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, which is a subtle mathmatic application in practice and leads to a great sucess in signal detection both for communication and measurement, e.g. radar technique. In spite of this radical progress there are still a lot of open problems. One of them is the "noise" including background noise and nonideal signal modelling, which is not just a problem for CS but a general difficulty for signal processing. Although there are many sophisticated recovery algorithms developed to cope with noise, the performance will be usually impacted by inaccurate noise estimation or modelling error. In this paper, we will analytically describe the multiple compressive projection measurement (mCPM 1 or MCPM) introduced in [2]. Both theoretical analysis and numerical evaluations show that mCPM is a promising measurement system.

I. INTRODUCTION

Suppose we have some target signal spanned in a particular frame Φ and provide a generative form

t =Φw + ξ, (1) 
where t ∈ R n is the vector of targets, Φ ∈ R n×d is a frame of d diversities that have been assumed, w is a vector of unknown weights, and ξ is Gaussian noise. The goal is to estimate w given t and Φ. Obviously, the maximum likelihood (ML) solution is very effective, if the dimension of w is smaller than that of the signal, i.e. n>d . In case of n<d , which is said to be underdetermined, a sparse w is required for a unique solution. Those problems can be handled by a general Bayesian framework [START_REF] Ji | Bayesian compressive sensing[END_REF]. An accurate result can be obtained if precise Φ and a reasonable estimation about ξ are available. Unfortunately, this is usually not the case in practice. That means, mostly we get only an estimation about Φ, denoted as Φ, as well as ξ. Thus, even without noise ξ we still cannot get the exact solution. To combat the noise ξ, which is usually nonsparse in Φ, we introduced the mCPM. By using the restricted isometry property (RIP) for both sparse and non-sparse signal as well as the multi-correlation function (MCF) [START_REF] Lu | Novel multi-correlation differential detection for improving detection performance in DSSS[END_REF], the noise term in (1) can be well suppressed without exact information about the noise level in the channel. This work will focus on 1 The special case is m =1as the conventional CS.

the general signal sensing2 of stepped frequency radar (SFR) detecting sub-surface objects.

A. Organisation

The remaining of the paper is organised as follows: The Section II introduces the property of underdetermined linear systems und their solutions. Then, the theoretic detection behavior in compressive domain will be presented in Section III. In Section IV we will introduce the MCF as well as its combination with CS, termed as mCPM. The basic properties of mCPM will be discussed. After that, we apply the mCPM in SFR and formulate new measurement approach for better performance. Finally, the summary and future work are presented.

II. UNIQUE SOLUTION

Observing (1) with n<d , there are infinite solutions due to the fact that there are some linearly dependent diversity columns in Φ. In [START_REF] Donoho | Optimally Sparse Representation from Overcomplete Dictionaries via l1-norm minimization[END_REF] the author gave a sparse condition in the sense of linear algebra for a unique solution, which was derived by clearly distinguishing two different unknown weights w 1 and w 2 . That means, the difference of δ = w 1 -w 2 must be uniquely detectable with respect to [START_REF] Candes | Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[END_REF]. In other words, δ is not allowed to lie in the null space of Φ, i.e. Φδ =0. Thus, the columns controlled by δ, i.e. Φ δ ∈ R n×m δ and m δ ≤ n, have to be linearly independent. Because of the randomness of δ in practice, Φ δ ranges over the whole Φ. Finally, the number of non-zero entries in δ, denoted as δ 0 := |supp(δ)| and supp(δ)={j : δ j =0 }, have to be smaller than the spark, which denotes the least number of linearly dependent columns in Φ. Formally,

spark(Φ) = min w =0 w 0 subject to Φw =0. (2) 
Furthermore, observing δ, we will get the maximal δ 0 if weights w 1 and w 2 are disjoint (extreme case). This means

δ 0 ≤ w 1 -w 2 0 = w 1 0 + w 2 0 for w 1 ∩ w 2 = ∅. (3) 
Obviously, (3) must hold the following condition

max{ δ 0 } <spark(Φ). (4) 
Thus, for a general unknown weight w and w 0 = K, we have max{ δ 0 }≤2K<s p a r k (Φ).

