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ABSTRACT

The small-world phenomenon first introduced in the con-
text of static graphs consists of graphs with high cluster-
ing coefficient and low shortest path length. This is an in-
trinsic property of many real complex static networks. Re-
cent research has shown that this structure is also observ-
able in dynamic networks but how it emerges remains an
open problem. In this paper, we propose a model capable of
capturing the small-world behavior observed in various real
traces. We then study information diffusion in such small-
world networks. Analytical and simulation results with epi-
demic model show that the small-world structure increases
dramatically the information spreading speed in dynamic
networks.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Network problems; C.2.1 [Network
Architecture and Design]: Store and forward networks

General Terms

Theory, Measurement

Keywords

Small-world, dynamic networks, information diffusion

1. INTRODUCTION
In his famous experiment Milgram showed that the human

acquaintance network has a diameter of the order of six, so
leading to the small-world qualification. Watts and Stro-
gatz introduced later a model of small-world phenomenon
for static graphs [10]. They proposed a random rewiring
procedure for interpolating between a regular ring lattice
and a random graph. Between these two extrema, the graph
exhibits an exponential decay of the average shortest path
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length contrasted to a slow decay of the average clustering
coefficient. Interestingly, numerous real static networks ex-
hibit such properties.

From a communication perspective, it was shown that a
small-world network behaves as random network in terms
of information diffusion. However, the great majority of
studies on small-world networks properties and behaviors
focused on static graphs and ignore the dynamics of real mo-
bile networks. For example, in a static graph an epidemic
cannot break out if the initial infected node is in a discon-
nected component of the network; conversely in a mobile
network, nodes movements can ensure a property of tempo-
ral connectivity of the underlying dynamic graph. Moreover,
an epidemic can take off or die out depending not only on
the network structure and the initial carrier, but also on
the time when the disease begins to spread. These aspects
cannot be captured by a static small-world model.

In this paper, we address this issue by introducing a model
for dynamic small-world networks. In particular, this model
aims to capture the small-world phenomenon that emerges
from delay/disruption tolerant networks. Starting from a
highly clustered dynamic network where nodes tend to stay
all the time in their preferential zones, we introduce a dy-
namic rewiring procedure which consist in progressively in-
creasing the ratio of nomadic nodes. This allows to cover a
whole scope of dynamic networks from highly clustered ones
to fully random ones.

In order to formalize the dynamic small-world phenomenon,
we extend to dynamics networks the notions of dynamic clus-
tering coefficient and shortest dynamic path. By studying
the evolution of these metrics from our rewiring process,
we exhibit the emergence of a class of dynamic small-world
networks with high dynamic clustering coefficients and low
shortest dynamic path length. This simulation-based work is
then extended by an analytical study of information spread-
ing in dynamic small-world networks.

The rest of the paper is structured as follows. Section
2 introduces previous works that inspired our contribution.
In Section 3, after having formally defined the notions of
dynamic clustering coefficient and shortest dynamic path
length, we analyze various real traces and show the intrin-
sic properties of dynamic networks that induce the small-
world phenomenon. We introduce then a dynamic small-
world model which captures these properties in Section 4. In
Section 5, from simulations results and analytical formula-
tion we study information diffusion performances in dynamic



small-world networks. Finally, Section 6 will conclude the
paper and discuss about future works.

2. RELATED WORKS
In [10], Watts and Strogatz introduce a model of small-

world phenomenon in static graphs. From a regular ring lat-
tice, they rewire randomly edges in this graph with a prob-
ability varying from 0 (i.e. leading to a regular network) to
1 (i.e. leading a random graph). During this process they
observed an abrupt decrease of the average shortest path
length, leading to short path of the same order of magni-
tude as observed in random graphs, while the clustering co-
efficient is still of the same order of magnitude than the one
of a regular graph. This features suggested the emergence
of the small-world phenomenon. The authors also demon-
strate that this graph structure allows information to diffuse
as fast as in a random graph.

