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ON LOBACHEVSKY’S TRIGONOMETRIC FORMULAE

ATHANASE PAPADOPOULOS

Abstract. We elaborate on some important ideas contained in Loba-
chevsky’s Pangeometry and in some of his other memoirs. The ideas
include the following: (1) The trigonometric formulae, which express
the dependence between angles and edges of triangles, are not only
tools, but they are used as the basic elements of any geometry. In
fact, Lobachevsky developed a large set of analytical and geometrical
theorems in non-Euclidean geometry using these formulae. (2) Differen-
tial and integral calculus are developed in hyperbolic space without the
use of any Euclidean model of hyperbolic space. (3) There exist models
of spherical and of Euclidean geometry within hyperbolic geometry, and
these models are used to prove the hyperbolic trigonometry formulae.
(4) If hyperbolic geometry were contradictory, then either Euclidean or
spherical geometry would be contradictory.
We shall also see that some of these ideas were rediscovered by later
mathematicians.
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the Indian Society for History of Mathematics.

1. Introduction

Among the three founders of hyperbolic geometry - Lobachevsky, Bolyai
and Gauß – Lobachevsky was the first to publish a complete treatise on the
subject, namely, his Elements of Geometry [16] (1829). In fact, three years
before that publication (more precisely, on February 231, 1826), Lobachevsky
gave a lecture (in French) at the Physical and Mathematical Section of
Kazan University, titled Exposition succinte des principes de la géométrie

Date: November 23, 2013.
1This date is according to the Gregorian calendar. The reader should be aware of

the fact that concerning Lobachevsky, some confusion in dates may occur because in
nineteenth century Russia, the Julian calendar was used, and in mentioning dates, some
sources use the Julian calendar and others the Gregorian calendar.
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2 ATHANASE PAPADOPOULOS

avec une démonstration rigoureuse du théorème des parallèles (A Brief Ex-
position of the Principles of Geometry with a Rigorous Proof of the Theorem
on Parallels). The exact content of the lecture is lost, but we know from
Lobachevsky’s own report in his Elements of Geometry that the first part
of that treatise is based on the material of the 1826 lecture.2 Lobachevsky’s
Elements of Geometry, together with his later writings on hyperbolic geome-
try, constitute a corpus of memoirs which is much more than an introduction
to hyperbolic geometry. They contain a complete development of differen-
tial and integral calculus in a non-Euclidean setting and they reflect their
author’s profound vision on mathematics. We shall dwell on that in this
article. Let us mention right away Gauß’s words, in his letter to the as-
tronomer H. C. Schumacher, dated 28 November 1846, talking about one of
Lobachevsky’s memoirs3:

In developing the subject, the author followed a road different
from the one I took myself; Lobachevsky carried out the task in
a masterly fashion and in a truly geometric spirit. I consider it
a duty to call your attention to this book, since I have no doubt
that it will give you a tremendous pleasure ...4

During his lifetime, Lobachevsky never saw his work acknowledged and,
in fact, nobody read his work seriously (with the notable exception of Gauß,
who read some of it but remained silent about it, except for a private cor-
respondence with his friends Schumacher and Taurinus; Lobachevsky was
not aware of the fact that Gauß read his memoir). The reason was certainly
the strong belief within the mathematical community that Euclid’s paral-
lel axiom is a consequence of the other axioms of Euclidean geometry and,
therefore, that a geometry in which one takes as an axiom the negation of
the parallel axiom, leaving all the other axioms of Euclidean geometry (that
is, the Lobachevsky geometry), would be self-contradictory.5

After his Elements of Geometry [16], Lobachevsky wrote several mem-
oirs on the same subject, reworking some of the proofs, improving some

2On p. 1 of the Elements of Geometry [16] Lobachevsky writes that this work is
“Extracted by the author himself from a paper which he read on February 12, 1826, at
a meeting of the Section for Physico-Mathematical Sciences, with the title Exposition
succinte des principes de la Géométrie, avec une démonstration rigoureuse du théorème
des parallèles.” Likewise, in the Introduction to the New Elements of Geometry [20] (1836),
Lobachevski writes the following: “Believing myself to have completely solved the difficult
question, I wrote a paper on it in the year 1826: Exposition succinte des principes de
la Géométrie, avec une démonstration rigoureuse du théorème des parallèles, read on
February 12, 1826, in the séance of the Physico-mathematics faculty of the University of
Kazan but nowhere printed.”

3The memoir in question is Lobachevsky’s Geometrische Untersuchungen zur Theorie
der Parallellinien [18].

