
HAL Id: hal-00908463
https://hal.science/hal-00908463

Submitted on 23 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Parallel Approaches for Scalar Multiplication in
Elliptic Curve over Fields of Small Characteristic

Christophe Negre, Jean-Marc Robert

To cite this version:
Christophe Negre, Jean-Marc Robert. New Parallel Approaches for Scalar Multiplication in Elliptic
Curve over Fields of Small Characteristic. IEEE Transactions on Computers, 2015, 64 (10), pp.2875-
2890. �10.1109/TC.2015.2389817�. �hal-00908463�

https://hal.science/hal-00908463
https://hal.archives-ouvertes.fr


1

New Parallel Approaches for Scalar

Multiplication in Elliptic Curve over Fields of

Small Characteristic

Christophe Negre1,2,3 and Jean-Marc Robert1,2,3

1 Équipe DALI, Université de Perpignan, France

2 LIRMM, UMR 5506, Université Montpellier 2, France

3 LIRMM, UMR 5506, CNRS, France

✦

Abstract

We present two new strategies for parallel implementation of scalar multiplication over elliptic curves. We first introduce

a Montgomery-halving algorithm which is a variation of the original Montgomery point multiplication. This Montgomery-

halving can be run in parallel with the original Montgomery point multiplication in order to concurently compute part of

the scalar multiplication. We also present two point thirding formulas in some subfamily of curves E(F3m ). We use these

thirding formulas to implement the scalar multiplication through a Third-and-add approach and a parallel Third-and-add

and Double-and-add or Triple-and-add approaches. We also provide some implementation results on an Intel Core i7 of

the presented two strategies which show a speed-up of 5%-13% compared to non-parallelized approaches.

1 INTRODUCTION

Cryptographic protocols based on elliptic curves necessitate efficient implementation of scalar multipli-

cation on the curve. This operation is generally performed through a sequence of point doublings and

point additions combined with a recoding of the scalar which reduces the number of additions. In the

case of curves defined over extended binary fields Knudsen [10] and Schroeppel [14] independently

proposed an alternative approach in 1999-2000. This approach is based on the halving operation, which

multiplies a point of the curve by the inverse of 2. Schroeppel and Knudsen showed that this operation

is really efficient on curves defined over extended binary fields. This approach was then used in [16] to

parallelize the scalar multiplication, since half of the scalar multiplication can be performed through a

Double-and-add approach and the other half can be performed concurrently through a Halve-and-add

approach. Some recent software implementations [16] on Intel Core i5 and i7 processors show that this

parallelization provides a significant speed up of the scalar multiplication.

November 23, 2013 DRAFT



2

In this paper we investigate two new directions for the parallelization of the scalar multiplication. The

first direction concerns the parallelization of Montgomery point multiplication on curves E(F2m). The

method of Montgomery for scalar multiplication is very regular : the same set of field operations are

performed at each iteration of the main loop. This increases the resistance to timing attack and simple

power analysis (SPA). We propose a halving version of the approach of Montgomery, the Montgomery-

halving, which replaces the point doublings with point halvings in the main loop of the algorithm. This

leads to a parallelization of the Montgomery point multiplication into two threads: one thread performing

the original Montgomery point multiplication and a second thread performing the Montgomery-halving

approach.

The second direction consists in adapting the halving approach to non-supersingular curve over F3m . To

achieve this goal, we propose a thirding operation on a sub-family of non-supersingular elliptic curves

E(F3m). Thirding a point consists of a multiplication by the inverse of 3 modulo the point order. We

use this point thirding in a Third-and-add approach of the scalar multiplication and then combine this

approach with the regular Double-and-add or Triple-and-add approaches to obtain a parallelization of

the scalar multiplication on E(F3m).

We provide implementation results based on the proposed parallel approaches. In the case of the

parallelized Montgomery point multiplication in E(F2m), we have implemented the operations in F2m

using the approaches of [16]. Implementation strategies for field multiplications and field additions in

F3m are based on [1]. For the other field operations in F3m we adapt the methods used for F2m to the

case of characteristic three fields. The timings obtained provide a speed up between 5% and 10% for the

Montgomery-parallel approach and 5% and 13% for the parallel scalar multiplication E(F3m) compared

to non-parallel approach.

The paper is organized as follows. In Section 2 we review some background on elliptic curve over

extended binary field and related scalar multiplication methods. In Section 3 we present the Montgomery-

halving approach and the parallelized Montgomery approach for scalar multiplication and related im-

plementation results. In Section 4 we review the best known methods for the implementation of the

scalar multiplication in E(F3m). Then, in Section 5, we present our proposed thirding point formula and

Third-and-add and parallel approaches for scalar multiplication, along with implementation strategies

and timings. Finally, in Section 6, we give some concluding remarks.

2 BINARY ELLIPTIC CURVE SCALAR MULTIPLICATION

In this section, we consider an extended binary field F2m = F2[t]/(f(t)), where f(t) ∈ F2[t] is an irreducible

polynomial of degree m, and an elliptic curve E(F2m) defined by the following Weierstrass equation:

E : y2 + xy = x3 + ax2 + b with a, b ∈ F2m . (1)

November 23, 2013 DRAFT



3

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E(F2m). Then the addition of two points on the

curve can be computed as follows: if (x3, y3) are the coordinates of the point P3 = P1 + P2, we have:






x3 = λ2 + λ+ x1 + x2 + a,

y3 = (x1 + x3)λ+ x3 + y1,
where λ =







y1+y2

x1+x2
if P1 6= P2,

y1

x1
+ x1 if P1 = P2.

(2)

The above point doubling and point addition formulas involve an inversion in F2m which is a costly

operation. It is generally preferable to use a projective coordinate system which provides curve operation

formulas with a few more field multiplications but without any field inversion. The most used coordinate

systems are: the standard projective coordinate system where the projective coordinates P = (X : Y : Z)

correspond to the affine coordinates (X/Z, Y/Z) satisfying the curve equation (1), and the López-Dahab

projective coordinates P = (X : Y : Z) which corresponds to the affine coordinates (X/Z, Y/Z2).

Double-and-add scalar multiplication.

The scalar multiplication consists of the computation

k · P =

k times
︷ ︸︸ ︷

P + P + · · ·+ P

for a point P ∈ E(F2m) and a scalar k ∈ N. The most used method to implement scalar multiplication is

the classical Double-and-add approach combined with the NAFw recoding of the scalar k. This recoding

consists in rewriting k as k =
∑ℓ

i=0 ki2
i such that each ki is an odd integer in {±1, . . . ,±2w−1−1}. These

coefficients ki are generated through the following loop:

while k > 0 do

if k ≡ 0 mod 2 then

ki ← 0, k ← k/2

else

ki ← k mods2
w, k ← (k − ki)/2

end if

i← (i+ 1)

end while

The term mods above represents a signed modular reduction. The NAFw representation of k is sparse

since the proportion of non-zero coefficients ki is ∼= 1/(w+1). This is advantageous since this reduces the

number of additions in the Double-and-add algorithm. Indeed, the Double-and-add approach computes

k · P by first precomputing T [i] = i · P for odd positive integers i ∈ [0, 2w−1], and then performs a

sequence of doubling and addition R← 2 ·R+ sign(ki)T [ |ki| ] for i = ℓ, ℓ− 1, . . . , 0 where ℓ is the length

of NAFw(k). As stated in [7], the total complexity of the Double-and-add scalar multiplication is w + ℓ

doublings and ℓ
w+1 + 2w−1 additions.

November 23, 2013 DRAFT



4

Algorithm 1 Double-and-add

Require: P ∈ E(F2m) and a scalar k ∈ [0, N − 1] where N is the order of P .

Ensure: Q = k · P
1: Compute NAFw(k) =

∑ℓ
i=0 ki2

i

2: Compute T [i] = i · P for all odd positive integers i ∈ [0, 2w−1]

3: Q← O
4: for i from ℓ downto 0 do

5: Q← 2 ·Q+ sign(ki)T [ |ki| ]
6: end for

7: return (Q)

Montgomery point multiplication.

An another popular approach to implement scalar multiplication is the Montgomery point multiplication.