Kleinberg [3] extended the model to 2-d lattices and in-
troduced a new rewiring process. This time, the edges are
not uniformly rewired but follow a power law 1

dα
where d

is the distance on the lattice from the starting node of the
edge and α is the parameter of the model. Newman [5] pro-
posed another definition of the clustering coefficient which
has a simple interpretation and is easier to process. The
authors argue that the definition in [10] favors vertices with
low degree and introduces a bias towards networks with a
significant number of such vertices.

Although research pays much attention to the small-world
phenomenon in static networks, whether through modeling
or analytical analysis, the small-world phenomenon in dy-
namic networks (i.e. networks with time varying edges and
nodes) is still not well understood. This is partly due to the
lack of models and metrics for dynamic graphs. Recently,
J.Tang et al. [8] defined several metrics for time varying
graphs, including temporal path length, temporal cluster-
ing coefficient and temporal efficiency. They showed that
these metrics are useful to capture temporal characteristics
of dynamic networks that cannot be captured by traditional
static graph metrics. The definition of dynamic path, intro-
duced in this paper, is close to their definition (we had the
dual metric of the number of hops). We introduce a new
definition of dynamic clustering coefficient which, as shown
in the next section, captures more accurately the dynamics
of networks.

In [9], the authors highlight the existence of the small-
world behavior in real traces. Using the definition of tempo-
ral correlation introduced in [2], they show that real dynamic
networks have a high temporal correlation and low temporal
shortest path, suggesting a dynamic small-world structure.
In this paper, we simply and consistently extend to dynamic
networks the initial small-world metrics (i.e. shortest path
length and clustering coefficient) defined in [10]. Finally, the
analytical study of information diffusion in dynamic small-
world introduced in this paper is inspired from the method
applied for static networks described by Newman in [6].

3. SMALL-WORLD PHENOMENON IN DY-

NAMIC NETWORKS
In this section, we formalize the notion of small-world

phenomenon in dynamic networks by introducing two met-
rics used for qualifying such phenomenon: shortest dynamic
path length and dynamic clustering coefficient. And then

by analyzing extensively real network traces, we show funda-
mental characteristics which are at the origin of the dynamic
small-world phenomenon.

3.1 Dynamic Small-world Metrics

3.1.1 Shortest Dynamic Path Length

Basically, the shortest path problem in static graphs con-
sists in finding a path such that the sum of the weights of its
constituent links is minimized. From a graph theory point
of view a dynamic networks can be described by a temporal
graph, that is a temporal sequence of graphs that describe
the discrete evolution of the network according to nodes and
links creation and destruction events. A path in a dynamic
network can be seen as an ordered set of temporal links
that allow a message to be transferred using the store-move-
forward paradigm between two nodes. Formally, let ltij be a
link between node i and node j at instant t. A dynamic path
from node u to node v from time t0 to time t is described
by a time ordered set puv(t0, t) =

{

l
t0
ui, l

t1
ij , . . . , l

t
wv

}

where
tk+1 > tk. We consider two metrics of dynamic paths:

• Delay : the sum of the inter-contact times between
consecutive links which constitutes the path.

• Number of hops : the number of temporal links which
constitutes the path.

This leads to the following definition of shortest dynamic
path length.

Definition 1. The shortest dynamic path is the path giv-
ing the minimum amount of delay1. If there are several paths
giving the same delay, then we select the one giving the min-
imum number of hops. Formally, the shortest dynamic path
length between i and j from time t0 is

Lt0
ij = inf {t− t0|∃pij(t0, t)} . (1)

The shortest dynamic path length of a network of N nodes
from time t0 is the average of the shortest dynamic path
lengths of all pairs of nodes in the network

Lt0 =

∑

ij
Lt0

ij

N(N − 1)
. (2)

To find the shortest dynamic path length of all pairs of
nodes, we propose an algorithm leveraging on the following
interesting property of adjacency matrix in static graphs.

