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ABSTRACT

In agroclimatology, the rainy season onset and cessation dates are often defined from a combination of

several empirical rainfall thresholds. For example, the onset may be the first wet day of N consecutive days

receiving at least P millimeters without a dry spell lasting n days and receiving less than p millimeters in the

following C days. These thresholds are parameterized empirically in order to fit the requirements of a given

crop and to account for local-scale climatic conditions. Such local-scale agroclimatic definition is rigid because

each threshold may not be necessarily transposable to other crops and other climate environments. A new

approach is developed to define onset/cessation dates andmonitor their interannual variability at the regional

scale. This new approach is less sensitive to parameterization and local-scale contingencies but still has some

significance at the local scale. The approach considers multiple combinations of rainfall thresholds in

a principal component analysis so that a robust signal across space and parameters is extracted. The regional-

scale onset/cessation date is unequally influenced by input rainfall parameters used for the definition of the

local rainy season onset. It appears that P is a crucial parameter to define onset, C plays a significant role at

most stations, and N seems to be of marginal influence.

1. Introduction

Agricultural production in the tropical zone is highly

dependent on several environmental factors, especially

water availability (Wallace 1991; Meinke and Stone

2005). In small and low income family farms, irrigation

systems are generally underdeveloped, and crop yields

are fully dependent on the rainfall amount and distri-

bution. The variability in seasonal characteristics such as

rainy season onset/cessation (Ati et al. 2002) and/or dry

spell frequency (Usman and Reason 2004) is potentially

damaging to crop production. In particular, the rainy

season onset is long awaited, and farmers perceive its

prediction as an invaluable tool to help them in agri-

cultural planning (Jones et al. 2000). The Famine Early

Warning System (FEWS) program of the U.S. Agency

for International Development considers the onset date

prediction as an essential part of a monitoring tool

(Verdin et al. 2000; Tadesse et al. 2008).

The definition of rainy season onset/cessation is ver-

satile (Smith et al. 2008). Climatologists, agronomists, or

hydrologists have proposed different definitions. For

instance, agroclimatologists usually define the onset at

the rain gauge scale, using a variety of empirical thresh-

olds (Stern et al. 1981; Sivakumar 1988;Moron et al. 2009;

Marteau et al. 2009). They consider that the rainy season

onset is the first wet day of a spell receiving a given

rainfall amount and not followed by a long dry spell

during the subsequent weeks. The rainfall thresholds

are determined empirically in order to fit the require-

ments of a given crop and are adjusted to account for

local-scale climatic conditions (e.g., lower potential

evapotranspiration in cool, high-altitude areas than in

warm areas). These local-scale ‘‘agroclimatic’’ onset

definitions are therefore rigid in so far as each threshold

may not be transposable to other crops and other
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climate environments. An adjustment to the climato-

logical mean rainfall amount during wet spells at each

station has been proposed for the amount of the initial

wet spell (Moron et al. 2010) but has not yet been pro-

posed for the other parameters (i.e., length of the initial

wet spell and length/intensity of the post-onset dry spell

used to define false starts, which are significant wet spells

followed by a long dry spell). Simpler methods, based on

the accumulation of rainfall up to a given threshold,

either fixed (e.g., 50mm) or relative (e.g., 15% of a sta-

tion’s climatological mean), have been proposed for

Australia (Lo et al. 2007). However, Smith et al. (2008)

well emphasized the difficulties attached to the param-

eterization of the monsoon onset and end dates, even

based on these simpler methods.

Seasonal climate prediction relies on the existence of

a spatially consistent regional-scale signal (Moron et al.

2007), connected to large-scale atmospheric and oceanic

forcings such as sea surface temperature anomalies or

any other slowly varying boundary conditions. Any

regional-scale signal may be difficult to extract when the

target variable is strongly dependent on parameteriza-

tion and/or is highly variable at local scale. To circum-

vent these difficulties, Liebmann and Marengo (2001)

determined the onset and cessation dates from accu-

mulated rainfall anomalies. This method is simply based

on the cumulative sum, year by year, of the difference

between raw daily rainfall and its long-term seasonal

average. For an anomalously wet (dry) day, relative to

the long-term mean, this difference is positive (nega-

tive). An anomalously dry (wet) period is then shown as

continuously declining (rising) accumulated anomalies.

