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VLASOV ON GPU (VOG PROJECT) ∗, ∗∗, ∗∗∗

M. Mehrenberger1, C. Steiner2, L. Marradi3, N. Crouseilles4, E.
Sonnendrücker5 et B. Afeyan6

Résumé. Ce travail concerne la simulation numérique du modèle de Vlasov-Poisson à l’aide de
méthodes semi-Lagrangiennes, sur des architectures GPU. Pour cela, quelques modifications de la
méthode traditionnelle ont dû être effectuées. Tout d’abord, une reformulation des méthodes semi-
Lagrangiennes est proposée, qui permet de la réécrire sous la forme d’un produit d’une matrice circu-
lante avec le vecteur des inconnues. Ce calcul peut être fait efficacement grâce aux routines de FFT.
Actuellement, le GPU n’est plus limité à la simple précision. Néanmoins, la simple précision reste
intéressante pour des raisons de performance et de mémoire disponible. Afin de contourner le problème
de la simple précision, une méthode de type δf est alors utilisée. Ainsi, un code Vlasov-Poisson GPU
permet de simuler et de décrire avec un haut degré de précision (grâce à l’utilisation de reconstructions
d’ordre élevé et d’un grand nombre de points de l’espace des phases) des cas tests académiques mais
aussi des phénomènes physiques pertinents, comme la simulation des ondes KEEN.

Abstract. This work concerns the numerical simulation of the Vlasov-Poisson equation using semi-
Lagrangian methods on Graphics Processing Units (GPU). To accomplish this goal, modifications to
traditional methods had to be implemented. First and foremost, a reformulation of semi-Lagrangian
methods is performed, which enables us to rewrite the governing equations as a circulant matrix
operating on the vector of unknowns. This product calculation can be performed efficiently using FFT
routines. Nowadays GPU is no more limited to single precision; however, single precision may still be
preferred with respect to performance and available memory. So, in order to be able to deal with single
precision, a δf type method is adopted which only needs refinement in specialized areas of phase space
but not throughout. Thus, a GPU Vlasov-Poisson solver can indeed perform high precision simulations
(since it uses very high order of reconstruction and a large number of grid points in phase space). We
show results for more academic test cases and also for physically relevant phenomena such as the bump
on tail instability and the simulation of Kinetic Electrostatic Electron Nonlinear (KEEN) waves.
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Introduction

At the one body distribution function level, the kinetic theory of charged particles interacting with electro-
static fields and ignoring collisions, may be described by the Vlasov-Poisson system of equations. This model
takes into account the phase space evolution of a distribution function f(t, x, v) where t ≥ 0 denotes time, x
denotes space and v is the velocity. Considering one-dimensional systems leads to the 1D× 1D Vlasov-Poisson
model where the solution f(t, x, v) depends on time t ≥ 0, space x ∈ [0, L] and velocity v ∈ R. The distribution
function f satisfies

∂tf + v∂xf + E∂vf = 0, (1)

where E(t, x) is an electric field. Poisson’s law dictates that the charged particle distribution must be summed
over velocity to render the self-consistent electric field as a solution to the Poisson equation:

∂xE =

∫
R
fdv − 1. (2)

To ensure the uniqueness of the solution, we impose to the electric field a zero mean condition
∫ L
0
E(t, x)dx = 0.

The Vlasov-Poisson system (1)-(2) requires an initial condition f(t = 0, x, v) = f0(x, v). We will restrict our
attention to periodic boundary conditions in space and vanishing f at large velocity.

Due to the nonlinearity of the self-consistent evolution of two interacting fields, in general it is difficult to
find an analytical solution to (1)-(2). This necessitates the implementation of numerical methods to solve it.
Historically, progress was made using particles methods (see [4]) which consist in advancing in time macro-
particles through the equations of motion whereas the electric field is computed on a spatial mesh. Despite the
inherent statistical numerical noise and their low convergence, the computational cost of particle methods is very
low even in higher dimensions which explains their enduring popularity. On the other hand, Eulerian methods,
which have been developed more recently, rely on the direct gridding of phase space (x, v). Eulerian methods
include finite differences, finite volumes or finite elements. Obviously, these methods are very demanding in
terms of memory, but can converge very fast using high order discrete operators. Among these, semi-Lagrangian
methods try to retain the best features of the two approaches: the phase space distribution function is updated
by solving backward the equations of motion (i.e. the characteristics), and by using an interpolation step
to remap the solution onto the phase space grid. These methods are often implemented in a split-operator
framework. Typically, to solve (1)-(2), the strategy is to decompose the multi-dimensional problem into a
sequence of 1D problems. We refer to [2, 6, 9, 12,14,15,19,24] for previous works on the subject.

The main goal of this work is to use recent GPU devices for semi-Lagrangian simulations of the Vlasov-Poisson
system (1)-(2). Indeed, looking for new algorithms that are highly scalable in the field of plasmas simulations
(like tokamak plasmas or particle beams), it is important to mimic plasma devices more reliably. Particle
methods have already been tested on such architectures, and good scalability has been obtained as in [5, 30].
We mention a recent precursor work on the parallelization in GPU in the context of a gyrokinetic eulerian code
GENE [13]. Semi-Lagrangian algorithms dedicated to the simplified setting of the one-dimensionnal Vlasov-
Poisson system have also recently been implemented in the CUDA framework (see [22, 25]). In the latter two
works, in which the interpolation step is based on cubic splines, one can see that the speedup can reach a factor of
×80 in certain cases. Here, we use higher complexity algorithms, which are based on the Fast Fourier Transform
(FFT). We will see that our GPU simulations will directly benefit from the huge acceleration obtained for the
FFT on GPU. They are thus also very fast enabling us to test and compare different interpolation operators
(very high order Lagrangian or spline reconstructions) using a large number of grid points per direction in phase
space.