4[Materiell für mich Neues habe ich also im Lobatschewskyschen Werke nicht gefunden,
aber die Entwickelung ist auf anderm Wege gemacht, als ich selbst eingeschlagen habe,
und zwar von Lobatschewsky auf eine meisterhafte Art in ächt geometrischem Geiste.
Ich glaube Sie auf das Buch aufmerksam machen zu müssen, welches Ihnen gewiss ganz
exquisiten Genuss gewähren wird ...] Gaus’s correspondence is published in Volume VIII
of his Collected Works [10].

5“Proofs” of the parallel axiom were given by Legendre, Bertrand and other important
mathematicians, and there were several attempts, by Euler, Lagrange, Fourier and others;
see [24] and the commentary in [22].
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details, and highlighting applications of his work outside the world of pure
geometry,6 with the hope of attracting the attention of his colleagues. His
efforts in that direction were vain, and his work was acknowledged only ten
years after his death. These memoirs that he left, despite the fact that they
all have the same aim, namely, to convince the reader that hyperbolic ge-
ometry exists, contain at some places remarks, examples, details and new
computations which make them different from each other. These memoirs
include the New Elements of Geometry [20] (1835) (a revised version of the
1829 Elements of Geometry), the Applications of Imaginary Geometry to

Certain Integrals [17] (1836), Imaginary Geometry and its Applications [19]
(1835), Imaginary Geometry [21] 1837 (a revised version, in French,7 of the
preceding memoir), the Geometrical Researches on the Theory of Parallels

[18] (1840), in German, and finally, his Pangeometry [22] (1855), published
first in Russian and then in French. The Pangeometry is Lobachevsky’s
last work, written the year before his death. This memoir is a résumé of
Lobachevsky’s work on non-Euclidean geometry and its applications, and it
is probably his clearest account of the subject. It is also the conclusion of
his lifetime work, and the last attempt he made to acquire recognition.8

The subject of the present paper is not the birth of hyperbolic geometry.9

We shall rather focus on some important ideas contained in the Pangeometry

(and in the previous papers), which include the following:

(1) The trigonometric formulae, which express the dependence of angles
and edge lengths of triangles, are not only tools, but they are the
basic elements of any geometry. In fact, Lobachevsky shows that all
the analytical and geometrical theorems follow from these formulae.

(2) Analysis in the sense of differential and integral calculus can be done
in hyperbolic space without the use of any Euclidean model of hy-
perbolic space. (And indeed, Lobachevsky developed differential and
integral calculus without knowing of any Euclidean model of his ge-
ometry. We recall by the way that the first such model was given by
Beltrami in 1868, that is, more than twelve years after Lobachevsky’s
death).

6For instance, Lobachevsky carried out a large amount of computations of areas and
volumes of figures in hyperbolic space that lead to some new identities between integrals.
Integral identities were fashionable at that time. Despite this fact, Lobachevsky’s work
did not attract much attention. Some of his integration formulae that concern volumes of
hyperbolic polyhedra were revived in the work of Coxeter, in the 1930s, cf. [5], and they
were used in the 1970s in the work of Thurston, see in particular Chapter 7 of [31]; see
also Milnor [23].

7Lobachevsky usually wrote in Russian, and he was a promoter of the use of Russian
in scientific writing. This was uncommon in nineteenth-century Russia, where French was
the official language for science, especially in mathematics. Russian was considered as in-
adequate. Lobachevsky nevertheless wrote his Imaginary Geometry and his Pangeometry
[22] in French, and his Geometrical Researches on the Theory of Parallels [18] in German,
with the hope of being read in the West.

8A recent edition of the Pangeometry, translated into English and commented by the
author of the present article, published by the European Mathematical Society Publishing
House, is available, see [22]. This edition also contains a complete and commented list of
the various editions of Lobachevsky’s writings.

9There are several good papers and books dealing with this subject, see e.g. [4], [11],
[12], [13], [24], [28] and the commentary in [22].
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(3) There exist models of spherical and of Euclidean geometry within
hyperbolic geometry.

(4) If hyperbolic geometry were contradictory, then one could find a
contradiction within Euclidean or spherical geometry.

The fact that Lobachevsky expressed these ideas is rather unknown to math-
ematicians. In the rest of this paper, we shall see how these ideas arise in
Lobachevsky’s work, and we shall comment on them.