Across each season, the day on which these anomalies

reach a minimum (maximum) defines the onset (cessa-

tion). This method avoids the use of rigid rainfall

thresholds and can be applied at both local and regional

scales. At the regional scale, onset and cessation dates

can be equally defined from the temporal evolution of

the cumulative score of the first principal component of

daily rainfall (Camberlin and Diop 2003). However, if

a regional-scale onset is defined, it remains to be as-

sessed how it is related to the local-scale onsets, adjusted

to the precise crop requirements.

The main objective of this work is therefore to pro-

pose a new approach to define onset/cessation dates and

monitor their interannual variability, which would be

minimally sensitive to parameterization and local-scale

contingencies but still has some significance at local

scale. This approach is applied on a region covering

Kenya and northern Tanzania, which is characterized by

strong climatic and geographical heterogeneities. How-

ever, the large-scale forcing of interannual and intra-

seasonal variability of regional-scale rainfall (Ogallo et al.

1988; Rowell et al. 1994; Nicholson 1996; Camberlin et al.

2001) suggests that the identification of regional-scale

onset and cessation dates is possible. This region there-

fore appears perfectly relevant to estimate the perfor-

mance of the new approach presented here.

Section 2 presents the station network and the geo-

graphical and climatological context. Section 3 is de-

voted to a preliminary analysis illustrating the sensitivity

of the onset determination using the two types of the

method presented above: agroclimatological criteria

and accumulated rainfall anomalies. Section 4 presents

the results obtained from our new approach.

2. Area and dataset

The studied area is characterized by strong geo-

graphical and topographical contrasts, in particular an

opposition between the semiarid plains of eastern and

northern Kenya and the wetter highlands of central and

western Kenya and northeastern Tanzania. The highlands

include plateaus at 1000–2000m and several mountain

chains ranging from 3000 to 5900m (Fig. 1). The Indian

Ocean coast and Lake Victoria generate mesoscale cir-

culations that bring further complexity to the climate

patterns. The Hadley circulation and seasonal migration

of the intertropical convergence zone (ITCZ) on both

sides of the equator broadly control the alternation be-

tween dry andwet seasons.Rainfall is distributed annually

in two seasons (Fig. 2a), the ‘‘long rains’’ in boreal spring

FIG. 1. East African geographical context and rain gauge dis-

tribution (black and whites crosses). Gray shading show altitude in

meters above mean sea level.
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(March–May) and the ‘‘short rains’’ in boreal autumn

(October–December). The strength of the Walker circu-

lation during the short rains, with strong rising motion

over the eastern Indian Ocean and relative subsidence

over the western Indian Ocean, explains that the short

rains record lower rainfall amounts than the long rains

(Figs. 2b,c). Despite local-scale variations, especially to-

ward Lake Victoria, the bimodal regime is more or less

valid across the whole region, from northern Tanzania to

northern Kenya, justifying the search for regional-scale

onset and cessation dates.

The database comprises daily rainfall data recorded at

53 rain gauges over Kenya and northern Tanzania (Fig. 1),

collected from 1961 to 2001 by the Kenya Meteorological

Department, the Intergovernmental Authority on De-

velopment (IGAD) Climate Prediction and Application

Center, and the TanzaniaMeteorologicalAgency.Missing

values (10%) are filled using multiple linear regressions

(MLR) based on nearby stations. To eliminate biases in-

troduced by the MLR method, that is, the overestimation

of the wet days occurrence and underestimation of mean

rainfall amounts, a local-scaling correction (Ines and

Hansen 2006) has been applied at a monthly time scale.

The estimated frequency of wet days ($1mm) is scaled to

match the long-term observed frequency. The estimated

daily rainfall amounts are then adjusted by multiplying

them by a fixed coefficient in order to match the long-term

mean daily rainfall amounts.

FIG. 2. (a) Daily rainfall mean seasonal cycles (over 1961–2001) at the 53 stations (dots) and the mean of these

stations (thick white line). A wet station (Embu) and a dry station (Garissa) are also shown. Climatological maps of

the seasonal rainfall amounts for the (b) long rains and (c) the short rains.
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3. Uncertainties associated with the
parameterization of local-scale onset

As noted above, onset (and cessation) dates can be

defined in different ways. An illustration of the un-

certainties induced by their parameterization is, first,

provided for two stations representative of contrasted

climatic (i.e., wet versus dry) environments. Then the

evaluation is extended to the whole network.