This algorithm uses two points Q0 and Q1 which have a constant difference Q1 − Q0 = P during the

whole run of the algorithm. The point Q0 successively takes the values k(i) · P where

k(i) = [kℓ, kℓ−1, . . . , ki]2 =





ℓ∑

j=i

kj2
j−i



 with i = ℓ, ℓ− 1, . . . , 1, 0,

and [kℓ, kℓ−1, . . . , k1, k0]2 is the binary representation of the scalar k. This approach is described in

Algorithm 2. We can notice that the loop operations on the point Q0 are Q0 ← Q0 + Q1 = 2Q0 + P

if ki = 1 or Q0 ← 2Q0 if ki = 0 which are equivalent to the point doubling and point addition of the

regular Double-and-add approach. The other loop operations Q1 ← 2Q1 if ki = 1 and Q1 ← Q0 + Q1

if ki = 0 maintain the difference Q1 − Q0 = P during the whole computations. An interesting property

of this approach is its regularity during each iteration. Such property is important to provide some

resistance against some side channel attacks like simple power analysis or timing attacks. In the case

of binary elliptic curves Lopez and Dahab in [11] showed that the use of standard projective coordinates

makes this approach almost as efficient as Double-and-add approach combined with NAFw recoding.

This optimized approach requires (6ℓ + 10)M + I where ℓ is the bit length of k and M and I represent

a field multiplication and a field inversion, respectively.

Halve-and-add scalar multiplication.

In the case of elliptic curve over extended binary field, the halving operation, originally presented

in [10], [14], makes possible the implementation of the scalar multiplication through a Halve-and-add

approach in place of a Double-and-add approach. We assume that the degree m of F2m is odd and that

Trace(a) = 1 where a is the coefficient of the equation (1) which defines E(F2m) and where Trace(a) is

defined as Trace(a) =
∑m−1

i=0 a2
i

.

The point doubling over E(F2m) is a one to one application when it is restricted to the subgroup of

November 23, 2013 DRAFT



5

Algorithm 2 Montgomery point multiplication

Require: P ∈ E(F2m) and a scalar k ∈ [0, ord(P )]

Ensure: Q = k · P
1: Q0 ← O
2: Q1 ← P

3: for i from t− 2 downto 0 do

4: if (ki = 0) then

5: T ← Q0, Q0 ← 2T,Q1 ← T +Q1

6: else

7: T ← Q1, Q1 ← 2T,Q0 ← Q0 + T,

8: end if

9: end for

10: return Q0

E(F2m) formed by the points of odd order. We consider only such points of odd order. The halving

formula is derived from the doubling formula : let P = (x, y) and Q = (u, v) be two points on E(F2m)

such that Q = 2 ·P . If N is the order of Q and s is such that 2× s = 1 mod N , we have P = s ·Q which

is equivalent to P =
[
1
2

]
· Q. The doubling formula (2) provides the following relations between (x, y)

and (u, v):

λ = x+ y/x (3)

u = λ2 + λ+ a (4)

v = x2 + u(λ+ 1) (5)

We first notice that (4) implies that Trace(u + a) = 0 since Trace(λ2 + λ) = 0 for any λ. We can also

show that Trace(x+ a) = 0 since P is also of odd order and can be written as P = 2 ·R for some point

R ∈ E(F2m). Based on this fact, the authors of [10], [14] have then derived the following method to

compute the halving of Q.

1) Compute the solution λ0 = HalfTrace(u+ a) of the equation u = λ2 + λ+ a where

HalfTrace(u+ a) =

m−1
2∑

i=0

(u+ a)2
2i

.

This λ0 is a valid solution:

λ2
0 + λ0 =

(
∑m−1

2
i=0 (u+ a)2

2i
)2

+
(
∑m−1

2
i=0 (u+ a)2

2i
)

=
(
∑m−1

i=0 (u+ a)2
i
)

+ (u+ a)2
m

= Trace(u+ a) + u+ a

= u+ a.

November 23, 2013 DRAFT



6

2) Compute the second solution λ1 = λ0 + 1 of the equation u = λ2 + λ+ a.

3) Using (5), we obtain the two possible values x0 and x1 of the x-coordinate of P , each corresponding

to λ0 or λ1:

x0 =
√

v + u(λ0 + 1) =
√
v + uλ0 + u,

x1 =
√

v + u(λ1 + 1) =
√
v + uλ0.

4) The x-coordinate of P is then x = x0 if Trace(x0) = Trace(a) otherwise x = x1 since P must have an

x-coordinate satisfying Trace(x) = Trace(a). The fact that only one element among {x0, x1} satisfies

Trace(xi) = Trace(a) is proven in [5].

5) From (3), the y-coordinate is then derived from x and λ as y = x(x+ λ).

The point halving is then reduced to the following computations: one HalfTrace and one Trace plus

two multiplications, one square root and few additions. Consequently, when the HalfTrace, square root

and Trace operations are performed efficiently, this makes the halving operation competitive compared

to doubling operation.

Algorithm 3 Halve-and-add

Require: P ∈ E(F2m) of odd order N and a scalar k ∈ [0, N − 1] and ℓ = ⌈log2(N)⌉+1 and w a window

size.

Ensure: Q = k · P .

1: k′ ← 2ℓk mod N

2: Compute NAFw(k
′) =

∑ℓ
i=0 k

′
i2

i

3: for j ∈ J = {1, 3, . . . , 2w−1 − 1} do Qj ← O
4: Q← P

5: for i from ℓ downto 0 do

6: Q|k′

i
| ← Q|k′

i
| + sign(k′i)Q

7: Q← Q/2

8: end for

9: return Q←
∑

j∈J jQj

The Halve-and-add algorithm proposed in [5] is similar to the Double-and-add approach. Preliminary,

we need to recode the scalar k in base 1/2 representation: we first compute

k′ = 2ℓ × k mod N (6)

where ℓ is the bit length of N and then we derive NAFw(k
′) =

∑ℓ
i=0 k

′
i2

i. Thus, using (6), we obtain the

following base 1/2 representation of k:

k = k′ × 2−ℓ =
ℓ∑

i=0

k′i2
i−ℓ

November 23, 2013 DRAFT



7

The scalar multiplication can then be computed through a sequence of halvings and additions. This

sequence of operations is slightly different from the Double-and-add approach since the approach is left-

to-right instead of right-to-left. In a point Q we store sequentially the different values
[
1
2i

]
·P, i = 0, . . . , ℓ

which makes possible to keep Q in affine coordinate during the whole algorithm : no conversion are

then required. The values
[
1
2i

]
· P are added to Qj where j ∈ J = {1, 3, . . . , 2w−1 − 1} if k′i = j. The final

result is obtained by adding the points Qj multiplied by their respective coefficient j. This approach is

detailed in Algorithm 3. This algorithm require ℓ/(w + 1) + 2w−1 + 1 Additions and ℓ halvings.

Parallel Double-and-add/Halve-and-add scalar multiplication.

Figure 1. Parallel Double-and-add and Halve-and-add

Double−and−add Halve−and−add

Require: P ∈ E(F2n) of odd order N and k ∈ [0, N − 1]
Ensure: Q = kP

P, k1

Q1 = k1P

Join: Q = Q1 +Q2

return(Q)

Recoding: k′ = 2n × k mod N and NAFw(k
′) =

∑ℓ
i=0 k

′
i2

i

Split: k = k1 + k2 with k1 =
∑ℓ−n

j=0 k
′
j+n2

j and k2 =
∑−n

j=−1 k
′
n+j2

j

Q2 = k2P

P, k2

We review the parallel approach for scalar multiplication in E(F2m) presented in [16]. We consider a

point P ∈ E(F2m) of odd order N of bit length ℓ and a scalar k ∈ [0, N − 1]. The scalar k is recoded by

first computing

k′ = 2n × k mod N

where n is the fixed split generally taken close to ℓ/2. Afterwards we compute NAFw(k
′) =

∑ℓ
i=0 k

′
i2

i

and we obtain the following expression of k:

k = k′ × 2−n mod N = (k′ℓ2
ℓ−n + . . .+ k′n) + (k′n−12

−1 + . . .+ k′02
−n) mod N.

November 23, 2013 DRAFT



8

The scalar multiplication k · P of P is then split in two parts:

k · P = (k′ℓ2
ℓ−n + . . .+ k′n)

︸ ︷︷ ︸

k1

·P + (k′n−12
−1 + . . .+ k′02

−n)
︸ ︷︷ ︸

k2

·P,

the first part k1 ·P is computed with the Double-and-add algorithm and the second part k2 ·P is performed

through a Halve-and-add approach. This parallel method is described in Fig. 1.

3 PARALLELIZED MONTGOMERY POINT MULTIPLICATION

In the previous section we have seen that the scalar multiplication can be performed in parallel fashion

by concurrently perform the Halve-and-add and Double-and-add algorithms. We present in this section

an adaptation of this strategy in order to parallelize the Montgomery point multiplication.