(5)

At last, the unique solution is given by holding the condtion K<s p a r k (Φ)/2 and w 0 = K.

The results in [START_REF] Johnson | Extensions of lipschitz mappings into a hilbert space[END_REF] can also be interpreted as: The vector δ still preserves its Euclidean distance approximately after linear projection, i.e. Φδ. In other words, it holds

Φδ 2 2 ≈ Iδ 2 2 , ( 7 
)
where I is the identity matrix. This means, the 2K-th normalized singular value of Φ is not far from unit, which essentially requires that Φ δ behaves like an orthogonal system. Similar results can also be found in Johnson-Lindenstrauss (JL) lemma [START_REF] Johnson | Extensions of lipschitz mappings into a hilbert space[END_REF]. The JL lemma is concerned with the following problem. Given a set of points in R d , we would like to embed these points into a lower-dimensional Euclidean space R n (n<d ) while approximately preserving the relative distances between any two of these points. Let ∈ (0, 1) be given. For every set

Q of #(Q) points in R d , if n is a positive integer such that n>n 0 = O(ln(#(Q))/ 2 ), there exists a Lipschitz mapping f : R d → R n such that (1 -) ≤ f (u) -f (v) 2 l n 2 u -v 2 l d 2 ≤ (1 + ) (8) 
for all u, v ∈ Q. That means, the Lipschitz function f as an injective function and the corresponding l 2 -norm distance ratio is bounded by 1+ . The JL lemma leads directly to the restricted isometry property (RIP) in CS [START_REF] Candes | Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[END_REF]: If matrix Φ ∈ R n×d satisfies the RIP of order K with a constant ∈ (0, 1), such that (1 -) w

2 2 ≤ Φw 2 2 ≤ (1 + ) w 2 
2 holds for all w ∈ K , then w is recoverable. Usually, w can be obtained by maximum a posteriori (MAP) estimation like l pnorm regularization and FOCUSS [START_REF] Barrodale | Applications of mathematical programming to lp approximation[END_REF] solving:

min Φw -t 2 2 + λ w p p for 0 ≤ p ≤ 1. (9) 
In addition to MAP estimation, the full Bayesian approach [START_REF] Ji | Bayesian compressive sensing[END_REF], e.g. sparse Bayesian learning (SBL), which seeks for the distribution mass, improves the detection performance dramatically. The basic cost function can be given as:

L = log |Σ t | + t T Σ -1 t t
, where Σ t = σ 2 I + ΦΓΦ T with hyperparameters Γ=diag(γ) controlling the variance of entries in w. However, its performance is still very sensitve to inaccurate noise estimation. In the next section we will introduce the mCPM method to cope with "noise" effect.

III. COMPRESSIVE DETECTOR AND mCPM

A. Compressive Detector

To improve the detection performance in underdetermined framework, we have to exame the statistic behavior in compressive domain with respect to the original signal domain.

For example, to distinguish two hypotheses:

H 0 : y = Mξ H 1 : y = M (x + ξ) (10) 
where M ∈ R mM ×n with m M <nis a measurement matrix, ξ ∼N(0,σ 2 I d ) is i.i.d. Gaussian noise. Then, the distribution of y can be given as

f 0 (y)= exp -1 2 y T Σ M y |σ 2 MM T | -1/2 (2π) mM /2 f 1 (y)= exp -1 2 (y -Mx) T Σ M (y -Mx) |σ 2 MM T | -1/2 (2π) mM /2 (11) 
where

Σ M =( σ 2 MM T ) -1 .
Based on the likelihood ratio test Λ(y)= f1(y) f0(y) ≷ H1 H0 η, where η is given for particular false alarm probability α = Λ(y)>η f 0 (y)dy, we can get an equivalent detector in a compressive domain 3 :

t := y T (MM T ) -1 Mx. ( 12 
)
It is easy to show that

tH0 ∼N 0,σ 2 x T P † M Mx tH1 ∼N x T P † M Mx,σ 2 x T P † M Mx . (13) 
where If x =Φ w and Φ=I d×d , the detection performance in compressive domain is strongly depending on M . For a compressive detector, i.e. M is a wide matrix, x must live in the row span of M with high probability, which is equivalent to require a sparse x. Furthermore, for a Gaussian matrix