a. Uncertainties in the onset dates determination:
A case study

Onset dates at Embu, a wet station receiving a mean

643mm during the long rains and 544mm during the

short rains, and Garissa, a dry station receiving a mean

150mm during the long rains and 205mm during the

short rains, are computed from two different methods

based on local-scale rainfall. The first method uses ac-

cumulated daily rainfall anomalies (Liebmann and

Marengo 2001; Camberlin and Diop 2003). The onset

corresponds to a sudden upward variation in accumulated

anomalies (AA), computed as departures from the long-

term average. This method gives a single onset date for

each station. However, this date is dependent on the

reference period of time over which the average rainfall is

computed. The onset date may be shifted by a few days

depending on whether the mean daily rainfall used to

obtain the anomalies is computed over the whole year

or only part of it (excluding part of the dry season for

instance). The second method uses a local-scale agro-

climatic definition (Sivakumar 1988;Marteau et al. 2009).

The onset is the first wet day (.1mm) of N consecutive

days receiving at leastPmmwithout a dry spell (lasting at

least 10 days) receiving less than 5mm in the following

C days (control period). The onset date may therefore

vary depending on these thresholds. Four years are se-

lected to illustrate the sensitivity of the long-rains onset to

these parameterizations.

At Embu in 1972 (Fig. 3a), the AA method gives an

onset date that is different from all those obtained using

FIG. 3. Onset dates of the long rains for a sample of years at a wet station (Embu) and dry station (Garissa),

computed using different methods. Vertical bars indicate daily rainfall (mm). The squares, black circles, crosses, and

opened circles show onset date computed from different agronomic definitions, whose thresholds (P, N, and C; see

text) are indicated in the panel top right corner. Diamonds and stars show onset dates computed from the accu-

mulated anomalies (AA) method using as reference either the yearly or the February–June mean rainfall amount,

respectively. The solid (dashed) lines at the bottom show the values of the accumulated anomalies, with reference to

the yearly (February–June) average.
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the four variants of the agronomic method, based

on a few combinations of the P, N, and C thresholds.

This difference is either positive (123 days) or negative

(28 days). A change in P from 20 to 30mm also leads to

a one month delay in the onset date. In 1980 (Fig. 3b),

a large difference (22 days) is also found in the onset

date, depending on P. The AA method based on the

February–June seasonal average (asterisk) gives an

onset on 18 April, in agreement with some agronomic

definitions (P 5 30 and N 5 2). However, for this year,

the AA method is not more robust than the agronomic

method: when the onset is computed based on de-

viations from the yearly average, it occurs 11 days ear-

lier. For the agronomic definition, sensitivity to the

value of P is also evident.

AtGarissa in 1978 (Fig. 3c), the season is anomalously

wet (276mm from March to May instead of 125 on av-

erage), but owing to several dry spells lasting 10 days or

more after themajor wet events, the definition usingC5
10 fails to detect any onset, or postpones the onset too

late in the season. By contrast, the AAmethod identifies

the first significant rainfall event as the rainy season

onset, but leads to dates different from the agroclimatic

definition.

Finally, at Garissa in 1985 (Fig. 3d) the season is poor

(80mm only from March to May), without any day re-

ceiving more than 20mm of rainfall, and thus all the

agroclimatic definitions using P$ 20mm obviously fail.

However, it is not a situation of total failure of the rains,

and visually a rainy season can still be identified. The

AAmethod appropriately detects the onset on 29March.

Although the methods used are not exhaustive, these

examples point to uncertainties in the onset date de-

tection associated with the parameterizations. In partic-

ular, several cases were found for which the definitions

based on a specific rainfall event failed, resulting in un-

detected onsets, whereas a rainy season was nonetheless

apparent. The most adaptive method (AA), though able

to detect onsets even in dry climates (Garissa), is still

sensitive to parameterization, such as the average daily

rainfall taken as reference. Fortunately, such discrep-

ancies do not occur every year, but they still cast doubt on

the representativeness of local onset dates when based on

a unique definition.

b. Sensitivity analysis

In agreement with Ati et al. (2002), the above case

studies confirm that onset dates are relatively sensitive

to parameterization. Logically, the robustness of onset

dates is weaker for a dry station than for a wet station.

