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Fluctuation energies and stability criteria for

thermoacoustic instabilities: is the Rayleigh

criterion right ?
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Abstract

The Rayleigh criterion (which measures the correlation between pressure and heat
release) is the standard tool used to investigate and predict combustion instabilities
both in experimental and numerical studies. However, the Rayleigh term is just one
of the terms appearing in the acoustic energy equation. The recent development of
Large Eddy Simulations (LES) for combustion chambers allows to completely close
the budget and analyze all terms in this equation. This task leads to unexpected
difficulties and requires some basic work since multiple definitions of the energy of
fluctuations in a reacting compressible flow can be derived. The objective of this
paper is to revisit the theoretical derivations of the fluctuation energy equations.
Two forms of energy are defined: the first one is the classical acoustic energy (AE)
introduced by various authors [1− 3]. The second one is the fluctuation energy
(FE) presented by Chu [4]. Both equations are re- derived in a compact manner
starting from full non-linear forms. It is shown that the classical Rayleigh criterion
naturally appears as the source term of the AE equation while the FE form leads
to a different criterion stating that temperature and heat release must be in phase
for the instability to be fed by the flame/acoustics coupling. The FE form also
integrates the fluctuations of three variables (pressure, velocity and entropy) while
the AE form uses only pressure and velocity perturbations. It is shown that only
the FE form should be used in flames, in contradiction with many present studies
performed for combustion instabilities.
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1 Introduction

It has been known for a long time that the coupling between acoustic waves and
flames in industrial systems can lead to high amplitude instabilities [5, 6, 3]. In
addition to inducing oscillations of all physical quantities (pressure, velocities,
temperature, etc ...), these instabilities can increase the amplitude of the flame
motion and, in extreme cases, destroy part of the burner. A commonly used
criterion for assessing the stability of a combustor is the Rayleigh criterion [7],
which states that if pressure and heat release fluctuations are in phase, the
instability is fed by the flame/acoustics coupling. Formally, this criterion may
take the following form:

∫∫∫
Ω

p1q1dΩ > 0 (1)

where p1 and q1 stand for pressure and heat release fluctuations respectively
and Ω is the flow domain. The sign of the above integral may change with
the phase of the oscillation and Eq. 1 is often integrated over a period to
characterise the stability of the system at a given frequency.

The validity of the Rayleigh criterion can be discussed by introducing a more
general analysis tool: the budget of fluctuation energy. Such budgets require
the analysis of acoustic quantities such as acoustic fluxes through boundaries
and are impossible to construct experimentally. However, recent Large Eddy
Simulation tools [8− 11] have opened new possibilities in this field by giving
access to all unsteady variables at any grid point during combustion oscil-
lations. A better understanding of the underlying physics can be obtained
by using the fluctuation energy equation for analysing the LES (Large Eddy
Simulation) results rather than the Rayleigh criterion.

The objective of this paper is to present fundamental derivations of the fluctu-
ation energy equation and to discuss them in the framework of thermoacoustic
instabilities. A long-term motivation of this work is to provide the theoreti-
cal basis for LES analysis and understanding of combustion instabilities: by
closing the fluctuation energy equation in a given combustor, it is expected to
achieve progress similar to the landmark work performed for turbulence mod-
elling where the budgets of kinetic energy near walls have allowed an under-
standing of turbulent phenomena which was out of reach before [12, 13]. The
first step towards this ambitious goal is to derive the correct energy equation
and more importantly, to determine which energy should be used to measure
fluctuations in a reacting compressible flow: this apparently rarely studied
topic is the objective of the present work.
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Section 2 first shows how the classical acoustic energy (AE) equation is ob-
tained by linearizing a global energy equation directly deduced from the
Navier-Stokes equations and how the Rayleigh criterion enters this budget
as one of the source terms. The validity of the Rayleigh criterion is then dis-
cussed in terms of energy budget. While the AE equation of Section 2 has
been discussed and used by various authors, Section 3 actually shows that
this is not the adequate form to be used in reacting flows and proposes an
extended formulation. This formulation, called here fluctuation energy equa-
tion (FE equation) was first introduced by Chu [4] but is obviously not very
known in the combustion community: it accounts for entropy fluctuations and
leads to a new criterion for thermoacoustic instabilities. It is rederived in a
more compact way here and corrected for terms missing in Chu’s derivation
in Section 3.