P † M = M T (MM T ) -1 . -0.5 0 0.5 1 
M i ∈ R mM ×n , x T P † Mi M i x is highly concentrated around mM n x 2 2 . That is, E x T P † Mi M i x = m M n x 2 2 . (14) 
Finally, with high probability we get the detection performance [9]

P D (α) ≈ Q Q -1 (α) - ŜNR (15) with ŜNR = m M n SNR and SNR = x 2 2 /σ 2 , and Q(z)= ∞ z exp(-u 2 /2)du. 1)
Influence of compressive projection: Observing (15) the detection performance will be strongly affected by the dimension ratio of M , i.e. m M /n. In case of m M /n =1 , the compressive projection is just an implementation of a traditional dectector (matched filter (MF), signal based). Then, we obtain the well-known detection performance:

P D (α) ≈ Q Q -1 (α) - √ SNR . ( 16 
)
For the case of m M /n < 1, we could still get good recovery performance, if x lies in row span of M with high probability (vector based, e.g. CS, deteriorated detection performance depending on m M /n but still detectable).

2) Advantage of compressive projection: Compressive projection is not alwalys negative for information detection. As we know, the basic feasible solution to ( 9) is sparse, i.e. w 0 ≤ n. However, in some cases like strong noise and coherent signals, the resulting solution still cannot avoid radical over-fitting. Although it can be partly compensated by choosing proper λ, the performance remains too sensitive to inaccurate λ. Besides, one is not allowed to set the λ too large (otherwise w disappears). Alternatively, observe the sparsity bound of solution from [START_REF] Scharf | Statistical Signal Processing: Detection, Estimation, and Time Series Analysis[END_REF], it is limited by the row dimension n of Φ. In other words, we can reduce the row dimension to be an appropriate value in need for avoiding radical over-fitting regardless of recovery algorithms. Mathematically,

min M (Φw -t) 2 2 + λ w p p for 0 ≤ p ≤ 1. (17) 
If x lies in the row span of M in high probability, the obtained sparser solution (local optimal solution) usually includes weights w or at least part of them (in critical situation). This sparsity controlling, i.e. w 0 ≤ m M <nwith M ∈ R mM ×n and Φ ∈ R n×d , excludes the over-fitting in unfavorable situation dramatically, since over-fitting usually needs particular amount of non-zero entries in solution. Thus, we expect the compressive detector having better performance against over-fitting than that of traditional detector in particular circumstance, namely requiring that reduction of n will not result in severe detection performance deterioration 4 . Yet, a solution without strong over-fitting is not enough for stable detection. Recall that the sparser solution by compressive detector has possibly only part of weights w. To cope with this problem we will introduce the principle of multi-correlation function (MCF). 4 The row dimension of matrix gives an upper bound of sparsity of feasible solution regardless of recovery algorithms. To control sparsity one can also limit the number of iterations of sparse recovery algorithm (however, it sometimes hampers the convergence). An alternative way for over-fitting controlling is noise mitigation by column dimension extension. In this paper we mainly consider the case of compressive projection, i.e. row dimension reduction.

B. MCF

The MCF is basically an extension of the MF for achieving better correlation properties. The prime idea of MCF is based on the delay and multiply (DAM) property of m-code, which was later extended for generation of Gold codes. The DAM of m-code as well as Gold codes indicates that a transform of one m-code to its other phase delay or a transform of one Gold code to other family members can be realized by applying the DAM operation. Later, this property was applied to other Galois field (GF)-based codes. More information can be found in [START_REF] Lu | Method and apparatus for the differential multiple correlation in broadband ultrasonic location systems[END_REF]. A paralell combination of several different correlation functions can result in much better correlation property than 1/ √ N given by the Sarwate lower bound, where N is the sequence length. Thus, it is very favorable for signal detection. Formally, the MCF can be given as

C(s)= 1 m m k=1 F k = 1 mN m k=1 N -1 i=0 I k (u i )I * k (v i+s ), ( 18 
)
where m is the number of combinations, u and v are the original input sequences and the reference sequences, respectively. The code transform is given by the transform function I, e.g. DAM operation as above. The term F k in (18) could be any kind of "correlation" process or more generally recovery algorithm. The objective of combination of m paralell results from F k is achieving coherent combination or collecting the partial result from single F k with respect to information and non-coherent combination of "noise" such that an even better detection scenario.