The sensitivity to the parameterization is now analyzed

over the whole network. Onset dates are computed from

the same general local-scale agroclimatic definition as in

section 3a but with a wide range of values for P, N, and

C. These thresholds are selected from the distribution of

wet spell characteristics (length and rainfall amount)

computed for the February–June period, including the

long rains, and for the September–January period, in-

cluding the short rains. The ranges of values for P, N,

and C have been determined based on previous studies.

For P, most studies consider rainfall thresholds of 20 or

30mm, but to enable a better adjustment to dry or very

wet stations, both lower and higher thresholds (10 to

50mm) have been used. Mugalavai et al. (2008) in-

dicated that P 5 40mm and N 5 4 days were appro-

priate to determine the onset in western Kenya, which is

the wettest part of the region. Thus, iteratively the onset

date is the first rainy day of a sequence ofN5 2, 3, 4, 5—

consecutive days receiving at least P5 10, 15, 20, 25, 30,

40, or 50 mm—not followed by a long dry spell (at least

10 days) receiving less than 5mm of precipitation over

C 5 20 or 30 days. To each station is therefore assigned

a theoretical set of 4 3 7 3 2 5 56 onset dates for each

year. The use of extreme combinations (e.g., P 5 50) in

a context of low and erratic rainfall, as is the case over

part of the study area, means that the onset cannot al-

ways be defined. These specific cases are first considered

as missing values, and two complementary approaches,

used to consider these gaps, will be shown in section 4.

The onset date sensitivity to parameterization may be

both space and time dependent. It is therefore evaluated

for each station using an analysis of variance following

Rowell et al. (1995), Rowell (1998), Bouali et al. (2008),

and Philippon et al. (2010), among others. The observed

total variance of onset dates for each station across the

41 years and 56 combinations is partitioned into the inter-

annual (or external) variance of the mean of the onset

dates computed from the whole set of the 56 combina-

tions and the internal variance due to the deviations of

each combination relative to the mean. It is someway

analogous to the analysis of variance in an ensemble

of climatic simulations [e.g., SST-forced atmospheric

general circulation model (AGCM) runs] between the

‘‘signal ’’ conveyed by the interannual variation of the

ensemble mean and the ‘‘noise,’’ that is, the deviations

between each run and the ensemble mean. In our case,

the noisy component is conveyed by the different com-

binations instead of runs in theAGCMensemble. A large

(respectively small) amount of external variance is thus

an indication that the local-scale onset is weakly (highly)

sensitive to the parameters used to define it.

In summary, for each of the 53 stations, the total vari-

ance of the onset dates (Vtot) is the sum of two compo-

nents: the external variance owing to the interannual

variability of the mean onset date over the 1961–2001

period (Vext) and the internal variance owing to the
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deviations among the onset dates from the 56 combina-

tions (Vint). For each station, we therefore have

Vtot 5Vext 1Vint ,

where Vint is the internal variability, given by

Vint 5
1

Nn2 1
�
N

i51
�
n

j51

(xij 2 x2i ) ,

and Vext the variance of the intercombination means,

Vext 5
1

N2 1
�
N

i51

(xi 2 x
2
) ,

where N is the number of observations (41 yr), n the

number of combinations (56 combinations), xij the onset

date computed for observation i and combination j, xi
the mean over observation i, and x is the mean over all

observations and combinations.

The intercombination variance is computed separately

for the 53 stations for both rainy seasons (Fig. 4). Com-

parison of the two rainy seasons gives crucial information

about onset date sensitivity. The long-rains season (Fig. 4b)

is characterized by a homogeneous spatial pattern over

the whole study area. Except for a few dry stations, the

external variance is usually greater than 64%. By contrast,

the short-rains season shows generally lower and more

heterogeneous values. This heterogeneity appears as an

east–west gradient with external variance decreasing

westward. This is partly related to the fact that western

Kenya has no absolute dry season between the long

rains and the short rains; therefore, the short-rains

onset here is difficult to detect.

On the whole, the local-scale agronomic definition is

logically less stable at the driest stations and when the

rainy season is less abundant. One of the reasons is that

several parameters, used in the local-scale agronomic

definition, may be affected by the lower mean rainfall.

Indeed, a low rainfall amount can imply fewer rainy

days/wet spells and consequently more dry days/dry

spells, whichmay enhance the role ofC and also increase

the number of undefined onsets (owing to a too large P).