To achieve this task, flexibility is required to switch easily from one representation of an operator to another.
Here, semi-Lagrangian methods are reformulated in a framework which enables the use of existing optimized
Fast Fourier Transform routines. This formulation gives rise to a matrix which possesses the circulant property,
which is a consequence of the periodic boundary conditions. Let us emphasize that such boundary conditions
are used not only in x but also in v; this is made possible by taking the velocity domain [−vmax, vmax], with vmax
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big enough. Note also that the proof of convergence of such numerical schemes can be obtained following [3,7].
Due to the fact that such matrices are diagonalizable in a Fourier basis, the matrix vector product can be
performed efficiently using FFT. In this work, Lagrange polynomials of various odd degrees (2d + 1) and B-
spline of various degree k have been tested and compared. Another advantage of the matrix-vector product
formulation is that the numerical cost is almost insensitive to the order of the method. Finally, since single
precision computations are preferable to get maximum performance out of a GPU, other improvements have to
be made to the standard semi-Lagrangian method. To achieve the accuracy needed to observe relevant physical
phenomena, two modifications are proposed: the first is to use a δf type method following [22]. The second is
to impose a zero spatial mean condition on the electric field. Since the response of the plasma is periodic, this
is always satisfied.

The rest of the paper is organized as follows. First, the reformulation of the semi-Lagrangian method using
FFT is presented for the numerical treatment of the doubly periodic Vlasov-Poisson model. Then, details of
the GPU implementation are given, highlighting the particular modifications that were necessary in order to
use GPUs with single precision. We then move on to show numerical results. These involve several comparisons
between the different methods and orders of numerical approximation and their performances on GPU and CPU
on three canonical test problems.

1. FFT implementation

In this section, we give an explicit formulation of semi-Lagrangian schemes for the solution of the Vlasov-
Poisson system of equations in the doubly periodic case using circulant matrices. First, the classical directional
Strang splitting (see [9,27]) is recalled. Then, the problem is reduced to a sequence of one-dimensional constant
advections; a circulant-matrix formulation is proposed, for which the use of Fast Fourier Transform is very well
suited; it can be applied for many methods, with arbitrary order of interpolation.

1.1. Strang-splitting

For the Vlasov-Poisson set of equations (1)-(2), it is natural to split the transport in the x-direction from the
transport in the v-direction. Moreover, this also corresponds to a splitting of the kinetic and electrostatic
potential part of the Hamiltonian |v|2/2 + φ(t, x) where the electrostatic potential φ is related to the electric
field through E(t, x) = −∂xφ(t, x).

For plasmas simulations, even when high order splittings are possible (see [11] and references therein), the
second order Strang splitting is a good compromise between accuracy and simplicity, which explains its popu-
larity. Due to filamentation, even if high order scheme and fine grid is used in space, the error is generally more
important in space than in time. On the other hand, the use of high order splitting is a possible option, which
can be managed easily and will probably have the capability of enhancing the results and/or diminishing the
cost of the simulation.

Starting from time tn = n∆t and assuming that fn ' f(tn, ·, ·) and En ' E(tn, ·) are known, the Strang
splitting is composed of three steps plus an update of the electric field before the advection in the v-direction

(1) Transport in v over ∆t/2: compute fn,?(x, v) = g(∆t/2, x, v) by solving

∂tg(t, x, v) + En(x)∂vg(t, x, v) = 0,

with the initial condition g(0, x, v) = fn(x, v).
(2) Transport in x over ∆t: compute fn,??(x, v) = g(∆t, x, v) by solving

∂tg(t, x, v) + v∂xg(t, x, v) = 0,

with the initial condition g(0, x, v) = fn,?(x, v).
Update of electric field En+1(x) by solving ∂xE

n+1(x) =
∫
fn,??(x, v)dv − 1.
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(3) Transport in v over ∆t/2: compute fn+1(x, v) = g(∆t/2, x, v) by solving

∂tg(t, x, v) + En+1(x)∂vg(t, x, v) = 0,

with the initial condition g(0, x, v) = fn,??(x, v).

One of the main advantages of this splitting is that the algorithm reduces to solving a series of one-dimensional
constant coefficient advections. Indeed, considering the transport along the x-direction, for each fixed v, one
faces a constant advection. The same is true for the v-direction since for each fixed x, En does not depend on
the advected variable v. We choose to start with the advection in v, which permits to get the electric field at
integer multiples of time steps. The third step of the nth iteration could be merged with step (1) of the (n+1)th

iteration, but we do not resort to this short cut here.

1.2. Constant advection

In this part, a reformulation of semi-Lagrangian methods is proposed, in the case of constant advection
equations with periodic boundary conditions. Let us consider u = u(t, x) to be the solution of the following
equation for a given c ∈ R:

∂tu+ c∂xu = 0, u(t = 0, x) = u0(x),

where periodic boundary conditions are assumed in x ∈ [0, L]. The continuous solution satisfies for all t, s ≥ 0
and all x ∈ [0, L]: u(t, x) = u(s, x− c(t− s)). Let us mention that x− c(t− s) has to be understood modulo L
since periodic boundary conditions are being considered.

Let us consider a uniform mesh within the interval [0, L]: xi = i∆x for i = 0, . . . , N and ∆x = L/N . We
also introduce the time step ∆t = tn+1 − tn for n ∈ N. Note that we have un0 = unN . By setting

un =


un0
...
...

unN−1

 , uni ≈ u(tn, xi), (3)

the semi-Lagrangian scheme reads un+1
i = πun(xi − c∆t) where π is a piecewise polynomial function which

interpolates uni for i = 0, . . . , N − 1: π(xi) = uni . This can be reformulated into un+1 = Aun where A is the
matrix defining the interpolation. Periodic boundaries imply that the matrix A is circulant:

A = C(a0, a1, ..., aN−1) :=



a0 a1 . . . . . . aN−1
aN−1 a0 a1 . . . aN−2

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

a1 . . . . . . aN−1 a0

 (4)

Obviously, this matrix depends on the choice of the polynomial reconstruction π. In the following, some explicit
examples are shown.

Examples of various methods and orders of interpolation
We have to evaluate πun(xi − c∆t). Let β := −c∆t/∆x be the normalized displacement which can be written
in a unique way as β = b+ b? with (b, b?) ∈ Z× [0, 1[. This means that the feet of the characteristics (xi− c∆t)
belong to the interval [xi? , xi?+1[ with i? + b? = i+ β, or i? = i+ b.
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tn

tn+1

xi

xi − c∆txi∗ xi∗+1

uni∗ uni∗+1un+1
i

un+1
i ' u(tn+1, xi) = u(tn, xi − c∆t)

(1) Lagrange 1. The nonvanishing terms of the matrix A are:

ab = 1− b?, ab+1 = b?.

