
mobility patterns observed in real traces.

2) Scenario B - Impact of Connectivity: In this scenario, we
perform the same experiment as described above but instead of
varying the mobility pattern, we vary the connectivity between
nodes by increasing their radio range from 10 m to 30 m.
Again, the average delivery delay and average delivery ratio are
measured for each scenario and for each protocol. Figure 10
gives the results obtained from these measures and show that
SIR still outperforms the other protocols in all scenarios.
Moreover, in the scenario with long range connectivity, which
reduces significantly path lengths for all the protocols, SIR
delivers still better performances both in term of delay and
delivery ratio.

3) Scenario C - Scalability: Scalability is a very important
feature specially for routing protocols that target potentially
vast community of mobile users. In this scenario, we aim to test
the capacity of SIR to route content efficiently in large-scale
networks. For this, we increase the number of nodes in the net-
work while keeping node density constant. The configurations
for these scenarios are summarized in Table III. As seen on
Figure 11, SIR scales well compared to the two other routing
protocols, especially to Binary Spray and Wait. This can be
intuitively explained by the fact that in large network, without
any supplementary information and with a limited number of

TABLE III. SCENARIO C SETTINGS

Scenario Number of Nodes Network Size

C1 100 300 × 300 m2

C2 200 430 × 430 m2

C3 300 520 × 520 m2
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Fig. 9. Scenario A - Routing performances of the three routing protocols
under different mobility contexts

content copies, diffusion based protocols such as Binary Spray
and Wait fail to relay content to good candidates which would
allow the content to reach the destination with a good delay.
On the contrary, SIR, with the additional routing constraint
based on nodes spatiotemporal distance from the destination,
improves significantly the routing performances.

VI. RELATED WORKS

Basically, routing protocols for DTNs can be divided in
two categories : non-context and context-based (see [3] for a
survey). The first category consists in protocols in which nodes
make forwarding decision while ignoring the network context
(i.e. mobility or social structure). Protocols falling into this
category belong to flooding and constrained-flooding families
such as Epidemic Routing [16] or Spray-And-Wait [15]. In
the second category, nodes exploit the context information
(e.g. frequency of contact) from their local interactions to find
the good candidate to forward the message. PROPHET [9],
Bubble Rap [7], HiBOp [1] and Propicman [12] fall into
this category of routing protocols. In PROPHET, an utility
value based on the contact frequency history is used to predict
the probability of contact with the destination node. Bubble
Rap makes the assumption of a community structure between
nodes; messages are first pushed up to the most popular node in
the community before being sent to the destination community
and delivered to the destination node. HiBOp and Propicman
are more flexible for they do not make any assumption of
a social structure. Nodes learn dynamically this structure via
their local interactions. However, these protocols are deeply
rooted in the end-to-end paradigm and cannot easily be adapted
to the content-centric communication.

Attempts to bring the content-centric paradigm to oppor-
tunistic networks include SocialCast [4] and TACO-DTN [13].
In SocialCast, utility values based on social patterns and mobil-
ity are used for message forwarding decision. The evolution of
these utility values is predicted with the help of a Kalman filter.
TACO-DTN uses temporal information to predict the future
contacts between content providers and content users. This
prediction is then used to schedule the delivery of messages.
By resting on two universal and simple metric values intrinsic
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Fig. 10. Scenario B - Routing performances comparison of the three routing
protocols under different connectivity levels
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Fig. 11. Scenario C - Scalability of the three routing protocols

to the evolution of every networks (i.e. space with the number
of hops and time with the delay), SIR distinguishes from these
protocols based on more complex and artificial interaction
patterns.

Finally, the notion of temporal graph was first addressed
in [14]. In this work, the authors formalize the notion of tem-
poral path length, temporal clustering coefficient and temporal
efficiency to study properties of temporal graph. We leveraged
of this definition of temporal path length to formalize the
notion of shortest path in DTN.

VII. CONCLUSION

From a formal definition of the notion of shortest paths
in dynamic networks and an in depth analysis of shortest
path properties observed in representative real traces, we have
introduced in this paper, SIR, a simple and light routing
protocol that makes it possible to found and follow efficient
routes in dynamic networks. The SIR protocol puts in synergy
the DTN and CCN paradigms to found and follow shortest
paths between content providers and content users in Delay
Tolerant Content Centric Networks (DTCCN). We have shown
in this paper that efficient and high performing routing can
emerge from simple an light individual rules applied by each
node during their opportunistic contacts. Simulations, from
a parametric mobility model that makes it possible to cover
a broad scope of mobility patterns, show that the proposed
protocol, leads to the distributed elaboration of consistently
decreasing gradient fields between content users and content
providers. Therefore, routing with SIR simply consist in fol-
lowing steepest slope between content providers and content
users. These simulations have also shown that SIR is never
outperformed by classical information diffusion mechanisms

such as Binary Spray and Wait and probabilistic routing. More-
over, SIR increasingly outperforms these protocols when the
spatiotemporal correlation between nodes increases. According
to the strong spatiotemporal correlation frequently observed in
real mobility traces, SIR is a promising routing protocol for
content centric DTN. However, we are convinced that there is
still a margin of progress for SIR, specially by introducing, for
example, inter-contact and intra-contact delays experienced by
each node for the processing and actualization of the utility
metric, and by studying the scalability and resource use in
response to very large nodes and data spaces.
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