4. Regional onset and cessation determination

Given the uncertainty in onset dates at the local scale,

a new approach is developed to be the least sensitive to

FIG. 4. Percentage of external variance computed separately for the 53 stations for the (a) short rains and the (b) long

rains (see text).
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parameterization. It is analogous to ensemble numerical

simulations in which a signal is extracted from a number

of runs that differ by the initial conditions and/or by the

numerical model used. Here, the ensemble is made of 56

onset date time series that differ by the parameter values

used to define the onset (i.e., the 56 combinations pre-

sented in section 3b and hereafter referred to as exper-

iments). The approach is based on four distinct steps

(Fig. 5). First, onset dates using the 56 combinations of

parameters are computed from 1961 to 2001 for the

whole set of 53 stations. Second, each of these 56 ex-

periments is normalized station by station to zero mean

and unit variance in order to remove wet/dry biases as-

sociated with the local-scale climatic conditions. Third,

the 56 experiments are row concatenated; that is, all

(41 yr 3 53 stations) arrays, each describing a given

combination, are placed beneath each other. Finally,

a principal component analysis (PCA) is applied to that

matrix of 41 3 56 observations (the years and experi-

ments) and 53 variables (the stations) to extract the

leading modes of variability, that is, the regional-scale

signals. Each PC is initially 41 yr3 56 experiments long,

and the ‘‘ensemble mean’’ is simply obtained by aver-

aging the 56 experiments. Hereafter, this approach is

referred to as the ‘‘multicombination PCA’’. As in

Marteau et al. (2009) and Moron et al. (2009), the un-

defined onset dates were replaced by the latest available

onset date observed across the network for the given

year combination. This kind of treatment allows keeping

the character of the onset season over the whole region

for the given year. The number of such cases is fairly

high (21% for the long rains and 39% for the short

rains). This is because some extreme thresholds (e.g.,

P 5 50mm) are rarely met at some locations. It is

therefore necessary to check the impact of such missing

value replacement on the results. To that end, two

complementary approaches are developed to replace

the missing onset dates and results compared with the

initial approach (S0).

The first one consists of rearranging the onset date

array so that experiments are no more considered as

observations but as variables: rows describe years and

columns describe stations and experiments. Such a

rearrangement allows an easy elimination of the com-

binations that end up with a certain percentage (10%,

20%, 30%, . . . , more than 50%) of undefined onset

dates. Then a PCA is applied on this array.

The second approach consists of replacing the un-

defined onset dates using techniques other than the re-

placement by the latest available onset date observed

across the network for the given year combination.

Three strategies have been developed to check sensi-

tivity to the replacement of the undefined onset date.

The first (S1) consists of replacing missing values with

the latest available onset date observed across the 56

combinations for the given year station. The second (S2)

uses the latest available onset date observed across the

41 years for the given combination station. The third

strategy (S3) replaces them with the mean onset date

computed from the combinations available for the given

year station. The effect of the replacement of the un-

defined onset dates is then estimated by comparing

(i) the spatial patterns associated with the first principal

components, (ii) the percentage of variance explained

by the first PCs, and (iii) the correlation between the first

PCs. A similar procedure is implemented for the cessa-

tion dates, using the same combinations as for the onset

dates but applied to the daily rainfall time series taken

FIG. 5. Multicombination array submitted to PCA with the 41 years and 56 experiments as observations and the 53

stations as variables.
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backward, that is, from June to February for the long

rains and from January to September for the short rains.

Figure 6 (right panels) shows the spatial patterns and

the percentage of variance explained associated with the

first PC (PC1) of the multicombination PCA. Results

are compared with those of a ‘‘monocombination PCA’’

(left panels) in which onset dates are defined using

a single combination of the N, P, and C parameters. In

the example displayed, fixed thresholds of N 5 2 days,

P 5 20mm, and C 5 20 days were retained. The data

array subjected to the monocombination PCA has

41 yr 3 1 experiment as observations and 53 stations

as variables.

For the short rains onsets (Figs. 6a,b), the spatial

structure of PC1 is similar with bothmethods. Except for

a few stations in western Kenya, the signal is quite spa-

tially uniform over the whole study area, with the

highest loadings along the Indian Ocean and in northern

Tanzania and somewhat lower ones on the eastern

slopes of Mount Kenya and near Lake Victoria. Wet

stations located in the Rift Valley for the short-rains

onset have the weakest loadings on the PC1 using the

monocombination. The loadings increase using the

multicombination approach, which implies that thresh-

olds retained in the monocombination are less suitable

to reveal the regional-scale signal present in the data.

