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Abstract—In modern communication and measurement sys-
tems, signal detection and estimation play a major role. Actually,
the above two terms can be considered as one issue, e.g. pure
detection by densely listing all possible diversites. The penalty
is however the system complexity. Up to now, a lot of work
have been invested, especially the recent compressed sensing
(CS) technique [1], which is a subtle mathmatic application in
practice and leads to a great sucess in signal detection both for
communication and measurement, e.g. radar technique. In spite
of this radical progress there are still a lot of open problems.
One of them is the "noise" including background noise and non-
ideal signal modelling, which is not just a problem for CS but a
general difficulty for signal processing. Although there are many
sophisticated recovery algorithms developed to cope with noise,
the performance will be usually impacted by inaccurate noise
estimation or modelling error. In this paper, we will analyti-
cally describe the multiple compressive projection measurement
(mCPM1 or MCPM) introduced in [2]. Both theoretical analysis
and numerical evaluations show that mCPM is a promising
measurement system.

I. INTRODUCTION

Suppose we have some target signal spanned in a particular

frame Φ and provide a generative form

t = Φw + ξ, (1)

where t ∈ R
n is the vector of targets, Φ ∈ R

n×d is a frame of

d diversities that have been assumed, w is a vector of unknown

weights, and ξ is Gaussian noise. The goal is to estimate

w given t and Φ. Obviously, the maximum likelihood (ML)

solution is very effective, if the dimension of w is smaller

than that of the signal, i.e. n > d. In case of n < d, which

is said to be underdetermined, a sparse w is required for a

unique solution. Those problems can be handled by a general

Bayesian framework [3]. An accurate result can be obtained

if precise Φ and a reasonable estimation about ξ are available.

Unfortunately, this is usually not the case in practice. That

means, mostly we get only an estimation about Φ, denoted as

Φ̂, as well as ξ. Thus, even without noise ξ we still cannot get

the exact solution. To combat the noise ξ, which is usually non-

sparse in Φ, we introduced the mCPM. By using the restricted

isometry property (RIP) for both sparse and non-sparse signal

as well as the multi-correlation function (MCF) [4], the noise

term in (1) can be well suppressed without exact information

about the noise level in the channel. This work will focus on

1The special case is m = 1 as the conventional CS.

the general signal sensing2 of stepped frequency radar (SFR)

detecting sub-surface objects.

A. Organisation

The remaining of the paper is organised as follows: The

Section II introduces the property of underdetermined linear

systems und their solutions. Then, the theoretic detection

behavior in compressive domain will be presented in Section

III. In Section IV we will introduce the MCF as well as its

combination with CS, termed as mCPM. The basic properties

of mCPM will be discussed. After that, we apply the mCPM

in SFR and formulate new measurement approach for better

performance. Finally, the summary and future work are pre-

sented.

II. UNIQUE SOLUTION

Observing (1) with n < d, there are infinite solutions due

to the fact that there are some linearly dependent diversity

columns in Φ. In [5] the author gave a sparse condition

in the sense of linear algebra for a unique solution, which

was derived by clearly distinguishing two different unknown

weights w1 and w2. That means, the difference of δ = w1−w2

must be uniquely detectable with respect to (1). In other words,

δ is not allowed to lie in the null space of Φ, i.e. Φδ = 0. Thus,

the columns controlled by δ, i.e. Φδ ∈ R
n×mδ and mδ ≤ n,

have to be linearly independent. Because of the randomness of

δ in practice, Φδ ranges over the whole Φ. Finally, the number

of non-zero entries in δ, denoted as ‖δ‖0 := |supp(δ)| and

supp(δ) = {j : δj %= 0}, have to be smaller than the spark,

which denotes the least number of linearly dependent columns

in Φ. Formally,

spark(Φ) = min
w "=0

‖w‖0 subject to Φw = 0. (2)

Furthermore, observing δ, we will get the maximal ‖δ‖0 if

weights w1 and w2 are disjoint (extreme case). This means

‖δ‖0 ≤ ‖w1 − w2‖0
= ‖w1‖0 + ‖w2‖0 for w1 ∩ w2 = ∅. (3)

Obviously, (3) must hold the following condition

max{‖δ‖0} < spark(Φ). (4)

2It is not necessarily in sub-Nyquist framework.