2. The spherical trigonometric formulae and the sphere model

in hyperbolic space

Trigonometric formulae for spherical geometry, that is, equations giving
relations between the side lengths and the angles at the vertices of spher-
ical triangles, were known since Greek antiquity.10 The classical proofs of
these formulae use the embedding of the sphere in the ambient three-space,
where the sides of triangles are arcs of great circles, that is, intersections of
the sphere with planes passing through the origin, and the angles of trian-
gles are the dihedral angles between the corresponding Euclidean planes.11

These formulae were recovered and reproved, using various methods, by
many mathematicians over several centuries.12

Lobachevsky, in his memoirs on geometry, established a complete set of
spherical trigonometric formulae. His methods of proof are based on a con-
struction in hyperbolic 3-space which uses the notion of parallelism in hy-
perbolic geometry. We recall this notion before reporting on that proof.

Let us first remind the reader that the notion of parallelism in non-
Euclidean geometry is not identical to the Euclidean one. in Euclidean
geometry, two lines are said to be parallel if they are coplanar and if they
do not intersect. Furthermore, in this setting, given a line L and a point x
not on L, there is a unique line containing x and disjoint from L, namely,
the line containing x and making a right angle with the segment joining
perpendicularly x to L.

Now we consider the situation in the hyperbolic plane. Let L be a line
and x a point not on L. The line that contains x and makes a right angle
with the perpendicular from x to L does not intersect L (otherwise we
would have a triangle whose angle sum is greater than two right angles,
which is not possible in neutral geometry, that is, in the geometry where
one takes the Euclidean axioms without the parallel postulate, that is, this
axiom is neutralized: it may hold or may not hold). However, this line is
not the unique line that contains x and that is disjoint from L. In fact, in
hyperbolic geometry, one makes a distinction between two classes of disjoint
pairs of lines, namely, parallel lines and hyperparallel lines. A line parallel to

10We recall that the Greeks did not use the sine function but a function they called
chord. The two functions are closely related since the sine of an arc is half of the double
of its chord.

11The most important Greek spherical geometry treatise, which contains spherical
trigonometry formulae, is certainly Menelaus’ Spherics (second century A. D.) which
reached us only through (several) Arabic commented translations, worked out between
the eleventh and the thirteenth centuries. See e.g. [25], [26] and [27].

12We mention by the way that Euler introduced an intrinsic method of proof of the
spherical trigonometric formulae that uses the calculus of variations, see [7].
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L through x is a line that does not intersect L and that is the limit of two
families of lines, those that intersect L and those that do not intersect L.13

With this definition, there are exactly two distinct lines through x that are
parallel to L (see Figure 1). A line is said to be hyperparallel to L if it is
not parallel to L and if it is disjoint from L.

In the memoirs that Lobachevsky wrote before the Pangeometry, e.g. in
his Geometrische Untersuchungen zur Theorie der Parallellinien to which
he constantly refers in his Pangeometry, he studied in detail this relation of
parallelism, showing in particular that it is symmetric and transitive.14

The definition of parallelism in dimension 3 is based on the planar defini-
tion. More precisely, two lines in hyperbolic 3-space are said to be parallel
if they are coplanar and if they are parallel in the hyperbolic plane that
contains them.

Now we can review Lobachevsky’s proof of the spherical trigonometric
formulae.

Lobachevsky starts with a hyperbolic triangle ABC with a right angle
at C and with edges a, b, c opposite respectively to the vertices A,B,C.
He considers the plane containing this triangle as sitting in hyperbolic 3-
dimensional space and he makes the following construction. Let AA′ be a
geodesic line perpendicular to the plane of the triangle and consider the two
planes BAA′ and CAA′ (Figure 2). In the plane BAA′, construct the line
BB′ parallel to the line AA′. Consider a third plane, containing the line
BB′ and the point C. This plane intersects the plane CAA′ in a line CC ′

parallel to AA′. (Lobachevsky proves this fact.)
Lobachevsky shows that the dihedral angles of the solid figure that is

constructed over the base ABC are completely determined by the angles of
the triangle ABC.

13The definition of parallel line as a line separating the family of intersecting lines from
the family of non-intersecting lines was used by the three founders of hyperbolic geometry.

14In using the transitivity property, it is necessary to keep track of the direction of
parallelism for pairs of parallel lines involved.

x

L

Figure 1. The two shaded lines are the parallels through x to
the line L.
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Now consider in the 3-dimensional space a geometric sphere15 centered at
B and of radius smaller than a. It intersects the three planes passing by B

at three points k,m, n.
In this situation, and in analogy with usual spherical geometry (the ge-

ometry of a sphere embedded in Euclidean 3-space), a spherical segment is
defined as an arc in the intersection of the sphere by a (hyperbolic) plane
passing through the center of the sphere, and a spherical triangle is defined
as a triple of points joined by three spherical segments. (Strictly speaking,
one has to consider only spherical triangles contained in a hemisphere, in
order to avoid pairs of points which can be joined by two distinct segments.)
Distances and angles on this geometric sphere are also defined in analogy
with those of spherical triangles on a standard sphere embedded in Euclidean
3-space: the distance between two points on the sphere is the (hyperbolic)
angular distance of the rays starting from the origin and passing through
these points, and the angle between two lines is defined as the dihedral an-
gle made by the planes that pass through the center of the sphere and that
contain these two lines. For instance, in Figure 2, the angle at k of the
spherical triangle kmn is the dihedral angle made by the planes CBB′ and
ABB′, etc.