The adjacency matrix A is defined as the matrix in which
the element (A)i,j ∈ {0, 1} at row i and column j denotes the
existence of a link between node i and node j. If we process
the power n of such matrix, then its element (An)i,j gives
the number of paths of length n between i and j. Indeed, for
example, when n = 2, (A2)i,j =

∑

k
(A)i,k × (A)k,j sums all

the possibilities to go from i to j through an intermediate
node k. We extend this property to dynamic networks. Let
At, t = 0, 1, . . . , n be the adjacency matrix of a dynamic
network at time t. The matrix Ct obtained as follows

Ct = At ∨A2
t ∨ . . . ∨An

t , (3)

where Ai
t denotes the binary version of the matrix Ai

t (i.e.
the element (At)i,j equals to 1 if (At)i,j > 0 and 0 otherwise)

1we can also have another definition for minimizing the num-
ber of hops. In this work, we focus only on delay constrained
path.



has its elements (Ct)i,j which indicate if there is a direct
or indirect link (up to n hops) between i and j at time t.
Indeed, (Ct)i,j is the logical sum of all possibilities to have
a direct or indirect link (up to n hops) between i and j at
time t. In consequence, the product

Dt = C0C1 . . . Ct (4)

results in a matrix in which the element (Dt)i,j specifies,
when not null, that there is dynamic path of delay t between
i and j. Therefore the shortest dynamic path length from
node i to node j is given by the smallest value of t such as
(Dt)i,j equals to 1.
It is straight-forward to demonstrate that if a node k be-

longs to a shortest path between node i and node j then
the i to k sub-path gives the shortest path between i and k.
Therefore the shortest path between two nodes i and j can
be easily backwardly reconstructed. Note that at time t two
nodes can be connected to each other via a multiple hops
link. To find the complete spatio-temporal path with all the
intermediate nodes, we simply apply a breath first search
each time we find a spatial multiple hops link. In practice,
as it’s unlikely to have a large number of nodes connected
to each other at a given moment, we can optimize the algo-
rithm by limiting the number of iterations n in Equation 3
to an upper bound of the network diameter. Finally, this al-
gorithm is more efficient (time complexity O(n3)) than the
depth first search approach as proposed in [8] (time com-
plexity O(n4)).

3.1.2 Dynamic Clustering Coefficient

As defined in [10], the clustering coefficient measures the
cliquishness of a typical friend circle. The clustering coeffi-
cient of a node is calculated as the fraction of actual existing
links between its neighbors and the number of possible links
between them. The clustering coefficient of a network is
calculated by averaging the clustering coefficients of all the
nodes in the network. In [5], Newman defines the clustering
coefficient in term of transitivity. The connection between
nodes u, v, w is said to be transitive if u connected to v and
v connected to w implies that u is connected to w. The
clustering coefficient of a network is then calculated as the
fraction of the number of closed path of length two over the
number of path of length two, where a path of length two
is said to be closed if it is a transitive path. This definition
is simple to interpret and easy to calculate. Considering
that, the initial definition gives more weight to nodes with
low degree and introduces a bias towards graph composed
of several of these nodes, in this work, we favor Newman’s
definition and extend it to dynamic networks.

In [8], Tang et al. first introduced a generalization of
Watts and Strogatz’s definition for temporal graph. The
temporal clustering coefficient of a node during a time inter-
val t is the fraction of existing contacts 2 (multiple contacts
count once) between the neighbors of the node over the num-
ber of possible contacts between them during t. The cluster-
ing coefficient of the network is the average of the clustering
coefficients of all the nodes. This is simply the application
of Watts and Strogatz’s definition on a time snapshot of the
network. While this definition was shown to better capture
temporal characteristics of time varying graph, it depends
strongly on the larger of the chosen time interval. If this

2A contact is a intermittent link between two nodes
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Figure 1: Time window size effect on measure of
temporal clustering coefficient (as defined in [11])