(2) Lagrange 2d+ 1 (with 2d+ 1 ≤ N − 1). The nonvanishing terms of matrix are :

∀j ∈ {−d, . . . , d+ 1}, ab+j =

d+1∏
k=−d, k 6=j

b? − k
j − k

.

(3) B-Spline of degree k.
We define Bki (x) the B-spline of degree k on the mesh (xi)i by the following recurrence:

B0
i (x) = 1[xi,xi+1[(x), Bki (x) =

x− xi
k∆x

Bk−1i (x) +

(
1− x− xi+1

k∆x

)
Bk−1i+1 (x).

Then, in this case, the nonvanishing terms of the matrix A are:

A = M × C(0, . . . , 0︸ ︷︷ ︸
N−k

, Bk0 (x1), Bk0 (x2), . . . , Bk0 (xk)︸ ︷︷ ︸
k

)−1,

where the nonvanishing terms of the circulant matrix M are:

∀j ∈ {0, . . . , k}, mb−j = Bk0 (xj+b?).

Now, starting from this reformulation, the algorithm reduces to a matrix vector product at each time step.
Since the matrices are circulant, this product can be performed using FFT. Indeed, circulant matrices are
diagonalizable in Fourier space [18] so that

A = UDU?,

where 1√
N
U is unitary (U? denotes the adjoint matrix of U) and D is diagonal. They are given by

Um,k = e−2iπmk/N , m, k = 0 . . . N − 1,

Dm,m =

N−1∑
k=0

ake
−2iπmk/N , m = 0, ..., N − 1.

The product of U by a vector v ∈ RN can then be obtained performing the Fast Fourier Transform of v. In the
same way, U?v can be obtained by computing the inverse Fourier Transform of v.

The product matrix vector Aun = UDU?un is then computed following the algorithm:

(1) Compute U?un by calculating ũ = FFT−1(un).
(2) Compute D by calculating FFT(a).
(3) Compute w = DU?un by calculating Dũ.
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(4) Compute Aun by calculating FFT(w).

The complexity of the algorithm is then O(N logN), independently of the degree of the polynomial reconstruc-
tion.

2. CUDA GPU implementation

From the Strang-splitting and the constant advection, we can easily define the 2D algorithm. The unknowns
are

fni,j ' f(tn, xi, vj), xi = xmin + i∆x, vj = vmin + j∆v, i = 0, . . . , Nx − 1, j = 0, . . . , Nv − 1,

with ∆x = (xmax − xmin)/Nx, ∆v = (vmax − vmin)/Nv, and Nx, Nv ∈ N∗. We use kernels on GPU by using
existing NVIDIA routines for FFT, transposition and scalar product. Note that such a choice has also been
made in the more difficult context [13]. We would have liked to use OPENCL (as done in [10]) in order not
be attached to NVIDIA cards; but we had difficulties to get the friendly well-documented features of NVIDIA,
especially for the FFT.

FFTs are computed using the cufft library. For transposition, different possible algorithms are pro-
vided from CUDA samples (see http://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-transpose). For
this step, the condition N = Nx = Nv is always required We also have that N is a power of 2, for the FFT
step. In order to compute charge density

ρ(t, x) =

∫
f(t, x, v)dv ' ∆v

Nv−1∑
j=0

f(t, x, vj),

we adapt the ScalarProdGPU routine from CUDA samples (see http://docs.nvidia.com/cuda/cuda-samples/index.
html#scalar-product), since we have

Nv−1∑
j=0

f(t, x, vj) = 〈u, v〉, with u = (f(t, x, v0), . . . , f(t, x, vNv−1)), v = (1, . . . , 1),

and 〈·, ·〉 is the scalar product.
We also write a kernel on GPU for computing coefficients of the A matrix. An analytical formula is used

for each coefficient ai. In the case of Lagrange interpolation of degree 2d + 1, the complexity switches from
O(Nd) to O(Nd2) operations because of a rewritten CPU divided differences based algorithm which cannot be
parallelized.

The main steps of the algorithm are :

• Initialization: the initial condition computed on CPU and transferred to GPU
• Computation of initial charge density ρ on GPU by using ScalarProd

• Transfer of ρ to CPU
• Computation of the electric field E on CPU
• Time loop

1. ∆t/2 advection in v with FFT on GPU
2. Transposition in order to pass into the x-direction on GPU
3. ∆t advection in the x direction with FFT on GPU
4. Transposition in order to pass into the v-direction on GPU
5. Computation of ρ on GPU by using ScalarProd

6. Transfer of ρ to CPU
7. Computation of the electric field E on CPU
8. ∆t/2 advection in v with FFT on GPU

http://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-transpose
http://docs.nvidia.com/cuda/cuda-samples/index.html#scalar-product
http://docs.nvidia.com/cuda/cuda-samples/index.html#scalar-product
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Remarque 2.1. The electric field is computed on CPU, for simplicity; we have not made the effort to translate
the code in GPU. We expect not to have a real improvement on the performance by computing the electric field
on GPU; the amount to transfer is negligible (the size is O(N)) compared to the advection (the size is O(N2)).

Some details on the implementation

We list here the CUDA kernel calls for information and give some descriptions of the variables.

//for transposition

transposeNoBankConflicts<<<grid, threads>>>(d_odata, f_d, N, N, 1);

copy<<<grid, threads>>>(f_d, d_odata, N, N, 1);

//for advection

//for going to complex data

real_to_complex<<<grid, threads>>> (f_d, f_complex_d, N);

//for matrix computation: from alpha_d and i0_d returns w_d

compute_coefficients<<<grid, threads>>> (w_d, alpha_d, i0_d, N, degree);

cufftExecZ2Z (plan1d, w_d, w_d, CUFFT_FORWARD);

//forward fft

cufftExecZ2Z (plan1d, f_complex_d, f_complex_d, CUFFT_FORWARD);

//for multiplication in Fourier space

mult_complex_array<<<grid, threads>>> (f_complex_d, w_d, N);

//backward fft

cufftExecZ2Z (plan1d, f_complex_d, f_complex_d, CUFFT_INVERSE);

//for going back to real data and multiply by scale factor

complex _to_real_scaled<<<grid, threads>>> (f_complex_d, f_d, N, scale);