3.1 Montgomery-halving

We consider an elliptic curve E(F2m) over F2m , a point P ∈ E(F2m) with an odd order N and a scalar

k ∈ [0, N − 1]. We further assume that Trace(a) = 1 and m is odd which makes possible the use of a

point halving on E(F2m). Our goal is to modify the Montgomery point multiplication in order to use the

halving operation in place of the doubling operation. We present a new algorithm with the following

properties:

• regularity of the operations performed in each iteration of the main loop in order to keep the SPA

resistance properties of the original Montgomery point multiplication;

• constant difference between Q1 and Q0, the two points computed at each iteration all along the

whole point multiplication, which provides some resistance against fault attacks.

As in the case of the Halve-and-add approach we have to recode the scalar k by first computing

k′ = 2ℓ−1 · k mod N =
∑ℓ−1

i=0 k
′
i2

i which gives k =
∑ℓ−1

i=0 k
′
i2

i−(ℓ−1) where k′i ∈ {0, 1} and ℓ is the bit

length of N . The proposed approach involves two points Q0 and Q1 such that:

• the point Q0 takes successively the values k(i) ·P for i = 0, 1, . . . , ℓ− 1, ℓ where k(i) = (
∑i

j=0 k
′
j2

j−i);

• the point Q1 satisfies Q1 = Q0 − 2P during the whole run of the algorithm.

The proposed Montgomery-halving point multiplication is described in Algorithm 4.

Lemma 1. Let Q0,i and Q1,i be the respective values of Q0 and Q1 after the i-th loop iteration and let k(i) =
∑i

j=0 k
′
j2

j−i. Then the following identities hold:






Q0,i = k(i) · P,
Q1,i = (k(i) − 2) · P.

Proof: We prove the lemma by induction on i. We first consider the case i = 0: since the initial value

of Q0 and Q1 are Q0 = k0 · P and Q1 = (k0 − 2) · P , the induction hypothesis is satisfied in this case.

November 23, 2013 DRAFT



9

Algorithm 4 Montgomery-halving

Require: k · P ∈ E(F2m) of odd order N and a scalar k ∈ [0, N − 1] and let ℓ = ⌊log2(N)⌋.
Ensure: Q = k · P .

1: Compute k′ = 2ℓ−1 · k mod N =
∑ℓ−1

i=0 k
′
i2

i with ℓ = ⌊log2(N)⌋+ 1

2: Q0 ← k0 · P,Q1 ← k0 · P − 2 · P
3: for i from 1 to ℓ− 1 do

4: if (k′i = 1) then

5: T ← Q0/2, Q0 ← T,Q1 ← Q1 − T

6: else

7: T ← Q1/2, Q1 ← T,Q0 ← Q0 − T

8: end if

9: end for

10: return (Q0)

We now assume that the induction hypothesis is satisfied up to i and we prove it for i+1. By induction

hypothesis we have






Q0,i = k(i) · P,
Q1,i = k(i) · P − 2 · P,

and Q1,i −Q0,i = −2 · P.

Now we consider the two following cases:

• If k′i+1 = 0, which means that k(i+1) = k(i)/2. In this case the following operations are performed:






Q0,(i+1) = Q0,i/2 = (k(i+1)/2) · P,
Q1,(i+1) = Q1,i −Q0,i/2 = (Q1,i −Q0,i) +Q0,i/2.

By induction hypothesis Q1,i − Q0,i = −2P and Q0,i = k(i)P which implies Q0,i/2 = (k(i)/2) · P =

k(i+1)P . We thus obtain the required values






Q0,(i+1) = k(i+1) · P,
Q1,(i+1) = −2 · P + k(i+1)P.

• If k′i+1 = 1 we have k(i+1) = k(i)/2+1 and the two points Q0,i+1 and Q1,i+1 are computed as follows:






Q0,(i+1) = Q0,i −Q1,i/2 = Q0,i/2− (Q1,i −Q0,i)/2,

Q1,(i+1) = Q1,i/2

We use again the induction hypothesis which gives Q1,i − Q0,i = −2P,Q0,i = k(i)P and Q1,i =

(k(i) − 2)P and we obtain






Q0,(i+1) = (k(i)/2)P + P = k(i+1)P,

Q1,(i+1) = (k(i)−2)
2 P = (k(i)/2 + 1)P − 2P = k(i+1)P − 2P.

November 23, 2013 DRAFT



10

This ends the proof of the lemma.

The proposed algorithm still have a regularity in the operations of the main loop iteration, i.e., the

same type of operation is performed independently of the value taken by the bits k′i. The difference

Q1,i − Q0,i = −2 · P is preserved during the whole computations, this can be used to detect some fault

injection during the computation. Consequently, the proposed algorithm conserves the main properties

of the original Montgomery point multiplication.

Unfortunately, in terms of efficiency, the use of point halving requires to use affine coordinates. Indeed,

we could not find a projective form of the Montgomery-halving approach which would save the inver-

sions involved in the ℓ point additions of the algorithm. But the approach still makes possible to develop

a parallel version of the Montgomery point multiplication. The next section deals with this version.

3.2 Parallel version

In this parallelized version, we use a split technique similar to the one used by the authors in [16]. Let P

be the point to be multiplied with a scalar k and we assume that P has an odd order N . The method to

parallelize the computations is similar to the one reviewed in Section 2. The scalar k is recoded by first

computing

k′ = 2n × k mod N =

ℓ∑

i=0

k′i2
i

and is then split in two parts k = k1 + k2

k = k′ × 2−n mod N = (k′t2
ℓ−n + . . .+ k′n)

︸ ︷︷ ︸

k1

+(k′n−12
−1 + . . .+ k′02

−n)
︸ ︷︷ ︸

k2

mod N.

Then the scalar multiplication k1 ·P is computed with the original Montgomery algorithm and the second

part k2 ·P is performed in parallel through a Montgomery-halving approach. The final result is obtained

with a final addition k · P = (k1 · P ) + (k2 · P ). This parallel method is described in Fig. 2.

3.3 Implementations results

The platform used for the implementations is an Optiplex 990 DELL equipped with an Intel Core i7-2600

and with an Ubuntu 12.04 operating system. The code was written in C language and compiled with

gcc 4.6.3. Following the recommendations of [2] the Hyperthreading and Turbo-boost options have been

disabled on our platform in order to measure accurately the performances of the considered algorithms.

The considered curves are the NIST B233 defined over F2233 = F2[t]/(t
233 + t87 +1) and the NIST B409

curve defined over F2409 = F2[t]/(t
409 + t79 + 1). Both curves are given by a curve equation of the form

y2 = x3 + x2 + b where b is a non-sparse element in the field F2m . The conditions Trace(a) = 1 and m

odd are fulfilled in order to have an efficient halving operation on the curve.

November 23, 2013 DRAFT



11

Figure 2. Parallelized Montgomery

Original Montgomery Montgomery−halving

Ensure: Q = kP

P, k1

Q1 = k1 · P

Split: k = k1 + k2 with k2 =
∑−n

j=1 k
′
j2

j and k1 =
∑ℓ−n

j=0 k
′
j+n2

j

Join: Q = Q1 +Q2

return(Q)

Recoding: k′ = 2n × k mod N =
∑ℓ

i=0 k
′
i2

i

Q2 = k2 · P

P, k2

Require: P ∈ E(F2m) of odd order N and k ∈ [0, N − 1]

3.3.1 Implementation strategies for field operations

We used the following strategies for implementing field operations in F2233 and F2409 :

• Polynomial multiplication: we follow the same strategy as the one presented in [16]. The multiplication

is performed using a combination of Karatsuba approach for binary polynomial and carry-less

instruction of Intel Core i7 processor. Specifically, the recursion of Karatsuba is performed twice for

F2233 resulting in nine multiplications of degree 63 polynomials. For the case of F2409 , the recursion is

performed three times which results in 25 multiplications of degree 63 polynomials. A multiplication

of polynomial of degree 63 is performed with the Intel core i7 carry-less multiplication (PCLMUL

instruction). This instruction is part of the MMX instruction set and we use it with the intrinsic

function _mm_clmulepi64_si128.

• Squaring: Let a(t) =
∑m−1

i=0 ait
i be a binary polynomial, the square of a is a(t)2 =

∑m−1
i=0 ait

2i.