From the dihedral angles of the solid figure constructed on the base ABC,
the angles of the spherical triangle kmn are determined. Lobachevsky shows
in particular that the angle at m is right. He then deduces the trigonometric
formulae for the right spherical triangle kmn using the ambient hyperbolic
space, as in the classical way where one deduces the trigonometric formulae

15A geometric sphere in a metric space is the set of points that are at a certain distance
from a given point, called the center of the sphere. Let us note for the attention of the
non-geometrically knowledgeable reader that in a general metric space a geometric sphere
may have properties which are very different from those of the usual sphere in Euclidean
space; of course, it could be non-homeomorphic to such a sphere.

A

a

B

b

C

c

A′ B′

C ′

m

n

k

Figure 2.
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for a spherical triangle using the embedding of the sphere in a Euclidean
3-space.

Passing to more standard notation where we have a spherical triangle
ABC with right angle at C and with edges a, b, c opposite to the vertices
A,B,C respectively, Lobachevsky writes the following formulae:

(1)







sinA sin c = sin a
cos b sinA = cosB
cos a cos b = cos c.

A

B

C

a

b

c

Figure 3.

After these trigonometric formulae for the right triangle, Lobachevsky ob-
tains the following formulae that are valid for an arbitrary spherical triangle,
with sides a, b, c opposite to angles A,B,C (Figure 3):

(2)















sin a sinB = sin b sinA
cos b− cos a cos c = sin a sin c cosB
cot a sin b = cotA sinC + cos b cosC
cos a sinB sinC = cosB cosC + cosA.

He then notices that these formulae for the sphere in hyperbolic space
coincide with the formulae of usual spherical geometry. He concludes with
the following ([22] p. 22 of the English translation):

It follows that spherical trigonometry stays the same, whether we
adopt the hypothesis that the sum of the three angles of any rec-
tilinear triangle is equal to two right angles, or whether we adopt
the converse hypothesis, that is, that this sum is always less than
two right angles.16

We reformulate this statement as a theorem:

Theorem 2.1 (Lobachevsky). The geometric spheres in hyperbolic space

are models of spherical geometry.

This theorem is important and it was highly non-trivial a the time of
Lobachevsky. Today, one can recover this theorem by arguing that a geo-
metric sphere in three-dimensional hyperbolic space is a surface of constant

16At the end of §35 of his Geometrische Untersuchungen, Lobachevsky drew a similar
conclusion ([18], translation in [4]): “Hence spherical trigonometry is not dependent upon
whether in a rectilinear triangle the sum of the three angles is equal to two right angles
or not”).
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intrinsic curvature, but it was not possible to make such a reasoning at
Lobachevsky’s time; this argument came later on, with the work of Rie-
mann. As a matter of fact, Beltrami, as a conclusion of his 1868 paper
[2], obtained the same result, and he stated it in different words, using the
concept of curvature. He writes (p. 62 of Stillwell’s translation [29]):

One sees that the geometry of spaces of constant positive cur-
vature (which can appropriately be called spherical geometry

in the broad sense, since as equation (22) shows, the geodesic
triangles are subject to the laws of spherical trigonometry)
differs very markedly from pseudospherical geometry,17 even
though both admit congruent figures. Moreover, pseudo-
spherical geometry leads spontaneously to the consideration
of spaces of positive curvature. In fact, if we put

a

x
= y,

x1

x
= y1, ...,

xn

x
= yn,

in (26), we find

ds = R

√

dy2 + dy2
1
+ ...+ dy2n,

with the condition

y2 + y21 + ...+ y2n = 1,

which, when we compare with equation (18) and take ρ =
const., tells us that the geodesic spheres of radius ρ, in an n-
dimensional space of constant curvature − 1

R2 , are the (n−1)-

dimensional spaces of constant curvature
(

1

R sinh
ρ

R

)2

. Thus,

spherical geometry can be regarded as part of pseudospheri-
cal geometry.

3. The horosphere as a model of Euclidean space

Let us now state another result due to Lobachevsky.