FIG. 6. Spatial patterns of the first principal component of the (left) monocombination PCA and (right) multi-

combination PCA for the (top) short rains and (bottom) long rains. Gray (white) circles denote positive (negative)

loadings; size of the circles is proportional to the loading coefficients. The percentage of variance explained is in-

dicated in the title.

15 NOVEMBER 2013 BOYARD -M ICHEAU ET AL . 8923

Unauthenticated | Downloaded 09/30/21 07:27 AM UTC



There is also a substantial difference in the proportion of

variance explained by the two PC1: 39.3% for the multi-

combination against 26.3% for the monocombination

(Table 1). Part of this difference in the explained vari-

ance may be related to the filling of undefined onsets.

Indeed, Table 2 shows that using other methods to re-

place the undefined onset leads to lower percentages of

variance (note however that these percentages are quite

similar whatever the method used). The spatial patterns

associated with the first PCs of the monocombination

(Fig. 6c) and multicombination approach (Fig. 6d) also

look alike for the long-rains onset. Some northern

Kenyan dry stations show weaker loadings in the PCA

using the monocombination. As for the short rains, the

proportion of variance explained by PC1 is higher using

the multicombination approach (32.3%) than using only

one combination (26.7%). Whatever the technique used

to replace the undefined onset, the spatial patterns as-

sociated with the first PC are quite unchanged despite

that some station loadings decrease (not shown).

These results suggest that the PC1 based on the

multicombination is more efficient at extracting the

regional-scale component of the onset than when a

single, arbitrary combination of thresholds is used. This

finding is basically in the same vein as in numerical ex-

periments where an ensemble of multiple runs helps to

extract the reproducible signals. Here, any deviations

related to some specific parameterizations are partly

canceled out by the ensemble, and the redundant vari-

ability, already detected in the monocombination, is

emphasized since the same regional-scale variability is

repeated in each of the experiments while noise conveyed

by space and parameterization tends to cancel out.

These findings remain valid whatever the season and

the descriptor (onset or cessation) considered (Table 1).

Generally, northern stations receiving less rainfall than

the rest of the stations have a higher sensitivity to the

thresholds used to define onset and cessation dates.

Using less stringent thresholds is beneficial to the

detection of the onset and cessation dates for these dry

stations and contributes to increasing the signal of

regional-scale interannual variability and spatial co-

herence that does exist at these dry stations.

All experiments show a quite similar interannual

variability of the regional onset date over the period

1961–2001, as displayed by box plots of the PC1 scores

for each year (Fig. 7, with the ensemble mean in bold:

Fig. 7a for the short rains and Fig. 7b for the long rains).

The example of the short rains shows that in some years,

however, there are marked differences in the onset date

anomalies between the 56 experiments, as shown by the

wider boxes (e.g., in 1971, 1973, 1980, 1993, or 1995).

These years often correspond to abnormally dry sea-

sons, for which the influence of the rainfall thresholds

used to define the onset is more pronounced. Wet sea-

sons (e.g., in 1961, 1967, 1972, 1977, 1982, and 1997) are

characterized by a very small spread between the 56

experiments. Over the whole study area and the entire

period 1961–2001, the uncertainty, defined as the in-

ternal variance computed from the 56 PC1 scoring co-

efficients of each year, remains relatively weak (Table 1).

Finally, the method used to replace the undefined onset

date has a weak influence on the interannual variability

of the regional onset date over the period 1961–2001

(Table 2).

It is interesting to note that there is also a significant

relationship between the regional-scale onset dates and

the regional-scale seasonal amounts. Actually, the cor-

relation between the onset date ensemble means (thick

line) and the seasonal rainfall amount (average of the 53

stations, thin line) amounts to 20.69 for the short rains

and20.79 for the long rains, indicating that good (poor)

rainy seasons tend to start earlier (later).

It is obvious that the regional-scale signal obtained

with a multicombination analysis is valuable for fore-

casting studies because it emphasizes the maximum co-

variation between all the local onset dates and partly

eliminates variations due to parameterizations. Never-

theless, it is useful to assess which local-scale thresholds

maximize the correlation with the regional-scale onset,

TABLE 1. Percentage of variance (% var) carried by the first

principal component (PC1) of the monocombination and multi-

combination PCAs (see text) for the long rains and short rains

onset and cessation dates. The last line gives the internal variance

computed from the 56 scorings coefficients associated with the PC1

of the multicombination approach used to extract the regional

onset/cessation.