Trace Intel Cambridge Infocom05 Infocom06
Number of nodes 9 12 41 78
Duration (days) 6 6 4 4

Granularity (seconds) 120 120 120 120
Connectivity Bluetooth Bluetooth Bluetooth Bluetooth
Environment Office Office Conference Conference

Table 1: Data sets of real traces

interval tends to infinity, the temporal clustering coefficient
tends to 1 as all the nodes meet each other with a high
probability. On the other hand, if the interval tends to 0,
then conversely the temporal clustering coefficient tends to
0. Figure 1 illustrates the influence of the time window size
on measures of the clustering coefficient on a real mobility
trace.

In order to avoid this temporal bias, we propose a new
definition of dynamic clustering coefficient which captures
the dynamics of the degree of transitivity and is independent
of the measuring time interval.

Definition 2. A dynamic path from node i to node j is
transitive if there exists a node k and time t1, t2, t3 so that
i is connected to k at t1, k is connected to j at t2, i is con-
nected to j at t3 and t1 ≤ t2 ≤ t3. The dynamic clustering
coefficient of node i from time t0 is measured by the inverse
of the time t−t0 where t is the first instant from time t0 when
the transitive path from i to j is formed, that is Ct0

i = 1
t−t0

.
The dynamic clustering coefficient of a network of N nodes
is then calculated by averaging over the dynamic clustering
coefficient of all the nodes from time t0

C =
1

N

∑

i

Ci . (5)

3.2 Network Traces Analysis
In this section, we analyze extensively real human connec-

tivity traces to understand how small-world behavior emerges
in dynamic networks. We first apply the above definitions to
highlight the existence of dynamic small-world phenomenon
on these traces. For that, we use the data sets from the
Haggle project [1, 4] which consists of the recording of op-
portunistic bluetooth contacts between users in conference
or office environments. The settings of these data sets are
summarized in Table 1.
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Figure 2: Small world phenomenon observed in real
mobility traces

For each trace, we measure the shortest dynamic path
length and the dynamic clustering coefficient every 2000 sec-
onds to see the evolution of these metrics over time. The
obtained values are then normalized and plotted on Figure
2. We can observe a periodic pattern of both metrics with a
typical period of 24 hours and a phase change every 12 hours.
This can be easily explained by the fact that human daily
activity is periodic with nigh/day phases. Indeed, people are
more nomadic during day while they are mostly sedentary
at night. Besides, it is interesting to note that the dynamic
clustering coefficient and the shortest dynamic path length
evolve in opposite phase. Despite of a slight diversity in
different traces due to differences in nodes number and den-
sity, traces durations, etc, during the dynamic phase (i.e.,
day, e.g., the period around 24 hours in Infocom2005 trace),
these networks always exhibit high dynamic clustering coef-
ficients and low shortest dynamic path lengths, suggesting
the existence of a dynamic small-world phenomenon.

To explain the emergence of this phenomenon, let us fo-
cus on and analyze the structure of these networks during
the dynamic phases. In the Watts and Strogatz model, the
small-world phenomenon emerges when shortcut edges are
randomly added to a regular graph. These shortcuts allow
the average shortest path length to be reduced significantly
while conserving network nodes’s cliquishness. We argue
that in dynamic networks, mobile nodes are implicitly at
the origin of these shortcuts. Indeed, it is known that peo-
ple spend their daily life among different social communi-
ties at specific locations at different times (e.g. colleagues
at office in the morning, family at home in the evening).
A community can be disconnected from the others in space
and/or in time. Besides, some people are more“mobile”than
other, they have contacts in many communities and move of-
ten between these communities or areas. These ”nomadic”
nodes contribute to reducing significantly the shortest dy-
namic path length from nodes in a disconnected component
to the rest of network and hence contribute to the emergence
of the dynamic small-world phenomenon.
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Figure 3: Evolution of dynamic betweeness central-
ity of nodes in Infocom05 trace