Theorem 3.1 (Lobachevsky). The horospheres in hyperbolic space are mod-

els of Euclidean geometry.

This is an interesting instance of a plane embedded in hyperbolic 3-space
which is naturally equipped with a Euclidean metric.

This result is stated in the first pages of the Pangeometry (and also
in Lobachevsky’s previous memoirs). We present it in this section, be-
fore we proceed with the hyperbolic trigonometric formulae. Let us quote
Lobachevsky. In the Pangeometry, horocycles (respectively horospheres) are
called limit circles (respectively horospheres).18 After introducing the no-
tion of horocycle with a given axis and passing through a certain point and
after giving a method for constructing it, Lobachevsky writes the following
([22], p. 8 of the English translation):

17Pseudo-spherical geometry is a word that Beltrami used for hyperbolic geometry.
18In his Geometrische Untersuchungen §34, Lobachevsky uses the word “orisphere”,

which was transformed later on into “horosphere”.
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The revolution of the limit circle around one of its axes19 produces
a surface which I call a limit sphere, a surface which consequently
is the limit towards which the sphere approaches as its radius in-
creases to infinity. We shall call the axis of revolution, and, conse-
quently, any line that is parallel to this axis of revolution, an axis

of the limit sphere. We shall call a diametral plane any plane that
contains one or more of the axes of the limit sphere. The intersec-
tions of the limit sphere with its diametral planes are limit circles.
A portion of the surface of the limit sphere that is bounded by
three limit circle arcs is called a limit sphere triangle. The limit
circle arcs are called the edges, and the dihedral angles between
the planes of these arcs are called the angles of the limit sphere
triangle.

Two straight lines that are parallel to a third one are parallel
(Geometrische Untersuchungen §25). It follows that all the axes
of the limit circle and of the limit sphere are mutually parallel.

If three planes intersect pairwise in three parallel lines and if
we consider the region that is situated between these parallels, the
sum of the three dihedral angles that these planes form is equal to
two right angles (Geometrische Untersuchungen §28).

It follows from this theorem that the angle sum of any limit
sphere triangle is equal to two right angles and, consequently, ev-
erything that we prove in ordinary geometry concerning the pro-
portionality of edges of rectilinear triangles can be proved in the
same manner in the Pangeometry of limit sphere triangles, by only
replacing the lines that are parallel to one of the edges of the rec-
tilinear triangle by limit circle arcs drawn from the points on one
of the edges of the limit sphere triangle, and all of them making
the same angle with that edge.20

In other words, Lobachevsky deduces that the geometry of the limit sphere
is Euclidean from the property that in that geometry, the angle sum of
triangles is equal to two right angles. It is known indeed that this property
is equivalent to Euclid’s parallel postulate, and one also has to check that the
other axioms of Euclidean geometry are satisfied; this can be done indeed.

As he did for Theorem 2.1, Beltrami also rediscovered Theorem 3.1, and
he formulated it in terms of differential geometry, in his 1868 paper Teo-

ria fondamentale degli spazii di curvatura costante [2]. In fact, he obtained
a concrete description of limit spheres on his pseudo-sphere model of the
hyperbolic plane. Using today’s language, Beltrami’s result says that the
length structure induced by the Riemannian metric of 3-dimensional hyper-
bolic space on a limit sphere is Euclidean, whereas Lobachevsky’s result is
stated at the axiomatic level, namely, Lobachevsky showed that the geome-
try of the limit sphere satisfies the Euclidean geometry axioms. In a letter
to Hoüel, dated 1st of April 1868, Beltrami made the relation between the
two points of view. He wrote ([3] pp. 87–88):

19Again, the hyperbolic plane is considered as being embedded in hyperbolic 3-space.
20Lobachevsky explains here how one can construct similar (i.e. homothetic) triangles

on the limit sphere, in a way analogous to the construction of similar triangles in the
Euclidean plane. We recall that in neutral geometry, making the assumption that there
exists a pair of similar non-congruent triangles is equivalent to adding Euclid’s parallel
axiom.
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From the formula ds = const ·
√

dη2
1
+ dη2

2
that I established on

page 21 of my last Memoir,21 we can deduce (or rather, we can
check, because this is already contained in Lobachevsky) that the
geometry of the limit sphere is nothing else than that of the Eu-
clidean plane. This is exactly what I meant when I said that the
curvature of this surface is zero. In other words, I meant that all
the metric properties of this surface are the same as those of the
ordinary plane, because the linear elements in both surfaces are
identical. [...] For me, I would say that the limit sphere is one
of the forms under which the Euclidean plane exists in the non-
Euclidean space, considering the Euclidean plane as being defined

by the property of having zero curvature. 22

A similar description of limit spheres is contained in Beltrami’s letter to
Hoüel, dated 12 October 1869, [3] p. 87–88.