Long rains Short rains

Onset Cessation Onset Cessation

PC1-mono (% var) 26.7 14 26.3 31.5

PC1-multi (% var) 32.3 18.1 39.3 40.5

Vint 0.09 0.26 0.18 0.18

TABLE 2. Effect of the strategy of replacement of the undefined

onset dates on the percentage of variance (% var) carried by the

first principal component of the multicombination PCAs for the

short rains onset dates: r is the correlation between the interannual

variability of the regional onset date as retained in the study

(strategy S0) and the interannual variability of the regional onset

date as obtained from the three other strategies.

S0 S1 S2 S3

PC1 (% var) 39.3 26.4 28.6 26.7

r 1 0.89 0.85 0.88
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represented by the PC1 ensemble mean. Correlations

between each experiment (which represent the local-

scale onset dates), and PC1 ensemble mean (which

represents the regional-scale onset dates) are computed

for each station. The thresholds of the parameters P, N,

and C, defined in section 3b, that maximize the corre-

lation are plotted in Fig. 8. Additionally, an analysis of

variance of the correlations is carried out separately for

each station and each parameter. The aim is to test if

a significant part of the variance in the correlations is

explained by the threshold values. It is an indication as

to whether the given criterion is instrumental in the

onset determination.

Figure 8 shows that the interannual variance of local-

scale onset date is unequally influenced by the three

parameters P, N, and C. For both long rains and short

rains, the analysis of variance shows that P controls

significantly the interannual variability of onset for most

of the stations. This suggests thatP is a crucial parameter

to define onset. While C also plays a significant role at

most stations (Figs. 8c,f), N seems to be of marginal

influence (Figs. 8a,d).

The spatial patterns of the thresholds maximizing the

correlation between local-scale and regional-scale onset

dates are now examined. Parameter N, which varies

between 2 and 5 days, is characterized by a random

distribution over the whole study area (Figs. 8a,d). This

is consistent with the fact that N is generally not in-

strumental in the interannual variability of the onset, as

shown above by the analysis of variance. By contrast, P,

which varies from 10 to 50mm, shows a much more

distinctive geography (Figs. 8b,e). Although there are

some exceptions, high thresholds (30–50mm) tend

to prevail in the wet areas in the southwest and low

thresholds (10–20mm) in the dry areas (lowland stations

of the north and east). This spatial pattern is particularly

obvious for the short rains. Using high P thresholds in

dry areas leads to a large proportion of undefined onsets,

while too low thresholds in wet areas make any wet spell

a candidate onset, which is unrealistic when compared to

local knowledge, and results in a very small interannual

variability of the onset. This means that the multi-

combination approach intuitively takes into account

the climatological local-scale conditions. As regards C

which ranges from 20 to 30 days (Figs. 8c,f), in a majority

of cases, especially for the long rains), the use of a longer

control period (30 days) is more efficient in reflecting the

regional-scale onset. It is likely that the use of too short

control periods may in some cases fail to detect false

starts. False starts are generally local in character, being

FIG. 7. Interannual variability of onset dates over 1961–2001 for the (a) short rains and

(b) long rains, expressed as the standardized PC1 scoring coefficients for the multicombination

analysis. Box plots show the spread between the 56 experiments. The thick line is the mean

onset date computed from the 56 experiments, and the thin line shows the area-averaged

seasonal rainfall amount (mm).
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related to unseasonable early (local) rains instead of

a general shift of the rain belt. However, there are some

locations at which a 20-day control period is more in

phase with the regional-scale onset. This is particularly

so for the short rains and at dry locations for which rainy

seasons tend to be short, rainy events scattered, and the

onset is undetected when the control period is too long.

5. Conclusions

The main objective of this paper is to present a new

approach of extracting the regional-scale signal con-

tained in rainy season onset and cessation dates defined

at the local scale and based on multiple combinations of

rainfall parameters. The basic idea behind this new ap-

proach is similar to the multiple experiments run with

a general circulation model, where the different initial

conditions provide the noisy component, while the

identical boundary forcing provides the signal. By defi-

nition, the noise partly cancels out in the ensemble,

allowing the reproducible signal to emerge. In our case,

part of the dispersion in the rainy season onset attached

to the different combinations of the rainfall parameters

is a priori considered as noise, and the ensemble ap-

proach helps to detect the reproducible component

mostly independent of subjective thresholds and local-

scale contingencies. In other words, stations and differ-

ent parameters could be considered as experiments and

FIG. 8. Spatial distribution of the rainfall parameters that significantly contribute to the variability of the local onset dates and threshold

values at which the local onset date is best correlated to the regional-scale onset date (PC1, ensemble mean) for (top) short-rain and