Thus, for a general unknown weight w and ‖w‖0 = K, we

have

max{‖δ‖0} ≤ 2K < spark(Φ). (5)

At last, the unique solution is given by holding the condtion

K < spark(Φ)/2 and ‖w‖0 = K. (6)

The results in (6) can also be interpreted as: The vector δ

still preserves its Euclidean distance approximately after linear

projection, i.e. Φδ. In other words, it holds

‖Φδ‖22 ≈ ‖Iδ‖22 , (7)

where I is the identity matrix. This means, the 2K-th normal-

ized singular value of Φ is not far from unit, which essentially

requires that Φδ behaves like an orthogonal system. Similar

results can also be found in Johnson-Lindenstrauss (JL) lemma

[6]. The JL lemma is concerned with the following problem.

Given a set of points in R
d, we would like to embed these

points into a lower-dimensional Euclidean space R
n (n < d)

while approximately preserving the relative distances between

any two of these points. Let ε ∈ (0, 1) be given. For every set

Q of #(Q) points in R
d, if n̂ is a positive integer such that

n̂ > n0 = O(ln(#(Q))/ε2), there exists a Lipschitz mapping

f : Rd → R
n such that

(1− ε) ≤
‖f(u)− f(v)‖2ln̂

2

‖u− v‖2ld
2

≤ (1 + ε) (8)

for all u, v ∈ Q. That means, the Lipschitz function f as

an injective function and the corresponding l2-norm distance

ratio is bounded by 1 + ε. The JL lemma leads directly to

the restricted isometry property (RIP) in CS [1]: If matrix

Φ ∈ R
n×d satisfies the RIP of order K with a constant ε ∈

(0, 1), such that (1− ε) ‖w‖22 ≤ ‖Φw‖22 ≤ (1+ ε) ‖w‖22 holds

for all w ∈ ∑

K , then w is recoverable. Usually, w can be

obtained by maximum a posteriori (MAP) estimation like lp-

norm regularization and FOCUSS [8] solving:

min ‖Φw − t‖22 + λ ‖w‖pp for 0 ≤ p ≤ 1. (9)

In addition to MAP estimation, the full Bayesian approach

[3], e.g. sparse Bayesian learning (SBL), which seeks for

the distribution mass, improves the detection performance

dramatically. The basic cost function can be given as: L =
log |Σt| + tTΣ−1

t t, where Σt = σ2I + ΦΓΦT with hyperpa-

rameters Γ = diag(γ) controlling the variance of entries in w.

However, its performance is still very sensitve to inaccurate

noise estimation. In the next section we will introduce the

mCPM method to cope with "noise" effect.

III. COMPRESSIVE DETECTOR AND mCPM

A. Compressive Detector

To improve the detection performance in underdetermined

framework, we have to exame the statistic behavior in com-

pressive domain with respect to the original signal domain.

For example, to distinguish two hypotheses:

H0 : y = Mξ

H1 : y = M(x+ ξ)
(10)

where M ∈ R
mM×n with mM < n is a measurement matrix,

ξ ∼ N (0,σ2Id) is i.i.d. Gaussian noise. Then, the distribution

of y can be given as

f0(y) =
exp

[

− 1
2y

TΣMy
]

|σ2MMT |
−1/2

(2π)mM/2

f1(y) =
exp

[

− 1
2 (y −Mx)TΣM (y −Mx)

]

|σ2MMT |
−1/2

(2π)mM/2

(11)

where ΣM = (σ2MMT )−1. Based on the likelihood ratio

test Λ(y) = f1(y)
f0(y)

≷H1

H0
η, where η is given for particular

false alarm probability α =
∫

Λ(y)>η
f0(y)dy, we can get an

equivalent detector in a compressive domain3:

t̂ := yT (MMT )−1Mx. (12)

It is easy to show that

t̂H0
∼ N

(

0,σ2xTP †
MMx

)

t̂H1
∼ N

(

xTP †
MMx,σ2xTP †

MMx
)

.
(13)

where P †
M = MT (MMT )−1.
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Figure 1. Distribution of hypotheses in detection domain by CS and MF.