Consequently, squaring a binary polynomial consists in inserting zeros between each bit of a. This

insertion of zeros is performed with the method presented in [3]. Specifically, there exists an MMX

instruction, the byte_shuffle, which applies a fixed S-box {0, 1}4 → {0, 1}8 simultaneously to the

least significant nibbles of each byte of a 128 bit word. This makes possible to perform the squaring

of a polynomial a(t) by choosing S as the function which inserts zeros between each bit of a nibble.

The resulting squaring implementation consists in a few word maskings and byte shufflings.

• Reduction: the irreducible polynomials which defines the NIST fields F2233 and F2409 are trinomials.

We then use the usual approach to perform the polynomial reduction modulo f(t) which consists

November 23, 2013 DRAFT



12

of a few word shifts of the unreduced part of the polynomial followed with XOR operations.

• Square-root: let a(t) =
∑m−1

i=0 ait
i be an element of F2m , then the square-root of a can be expressed as

follows:

√
a =





m−1
2∑

i=0

a2it
i



+
√
t





m−1
2∑

i=0

a2i+1t
i



 .

We thus have to separate the bits of a into two parts: one part containing bits with odd subscript and

the second part with bits with even subscript. This can be done by a few maskings and shiftings. Then

we have to remove the zeros between the bits of the resulting two parts. We use the byte_shuffle

instruction to remove these zeros as it was used in the squaring implementation. Then we have

to multiply with
√
t, but

√
t has sparse expression in the fields F2233 and F2409 , consequently this

multiplication consists of a few shifts and XORs.

• Field inversion: We use the approach of Itoh-Tsujii [8] which is derived from the following expression

of the inverse of a

a−1 = a2
m−2 =

(

a2
m−1−1

)2

.

The method of Itoh-Tsujii performs this exponentiation through a short sequence of field multipli-

cations and multi-squarings. Indeed, in the case of F2233 a sequence of a2
e−1 is computed where e

follows the addition chain 1 → 2 → 3 → 6 → 7 → 14 → 28 → 29 → 58 → 116 → 232 using the

following relation:
(

a2
e−1
)2e

′

× a2
e′−1 = a2

e+e−1.

The same method is applied for F2409 .

• Half-trace: This operation is defined as HalfTrace(a) =
∑(m−1)/2

i=0 a2
2i

. One important fact is that it

is a linear operation. Consequently we precompute and store in a table T [ · ][ · ] the terms

T [i][c0, c1, c2, c3] = HalfTrace((c0 + c1t+ c2t
2 + c3t

3)t4i)

for i = 0, . . . ,m/4 and [c0, c1, c2, c3] ∈ {0, 1}4. Then the polynomial a is split in a sequence of nibbles;

we use the table T [ · ][ · ] to compute the half-trace of each nibble and then accumulate their value

to obtain HalfTrace(a). As shown in [5], this approach can be optimized by removing the even

bits of a: this divides by two the number of HalfTrace computation on the nibbles of a. We have

implemented this optimized version.

3.3.2 Implementation results

In Table 1 we report the timings obtained for the three considered approaches: original Montgomery,

Montgomery-halving and Montgomery-parallel. These timings are average of hundreds of run with input

point P and scalar k taken at random. The values given in the split column corresponds the split value n

defined in Subsection 3.2 which minimizes the timing of the parallel approach. The optimal split value is

November 23, 2013 DRAFT



13

39 for the curve B233 and 59 for the curve B409. Fig. 3 shows the behavior of the timings of the parallel

algorithm when the split value n varies from 20 to 60. We notice that the curve has a ’V’ shape: this

means that the timings depends linearly to max(n, 233− n).

We also notice that our proposed parallelized version of Montgomery method provides a speed-up of

5%-10% compared to the non-parallelized original Montgomery approach.

Table 1

Timings in clock cycles of Montgomery approaches.

Algorithm

NIST Curve NIST Curve

B233 B409

#CC ms split #CC ms split

Regular Montgomery 157307 0.04 - 734256 0.21 -

Montgomery-Halving 707385 0.20 - 4212043 1.23 -

Montgomery-Parallel 149117 0.04 39 659460 0.19 59

Relative speed-up

Montgomery-Parallel/Montgomery-Doubling
5.09 % 10.5 %

Below we provide some recently published implementation results for several Montgomery approaches

for field sizes close to 256.

Taverne et al. [16] on Curve2251 : 225 000,

Bernstein [2] on Curve25519 : 194 000,

Hamburg [6] Montgomery over Fp : 153 000.

The implementation results are all on an Intel Core i7-2600 with 3.4 GHz. This shows that our imple-

mentation is competitive compared to these results even if the comparison is not fair since most of the

considered field have field size slightly larger than 233, but in counterparts they generally take advantage

of sparse curve coefficients.

4 ELLIPTIC CURVES DEFINED OVER CHARACTERISTIC THREE FIELDS

In this section, we focus on elliptic curves defined over characteristic three fields F3m . Such elliptic curves

are generally separated into two kinds of curve : supersingular elliptic curves and ordinary elliptic curves.

Here we will focus on ordinary elliptic curves. Such curves can be defined by a Weierstrass equation:

y2 = x3 + ax2 + b

where a, b ∈ F3m and a, b 6= 0 since the curve equation must be non-singular.

November 23, 2013 DRAFT



14

Figure 3. Timings of the Montgomery-parallel approach in terms of the split n

4.1 Curve operations

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on E(F3m). The addition, doubling and tripling formulas

on this curve are as follows:

• Addition. The coordinates (x3, y3) of the point P3 = P1 + P2 are:






x3 = λ2 − a− x1 − x2,

y3 = λ(x1 − x3)− y1,
where λ =

y2 − y1
x2 − x1

.

• Doubling. The coordinates (x3, y3) of P3 = 2 · P1 are:






x3 = λ2 − a+ x1,

y3 = λ(x1 − x3)− y1.
where λ =

ax1

y1
.

• Tripling. The coordinates (x3, y3) of P3 = 3 · P1 are computed as follows






x3 =
y6
1

a2(x3
1+b)2

− ax3
1

x3
1+b

,

y3 =
y9
1

a3(x3
1+b)3

− y3
1

x3
1+b

.
(7)

A common strategy to improve the efficiency of the addition, doubling and tripling operations consists

in using a projective coordinate system in order to remove field the inversions which are costly operations.

The following set of projective coordinates were proposed in the context of curve defined over field of

characteristic three:

• The Jacobian projective coordinates of a point P = (X,Y, Z) (cf. [7]) corresponds to the affine

coordinates of P as (x, y) = (X/Z2, Y/Z3) .

November 23, 2013 DRAFT



15

• The ML-projective coordinates (X,Y, Z, T ) of a point P defined in [9] corresponds to the affine

coordinates of P as (x, y) = (X/T, Y/Z3).

• The scaled projective coordinate system (X,Y, T ) was proposed in [4]. The affine coordinates (x, y) of

a point P can be derived from its scaled projective coordinates (X,Y, T ) as x = X/bT and y = Y/bT .

The complexities of the curve operations in each coordinate system are given in Table 2. Farashahi et

al. showed in [4] that the most advantageous coordinate system is the scaled projective system for curves

admitting a point of order three. Smart and Westwood proved in [15] that these curves are isomorphic

to curves given by a Weierstrass equation of the form

y2 = x3 + x2 + b with b ∈ F3m and b 6= 0.

In other words, an elliptic curve which admits a point of order 3 has a curve equation with a = 1. We also

notice from Table 2 that for the other king of ordinary curves the Jacobian coordinate system provides

the best set of curve operations.

Table 2

Complexity of curve operations in E(F3m)

Coordinate system Eq. form Mixed addition Doubling Tripling

Jacobian any a 7M+3S+2C+1D 5M+2S+3C 3M+2S+5C +1D

ML-Coordinate system a = 1 8M+2C 5M+3S+3C 6M+6C

Scaled projective [4] a = 1 8M+1D+1C 3M+2C 4M+4C+1D

M=Multiplication, S=Squaring, C=Cubing, D=Multiplication with a constant.

4.2 Scalar multiplication in E(F3m)

Now we review the best known approaches for scalar multiplication for elliptic curves over characteristic

three field. The well known Double-and-add approach has already been presented in Section 2. This

approach applies also in the case of a curve E(F3m). But for elliptic curves over characteristic three fields,

the tripling operation on the curve is really efficient (cf. Table 2). This motivates the use of the Triple-

and-add variation of the Double-and-add approach which replaces doubling operations with tripling

operations.

Triple-and-add. The Triple-and-add approach uses a scalar recoded with the signed window representa-

tion (SWR3,w) of [13]. The SWR3,w extends the NAFw to base three integer representation. Specifically,

the scalar k is recoded as a sequence k0, . . . , kℓ of elements ki ∈ [− 3w−1
2 , 3w−1

2 ] as specified in Algorithm 5.