//for computation of charge density

compute_sum_v<<<grid_rho, threads_rho>>> (rho_d, f_d, N);

The variables f d, d odata are real arrays of size N2; f d represents the distribution function f .
The variables w d, f complex d are complex arrays of size N2; w d represents the matrix of coefficients. In
Fourier space, we then only need to make the multiplication terms by terms with f complex d, the complex
Fourier transform of f .
The variable i0 d (resp. alpha d) is an integer (resp. real) array of size N ; its elements are b (resp. b∗), for
each of the N constant advections.
The variable degree is an integer, that represents d, that stands here for the Lagrange interpolation of degree
2d+ 1.
The variable scale is a real number that is set to 1/N for FFT scaling purpose.
The variable plan1d is a type that initializes the FFT, so that the FFT is applied N times for vectors of size
N , which are stored contiguously in memory. For this, we just have to make the following call once for all:

cufftPlan1d( &plan1d, N, CUFFT_Z2Z, N);

This explains why the transposition of the data are necessary.
The variable rho d is a real array of size N , which stores the charge density ρ.
The variables grid, threads and grid rho, threads rho are initialized as follows:

dim3 grid(N/TILE_DIM, N/TILE_DIM), threads(TILE_DIM,BLOCK_ROWS);

dim3 grid_rho(N/TILE_DIM, 1), threads_rho(TILE_DIM,1);

Here we have set TILE DIM=16 and BLOCK ROWS=16. These values are typical GPU parameters which may be
changed (according to some constraints) for better performances; but we have here not made changes with re-
gards to these parameters. For the compute sum v routine, as already told, we have adapted the scalarProdGPU
routine. There a variable ACCUM N was set to 1024. We have set it here to 32.
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3. Questions about single precision

In principle, computations on GPU can be performed using either single or double precision. However, the
numerical cost becomes quite high when one deals with double precision (we will see in our case, that the cost is
generally a factor of two) and is not always easily available across all platforms. Note that in [13] and [25], only
double precision was used. Discussions about single precision have already been presented in [22]. Hereafter,
we propose two slight modifications of the semi-Lagrangian method which enable the use of single precision
computations while at the same time recovering the precision reached by a double precision CPU code.

3.1. δf method

The δf method consists on a scale separation between an equilibrum and a perturbation so that we decompose
the solution as

f(x, v) = δf(x, v) + feq(v), feq(v) =
1√
2π

exp(−v2/2).

Then, we are interested in the time evolution of δf which satisfies

∂tδf + v∂xδf + E∂v[feq + δf ] = 0.

The Strang splitting presented in subsection 1.1 is modified since we advect δf instead of f . Since feq only
depends on v, advections in x are not modified. Now we can rewrite the v-advection as

∂t[feq + δf ] + En∂v[feq + δf ] = 0,

with the initial condition feq + δfn,?. This means that (feq + δf) is preserved along the characteristics (feq +
fn,??)(x, v) = (feq + fn,?)(x, v −∆tEn(x)). We then deduce that

δfn,??(x, v) = δfn,?(x, v −∆tEn(x)) + feq(v −∆tEn(x))− feq(v).

which provides the update of δf for the v-advection. Note that feq(v −∆tEn(x)) is an evaluation and not an
interpolation.

Remarque 3.1. We use here the standard Gaussian feq, because in our test cases, we are not far from this
equilibrium. In the bump on tail test case, at initial time, we are nearer of another (unstable) equilibrium: there
is another Gaussian, the bump, which is however small and does not remain constant in time; thus we have not
found worth enough to adapt feq to that equilibrium. It may be interesting to look for situations, where we are
not far from another equilibrium (which may even evolve in time) and see how to adapt the procedure. Note
that we explicitely use here that feq does not depend on x.

3.2. The zero mean condition

The electric field is computed from (2). Note that the right hand side of (2) has zero mean, and the resulting
electric field has also zero mean. This is true at the continuous level; however when we deal with single
precision, a systematic cumulative error could occur here. In fact, it is also true in the double precision case,
but the influence is quite less significative, as we will see on the numerical results. In order to prevent this
cumulative error phenomenon, we can enforce the zero mean condition on the discrete grid numerically: from
ρnk ' ρ(tn, xk) =

∫
R f(tn, xk, v)dv, k = 0, . . . , N − 1, we compute the mean

M =
1

N

N−1∑
k=0

ρnk ,
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and then subtract this value to ρnk :

ρ̃nk = ρnk −M, k = 0, . . . , N − 1,

so that ρ̃nk ' ρ(tn, xk)− 1 is of zero mean numerically, whereas ρnk − 1 is only approximatively of zero mean.
We repeat this same procedure once the electric field is computed: from a given computed electric field

Ẽnk , k = 0, . . . , N − 1, which may not be of zero mean, we compute M̃ = 1
N

∑N−1
k=0 Ẽ

n
k , and set

Enk = Ẽnk − M̃, k = 0, . . . , N − 1.

For computing the electric field, we use the trapezoidal rule:

Ẽnk+1 = Ẽnk + ∆x
ρ̃nk + ρ̃nk+1

2
, k = 0, . . . , N − 1, with Ẽn0 set arbitrarily to zero,

or Fourier (with FFT). Note that in the case of Fourier, the zero mean is automatically satisfied numerically,
since the mode 0 which represents the mean is set to 0.
We will see that this zero mean condition is of great importance in the numerical results. It has to be satisfied
with enough precision. It can be viewed as being related to the ”cancellation problem” observed in PIC
simulations [20]. Note also, that by dealing with δf, which is generally of small magnitude, a better resolution
of the zero mean condition is reached.

4. Numerical results

This section is devoted to the presentation of numerical results obtained by the following methods: the
standard semi-Lagrangian method (with various different interpolation operators), including the δf and zero
mean condition modifications. Comparisons between CPU and GPU simulations and discussions about the
performance will be given on three test cases: Landau damping, bump on tail instability, and KEEN waves.
As interpolation operator, we will use use by default LAG17, the Lagrange 2d + 1 interpolation with d = 8.
Similarly, LAG3 stands for d = 1 and LAG9 for d = 4. We will also show simulations with standard cubic
splines (for comparison purposes), which correspond to B-splines of degree k with k = 4. We will use several
machines for GPU: MacBook, irma-gpu1 and hpc. See subsection 4.4 for details.