If x = Φw and Φ = Id×d, the detection performance

in compressive domain is strongly depending on M . For a

compressive detector, i.e. M is a wide matrix, x must live in

the row span of M with high probability, which is equivalent

to require a sparse x. Furthermore, for a Gaussian matrix

Mi ∈ R
mM×n, xTP †

Mi
Mix is highly concentrated around

mM

n ‖x‖22. That is,

E

(

xTP †
Mi

Mix
)

=
mM

n
‖x‖22 . (14)

3yT (MMT )−1Mx ≷
H1

H0
σ
2 log(η)+ 1

2
xTMT (MMT )−1Mx. In case

of M = I , then yT x ≷
H1

H0
σ
2 log(η) + 1

2
xT x.



Finally, with high probability we get the detection performance

[9]

PD(α) ≈ Q
(

Q−1(α)−
√

ˆSNR
)

(15)

with ˆSNR = mM

n SNR and SNR = ‖x‖22 /σ2, and Q(z) =
∫∞

z
exp(−u2/2)du.

1) Influence of compressive projection: Observing (15)

the detection performance will be strongly affected by the

dimension ratio of M , i.e. mM/n. In case of mM/n = 1,

the compressive projection is just an implementation of a

traditional dectector (matched filter (MF), signal based). Then,

we obtain the well-known detection performance:

PD(α) ≈ Q
(

Q−1(α)−
√

SNR
)

. (16)

For the case of mM/n < 1, we could still get good recovery

performance, if x lies in row span of M with high probability

(vector based, e.g. CS, deteriorated detection performance

depending on mM/n but still detectable).

2) Advantage of compressive projection: Compressive

projection is not alwalys negative for information detection.

As we know, the basic feasible solution to (9) is sparse,

i.e. ‖w‖0 ≤ n. However, in some cases like strong noise

and coherent signals, the resulting solution still cannot avoid

radical over-fitting. Although it can be partly compensated by

choosing proper λ, the performance remains too sensitive to

inaccurate λ. Besides, one is not allowed to set the λ too large

(otherwise w disappears). Alternatively, observe the sparsity

bound of solution from (9), it is limited by the row dimension

n of Φ. In other words, we can reduce the row dimension to be

an appropriate value in need for avoiding radical over-fitting

regardless of recovery algorithms. Mathematically,

min ‖M (Φw − t)‖22 + λ ‖w‖pp for 0 ≤ p ≤ 1. (17)

If x lies in the row span of M in high probability, the

obtained sparser solution (local optimal solution) usually in-

cludes weights w or at least part of them (in critical situa-

tion). This sparsity controlling, i.e. ‖w‖0 ≤ mM < n with

M ∈ R
mM×n and Φ ∈ R

n×d, excludes the over-fitting in

unfavorable situation dramatically, since over-fitting usually

needs particular amount of non-zero entries in solution. Thus,

we expect the compressive detector having better performance

against over-fitting than that of traditional detector in particular

circumstance, namely requiring that reduction of n will not

result in severe detection performance deterioration4. Yet, a

solution without strong over-fitting is not enough for stable

detection. Recall that the sparser solution by compressive

detector has possibly only part of weights w. To cope with this

problem we will introduce the principle of multi-correlation

function (MCF).

4The row dimension of matrix gives an upper bound of sparsity of feasible
solution regardless of recovery algorithms. To control sparsity one can also
limit the number of iterations of sparse recovery algorithm (however, it
sometimes hampers the convergence). An alternative way for over-fitting
controlling is noise mitigation by column dimension extension. In this paper
we mainly consider the case of compressive projection, i.e. row dimension
reduction.

B. MCF

The MCF is basically an extension of the MF for achieving

better correlation properties. The prime idea of MCF is based

on the delay and multiply (DAM) property of m-code, which

was later extended for generation of Gold codes. The DAM of

m-code as well as Gold codes indicates that a transform of one

m-code to its other phase delay or a transform of one Gold

code to other family members can be realized by applying

the DAM operation. Later, this property was applied to other

Galois field (GF)-based codes. More information can be found

in [10]. A paralell combination of several different correlation

functions can result in much better correlation property than

1/
√
N given by the Sarwate lower bound, where N is the

sequence length. Thus, it is very favorable for signal detection.

Formally, the MCF can be given as

C(s) =
1

m

m
∑

k=1

Fk =
1

mN

m
∑

k=1

N−1
∑

i=0

Ik(ui)I
∗
k(vi+s), (18)

where m is the number of combinations, u and v are the

original input sequences and the reference sequences, respec-

tively. The code transform is given by the transform function

I, e.g. DAM operation as above. The term Fk in (18) could be

any kind of "correlation" process or more generally recovery

algorithm. The objective of combination of m paralell results

from Fk is achieving coherent combination or collecting the

partial result from single Fk with respect to information and

non-coherent combination of "noise" such that an even better

detection scenario.