Note that, in Algorithm 5, the operation mods is a signed modular reduction, i.e., integers are reduced

in the set {−(3w−1)/2, . . . ,−1, 0, 1, . . . , (3w−1)/2}. From [13] we know that the length ℓ of this SWR3,w(k)

November 23, 2013 DRAFT



16

Algorithm 5 SWR3,w - Signed window representation in base 3

Require: An integer k ≥ 0 and a window length w

Ensure: The SWR3,w of k

while k > 0 do

if k ≡ 0 mod 3 then

ki ← 0, k ← k/3

else

ki ← k mods 3
w, k ← (k − ki)/3

end if

i← (i+ 1)

end while

satisfies ℓ ≤ ⌊log3(k)⌋+1 and that the number of non-zero ki is approximately ∼= ℓ
w+ 1

2

. The Triple-and-add

method for scalar multiplication k ·P uses the SWR3,w method to recode the scalar k, it then precomputes

the points i · P for 0 < i < 3w

2 and i 6≡ 0 mod 3 and stores them in a table T [ · ]. Then k · P is computed

through a sequence of tripling and addition 3 · P + sign(ki)T [ |ki| ] for i = ℓ, ℓ− 1, . . . , 1, 0.

Algorithm 6 Triple-and-add with SWR3,w

Require: A curve E(F3m), a point P ∈ E(F3m) and a scalar k .

Ensure: Q = k · P
(kℓ−1, . . . , k0)← SWR3,w(k)

Precomputations. for i = 0, . . . , 3w−1
2 and i 6≡ 0 mod 3 do T [i]← i · P

Q← O
for i = ℓ− 1 to 0 do

Q← 3Q

Q← Q+ sign(ki)T [ |ki| ]
end for

The complexity of this approach is equal to the cost of the precomputations which is 3w−1 additions

plus (2w − 3) triplings, plus the cost of the main loop which requires ℓ
w+ 1

2

additions plus ℓ triplings

where ℓ is the length of SWR3,w(k) (for further details the reader may refer to [13]).

Comparison of the complexity of the Double-and-add and Triple-and-add approaches. Based on the complexity of

the Double-and-add and Triple-and-add methods combined with the complexities of the curve operations

given in Table 2, we can derive the number of multiplications (M ) for some cryptographic field sizes

m. For simplicity, we neglect cubings, cube roots and additions in F3m which are generally assumed to

be neatly faster than multiplications and inversions. We also assume that a squaring has the same cost

November 23, 2013 DRAFT



17

as a multiplication, i.e., S = M . The resulting complexities are given in Table 3. We notice that, in the

case a = 1, the Double-and-add method with w = 4 in scaled projective coordinates provides the best

complexity results. But we also notice that the Triple-and-add approach with w = 3 in scaled projective

coordinates has a complexity of the same order of magnitude. For the case a 6= 1 the Triple-and-add

approach with w = 3 gives the best complexity results.

Table 3

Complexity of Double-and-add and Triple-and-add for a few cryptographic sizes

Coordinates

Cost

m = 127 m = 147 m = 187 m = 251

DA TA TA DA TA TA DA TA TA DA TA TA

w = 4 w = 2 w = 3 w = 4 w = 2 w = 3 w = 4 w = 2 w = 3 w = 4 w = 2 w = 3

any a Jacobian 2033 1400 1390 2318 1607 1573 2907 2023 1938 3836 2689 2523

a = 1
ML 2124 1249 1289 2422 1433 1455 3036 1801 1786 4006 2390 2316

Scaled proj. 1139 1172 1195 1288 1344 1347 1595 1688 1649 2080 2238 2134

DA=Double-and-add, TA=Triple-and-add

5 PARALLEL SCALAR MULTIPLICATION IN E(F3m)

We present in this section a Third-and-add approach to perform a scalar multiplication in E(F3m). This

method uses a thirding operation on the curve which consists in a multiplication of a point P by the

inverse of 3. We will then take advantage of this new Third-and-add approach to parallelize the scalar

multiplication by concurrently performing the Third-and-add and Triple-and-add or Double-and-add

algorithms.

5.1 Thirding when a = 1

We consider two points P = (xP , yP ) and Q = (xQ, yQ) on an elliptic curve E(F3m) given by an equation

y2 = x3 + x2 + b, i.e., with a = 1. The tripling formula in affine coordinates is as follows: if P = 3 ·Q, the

expression of (xP , yP ) in terms of (xQ, yQ) is

xP =
y6
Q

(x3
Q
+b)2

− x3
Q

x3
Q
+b

, yP =
y9
Q

(x3
Q
+b)3

− y3
Q

x3
Q
+b

. (8)

If we set

B =
y3Q

x3
Q + b

and A =
x3
Q

x3
Q + b

, (9)

the previous equation (8) rewrites as

xP = B2 −A, yP = B3 −B. (10)

November 23, 2013 DRAFT



18

Computing the thirding of P , i.e., Q =
[
1
3

]
·P , consists of computation of the coordinates xQ and yQ in

terms of xP and yP . Before proceeding to the presentation of the thirding formula, we first need to state

some results concerning the solutions of the equation in the variable B of the form B3 −B = u where u

is a fixed element of F3m satisfying Trace(u) = 0.

Lemma 2 (ThirdTrace). We assume that the field F3m has a degree satisfying m 6= 0 mod 3. The three solutions

of the equation B3 −B = u where u ∈ F3m satisfies Trace(u) = 0 are:

B0 =







−∑(m−1)/3−1
i=0 (u3 − u)3

3i+1

if n ≡ 1 mod 3,

∑(m−2)/3
i=0 (u3 − u)3

3i

if n ≡ 2 mod 3,

(11)

and B1 = B0 + 1 and B2 = B0 + 2.

Proof: It is clear that if B0 is a solution of B3 − B = u then B1 and B2 are also solutions of this

equation:

(B0 + 1)3 − (B0 + 1) = B3
0 −B0 = u and (B0 + 2)3 − (B0 + 2) = B3

0 −B0 = u.

There is no other solution since the equation is of degree three in B. Now, we check that the expression

of B0 given in (11) when m ≡ 1 mod 3 is a solution of the equation B3 −B = u. We have

B3
0 −B0 = −

(
∑(m−1)/3−1

i=0 (u3 − u)3
3i+2 −∑(m−1)/3−1

i=0 (u3 − u)3
3i+1
)

= −
(
∑(m−1)/3−1

i=0 u33i+3

+
∑(m−1)/3−1

i=0 u33i+2

+
∑(m−1)/3−1

i=0 u33i+1
)

= −
(
∑m−1

i=1 u3i
)

.

Now since Trace(u) =
∑m−1

i=0 u3i = 0, we have B3
0 − B0 = u30 − Trace(u) = u. This means that B0 is a

solution of B3 −B = u. We now consider the second case, i.e., m ≡ 2 mod 3:

B3
0 −B0 =

∑(m−2)/3
i=0 (u3 − u)3

3i+1 −∑(m−2)/3
i=0 (u3 − u)3

3i

=
∑(m−2)/3

i=0 u33i+2

+
∑(m−2)/3

i=0 u33i+1

+
∑(m−2)/3

i=0 u33i

=
∑m

i=0 u
3i .

and since Trace(u) =
∑m−1

i=0 u3i = 0 we have B3
0 −B0 = u3m = u as required.

In the sequel, for m an odd integer, we will call the third-trace of B ∈ F3m the element

ThirdTrace(B) =







−∑(m−1)/3−1
i=0 B3i if m ≡ 1 mod 3,
∑(m−2)/3

i=0 B3i if m ≡ 2 mod 3.

Lemma 3. We consider an elliptic curve E(F3m) defined by y2 = x3+x2+ b over F3m such that m 6≡ 0 mod 3.

We assume that the order of the curve N is such that N = 3N ′ and N ′ 6≡ 0 mod 3. Then the two following

assertions hold:

i) Let P = (xP , yP ) ∈ E(F3m) satisfying Trace(yP ) = 0 then there are three points Q0 = (x0, y0), Q1 =

November 23, 2013 DRAFT



19

(x1, y1) and Q2 = (x2, y2) on the curve such that 3 ·Qi = P . Their coordinates can be computed as follows:

B0 ← ThirdTrace(y3P − yP ), B1 ← B0 + 1, B2 ← B2 + 2.