4.1. Landau Damping

For this first standard test case [21], the initial condition is taken to be:

f0(x, v) =
1√
2π

exp

(
−v

2

2

)
(1 + α cos(x/2)), (x, v) ∈ [0, 4π]× [−vmax, vmax],

with α = 10−2. We are interested in the time evolution of the electric energy Ee(t) = (1/2)‖E(t)‖2L2 which is
known to be exponentially decreasing at a rate γ = 0.1533 (see [29]). Due to the fact that the electric energy
decreases in time, this test emphasizes the difference between single and double precision computations.

Numerical results are shown on Figure 1 (top and middle left). We use LAG17, N = 2048, vmax = 8 as
default values.

In the single precision case (top left), we see the benefit of using the zero mean modifications (plots 6 and
7: efft nodelta and trap zero mean nodelta): the two results are similar (we use the trapezoidal rule for the
electric field or Fourier and we recall that in both cases, the zero mean is satisfied) and improved with respect
to the case where the zero mean is not enforced in the trapezoidal case (plot 8: trap nodelta). We have counted
23 right oscillations until time t = 50 for plots 6 and 7 (the two last oscillations are however less accurately
described), whereas we have only 16 right oscillations until time t = 34.8 for plot 8, before saturation. If we



46 ESAIM: PROCEEDINGS

use the δf method, we observe a further improvement (plots 1 to 5): we gain 4 oscillations (that is we have 27
oscillations in total) until time t = 60, and the electric field is below 6 ·10−6 < e−12. Note that in the case where
we use the δf method, adding the zero mean modification has no impact here; on the other hand, results with
the δf method are better than results with the zero mean modification on this picture. We have also added a
result on an older machine (plot 9: MacBook), which leads to very poor results (only 9 oscillations until time
t = 19 for the worst method). The use of an older version of CUDA and non conforming IEEE floating point
standard may explain this behaviour; this should be corrected with new versions of CUDA. Also the results,
which are not shown here, due to space limitations, were different by applying the modifications; as an example,
we got 28 right oscillations by using the δf method with zero mean modification. Floating point standard may
not have been satisfied there which could explain the difference in the results.

In the double precision case (top right), we can go to higher precision results. By using δf method or zero
mean modification (the difference between both options is less visible), we get 92 right oscillations until time
t = 206 (the last oscillation is not good resolved hat the end), the electric field goes under 6 · 10−13 < e−28,
and we guess that we could add 11 more oscillations until time t = 231 (we see that grid size effects pollute the
result), to obtain 103 oscillations and with electric field below 6 · 10−14 < e−30, but we are limited here in the
double precision case to N = 2048. A CPU simulation with N = 4096 confirms the results. We also see the
effect of the grid (runs with N = 1024) and the velocity (runs with vmax = 6). Note that the plot 6 (trap nodelta
1024 v6 ) has lost a lot of accuracy compared to the other plots: the grid size is too small (N = 1024), the
velocity domain also (vmax = 6) and above all there is no zero mean or δf method. In that case, we only reach
time t = 100. We refer to [17,31] for other numerical results and discussions and to the seminal famous work [23]
for theoretical results. In [31], it was already mentionned that we have to take the velocity domain large enough
and to take enough grid points. Concerning GPU and single precision, the benefit of a δf method was also
already treated in [22]: 29 right oscillations were obtained in the single precision case with a δf modification,
13 right oscillations without the modification and the time t = 100 was reached in the CPU case (N was set to
1024 and vmax to 6).

On Figure 1 middle left, we plot the error of mass, which is computed as |ρ̂0 − 1|. We clearly see the impact
between the conservation of the mass and the former results. We can also note that, the zero mean modification
does not really improve the mass conservation (just a slight improvement at the end, plots 2,3,4), but has a
benefic effect on the electric field: the bad behaviour of the mass conservation is not propagated to the electric
field. On the other hand, the δf method clearly improves the mass conservation. We also see the effect of taking
a too small velocity domain, in the double precision case.

4.2. Bump on tail

For this second standard test case, the initial condition is considered as a spatial and periodic perturbation
of two Maxwellians (see [27])

f0(x, v) =

(
9

10
√

2π
exp

(
−v

2

2

)
+

2

10
√

2π
exp(−2(v − 4.5)2)

)
(1 + 0.03 cos(0.3x)), (x, v) ∈ [0, 20π]× [−9, 9].

The Vlasov-Poisson model preserves physical quantities with time like Casimir functions, which will be used to
compare the different implementations. Particulary, we look at the time history of the total energy E of the
system, which is the sum of the kinetic energy Ek and the electric energy Ee

E(t) = Ek(t) + Ee(t) =

∫ 20π

0

∫
R
f(t, x, v)

v2

2
dvdx+

1

2

∫ 20π

0

E2(t, x)dx.

As in the previous case, the time evolution of the electric energy is chosen as a diagnostics.
Results are shown on Figure 1 (middle right and bottom) and on Figure 2.
We see on Figure 1 middle right the evolution in time of the electric field. Single and double precision results

are compared. In the single precision case, the δf method with FFT computation of the electric field (plot
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3: single delta) is the winner and the basic method without modifications and trapezoidal computation of the
electric field (plot 7: trap single no delta) leads to the worst result. Double precision computations lead to
better results and differences are small: plots 1 (double delta) and 2 (double no delta) are undistinguishable
and plot 8 (trap double no delta) is only different at the end. Thus, such modifications are not so mandatory in
the double precision case. We then see for the same runs, the evolution of the error of mass (bottom left) and
of the first mode of ρ in absolute value (bottom right). We notice that the error of mass linearly accumulates
in time. Here no error coming from the velocity domain is seen, because vmax is large enough (vmax = 9 in all
the runs). The evolution of the first mode of ρ is quite instructive: we see that it exponentially grows from
round off errors and the different runs lead to quite different results. The loss of mass can become critical in the
single precision case (no real impact in the double precision case are detected) and implementations without
mass error accumulation would be desirable. The δf method improves the results, but the error of mass still
accumulates much more than in the double precision case.