To identify the spatio-temporal shortcuts in dynamic net-
works, we introduce a metric that measures the influence
a node has on the characteristic dynamic path length of
the network. The nodes with highest influence are the ones
whose removal from the network increases the most the aver-
age shortest dynamic path length of the network. To iden-
tify these nodes one may adapt to dynamic networks the
notion of betweeness centrality already introduced for static
networks. In the context of dynamic networks, we call it
dynamic betweeness centrality. Consider a node i, first of all
we measure the average of the shortest dynamic path length
between all pairs of nodes s, t except paths from and to i.
Then, we remove i from the network and perform the same
measure. The dynamic betweeness centrality of i is defined
as the ratio between these two measures. Formally, that is

xi =

∑

st
L′

st
∑

st
Lst

, (6)

where L′
st and Lst are respectively the shortest dynamic

path lengths from s to t after and before removing i.
We measure the dynamic betweeness of all nodes at differ-

ent times on the traces. Figure 3 shows the temporal evolu-
tion of the dynamic betweeness for the Infocom05 trace. On
the figure, the different areas represent the measured metric
(in %) of different nodes. We can observe that the dynamic
betweeness of a nodes changes over time and that there are
some nodes with very high influence whose removal would
dramatically increase the dynamic characteristic path length
of the network. Indeed, at the time of the highest pick, the
most influential node decreases of almost 70% the average
shortest dynamic path length of the network. We can also
see the abrupt decrease of the average shortest dynamic path
length at time 24 hours on Figure 2(a). The time average
of the dynamic betweeness centrality of each network node
allows one to rank the influence of each node during a time
window. For instance in Figure 3 the highest value for the
daytime period corresponds to node with ID 34.

Now let us look at the highest pick to see what happened
in the network at that moment. We measure the impact of
node 34 on the shortest dynamic paths from and to each
other node (respectively denoted out/in shortest dynamic
path on Figure 4). Figure 4 shows that node 34 has very
high influence on node 31. We then apply our all-pairs-
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Figure 5: Shortest dynamic paths from node 31 at
t = 22h in Infocom05 trace, before (in red) and after
(in blue) removal of node 34

shortest-dynamic-path algorithm to find all the shortest dy-
namic paths from node 31 to others before and after remov-
ing node 34. Figure 5 shows that node 34 is crucial for node
31 to efficiently communicate with other nodes at that in-
stant. Therefore node 34 plays the role of a spatio-temporal
shortcut between node 31 and the other nodes. This re-
sult can be observed for any node with a high dynamic be-
tweeness. Indeed, if the so disconnected network part is a
giant component, then the impact of the removal of a dy-
namic shortcut can dramatically increase the characteristic
dynamic path length of the network.

4. DYNAMIC SMALL-WORLD MODELING
The previous section showed that the dynamic work small

world phenomenon is intrinsic to a great diversity of dynamic
network traces. Therefore, the definition of a model that
abstracts this phenomenon in order to study the impact of
its emergence on dynamic networks communications perfor-
mances is a significant issue. In this section, we introduce a
model for dynamic small-worlds and show its modeling and
expressive power. As evoked in the introduction, this model
aims to capture the dynamic small-world phenomenon re-
sulting from human mobility behavior through human char-

acteristics described in the previous section. That is:

• People move between clusters or communities

• Some people are nomad while the others are more
sedentary. These nomadic nodes move from cluster to
cluster and hence contribute to reducing the network
diameter.

4.1 The model
Consider a mobile network in which each node belongs

to a preferential attachment zone or clusters. We introduce
two types of nodes: sedentary nodes which move only in-
side their preferential zone3 and nomadic nodes which can
move between zones. Nodes moving in two different zones
cannot be connected and therefore nodes in different zones
can communicate only through the movement of nomadic
nodes. Initially, nomadic nodes are uniformly distributed
over all clusters. The fraction of nomadic nodes is p which
is a parameter of the model.