A0 ← B2
0 − xP , A1 ← A0 + 2B0 + 1, A2 ← A0 + 4B0 + 4.

x0 ← 3

√
bA0

1−A0
, x1 ← 3

√
bA1

1−A1
, x2 ← 3

√
bA2

1−A2
.

y0 ← 3

√
bB0

1−A0
, y1 ← 3

√
bB1

1−A1
, y2 ← 3

√
bB2

1−A2
.

(12)

ii) If P = (xP , yP ) ∈ E(F3m) satisfies Trace(yP ) = 0 it has an order N ′, and if P = (xP , yP ) ∈ E(F3m)

satisfies Trace(yP ) 6= 0 then it has an order equal to 3N ′.

Proof:

• We proceed to the proof of i): we first prove that the points (x0, y0), (x1, y1) and (x2, y2) satisfy (8).

We look for the solutions of (8): from Lemma 2 and since Trace(yP ) = 0 we deduce that B0 =

ThirdTrace(yP ), B1 = B0 + 1, B2 = B0 + 2 are the three solutions of the degree three polynomial

equation yP = B3 − B. From (10) we get the three corresponding values A0, A1 and A2 associated

to B0, B1 and B2 respectivelly:

A0 = B2
0 − xP , A1 = B2

1 − xP , A2 = B2
2 − xP .

Finally, we deduce the possible solutions (x0, y0), (x1, y1) and (x2, y2) of (10) in terms of A0, A1, A2

and B0, B1, B2. We first remark that

Ai =
x3
i

x3
i + b

⇔ xi =
3

√

bAi

1−Ai
.

This implies the respective expressions of x0, x1, x2 in terms of A0, A1 and A2 given in (12). Now,

we compute the values for y0, y1 and y2:

yi = 3
√
Bi(xi +

3
√
b) = 3

√
Bi

(
3

√
bAi

1−Ai
+ 3
√
b
)

= 3

√
bBi

1−Ai

This means that the three points (x0, y0), (x1, y1) and (x2, y2) of (12) are the solutions of (8). We now

prove that these three points (x0, y0), (x1, y1) and (x2, y2) are on E(F3m). We take i ∈ {0, 1, 2} and

then we use the fact that (xP , yP ) satisfy the curve equation:

y2P = x3
P + x2

P + b.

We now replace yP and xP by their respective expression in terms of xi and yi:
(

y9
i

(x3
i
+b)3

− y3
i

x3
i
+b

)2

=
(

y6
i

(x3
i
+b)2

− x3
i

x3
i
+b

)3

+
(

y6
i

(x3
i
+b)2

− x3
i

x3
i
+b

)2

+ b

⇐⇒ y18
i

(x3
i
+b)6

+
y12
i

(x3
i
+b)4

+
y6
i

(x3
i
+b)2

=
y18
i

(x3
i
+b)6

− x9
i

(x3
i
+b)3

+
y12
i

(x3
i
+b)4

+
y6
i x

3
i

(x3
i
+b)3

+
x6
i

(x3
i
+b)2

+ b

Now the terms
y18
i

(x3
i
+b)6

and
y12
i

(x3
i
+b)4

which appear on each side of the equation cancel. We then move

the term
y6
i x

3
i

(x3
i
+b)3

to the left side of the equation and this gives:

y6
i

(x3
i
+b)2

− y6
i x

3
i

(x3
i
+b)3

= − x9
i

(x3
i
+b)3

+
x6
i

(x3
i
+b)2

+ b

⇐⇒ y6
i (x

3
i+b−x3

i )

(x3
i
+b)3

= − x9
i

(x3
i
+b)3

+
x6
i

(x3
i
+b)2

+ b.

November 23, 2013 DRAFT



20

Now, we multiply the equation by (x3
i + b)3 and we obtain:

by6i = −x9
i + x6

i (x
3
i + b) + b(x3

i + b)3

⇐⇒ by6i = bx9
i + bx6

i + b4.

We finally obtain that y2i = x3
i + x2

i + b after a division by b and taking the cube root of each side of

the equation. This concludes the proof of i).

• We proceed to the proof of ii). Let P = (xP , yP ) ∈ E(F3m) of order N ′. Then since gcd(N ′, 3) = 1

there exists s such that 3s = 1 mod N ′. Now, if we set Q = s ·P this point satisfies 3 ·Q = 3s ·P = P .

Let B =
y3
Q

x3
Q
+b

then since 3 ·Q = P we have from (10) that yP = B3 −B which implies

Trace(yP ) = Trace(B3)− Trace(B) = 0

since Trace(B3) = Trace(B). We now assume that P = (xP , yP ) ∈ E(F3m) is of order 3N ′, then it

cannot satisfies Trace(yP ) = 0, otherwise using i) it would exists Q1, Q2 and Q3 satisfying 3Qi = P .

This means that Qi would have an order equal to 9N ′ which contradicts the fact that E(F3m) has

order 3N ′. This ends the proof of ii).

The previous lemma tells us that for a given point P of order N ′ we compute the point Q =
[
1
3

]
· P

of order N ′ by first computing Q0 = (x0, y0), Q1 = (x1, y1) and Q2 = (x2, y2) given by (12) and then

selecting the point Qi such that Trace(yi) = 0.

To implement the thirding formula (12) efficiently we can use the following strategies:

• The three inversions (1−A0)
−1, (1−A1)

−1 and (1−A2)
−1 are costly operation. These three inversions

can be performed through only one inversion plus few multiplications. Indeed, we use the strategy

proposed by Montgomery: we first compute the product D = (1−A0)(1−A1)(1−A2), then compute

its inverse D−1 = (1−A0)
−1(1−A1)

−1(1−A2)
−1 and finally deduce (1−A0)

−1 = D−1(1−A1)(1−A2)

and (1−A1)
−1 = D−1(1−A0)(1−A2) and (1−A2)

−1 = D−1(1−A0)(1−A1).

• In order to avoid some trace computation and some multiplications in the computations of (xi, yi), i =

0, 1, 2, we can proceed by first computing y0 and then we compute Trace(y0) and if it is equal to

zero then we compute x0 and return (x0, y0) otherwise we compute y1 and its trace Trace(y1). Again

if Trace(y1) = 0 we compute x1 and return (x1, y1) otherwise we compute y2 and x2 and return

(x2, y2).

5.2 Thirding when a = −1

We consider the case of elliptic curves E(F3m) defined by y2 = x3 − x2 + b, i.e., with a = −1. Let

P = (xP , yP ) and Q = (xQ, yQ) be two points on E(F3m). Based on (7), if P = 3 · Q, the expression of

(xP , yP ) in terms of (xQ, yQ) is as follows:

xP =
y6
Q

(x3
Q
+b)2

+
x3
Q

x3
Q
+b

, yP = − y9
Q

(x3
Q
+b)3

− y3
Q

x3
Q
+b

.

November 23, 2013 DRAFT



21

So if we define B =
y3
Q

x3
Q
+b

and A =
x3
Qa

x3
Q
+b

, then the previous equation rewrites as

xP = B2 −A, yP = −(B3 +B). (13)

The process to derive a thirding formula in this case is similar to the case a = 1 of Subsection 5.1.

We first need to solve the equation yP = −(B3 + B) in the variable B, and then we will derive the

corresponding solution for A, xQ and yQ. We only deal with the case where m is odd which is the case

in practice.

Lemma 4. Let u ∈ F3m and we assume that m is odd. Then the equation B3 + B = u has a unique solution

which is

B =

(m−1)/2
∑

i=0

u32i + Trace(u).

In the sequel we will denote HalfTrace(B) =
∑(m−1)/2

i=0 u32i the half-trace of B.

Proof: We first check that B =
∑(m−1)/2

i=0 u32i +Trace(u) is a solution of the equation B3 +B = u. We

have

B3 +B =
(
∑(m−1)/2

i=0 u32i + Trace(u)
)3

+
(
∑(m−1)/2

i=0 u32i + Trace(u)
)

=
∑(m−1)/2

i=0 u32i+1

+
∑(m−1)/2

i=0 u32i + Trace(u)3 + Trace(u)

=
∑m

i=0 u
3i + Trace(u)3 + Trace(u)

But, now, we notice that
∑m

i=0 u
3i = Trace(u) + u3m = Trace(u) + u and since Trace(u) ∈ F3 we have

Trace(u)3 = Trace(u). This implies :

B3 +B = Trace(u) + u+ 2Trace(u) = u.