4. The hyperbolic trigonometric formulae

Lobachevsky stated his hyperbolic trigonometry formulae in terms of the
angle of parallelism function. This is the function, denoted by Π, which

p Π(p)

Figure 4. The parallelism angle Π(p) corresponding to the seg-
ment p.

assigns to each segment of length p the acute angle that this segment makes
with a ray starting at an endpoint of this segment and which is parallel to a
second ray that starts perpendicularly at the other endpoint of the segment
(see Figure 4). The value of the parallelism function depends only on the
length p of the segment and not on the segment itself.23 The parallelism
angle of a segment of length p is denoted by Π(p).24

21Beltrami refers here to his Teoria fondamentale degli spazii di curvatura costante [2].
22The letter is in French: [De la formule ds = const ·

√

dη2

1
+ dη2

2
, que j’ai établie à

la page 21 de mon dernier Mémoire on tire (ou plutôt on vérifie, car cela se trouve dans
Lobatcheffsky) que la géométrie de la sphère-limite n’est pas autre chose que celle du plan
euclidien. En disant que la courbure de cette surface est nulle je n’ai pas voulu dire autre
chose. En d’autres termes j’ai voulu dire que toutes les propriétés métriques de cette
surface sont les mêmes que celles du plan ordinaire, à cause de l’identité des éléments
linéaires chez l’une et chez l’autre. [...] Pour mon compte je dirais que la sphère-limite
est une des formes sous lesquelles le plan euclidien existe dans l’espace non-euclidien, en
considérant le plan euclidien comme défini par la propriété d’avoir sa courbure nulle.]

23This uses the fact that the hyperbolic plane is doubly homogeneous; that is, that any
two segments of the same length are congruent (i.e. they are equivalent through a motion
of the plane). This fact is a consequence of the axioms of neutral geometry.

24In Lobachevsky’s writings, as in other writings of the same period, and following
the tradition of Euclid’s Elements, the word “line” (to which we have preferred the word
“segment” in the present translation) is often identified with the length of that line (i.e.
of that segment). Thus, Lobachevsky says that Π is a function of the line p, meaning that
it is a function of the real number p.
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The angle of parallelism function, or parallelism function, Π(p) was al-
ready introduced by Lobachevsky in his first written memoir, the Elements

of geometry (1829) [16], where it is denoted by F (p). This function was used
later on by several authors, with a reference to Lobachevsky. It is used in
Beltrami’s Saggio di Interpretazione della geometria non-Euclidea [1] and in

Klein’s Über die sogenannte Nicht-Euklidische Geometrie [14].
The parallelism function is related to the hyperbolic cosine function by

the formula

sinΠ(p) =
1

cosh p
,

assuming the curvature of the space is −1.25

(3)
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sinA tanΠ(a) = sinB tanΠ(b)

1− cos Π(b) cos Π(c) cosA =
sinΠ(b) sinΠ(c)

sinΠ(a)

cosA+ cosB cosC =
sinB sinC

sinΠ(a)

cotA sinC sinΠ(b) + cosC =
cosΠ(b)

cos Π(a)
.

A B

C

A′

B′
C ′

p

q

r

Figure 5.

25The axioms of non-Euclidean geometry cannot specify the value of the curvature
constant of the space. For a space of curvature K = −1/k2, the formula becomes
sinΠ(p) = 1/cosh(p/k). We note by the way that the existence of this constant k ap-
pears in the works of all three founders of hyperbolic geometry, although none of them
did relate it to curvature. This constant appears in various forms, and we mention in
this respect a letter from Gauß to F. A. Taurinus, written on 8 November 1824: “The
assumption that in a triangle the sum of three angles is less than 180o leads to a curious
geometry, quite different from ours, but thoroughly consistent, which I have developed to
my entire satisfaction, so that I can solve every problem in it with the exception of the
determination of a constant, which cannot be designated a priori. The greater one takes
this constant, the nearer one comes to Euclidean geometry, and when it is chosen infinitely
large, the two coincide.” (Greenberg’s translation.) [Die Annahme, dass die Summe der
3 Winkel kleiner sei als 180o, führt auf eine eigene, von der unsrigen (Euklidischen) ganz
verschiedene Geometrie, die in sich selbt durchaus consequent ist, und die ich für mich
selbst ganz befriedgend ausgebildet habe, so dass ich jede Aufgabe in derselben auflösen
kann mit Ausnahme der Bestimmung einer Constante, die sich apriori nicht ausmitteln
lässt.]
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To prove the trigonometric formulae for the right hyperbolic triangle ABC