C. mCPM

The introduction of MCF into compressive detector, which is termed as mCPM here, could be very promising in our particular case and can also facilitate parameter adjustment with respect to information recovery in practice. Basically, mCPM consists of two steps: i) the first phase is actually a normal compressive projection and recovery (CPR) process by algorithm promoting sparse solution just as (17); ii) and the second phase is iteratively updating (combining) sparse solutions from each CPR by different compressive projections, e.g. different measurement matrix M i , i.e. Θ i = M i Φ, i denotes the i-th iteration. Due to the underdetermined property y = Mx =Θ w with Θ ∈ R n×d and n<das well as Θ holding the RIP with respect to w in high probability, the sparse solution ŵ by single CPR includes w with high probability while it provides randomness of noise in terms of their amplitudes and positions, since noise is usually nonsparse. Therefore, a combination of a series of ŵi

w g = m i=1 ŵi (19) 
can result in coherent combination of information components w and non-coherent combination of noise and thus a favorable detection scenario. Finally, the two close distribution modes of CS detector in Fig. 1 Obviously, the performance of mCPM is strongly depending on the compressive projections. An effective way for noncoherent combination of noise term in (19) requires that all compressive projection matrice M i should be less correlated with each other. Otherwise, the recovered noise term from two different iterations are similar and will also be coherently combined by (19), i.e. yield no contribution for distance expansion between signal term and noise term. Fig. 4 presents the estimation error e = w gw 2 / w 2 by mCPM with m = 20 depending on row dimension of M . In case of small row dimension, the estimation error is relatively large, since the resulting reference matrix Θ does not hold the RIP condition with respect to w. For relatively large row dimension of M it also provides increased estimation error. The reason, as aforementioned, is that except the signal components a lot of recovered noise components also exhibit independence of random M . This means, there are many noise components also live in the row span of the resulting reference matrix Θ, i.e. inefficiency of non-coherent noise combination. Besides, we 

Θ i ∈ R 30×200 , m =3 0and for MF Θ ∈ R 200×200 , sparsity w 0 =2, SNR=10dB.
can freely determine the number of projections m in mCPM for particular performance (see. Fig. 5). Setting a relatively large estimated noise factor the error by MF decreases fast, however, is not recommended, which is equivalent to set large λ in ( 9) and possibly results in the loss of information. This problem can be solved very well by mCPM, since mCPM still provides relatively small estimation error at low estimated noise factor (see Fig. 6).

IV. mCPM FOR STEPPED FREQUENCY RADAR (SFR)

A. SFR using CS

In the SFR radar [11], it observes the scene with a discrete set of frequencies and synthesizes the impulse in the frequency domain, and brings advantage of better accuracy. They pointed out that CS can be done in frequency domain by randomly measuring all Fourier coefficients. Thus, for rough detection it requires only a small amount of frequency measurements, which can first reduce the measurement time, and second save energy such that long-term activity is possible.

In this paper, we collect the frequency measurements from real circumstance and devices and process them directly in frequency domain. The connection to time domain for ranging information is simply the IFFT transform. Our objective vector, which indicates the ranging information, is w t . Its corresponding vector in frequency domain is w f = Fw t , where F ∈ C d×d is the FFT matrix and the dimension d determines the required resolution in time domain. The practical measurement for SFR is basically conducted in frequency domain and the number of frequency measurement points n is usually less than d. Thus, the actual obtained frequency By using CS, we can futhermore reduce the number of frequency measurements per projection matrix M . Therefore, an underdetermined linear system can be constructed as

ŵfr = M • R • F • w t =Θw t , (20) 
where M determines which frequency point should be active (see Fig. 7). Finally, one needs to seek w t by solving Relative error normed on the recovery error at sampling 10 frequencies.

convex optimization can be realized by FOCUSS or SBL approach. By given prior knowledge that the most reflections are clustered together we can limit the column dimension of Θ for better performance. Fig. 8 presents the relative recovery error by different number of frequency measurements. We can notice that it requires only about 50 frequencies for rough detection. In case of frequency number less than 30 the error increases dramatically. In practice, the SFR can work with following principle: For rough detection the radar can randomly (if necessary) and quickly measure just a few number of frequency points within a defined frequency range as presented in Fig. 7; In case of fine detection, the radar usually tries to collect as many frequency measurements as possible.