Obviously, when p equals to 0, there is no possible com-
munication between nodes in different zones and hence the
network is totally partitioned in disconnected zones. On the
contrary, when p equals to 1, all the nodes are nomadic and
hence there are dynamic paths between clusters and in con-
sequence the network is highly connected. In consequence,
the rewiring process consist in varying p from 0 to 1. We
are interested in the properties of networks which are formed
between these two extrema.

As we have demonstrated in a previous work [7], human
mobility can be modeled with STEPS—a simple model im-
plementing preferential attachment and attractor via a power
law. We apply this mobility model to the movement of no-
madic nodes. The node chooses the zone to move in with
a probability inversely proportional to the distance between
his preferential zone and the chosen zone. That is

P (Z = zi) =
λ

(1 + dz0zi)
α

, (7)

where z0 is the preferential cluster of the node, λ is constant
of normalization and the power law exponent α a parameter
of STEPS model.

4.2 Simulation Results
We simulate in MATLAB a mobile network of 1000 mobile

nodes. The simulated network area of size 200× 200 m2 di-
vided into 20×20 zones as shown in Figure 6 gives a density
of 25000 nodes/km2 which corresponds to the population
density of a large city like Paris. We distribute uniformly
nodes over zones and set the radio range to 10 m which cor-
responds to bluetooth technology. While varying the frac-
tion of nomadic nodes from 0 to 1, we measure the dynamic
clustering coefficient and shortest dynamic path length of
resulting networks.

Figure 7 plots the resulting average over 10 simulations
with the corresponding 95% confidence intervals. We ob-
serve that the shortest dynamic path length drops rapidly as
soon as we introduce a small percentage of nomadic nodes
(i.e. less than 10 %) into the network whilst the cluster-
ing coefficient remains very high. This result obtained from
a simple model of evolution of a dynamic network demon-
strates, identically to the simple model used to exhibit the

3following a random mobility model such as Random Way-
point



Figure 6: Small-world network configuration
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Figure 7: Small-world phenomenon in dynamic net-
works

emergence of the small world phenomenon in static net-
works [10], how the small-world phenomenon emerges from
dynamic networks.

5. INFORMATION DIFFUSION IN DYNAMIC

SMALL-WORLD NETWORKS
Following the understanding and modeling of the small

world phenomenon in dynamic networks, this section aims
to study the effect of the dynamic small-world phenomenon
on information diffusion performances. We present analyt-
ical and simulation results obtained with the Susceptible
Infected (SI) epidemic model. We apply SI model on a sim-
plified version of the dynamic small-world model used in
the previous section in which we make abstraction of nodes
displacement inside sites. Nodes movements are limited to
jumping from one site to another. Simulation results for
the complete version of the model are also provided. Let
us consider a square lattice of N sites with initially 1 node
in each site, node i is associated to site number i. Assume
that when 2 nodes are in the same site, they are connected.
At each time t, mobile nodes jump to another site while
sedentary nodes stay where they are. Initially, we suppose 1
infected node and 100% of other nodes susceptible. We for-

mulate the dynamics of the infection of this network through
a differential equation as follows.

Consider a node i. Let xi(t) be the random variable which
denotes the probability of node i being infected at time t.
Let us express the probability that i becomes infected be-
tween time t and t+ dt. A static node i can be infected by
a mobile node m only. This happens with the probability
δmi that node m jumps to site i. The probability that the
infection (i.e. information) is transmitted during the inter-
val dt is βdt where β is the transmission rate—a standard
parameter of the SI epidemic model. Summing over all the
mobile nodes and then multiplying by the probability 1−xi

that i is not infected at time t , we obtain the differential
equation

dxi

dt
= β(1− xi)

∑

m

δmixm . (8)

Conversely, for a mobile node, i, to be infected, it must be
in contact with a mobile or static node already infected. If
a node i jumps to a site j where resides an static node, this
happens with probability xj +

∑

m 6=i
δ(mi)xm and hence

dxi

dt
= β(1− xi)(xj +

∑

m 6=i

δmjxm) . (9)