We now prove that the solution is unique. Indeed if B1 and B2 are two solutions of B3 + B = u then

C = B1 − B2 satisfies C3 + C = (B3
1 + B1) − (B3

2 + B2) = u − u = 0. But this means that if C 6= 0 then

C2 + 1 = 0 but such element are in F32\F3 and since m is assumed to be odd such element are not in

F3m . In other words C must be equal to zero and thus B1 and B2 are equal. This concludes the proof.

We are now able to generate the thirding formula in the case a = −1 and m odd.

Lemma 5. We consider an elliptic curve E(F3m) given by y2 = x3−x2+b over F3m with m odd. Let P = (xP , yP )

and Q = (xQ, yQ) be two points on E(F3m). The order N ′ of the curve satisfies N ′ 6≡ 0 mod 3 and if 3 ·Q = P

then the coordinates of Q can be computed in terms of (xP , yP ) as follows:

B ← HalfTrace(−yP ) + Trace(−yP ),
A← B2 − xP ,

xQ ← 3

√
bA
1−A ,

yQ ← 3

√
bB
1−A .

(14)

Proof: To check that N ′ 6≡ 0 mod 3 we follow the same outline as in the proof of Lemma 1 in [15]. If

N ′ ≡ 0 mod 3 there exists a non trivial point of order three T = (xT , yT ) on the curve. If we look at the

November 23, 2013 DRAFT



22

tripling formula (7) and since 3 · T = O, we must have a2(x3
T + b) = 0. This implies that xT = 3

√
−b and

also that y2T = x3
T + ax2

T + b = −1 · 3
√
b
2
. But such yT exists in F3m if and only if -1 is a square in F3m but

this is not possible since m is odd and, thus, F3m does not contain the square roots of −1. The thirding

formula is a straightforward consequence of Lemma 4 which provides the expression of B in terms of

yP . The expressions of A, xQ and yQ in terms of xP and yP are obtained using the same approach as in

the proof of Lemma 3.

5.3 Parallel scalar multiplication in E(F3m)

We consider a curve E(F3m) given by y2 = x3+ax2+b where a ∈ {1,−1}. The thirding formulas presented

in the two previous subsections provide some new approaches to implement of the scalar multiplication

on E(F3m). Indeed, let k be the scalar and let P be a point on E(F3m) of order N < 3ℓ which is assumed

to be prime. If we denote k′ = 3ℓ−1 × k mod N , then if we write k′ =
∑ℓ−1

i=0 k
′
i3

i in base 3, i.e., with

k′i ∈ {0, 1, 2} we have

k = 3−(ℓ−1)k′ mod N

=
∑ℓ−1

i=0 k
′
i3

i−ℓ+1 mod N

=
∑−(ℓ−1)

i=0 k′i+ℓ−13
i mod N.

Consequently, the scalar multiplication k · P can be performed through a sequence of thirdings and

additions:

k · P =

−(ℓ−1)
∑

i=0

k′i+ℓ−13
i · P.

We extend this idea to a Third-and-add approach which uses SWR3,w to recode k′. Details of this

approach are given in Algorithm 7.

Algorithm 7 Third-and-add with SWR3,w

Require: A curve E(F3m), a point P ∈ E(F3m) of prime order N < 3ℓ and a scalar k ∈ [1, N ].

Ensure: Q = k · P
k′ ← k · 3ℓ mod N

(k′ℓ, . . . , k
′
0)← SWR3,w(k

′).

Precomputations. for i = 0, . . . , 3w−1
2 and i 6≡ 0 mod 3 do T [i]← iP .

Q← O
for i = ℓ to 0 do

Q←
[
1
3

]
·Q.

Q← Q+ sign(ki)T [ |ki| ]
end for

The Third-and-add approach is not interesting in practice since the thirding operation appears to be

quite costly compared to tripling formula. But we can take advantage of the Third-and-add approach to

November 23, 2013 DRAFT



23

implement the scalar multiplication in parallel fashion. Indeed, we can split the integer into two parts

k1 and k2 as follows : we set a split value 0 < n < ℓ = ⌈log3(N)⌉ and we compute k′ = k · 3n mod N .

Then if we write k′ =
∑ℓ

i=0 k
′
i3

i in base 3 we can rewrite k as follows:

k = 3−nk′ mod N

=
(
∑n−1

i=0 k′i3
i−n
)

+
(
∑ℓ

i=n k
′
i3

i−n
)

mod N

=

(
n∑

i=1

k′n−i3
−i

)

︸ ︷︷ ︸

k1

+

(
ℓ−n∑

i=0

k′i+n3
i

)

︸ ︷︷ ︸

k2

mod N.

Then the scalar multiplication can be split into two concurrent algorithms: a Triple-and-add algorithm

which performs k2 ·P and a Third-and-add algorithm which performs k1 ·P . The result is obtained after

a final addition k · P = k1 · P + k2 · P .

5.4 Implementation and timing results

The platform used for our experimentation is the same as in Subsection 3.3: an Intel Core i7-2400 with

Ubuntu 12.04 and gcc 4.6.3. The two fields considered in our implementations are F3127 = F3[t]/(f(t))

with f(t) = (t128+t77+1)/(t−1) and F3251 = F3[t]/(t
251+t26−1). A field element a =

∑m−1
i=0 (ai,0+2ai,1)t

i

where ai,0, ai,1 ∈ {0, 1} is decomposed as a = a0 + 2a1 where a0 =
∑m−1

i=0 ai,0t
i which is stored in one

(resp. two) 128 bit word for m = 127 (resp. m = 251) and a1 =
∑m−1

i=0 ai,1t
i which is also stored in one

(resp. two) 128 bit word for m = 127 (resp. m = 251).

• Addition. We use the approach presented in [1]: let a and b be two elements in F3m and let a0 and

a1 and b0 and b1 be the decomposition of a and b as described above. The formula used to compute

the addition c = a+ b in F3m is the following

u = (a0 | a1) & (b0 | b1), and c0 = u ∧ (a0 | b0), and c1 = u ∧ (a1 | b1),

and c = c0+2c1 where |,& and ∧ are the bitwise logical operations OR, AND and XOR, respectively.

• Multiplication. Again, we follow the strategy used in [1]: we adapt the Lopez-Dahab algorithm for

the multiplication in F2m of [12] to the case of F3m . Indeed, we use a shift-and-add method with

window size w = 4. To compute a×b, we first precompute all the products (a0+a1t+a2t
2+a3t

3)×b

for all nibbles [a0, a1, a2, a3] ∈ {0, 1}4 and store these products in a table T [ · ]. Then a is split in

nibbles and the product is computed by a sequence of table-look-ups, additions and shifts. A shift

by 8 is used preferably to shift by 4 since it is cheaper on 128 bit registers.

• Cubing. The cubing of an element a =
∑m−1

i=0 ait
i is a3 =

∑m−1
i=0 ait

3i mod f(t). We then have to

insert two zeros between each coefficient ai and reduce the result modulo f(t). We use a strategy

inspired from the implementation approach for the squaring in F2m of [3]. Indeed, the instruction

byte_shuffle makes possible to apply in parallel an S-box S : {0, 1}4 → {0, 1}8 to the least

significant four bits of each byte of a 128 bit word. So, we use it to replace the least significant nibble

November 23, 2013 DRAFT



24

of each byte of a 128 bit word with the corresponding nibble with inserted zeros. The reduction is

performed with a few shifts and additions due to the specific form of the used irreducible polynomials

f(t).

• Cube Root. The cube root of an element a =
∑m−1

i=0 ait
i can be expressed as follows

3
√
a =





⌈m/3⌉−1
∑

i=0

a3it
i



+
3
√
t





⌈m/3⌉−1
∑

i=0

a3i+1t
i



+
3
√
t2





⌈m/3⌉−1
∑

i=0

a3i+2t
i



 mod f(t).

We then need to separate the coefficients ai into three parts: one containing ai with i ≡ 0 mod 3, the

second with ai with i ≡ 1 mod 3, and the third part containing ai with i ≡ 2 mod 3. We perform

the separation by performing some masking and by using the byte_shuffle instruction to remove

the remaining zeros. The element 3
√
t is precomputed and is sparse for the considered fields so the

multiplications by 3
√
t and 3

√
t
2

are easy to implement and fast.