C. mCPM

The introduction of MCF into compressive detector, which

is termed as mCPM here, could be very promising in our

particular case and can also facilitate parameter adjustment

with respect to information recovery in practice. Basically,

mCPM consists of two steps: i) the first phase is actually

a normal compressive projection and recovery (CPR) process

by algorithm promoting sparse solution just as (17); ii) and

the second phase is iteratively updating (combining) sparse

solutions from each CPR by different compressive projections,

e.g. different measurement matrix Mi, i.e. Θi = MiΦ, i
denotes the i-th iteration. Due to the underdetermined property

y = Mx = Θw with Θ ∈ R
n×d and n < d as well as

Θ holding the RIP with respect to w in high probability,

the sparse solution ŵ by single CPR includes w with high

probability while it provides randomness of noise in terms

of their amplitudes and positions, since noise is usually non-

sparse. Therefore, a combination of a series of ŵi

wg =

m
∑

i=1

ŵi (19)

can result in coherent combination of information components

w and non-coherent combination of noise and thus a favorable

detection scenario. Finally, the two close distribution modes

of CS detector in Fig. 1 would be pulled apart from each

other as well as their variance can be decreased depending



on M and m. A schematic illustration of mCPM is presented

in Fig. 2. As a result, the radical over-fitting of the solution

no
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solution update

sparse signal recovery

compressive projection

received datas; reference matrix

stop condition ?

Figure 2. mCPM

can be controlled by compressive recovery while its estimation

deterioration is compensated by MCF principle. Fig. 3 shows
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Figure 3. SNR=3dB, ‖w‖
0
= 2, MF with Θ ∈ R200×200, mCPM with

Θi ∈ R50×200 and m = 10

the false alarm probability (Pf) and detection probability (Pd)

depending on different detection thresholds by normalizing the

values within [0, 1]. Indeed, lines of Pf and Pd by mCPM are

more favorable than that by MF.

Obviously, the performance of mCPM is strongly depending

on the compressive projections. An effective way for non-

coherent combination of noise term in (19) requires that all

compressive projection matrice Mi should be less correlated

with each other. Otherwise, the recovered noise term from

two different iterations are similar and will also be coherently

combined by (19), i.e. yield no contribution for distance

expansion between signal term and noise term. Fig. 4 presents

the estimation error e = ‖wg − w‖2 / ‖w‖2 by mCPM with

m = 20 depending on row dimension of M . In case of small

row dimension, the estimation error is relatively large, since

the resulting reference matrix Θ does not hold the RIP con-

dition with respect to w. For relatively large row dimension

of M it also provides increased estimation error. The reason,
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as aforementioned, is that except the signal components a lot

of recovered noise components also exhibit independence of

random M . This means, there are many noise components also

live in the row span of the resulting reference matrix Θ, i.e.

inefficiency of non-coherent noise combination. Besides, we
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Figure 6. Reference matrix for mCPM Θi ∈ R30×200, m = 30 and for
MF Θ ∈ R200×200, sparsity ‖w‖

0
= 2, SNR=10dB.



can freely determine the number of projections m in mCPM

for particular performance (see. Fig. 5). Setting a relatively

large estimated noise factor the error by MF decreases fast,

however, is not recommended, which is equivalent to set large

λ in (9) and possibly results in the loss of information. This

problem can be solved very well by mCPM, since mCPM

still provides relatively small estimation error at low estimated

noise factor (see Fig. 6).

IV. mCPM FOR STEPPED FREQUENCY RADAR (SFR)

A. SFR using CS

In the SFR radar [11], it observes the scene with a discrete

set of frequencies and synthesizes the impulse in the frequency

domain, and brings advantage of better accuracy. They pointed

out that CS can be done in frequency domain by randomly

measuring all Fourier coefficients. Thus, for rough detection

it requires only a small amount of frequency measurements,

which can first reduce the measurement time, and second save

energy such that long-term activity is possible.