B. Full frequency measurement by mCPM

However, how to collect these frequency measurements plays a major role for stable and accurate information recovery. According to the conventional collection scheme, all defined frequency points will be measured once and processed. This approach, however, suffers from non-ideal signal modelling and inaccurate noise estimation especially for recovery algorithms, which are very sensitive to those effects (see Fig. 9).

Alternatively, the radar can work in mCPM mode, i.e. frequency measurements are collected partly, randomly and iteratively. Results from each iteration will be combined. This work mode, as discussed above, provides very stable recovery performance in a non-ideal scenario and facilitates parameter adjustment (see Fig. 10). The results in Fig. 9 and 10 are in the case that the influence of antenna pattern has not been calibrated. Nevertheless, the performance by mCPM is still well and better than the conventional work mode.

V. SUMMARY

In this paper we investigate the stepped frequency radar signal acquisition and processing by CS (or by generalized mCPM). SFR using CS is a very promsing approach for longterm activity. By using mCPM5 , which can facilitate the fine measurement in practice, it provides even better performance than the conventional work mode. Basically, this work is not considering the feasibility and advantages of CS, rather a stable detection and estimation in noisy situation. The above results shows that even in full frequency mode, the mCPM mode is recommended.

As future work, we will focus on better energy distribution in frequency domain (frequency coding) such that giving better correlation properties in particular area in time domain (

) 21 
where Ψ=[ Φ ,R] and M6 , R could be random matrix.

The final solution is given by pruning the w, i.e. w ∝ wΦ , where wΦ is the subvector related with Φ. The NM method is expected to be more stable than row dimension reduction, since the change of row dimension is directly proportional to the recoverable sparsity, while the variation of column dimension is effected by a logarithm factor. More details will be discussed in our forthcoming paper.

[ 

Figure 1 .

 1 Figure 1. Distribution of hypotheses in detection domain by CS and MF.

Figure 3 .
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 6 Figure 6. Reference matrix for mCPMΘ i ∈ R 30×200 , m =3 0and for MF Θ ∈ R 200×200 , sparsity w 0 =2, SNR=10dB.
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 7 Figure 7.One practical example for randomly sub-sampling only 67 measurements in frequency domain, there are totally 1001 frequencies range from 500MHz to 3GHz.vector isw n×1 fr = Rw d×1 f , where R =[ I n×n , 0 n×(d-n) ].By using CS, we can futhermore reduce the number of frequency measurements per projection matrix M . Therefore, an underdetermined linear system can be constructed as
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 8 Figure 8.Relative error normed on the recovery error at sampling 10 frequencies.
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 2 . The results above are just based on the random selection principle. An optimal selection is still an open problem and also problem dependent. Further research direction is the noise mitigation (NM) by reference matrix extension. Generally [12], min M (Ψ wt) + λ w p p for 0 ≤ p ≤ 1.
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 9 Figure 9. Recovery by full-sampling (1001 frequency points), MF+SBL, estimated noise factor is 0.5 × 10 -1 . Due to non-ideal noise estimation the performance is moderate

Figure 10 .

 10 Figure 10. Recovery by randomly sub-sampling (average frequency points for each iteration is 80), mCPM+SBL with m =3 0 , estimated noise factor is 0.5 × 10 -1 . Recovery condition was same as in Fig.9.
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It is not necessarily in sub-Nyquist framework.

y T (MM T ) -1 Mx ≷ H 1 H 0 σ 2 log(η)+ 1 2 x T M T (MM T ) -1 Mx. In case of M = I, then y T x ≷ H 1 H 0 σ 2 log(η)+ 1 2 x T x.

It mainly focuses on stability by modifying the cost function.

M can be identity matrix or random matrix.
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