On Figure 2, we see the same diagnostics in the double precision case. We make vary the number of grid
points, the degree of the interpolation and the time step. By taking smaller time step, we can increase the
time before the merge of two vortices among three which leads to a breakdown of the electric field. Higher
degree interpolation lead to better results (in the sense that the breakdown occurs later), for not too high grid
resolution. When N = 2048, lower order interpolation seems to be better, since it introduces more diffusion,
whereas high order schemes try to capture the small scales, which are then sharper and more difficult to deal
with in the long run. Adaptive methods and methods with low round-off error in the single precision case may
be helpful to get better results.

4.3. KEEN Waves

In this last and most intricate test, instead of considering a perturbation of the initial data, we add an
external driving electric field Eapp to the Vlasov-Poisson equations:

∂tf + v∂xf + (E − Eapp)∂vf = 0, ∂xE =

∫
R
fdv − 1,

where Eapp(t, x) is of the form Eapp(t, x) = Emaxka(t) sin(kx− ωt), where

a(t) =
0.5(tanh( t−tLtwL

)− tanh( t−tRtwR
))− ε

1− ε
, ε = 0.5(tanh(

t0 − tL
twL

)− tanh(
t0 − tR
twR

))

is the amplitude, t0 = 0, tL = 69, tR = 307, twL = twR = 20, k = 0.26, ω = 0.37 and Emax = 0.2. The initial
condition is

f0(x, v) =
1√
2π

exp

(
−v

2

2

)
, (x, v) ∈ [0, 2π/k]× [−6, 6].

See [1, 28] for details about this physical test case. Its importance stems from the fact that KEEN waves
represent new non stationary multimode oscillations of nonlinear kinetic plasmas with no fluid limit and no
linear limit. They are states of plasma self-organization that do not resemble the (single mode) way in which
the waves are initiated. At low amplitude, they would not be able to form. KEEN waves can not exist off
the dispersion curves of classical small amplitude waves unless a self-sustaining vortical structure is created in
phase space, and enough particles trapped therein, to maintain the self-consistent field, long after the drive field
has been turned off. For an alternate method of numerically simulating the Vlasov-Poisson system using the
discontinuous Galerkin approximation, see [8] for a KEEN wave test case.
As diagnostics, we consider here different snapshots of f−f0 at different times: t = 200, t = 300, t = 400, t = 600
and t = 1000.

We first consider the time t = 200 (upper left in Figure 3). At this time, all the snapshots are similar so we
present only one (GPU single precision and a grid of 10242 points). The five others graphics of this figure are
taken at time t=300. We show that, at this time, there is again convergence because the graphic on the middle
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right (GPU single precision, N = 4096 and ∆t = 0.1) is identical to the bottom left one (GPU single precision,
N = 4096 and ∆t = 0.01).

Figure 4 presents different snapshots at times t = 400 and t = 600. At time t = 400, the upper left graphic
(GPU single precision, N = 2048, ∆t = 0.1) is similar to the upper right one (CPU, N = 2048, ∆t = 0.05), that
shows that the CPU and the GPU codes give the same results. With 4096 points (on middle left), we observe
a little difference with the 2048 points case. Between the snapshots at time t = 400 and those at time t = 600,
we observe the emergence of diffusion.

The time t = 1000 is considered on Figure 5. We see that there is no more convergence at this time:
there is a lag, but the structure remains the same. We compare also different interpolators (cubic splines,
LAG 3, LAG 9, LAG 17). If the order of the interpolation is high (graphic at the top right : CPU, LAG 17,
∆t = 0.05, Nx = 512, Nv = 4096) there is appearance of finer structures. At this time, one sees little difference
between CPU results (graphic at the middle right : CPU, LAG 3, ∆t = 0.05, N = 4096) and GPU results
(graphic at the bottom left : GPU, LAG 3, ∆t = 0.05, N = 4096), but there is no lag.

Figure 6 (at time t = 1000) shows the differences between single and double precision when the value of N
is changed. The two graphs above show the case N = 1024, the left is single precision while the right one is in
double precision. We see that there are very few differences. When N = 2048, the results are different in single
precision (graphic on middle left) and double precision (graphic on middle right). When N = 4096, the code
does not work in double precision so we compared the results for single precision GPU with ∆t = 0.05 (bottom
left graphic) and ∆t = 0.01 (bottom right graphic). There are also differences due to the non-convergence.
Moreover, we see that there are more filamentations when N increases.

Figure 7 shows the time evolution of the absolute value of the first Fourier modes of ρ. We see that single
precision can modify the results on the long time (top left). The GPU code is validated in double precision
(top right). We clearly see the benefit of the δf method in the GPU single precision (middle left), where it has
no effect in the double precision case (middle right). Further plots are given with N = 4096 (bottom left and
right). With smaller time steps, some small oscillations appear with single precision GPU code (bottom right).
In all the plots, we see no difference at the beginning; differences appear in the long run as it was the case for
the plots of the distribution function.

4.4. Performance results

Characteristics. We have tested the code on different computers with the following characteristics:

• GPU
– (1) = irma-gpu1 : NVIDIA GTX 470 1280 Mo; Cuda version 5.0
– (2) = hpc : GPU NVIDIA TESLA C2070; Cuda version 5.0
– (3) = MacBook : NVIDIA GeForce 9400M; Cuda version 4.2

• CPU
– (4) = MacBook : Intel Core 2 Duo 2.4 GHz
– (5) = irma-hpc2: Six-Core AMD Opteron(tm) Processor 8439 SE
– (6) = irma-gpu1: Intel Pentium Dual Core 2.2 Ghz 2Gb RAM
– (7) = MacBook : Intel Core i5 2.4 GHz

We measure in the GPU codes the proportion of FFT which consists in: transform 1D real data to complex,
computing the FFT, making the complex multiplication, computing the inverse FFT, transforming to real data
(together with addition of δf modification, if we use the δf method). We add a diagnostic for having the
proportion of time in the cufftExec routine; we note that this extra diagnostic can modify a little the time
measures (when this is the case; new measures are given in brackets, see on Table 1).
When the number of cells grows, the proportion of FFT time in total time grows, as shown on Table 1 (KEEN
wave test case with δf modification) or Table 2 (KEEN wave test case without δf modification). Note that the
initialisation time and the 2d-diagnostic time are not included in total time.
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The results with a CPU code (vlaso) without OpenMP are given on Table 3, top; in that code, the Landau
test case is run with ∆t/2 advection in x, followed by ∆t advection in v and ∆t/2 advection in x and the last
advection in x of iteration n is merged with the first advection in x of iteration n+ 1.