(§2 above), Lobachevsky constructs, besides the spherical triangle that we
described there (Figure 2), the Euclidean triangle of Figure 5, that is, the
triangle on the horosphere whose axis is the line AA′ and passing by A.
This triangle is obtained as the intersection of that horosphere with the
three planes that contain the edges of the triangle ABC and the lines
AA′, BB′, CC ′. Lobachevsky notes that this Euclidean triangle is again
right, with right angle on CC ′. Using the Euclidean trigonometric formu-
lae for this triangle and the spherical trigonometric formulae he established
for the triangle kmn, Lobachevsky obtains the trigonometric formulae for
the hyperbolic triangle ABC. Then, decomposing again any triangle into
two right triangle, he obtains a set of trigonometric formulae valid for any
hyperbolic triangle ABC:

We note that all these trigonometric formulae (spherical and hyperbolic)
were already contained in Lobachevsky’s first memoir, the Elements of ge-

ometry (1828) [16], p. 21 of Engel’s German translation [6], and also in his
later works, such as the Geometrische Untersuchungen (§35 to 37) [18].

The rest of the Pangeometry, where Lobachevsky develops the foundations
of the analytic theory of hyperbolic geometry, is built on the hyperbolic
trigonometric formulae. We shall not enter into the details here, but we can
quote Lobachevsky:

Starting with these equations, Pangeometry becomes an analytic
geometry, and thus it forms a complete and distinct geometric
theory. Equations (3) are useful for representing curves by equa-
tions in terms of the coordinates of their points, and for calculat-
ing lengths and areas of curves, and areas and volumes of bodies,
as I showed in the 1829 Scientific Memoirs of the University of

Kazan.26

5. On the relative non-contradiction of hyperbolic geometry

The relative consistency (or non-contradiction) of non-Euclidean geome-
try with respect to the Euclidean one, at least in dimension two, is usually
attributed to Beltrami, who established it in his famous paper Saggio di In-

terpretazione della geometria non-Euclidea [1] by constructing a Euclidean
model of it. In the introduction to that paper, explaining the goal of his
paper, Beltrami writes the following:

We tried, to the limit of our capabilities, to make for ourselves an
idea of the results to which the doctrine of Lobachevsky leads; and
following a method which seems to us completely conformal to the
good traditions of scientific investigation, we tried to provide that
doctrine with a firm basis, before we admit for that theory the
necessity of a new order of entities and of concepts. We believe
that we succeeded in our goal with respect to the planar part of
this doctrine, but we believe that this goal is impossible to attain
for what concerns the rest.27

26Cf. Lobachevsky’s Elements of geometry, [16].
27The 3-dimensional case was dealt with soon after by Beltrami, in his paper [2].
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It is interesting to note here a remark that Lobachevsky made, on the
trigonometric formulae, at the end of his Elements of geometry (1829), which
is related to the consistency issue of his newly discovered geometry. The
remark is quoted in Rosenfeld [28] p. 223 (Shenitzer’s translation from the
Russian):

After we have found Equations (17) which represent the
dependence of the angles and sides of a triangle; when, fi-
nally, we have given the general expressions for elements of
lines, areas and volumes of solids, all else in the Geometry
is a matter of analytics, where calculations must necessar-
ily agree with each other, and we cannot discover anything
new that is not included in these first equations from which
must be taken all relations of geometric magnitudes, one to
another. Thus if one now needs to assume that some con-
tradiction will force us subsequently to refute the principles
that we accepted in this geometry, then such a contradiction
can only hide in the very Equations (17). We note, how-
ever, that these equations become Equations (16) of spher-
ical trigonometry as soon as, instead of the sides a, b, c we
put a

√
−1, b

√
−1, c

√
−1; but in ordinary Geometry and in

spherical Trigonometry there enter everywhere only ratios
of lines; therefore ordinary Geometry, Trigonometry and the
new Geometry will always agree among themselves.