(bottom) long-rain onset. Large italic numbers indicate stations at which a given parameter has a significant effect (95% confidence level)

on the interannual variability of the onset date, according to the F statistic obtained from a one-way analysis of variance of the correlations

with regional onset dates. The values themselves show the threshold value thatmaximizes the correlation between local and regional onset

dates ensemble mean.
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combining them would help to accurately define the

signal despite the shortness of the available period. This

reproducible signal should fit also more or less with

the predictable part of the variability at a seasonal or

medium-term time scale.

An elementary comparison of the onset dates com-

puted from two different commonly used definitions,

both based on local rainfall distribution, shows significant

differences in the rainy season onset dates. The first

definition, referred to as agroclimatic, requires a param-

eterization to detect the rainy season onset or cessation

relevant to crop growth and often creates high un-

certainties. This definition is characterized by a strong

sensitivity to mean rainfall abundance. The alternative

method based on accumulated rainfall anomalies is less

sensitive to dry conditions but is still sensitive to the

choice of the reference period used to compute anomalies

(season or year). Overall, even if discrepancies do not

occur every year, a unique definition of onset or cessation

is always opened to discussion. The determination of the

rainy season onset using this type of method is too de-

pendent on the local geographic and climatological con-

text. The new approach used is based on a set of several

combinations of three rainfall parameters (P, N, and C)

on which we apply a principal component analysis to

extract a regional-scale signal. Such a method allows us-

ing less stringent thresholds, which is beneficial to the

detection of the onset and cessation dates for specific

conditions (much drier or wetter than normal) and con-

tributes to increasing the signal of regional interannual

variability and spatial coherence. Moreover, the first PC

obtained from such a PCA takes into consideration the

maximum covariation among all local-scale onset dates.

It is therefore relevant for use in predictability studies, for

which a prerequisite is that the predictand (here the onset

or the cessation dates) shows enough spatial coherence

since purely local-scale variability is virtually unpredict-

able. The regional-scale onset date depicted by the first

PC is unequally influenced by the input rainfall parame-

ters used in the raw definition of the local rainy season

onsets. Whatever the season, the most critical parameter

is P, the amount received during the initial wet spell.

Moreover, P shows a distinctive geography that partly

reflects the mean seasonal rainfall gradients. Higher

thresholds (30–50mm) tend to prevail in wetter areas

and lower thresholds (10–20mm) in drier areas. While

the length of the control period C also plays a significant

role at most stations, the number N of consecutive days

forming the initial wet spell (from 2 to 5) seems less

influential.

The region over which the multicombination ap-

proach has been tested is a challenging one, with a wide

range of mean precipitation amounts and partially

distinct seasonal regimes. This suggests a good adapt-

ability to other monsoonal areas. However, the approach

does not completely alleviate the need for a calibration by

forecasters. Forecasters may choose the range of the

threshold panel that will be used for their study area

according to the range of mean climatic conditions within

the station network used and, possibly, the targeted ap-

plication (pasture growth, crop establishment, etc.). As

shown in section 4, a strong relationship exists between

the level of onset date uncertainty and the local climate

dryness. For a wet region, the decision makers can use

a relatively small range of thresholds for P and N for

example. For the drier areas, high thresholdsmay result in

a number of undetected onsets and are to be avoided as

much as possible, although further workmay be useful for

an automated selection of the optimal range of thresholds.

In East Africa there is no official meteorological defini-

tion of the rainy season onset, contrary to what is found in

India for instance (e.g., Joseph et al. 2006). Although it

may still be possible to define the onset of the rains over

East Africa based onmeteorological or dynamical criteria,

it would require a separate study. The use of the multi-

combination approach to determine the onset/cessation

date of the rainy season can be a good alternative to the

use of a meteorological-only definition (based on phe-

nomenon change in the wind flow pattern for instance),

which is of regional-scale, and an agroclimatic-only defi-

nition, which is based on local-scale conditions. This ap-

proach enables one to consider these two scales using

the local rainfall information to build an index depicting

a regional behavior in the onset of the rains.
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