The results with Selalib (Table 3, bottom) [26] are obtained with OpenMP. We use 2 threads for (4), 24
threads for (5), 2 threads for (6) and 4 threads for (7).

In order to compare the performances, we introduce the number MA which represents the number of millions

of point advections made per second : MA =
Nstep×Nadv×N2

106×Total time and the number of operations per second (in

GigaFLOPS) given by :

GF =
Nstep ×Nadv × (2N × 5N log(N) + 6N2)

109 × Total time
with complex data (GPU)

GF =
Nstep ×Nadv × (N × 5N log(N) + 3N2)

109 × Total time
with real data (CPU)

where Nstep refers to the number of time steps and Nadv represents the number of advections made in each time
step (Nadv = 3 in GPU and Selalib codes; Nadv = 2 in vlaso code). In each advection, we compute N times
(GPU in complex data) or N/2 times (CPU in real data) :

• A forward FFT and backward FFT with approximately 5N log(N) operations for each FFT computation
• A complex multiplication that requires 6N operations.

The speedup in Table 1 and 2 are computed, by taking the fastest and slowest CPU simulation of Table 3.
The comparison between Table 1 and Table 2 shows that the cost of the method δf is not too important but
not negligible. This cost could be optimized. We clearly benefit of the huge acceleration of the FFT routines
in GPU and we thus gain a lot to use this approach. Most of the work is on the FFT, which is optimized for
CUDA in the cufft library, and is transparent for the user. Note that we are limited here to N = 4096 in single
precision and N = 2048 in double precision; also we use complex Fourier transform; optimized real transforms
may permit to go even faster. The merge of two velocity time steps can also easily improve the speed. Higher
order time splitting may be also used. Also, a better comparison with CPU parallelized codes can be envisaged
(here, we used a basic OpenMP implementation which only scales for 2 processors). We can also hope to go to
higher grids, since cufft should allow grid sizes of 128 millions elements in double precision and 64 millions in
single precision (here we use 224 ' 16.78 · 106 elements in single precision and 222 ' 4.2 · 106 elements in double
precision; so we should be able to run with N = 8192 in single precision and N = 4096 in double precision).
Higher complexity problems (as 4D simulations) will probably need multi-gpu which is another story, see [13]
for such a work.

5. Conclusion

We have shown that this approach works. Most of the load is carried by the FFT routine, which is optimized
for CUDA in the cufft library, leading to huge speedups and is invisible to the user. Thus, the overhead
of implementation time which can be quite significant in other contexts is here reduced, since we use largely
built-in routines which are already optimized. The use of single precision is made harmless thanks to a δf
method. We however are not able to get as precise results as in the case of double precision. The test cases
we chose are quite sensitive to single precision round off errors. We point out also that the electric field has to
satisfy a zero mean condition with enough accuracy on a discrete grid. For the moment, we are limited to same
sizes in x and v (needed here for the transposition step) and to N = 2048 in double precision (N = 4096 in
single precision). We hope to implement a four dimensional (2x, 2v) version of this code, next, including weak
collisions.
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Single precision Double precision
Nx Time (ms) (speedup) MA FFT (cufftExec) Time (ms) (speedup) MA FFT (cufftExec)

256 703 (2.8-8.5) 279.6 0.635 (0.36) 1304 (1.5-4.6) 150.7 0.767 (0.61)
512 1878 (4.3-17) 418.7 0.759 (0.46) 3516 (2.3-8.8) 223.6 0.839 (0.67)

(1) 1024 6229 (9.6-20) 505.0 0.841 (0.51) 11670 (5.1-11) 269.5 0.889 (0.71)
2048 21908 (13-27) 574.3 0.861 (0.50) 49925 (5.7-12) 252.0 0.916 (0.75)
4096 90093 (15-52) 558.6 0.888 (0.54) - - -

256 1096 [1378] (1.8-5.5) 179.3 0.471 [0.59 (0.37)] 1653 (1.2-3.6) 118.9 0.637 (0.5)
512 2125 [2550] (3.8-15) 370.0 0.654 [0.69 (0.48)] 3896 (2.1-8.0) 201.8 0.777 (0.66)

(2) 1024 5684 [6001] (11-22) 553.4 0.775 [0.79 (0.59)] 12127 (4.9-10) 259.3 0.866 (0.76)
2048 19871 [20284] (14-29) 633.2 0.825 (0.62) 45753 (6.3-13) 275.0 0.897 (0.80)
4096 81943 (17-57) 614.2 0.859 (0.66) - - -

256 5783 (0.3-1.0) 33.9 0.773 (0.65) - - -
(3) 512 19936 (0.4-1.6) 39.4 0.780 (0.66) - - -

1024 87685 (0.68-1.4) 35.8 0.813 (0.71) - - -

Table 1. Performance results for GPU, nbstep=1000, LAG17, KEEN wave test case with δf
modification: total time, speedup, MA, proportion FFT/total time (and cufftExec/total time).

Single precision Double precision
Nx Time (ms) speedup MA GF FFT Time (ms) speedup MA GF FFT

256 570 (3.5-11) 344.9 29.6 0.573 1183 (1.7-5.1) 166.1 14.2 0.754
512 1421 (5.6-22) 553.4 53.1 0.702 3121 (2.6-10) 251.9 24.1 0.826

(1) 1024 4516 (13-28) 696.5 73.8 0.787 10221 (5.9-12) 307.7 32.6 0.876
2048 15189 (19-38) 828.4 96.0 0.802 44244 (6.5-13) 284.3 32.9 0.906
4096 63310 (22-73) 795.0 100.1 0.842 - - - -

256 1000 (2.0-6.0) 196.6 16.9 0.520 1569 (1.3-3.8) 125.3 10.7 0.657
512 2000 (4.0-15) 393.2 37.7 0.635 3750 (2.1-8.3) 209.7 20.1 0.782

(2) 1024 5067 (12-25) 620.8 65.8 0.762 11749 (5.1-11) 267.7 28.3 0.865
2048 17692 (16-33) 711.2 82.5 0.805 44446 (6.5-13) 283.1 32.8 0.895
4096 73488 (19-63) 684.8 86.2 0.843 - - - -

256 5513 (0.36-1.1) 35.6 3.0 0.763 - - - -
(3) 512 18805 (0.43-1.6) 41.8 4.0 0.769 - - - -

1024 83312 (0.72-1.5) 37.7 4.0 0.804 - - - -

Table 2. Performance results for GPU, nbstep=1000, LAG17, KEEN wave test case without
δf modification: total time, speedup, MA, GFlops and proportion FFT/total time.