This is a first indication of Lobachevsky’s conviction that if there were
a contradiction in hyperbolic geometry, then there would also be one in
Euclidean geometry or in spherical geometry, and vice-versa. It is based
on some formal analogy between the presentation of the formulae in the
three geometries. Below, we shall point out another argument for the non-
contradiction problem, which is also based on Lobachevsky’s work. We note
by the way that this formal analogy was noticed by several authors, be-
fore and after Lobachevsky. For instance, J. H. Lambert (1728-1777), in
his Theorie der Parallellinien, written in 1766 and published posthumously,
(see [30] and the forthcoming edition [15]) observed that certain geometrical
properties of hyperbolic geometry – which for him was hypothetical28 – are
obtained from analogous properties of spherical geometry by multiplying
some distances by the imaginary number

√
−1. He declared then that one

should almost conclude that this geometry takes place on a “sphere of imagi-
nary radius”. F. A. Taurinus (1794–1874) (a contemporary of Lobachevsky)
made a similar remark. In his memoir, also called Theorie der Parallellinien

(1825) [30], Taurinus obtained fundamental trigonometric formulae for hy-
perbolic geometry (which was, from his point of view, like it was for Lambert,
purely hypothetical). He noticed the formal analogy between the spherical
and the hyperbolic cases and he also declared that the hyperbolic trigonom-
etry formulae are obtained by working on a sphere of “imaginary radius”.
Likewise, Beltrami, in his Saggio di interpretazione della geometria non-

euclidea [1], showed that the trigonometric formulae for the pseudo-sphere

28Lambert is among the immediate predecessors of hyperbolic geometry who developed
a complete theory of that geometry with the hope of finding a contradiction.



14 ATHANASE PAPADOPOULOS

(which is a model he had constructed for the hyperbolic plane) can be ob-
tained from those of the usual sphere by considering the pseudo-sphere as
a sphere of imaginary radius

√
−1, and he attributed this observation to E.

F. A. Minding and to D. Codazzi. Soon after Beltrami, Klein, in his On

the so-called non-Euclidean geometry (1871), while he worked for a common
ground for the three geometries (Euclidean, spherical and hyperbolic) in the
setting of projective geometry, made the same remark: “The trigonometric
formulae that hold for our measure result from the formulae of spherical
trigonometry by replacing sides by sides divided by c

i
.” ([14] §12). We also

refer the interested reader to the comments in the English translation of the
Pangeometry [22]. Let us also note that Euler had also noticed the analogies
between Euclidean and spherical geometry formulae, and in several mem-
oirs, he proved Euclidean theorems and then their spherical analogues. For
instance, in his memoir Geometrica et sphaerica quaedam (Concerning Ge-
ometry and Spheres) [9] Euler considers the following problem: Given a
triangle and three segments, each segment joining the vertex of a triangle
to the line containing the opposite side, find a condition so that the three
segments lie on three lines that have a common point. Then, denoting by
A,B,C the vertices of the triangle, a, b, c the points on the respective sides
and O the intersection point of the three lines (Figure 6), Euler finds, in the
Euclidean case, the relation

(4)
AO

Oa
× BO

Ob
× CO

Oc
=

AO

Oa
+

BO

Ob
+

CO

Oc
+ 2.

In the spherical case, he finds the relation

(5)
tanAO

tanOa

tanBO

tanOb

tanCO

tanOc
=

tanAO

tanOa
+

tanBO

tanOb
+

tanCO

tanOc
+ 2.

O

A

B C

a

bc

Figure 6. Equations (4) and (5) give necessary and sufficient
conditions for the lines Aa,Bb, Cc to have a common intersection
point, in Euclidean and in spherical geometry respectively.

In other words, to pass from the Euclidean to the spherical cases, one
simply replaces side lengths by the tangents of these side lengths.

Thus if we believe, like Lobachevsky, that the trigonometric formulae are
at the basis of all of geometry, then looking at the formal analogies between
the formulae in the three geometries, one can try to argue (as Lobachevsky
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did) that if there were a contradiction in one of the geometries then there
would also be one in the other two, or at least in one of the other two.

There is another argument that Lobachevsky could have used for the con-
sistency of his geometry. This is the fact that the proof of the trigonometric
formulae of hyperbolic geometry are derived from the formulae of Euclidean
and of spherical geometry, as we pointed out in §2 and §4 and, therefore,
one might conclude that the (hypothetic) existence of a contradiction in
hyperbolic geometry would come from a contradiction in Euclidean or in
spherical geometry.

Finally, let us recall that the consistency question was raised in precise
terms by David Hilbert, who reduced the consistency of the axiom set of
Euclidean geometry (and of hyperbolic and spherical geometries) to that
of arithmetic. We also recall that Gödel, in 1931, proved that arithmetic
with multiplication cannot be shown to be consistent within arithmetic.
In conclusion, the consistency question of non-Euclidean (and Euclidean !)
geometries has been a long and difficult issue and it is not surprising that
Lobachevsky, who constantly thought about the consistency of his geometry,
did not succeed in settling it, although there is more than enough evidence
in his works to conclude with the relative consistency.
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