• ThirdTrace, HalfTrace and Multi-cubing. The third-trace is a linear function, i.e., ThirdTrace(a + b) =

ThirdTrace(a)+ThirdTrace(b) and the same is true for the half-trace HalfTrace(a+b) = HalfTrace(a)+

HalfTrace(b) and the multi-cubing (a + b)3
i

= a3
i

+ b3
i

for i ≥ 0. We describe the strategy we

employed for the implementation of the ThirdTrace operation, the HalftTrace and multi-cubing

were implemented in similar approach. For the computation of ThirdTrace we first precompute and

store in a table tab TT the value

tab TT [i][a4i + 2a4i+1 + 4a4i+2 + 8a4i+3] = ThirdTrace
(
(a4i + a4i+1t+ a4i+2t

2 + a4i+3t
3)t4i

)

where (a4i, a4i+1, a4i+2, a4i+3) ∈ {0, 1}4. To compute ThirdTrace(a) for an element a =
∑m−1

i=0 ∈ F3m ,

we decompose a into a sequence of nibbles [a4i, a4i+1, a4i+2, a4i+3] for 0 ≤ i < m/4, and then sum

the m/4 values tab TT [i][a4i + 2a4i+1 + 4a4i+2 + 8a4i+3].

• Inversion. To perform the inversion we use the approach of Itoh-Tsujii [8]. The inverse of a ∈ F3m is

given by:

a−1 = a3
∑m−1

i=1
3i × a3

∑m−1
i=0

3i

.

This expression can be computed through a short sequence of multi-cubings and multiplications.

Indeed, if we denote ek =
∑k−1

i=0 3i, then the following identity holds

(aek)3
k′

× aek′ = aek+k′ ,

since ek × 3k
′

+ ek′ =
∑k+k′−1

i=0 3i = ek+k′ . This property enables to compute a−1 = (aem−2)3 × em−1

using an addition chain. Indeed for m = 127 the sequence of ek where k follows the addition chain

1 → 2 → 3 → 6 → 7 → 14 → 15 → 31 → 62 → 63 → 126 can be used to compute a−1. For m = 251

we use the chain 1→ 2→ 3→ 6→ 7→ 14→ 15→ 31→ 62→ 124→ 125→ 250→ 251.

We have implemented the Double-and-add, Triple-and-add and Third-and-add algorithms for the scalar

multiplication along with their parallel counterparts in E(F3127) and E(F3251). The curves chosen have

November 23, 2013 DRAFT



25

either a = 1 and order N = 3p where p is prime, either a = −1 and a prime order N . The resulting

timings are shown in Table 4.

Table 4

Timings (in clock cycles and millisecond) for scalar multiplication in E(F3127) and E(F3251)

Curve Type Method Window size m = 127 m = 251

of NAFw #CC ms split #CC ms split

a = 1

Double-and-add 4 615346 0.18 - 3478306 1.02 -

Triple-and-add 2 699185 0.20 - 4128228 1.21 -

Triple-and-add 3 697243 0.20 - 3876161 1.14 -

Third-and-add 2 2774417 0.81 - 12315146 3.62 -

Third-and-add 3 2781878 0.81 - 12325814 3.62 -

Parallel (Triple-and-add,Third-and-add) (2,2) 628639 0.18 24 3735006 1.09 34

Parallel (Triple-and-add,Third-and-add) (3,3) 645469 0.18 24 3573207 1.05 32

Parallel (Double-and-add,Third-and-add) (4,3) 586731 0.17 20 3282243 0.96 26

a = −1

Double-and-add 4 1323311 0.38 - 8938046 2.62 -

Triple-and-add 2 845028 0.24 - 5528848 1.62 -

Triple-and-add 3 846891 0.24 - 5068188 1.49 -

Third-and-add 2 3052728 0.89 - 11727985 3.44 -

Third-and-add 3 2750622 0.80 - 11010147 3.23 -

Parallel (Triple-and-add,Third-and-add) (2,2) 747425 0.21 27 4712970 1.38 48

Parallel (Triple-and-add,Third-and-add) (3,3) 744853 0.21 30 4383200 1.28 46

The timings shown in Table 4 are coherent to the complexity shown in Table 2:

• For a = 1 the best non-parallelized approach is the Double-and-add scalar multiplication while the

Triple-and-add approaches are slower. The improvement provided by the parallelization is of 4.88%

for m = 127 and 5.73% for m = 251.

• For a = −1 the best non-parallelized approach is the Triple-and-add approach with w = 2 for m = 127

and w = 3 for m = 251. The parallelization with w = 3 provides a speed-up of 12.3% for m = 127

and 13.8% for m = 251 compared to the best non-parallelized approaches.

It appears that we could not find in the literature implementation results sufficiently recent for elliptic

curve scalar multiplication on E(F3m). Specifically, most of the published results in characteristic three

concern pairing implementation on E(F3m) where m is much larger. So we could compare the results

presented above with some related timings for similar curves E(F3m).

6 CONCLUSION

We have presented in this paper two new strategies for parallel implementation of scalar multiplication.

The first one concerns elliptic curves over binary fields F2m : we have proposed a halving form of the

November 23, 2013 DRAFT



26

Montgomery point multiplication. This approach can be used in parallel to the original Montgomery

multiplication in order to concurrently computes part of the scalar multiplication. The second strategy

concerns implementation of elliptic curve scalar multiplication in E(F3m): we provide point thirding

formulas on two sub-family of curves. Point thirding is the analog in E(F3m) to point halving in binary

elliptic curves E(F2m). This leads to a Third-and-add approach for scalar multiplication and also a parallel

approach which concurrently performs Third-and-add and Triple-and-add or Double-and-add algorithms.

We have implemented these two new parallel strategies. The timings obtained shows a speed-up of

5-10% compared to the original non parallelized version for the case of E(F2m) and a speed-up of 5-13%

for scalar multiplication E(F3m).

REFERENCES

[1] O. Ahmadi, D. Hankerson, and A. Menezes. Software implementation of arithmetic in F3m . In WAIFI, volume 4547 of LNCS,

pages 85–102, 2007.

[2] D.J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems, November 2013.

[3] D.F. Aranha and J. López and D. Hankerson. Efficient Software Implementation of Binary Field Arithmetic Using Vector

Instruction Sets. In Progress in Cryptology - LATINCRYPT 2010, volume 6212 of LNCS, pages 144–161. Springer, 2010.

[4] R.R. Farashahi, H. Wu, and C. Zhao. Efficient Arithmetic on Elliptic Curves over Fields of Characteristic Three. In Selected

Areas in Cryptography (SAC 2012), volume 7707 of LNCS, pages 135–148. Springer, 2013.

[5] K. Fong, D. Hankerson, J. López, and A. Menezes. Field Inversion and Point Halving Revisited. IEEE Trans. Computers,

53(8):1047–1059, 2004.

[6] M. Hamburg. Fast and compact elliptic-curve cryptography. Technical Report 2012/309, Cryptology ePrint Archive, 2012.

[7] D. Hankerson, J. López Hernandez, and A. Menezes. Software Implementation of Elliptic Curve Cryptography over Binary

Fields. In CHES 2000, volume 1965 of LNCS, pages 1–24. Springer, 2000.

[8] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases. Inf. Comput.,

78(3):171–177, 1988.

[9] K.-H. Kim, S.I. Kim, and J.S. Choe. New fast algorithms for arithmetic on elliptic curves over finite fields of characteristic

three. Technical Report Report 2007/179, Cryptology ePrint Archive, 2007.

[10] E.W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In Advances in Cryptology - ASIACRYPT ’99, 1999.

[11] J. Lopez and R. Dahab. Fast Multiplication on Elliptic Curves Over GF(2m) without Precomputation. In CHES 99, volume

1717, pages 316–327, 1999.

[12] Julio López and Ricardo Dahab. High-Speed Software Multiplication in F2m . In INDOCRYPT 2000, volume 1977 of LNCS,

pages 203–212. Springer, 2000.

[13] C. Negre. Scalar Multiplication on Elliptic Curves Defined over Fields of Small Odd Characteristic. In Progress in Cryptology

- INDOCRYPT 2005, volume 3797 of LNCS, pages 389–402, 2005.

[14] R. Schroeppel. Elliptic Curve Point Halving Wins Big. In Second Midwest Arithmetical Geometry in Cryptography Workshop, Nov.

2000.

[15] N.P. Smart and E.J. Westwood. Point Multiplication on Ordinary Elliptic Curves over Fields of Characteristic Three. Appl.

Algebra Eng. Commun. Comput., 13(6):485–497, 2003.

[16] J. Taverne, A. Faz-Hernández, D.F. Aranha, F. Rodrı́guez-Henrı́quez, D. Hankerson, and J. López. Speeding scalar multiplication

over binary elliptic curves using the new carry-less multiplication instruction. J. Cryptographic Engineering, 1(3):187–199, 2011.

November 23, 2013 DRAFT