(4) (5) (6) (7)
Nx Total time MA GF Total time MA GF Total time MA GF Total time MA GF
256 4s 27.4 1.1 4s 28.8 1.2 6s 21.4 0.9 3s 38.8 1.6
512 27s 19.2 0.9 18s 28.8 1.3 31s 16.5 0.7 15s 34.7 1.6
1024 1min52s 18.7 0.9 2min4s 16.8 0.8 2min7s 16.4 0.8 1min18s 26.7 1.4
2048 8min16s 16.9 0.9 9min31s 14.6 0.8 9min42s 14.4 0.8 5min36s 24.9 1.4
4096 41min05s 13.6 0.8 48min16s 11.5 0.7 52min20s 10.6 0.6 28min28s 19.6 1.2
256 3s 58.0 2.4 4s 43.9 1.8 3s 54.3 2.3 2s 72.6 3.1
512 19s 39.6 1.9 8s 90.6 4.3 22s 35.0 1.6 13s 58.7 2.8
1024 1min25s 36.8 1.9 1min21s 38.5 2.0 1min35s 32.9 1.7 1min0s 52.1 2.7
2048 6min41s 31.3 1.8 7min46s 27.0 1.5 8min47s 28.3 1.6 4min47s 43.7 2.5
4096 34min39s 24.2 1.5 25min33s 32.8 2.0 77min31s 10.8 0.6 23min09s 36.2 2.2

Table 3. Performance results for CPU vlaso code, nbstep=1000, LAG 17, Landau test case
(top): total time, MA and GFlops. Performance results for CPU Selalib code, nbstep=1000,
LAG 17, KEEN test case without δf modification (bottom): total time, MA and GFlops.
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Figure 1. Linear Landau damping. N = 2048, ∆t = 0.1, vmax = 8, LAG17, irma-gpu1 on
GPU as default. Evolution in time of electric energy in single/double precision (top left/right).
Error of mass |ρ̂0 − 1| with single precision as default (middle left). Bump on tail test case.
N = 1024,∆t = 0.05, LAG9, irma-gpu1 on GPU as default. Evolution in time of the electric
energy/ error of mass/ first Fourier mode of ρ, |ρ̂1| (middle right/bottom left/bottom right).
[ for details, see the legends. efft:electric field compute with FFT; delta= δf method; no
delta= without the δf method; single=single precision; double:double precision; trap:electric
field computed with trapezoidal method; zero mean:zero mean modification for the electric field;
cpu: cpu code used; 1024: N = 1024; 4096: N = 4096; v6: vmax = 6; Macbook: MacBook
GPU is used].
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Figure 2. Bump on tail test case. Double precision is used, irma-gpu1 on GPU. Evolution in
time of the electric energy for N = 256, 512, 1024, 2048 (top left, top right, middle left, middle
right), with LAG3, LAG9, LAG17 recosntructions and various time steps (0.1, 0.01, 0.002).
Evolution in time of the first Fourier mode , |ρ̂1| for N = 256 and N = 1024 (bottom left), and
for N = 512 and N = 2048 (bottom left), with the same reconstructions and time steps.
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Figure 3. KEEN wave test case (LAG17): f(t, x, v)− f0(x, v). At time t = 200, GPU single
precision N = 1024 (top left). At time t = 300, GPU single precision N = 1024, 2048, 4096 and
∆t = 0.1 (top right, middle left, middle right). N = 4096 and ∆t = 0.01 (bottom left). CPU
N = 2048,∆t = 0.1 (bottom right). (x, v) ∈ [0, 2π/k] × [0.18, 4.14]. If not changed, from one
picture to another (from top left to bottom right), parameters are not restated.
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Figure 4. KEEN wave test case (LAG17): f(t, x, v)− f0(x, v). At time t = 400, GPU single
precision N = 2048,∆t = 0.1 (top left). CPU ∆t = 0.05 (top right). GPU single precision
N = 4096,∆t = 0.1, at time t = 600 (middle left). GPU single precision N = 1024 (middle
right). ∆t = 0.01, N = 4096 (bottom left). CPU Nx = 512, Nv = 4096 (bottom right).
(x, v) ∈ [0, 2π/k] × [0.18, 4.14]. If not changed, from one picture to another (from top left to
bottom right), parameters are not restated.
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Figure 5. KEEN wave test case: f(t, x, v) − f0(x, v) at time t = 1000. CPU cubic splines,
∆t = 0.05, Nx = 512, Nv = 4096 (top left). LAG17 (top right). N = 4096 and cubic splines
(middle left). LAG3 (middle right). GPU single precision (top left). LAG9 (bottom right).
(x, v) ∈ [0, 2π/k] × [0.18, 4.14]. If not changed, from one picture to another (from top left to
bottom right), parameters are not restated.
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Figure 6. KEEN wave test case (LAG17): f(t, x, v)−f0(x, v) at time t = 1000, ∆t = 0.05, N =
1024 as default. GPU single/double precision (top left/right). N = 2048, GPU single/double
precision (middle left/right). N = 4096, GPU single precision (bottom left). ∆t = 0.01 (bottom
right). (x, v) ∈ [0, 2π/k] × [0.18, 4.14]. If not changed, from one picture to another (from top
left to bottom right), parameters are not restated.
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Figure 7. KEEN wave test case (LAG17): Absolute values of the first Fourier modes of ρ
(from mode k = 1 to mode k = 7) vs time. δf method, with N = 2048 ∆t = 0.05 GPU,
double and single precision (1b,2b,3b) (top left). double GPU and double CPU (top right).
Full version GPU in single precision and δf version CPU (middle left). Full version and δf
version, in double precision (middle right). N = 4096, GPU and CPU (bottom left). GPU
with ∆t = 0.01 and CPU with ∆t = 0.05 (bottom right). If not changed, from one picture to
another (from top left to bottom right), parameters are not restated.
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