In this paper, we collect the frequency measurements from

real circumstance and devices and process them directly in

frequency domain. The connection to time domain for rang-

ing information is simply the IFFT transform. Our objective

vector, which indicates the ranging information, is wt. Its

corresponding vector in frequency domain is wf = Fwt,

where F ∈ C
d×d is the FFT matrix and the dimension d

determines the required resolution in time domain. The prac-

tical measurement for SFR is basically conducted in frequency

domain and the number of frequency measurement points n
is usually less than d. Thus, the actual obtained frequency
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Figure 7. One practical example for randomly sub-sampling only 67
measurements in frequency domain, there are totally 1001 frequencies range
from 500MHz to 3GHz.

vector is wn×1
fr = Rwd×1

f , where R = [In×n, 0n×(d−n)].
By using CS, we can futhermore reduce the number of

frequency measurements per projection matrix M . Therefore,

an underdetermined linear system can be constructed as

ŵfr = M ·R · F · wt = Θwt, (20)

where M determines which frequency point should be ac-

tive (see Fig. 7). Finally, one needs to seek wt by solving

min{λ ‖wt‖pp + ‖ŵfr −Θwt‖2} with 0 ≤ p ≤ 1. This non-
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Figure 8. Relative error normed on the recovery error at sampling 10
frequencies.

convex optimization can be realized by FOCUSS or SBL

approach. By given prior knowledge that the most reflections

are clustered together we can limit the column dimension of

Θ for better performance. Fig. 8 presents the relative recovery

error by different number of frequency measurements. We

can notice that it requires only about 50 frequencies for

rough detection. In case of frequency number less than 30

the error increases dramatically. In practice, the SFR can

work with following principle: For rough detection the radar

can randomly (if necessary) and quickly measure just a few

number of frequency points within a defined frequency range

as presented in Fig. 7; In case of fine detection, the radar

usually tries to collect as many frequency measurements as

possible.

B. Full frequency measurement by mCPM

However, how to collect these frequency measurements

plays a major role for stable and accurate information recovery.

According to the conventional collection scheme, all defined

frequency points will be measured once and processed. This

approach, however, suffers from non-ideal signal modelling

and inaccurate noise estimation especially for recovery algo-

rithms, which are very sensitive to those effects (see Fig. 9).

Alternatively, the radar can work in mCPM mode, i.e.

frequency measurements are collected partly, randomly and

iteratively. Results from each iteration will be combined. This

work mode, as discussed above, provides very stable recovery

performance in a non-ideal scenario and facilitates parameter

adjustment (see Fig. 10). The results in Fig. 9 and 10 are in

the case that the influence of antenna pattern has not been

calibrated. Nevertheless, the performance by mCPM is still

well and better than the conventional work mode.

V. SUMMARY

In this paper we investigate the stepped frequency radar

signal acquisition and processing by CS (or by generalized



mCPM). SFR using CS is a very promsing approach for long-

term activity. By using mCPM5, which can facilitate the fine

measurement in practice, it provides even better performance

than the conventional work mode. Basically, this work is not

considering the feasibility and advantages of CS, rather a

stable detection and estimation in noisy situation. The above

results shows that even in full frequency mode, the mCPM

mode is recommended.

As future work, we will focus on better energy distribution

in frequency domain (frequency coding) such that giving better

correlation properties in particular area in time domain. The

results above are just based on the random selection principle.

An optimal selection is still an open problem and also problem

dependent. Further research direction is the noise mitigation

(NM) by reference matrix extension. Generally [12],

min ‖M (Ψw̃ − t)‖22 + λ ‖w̃‖pp for 0 ≤ p ≤ 1. (21)

where Ψ = [Φ, R] and M 6, R could be random matrix.

The final solution is given by pruning the w̃, i.e. w ∝ w̃Φ,

where w̃Φ is the subvector related with Φ. The NM method

is expected to be more stable than row dimension reduction,

since the change of row dimension is directly proportional

to the recoverable sparsity, while the variation of column

dimension is effected by a logarithm factor. More details will

be discussed in our forthcoming paper.
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Figure 9. Recovery by full-sampling (1001 frequency points), MF+SBL,
estimated noise factor is 0.5× 10−1. Due to non-ideal noise estimation the
performance is moderate
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Figure 10. Recovery by randomly sub-sampling (average frequency points
for each iteration is 80), mCPM+SBL with m = 30, estimated noise factor
is 0.5× 10−1. Recovery condition was same as in Fig. 9.