If the destination site j is associated to a mobile node then
this probability is

∑

m 6=i
δmjxm and hence

dxi

dt
= β(1− xi)

∑

m 6=i

δmjxm . (10)

Combining all these cases, we obtain the following matrix
differential equation describing the dynamics of the system

dx

dt
=β(1− x) ◦ 〈(1−m) ◦ [D(m ◦ x)] +

+m ◦ {D [(1−m) ◦ x+D(m ◦ x)]}〉 ,

(11)

where x = [x1 . . . xN ]′ is the random vector of nodes infec-
tion probability and m is the binary vector in which mi = 1
for a mobile node and mi = 0 for a static node. The matrix

D =







δ11 . . . δ1N
...

. . .
...

δN1 . . . δNN






= λ









1 . . . 1
(1+d1N )α

...
. . .

...
1

(1+dN1)
α . . . 1









is the stochastic matrix describing the stationary state of
the system.

To have an approximated solution of Equation 11, we
integrate it by numerical method. The results are shown
in Figure 8 which plots the time evolution of the fraction
of infected nodes for a 10000 nodes network. The four
curves correspond a fraction of mobile nodes pm equals to
0.1%, 1%, 10%, 100% respectively. The coefficient α for mo-
bile node is equal to 0 and the transmission rate β is equal
to 1. It is interesting to see that for a low fraction of mo-
bile nodes, epidemic spreads very slowly because this frac-
tion is still below the percolation threshold of the network,
while with only 10% (i.e. as soon as the small-world struc-
ture emerges) the epidemic breaks out rapidly. We also ran
simulations with a network of 100 nodes, α equals to 0, β
equals to 1 and different values for the fraction of mobile
nodes. The average over 100 simulations is then compared
with the corresponding analytical results. Figure 9 shows
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Figure 8: Evolution of fraction of infected nodes over
time (theory)
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Figure 9: Comparison of analytical and simulation
results

the strong accuracy and compliance of our analytical model
with the simulation results. Finally, we run simulation with
the complete version of the small-world model. The result is
the average over 10 simulations of a 100 nodes network with
the same configurations. Figure 10 shows a similar result
compared to the first case. The effect of displacement time
between zones only spreads the curves so that the epidemic
take much longer time to take off.

6. CONCLUSION
In this paper, we first proposed a model that explains the

formation, evolution, behavior and performances of dynamic
small-world networks. In this model, from a clusterized net-
work composed of nodes with localized moves, we perform
a rewiring process which consists in introducing nomadic
nodes into the network. These nodes play the role of bridges
between disconnected clusters and reduce significantly the
dynamic shortest paths between nodes in the network. From
the study of real mobility traces we showed that our model
expresses salient properties observed in real dynamic net-
works. Finally, based on this model and from a joint use of
analytical analysis and simulations, we have studied infor-
mation diffusion in dynamic small-world networks, for the
SI epidemic model. We showed that the emergence of a dy-
namic small-world structure in dynamic networks is accom-

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Time (time unit)

F
ra

c
ti
o
n
 o

f 
in

fe
c
te

d
 n

o
d
e
s
 (

%
)

 

 

p
m

 = 1%

p
m

 = 10%

p
m

 = 100%

Figure 10: Evolution of fraction of infected nodes
over time with the complete version of the model
(simulation result)

panied by a sudden improvement of information diffusion
performances in the network. Our on-going work aims to
address this issue for more complex epidemic models such
as SIR or SIRS. A study of the percolation threshold and
percolation process in dynamic small-world networks is also
an significant problem to be considered. Although in this pa-
per, one contributing factor was found, further unique prop-
erties of dynamic networks might be contributing as well
and hence should also be considered. For our best knowl-
edge, this is the first model of small-world phenomenon in
dynamic networks. This model could be integrated in exist-
ing dynamic network simulators (e.g. theONE) to evaluate
protocol performances (at network or transport level) in such
type of network.
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