2 The acoustic energy (AE) equation

The derivation leading to the classical form of the acoustic energy equation
usually starts from the linearized equations for density and velocity and com-
bines them to form an energy [4, 1, 3, 2]. Here a different path is followed: a
non-linear equation for ”energy” is first derived from the Navier-Stokes equa-
tions and is linearized afterwards.

2.1 A non linear ”energy” equation in reacting flows

To simplify the derivation, all species are supposed to share the same mo-
lar weight and constant heat capacities. This assumption is not necessary to
derive the generalized acoustic energy equation although it makes the alge-
bra simpler. It is valid for air flames but must be revisited for the case of
H2 − O2 mixtures for example. In what follows, D/Dt stands for the par-
ticular (total) derivative while ρ, ~u, T , P and s are the density, velocity,
temperature, pressure and entropy per unit mass of mixture respectively. Cp

and Cv are the usual heat capacity (per unit mass) at fixed pressure and

volume respectively. Moreover, ~~τ is the stress tensor whose components are
τij = µ(∂ui/∂xj + ∂uj/∂xi) − 2/3δijdiv(~u) and µ is the dynamic viscosity. λ
is the heat diffusivity and γ = Cp/Cv and r = Cp − Cv are the mass heat
capacities ratio and difference. Note that the viscous terms (molecular diffu-
sion of momentum and heat) are kept in the present analysis although they
are usually neglected for the analysis of acoustic perturbations. The reason
is that their inclusion leads to a simple justification for the extended fluctua-
tion energy as shown in section 3. They are neglected in the different stability
criteria discussed throughout the paper.
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Under the above assumptions, the momentum equation reads:

ρ
D~u

Dt
= −~∇P + ~∇ · ~~τ (2)

Taking the dot product of Eq. 2 with ~u, one obtains directly:

ρ
D~u2/2

Dt
+∇ · (P~u) = P∇ · ~u + ~u · (~∇ · ~~τ) (3)

In order to obtain an energy-like term for pressure at the LHS, it is convenient
to use the transport equation for pressure in order to express the pressure
dilatation term in Eq. 3. This equation can be obtained using the sensible
energy equation [3]:

ρ
Des

Dt
= −P∇ · ~u + q +∇ · (λ~∇T ) + ~~τ :

~~∇~u (4)

together with the continuity equation Dρ/Dt = −ρ∇ · ~u and the classical
relation ρes = P/(γ − 1) valid for perfect gas. It reads:

DP

Dt
= −γP∇ · ~u + (γ − 1)

(
q +∇ · (λ~∇T ) + ~~τ :

~~∇~u
)

(5)

where q is the rate of heat release by unit of volume. Injecting Eq. 5 into Eq.

3 and introducing the speed of sound c =
√

γP/ρ yields:

ρ
D~u2/2

Dt
+

1

ρc2

DP 2/2

Dt
+∇ · (P~u) =

γ − 1

γ
(q +∇ · (λ~∇T ) +~~τ :

~~∇~u) + ~u · (~∇ · ~~τ) (6)

The LHS of this equation is formally close to the classical equation for the
acoustic energy. One should stress however that it is exact, non-linear and
remains valid for any fluctuations of the pressure and velocity fields.

2.2 Linearization and acoustic energy

Eq. 6 can be linearized as follows: consider the simple case of small amplitude
fluctuations (index 1) super-imposed to a zero Mach number mean flow (index
0). The instantaneous pressure, density and velocity fields can then be written
as P = p0 + p1, ρ = ρ0 + ρ1 and ~u = ~u1 where p1 � p0, ρ1 � ρ0 and ~u2

1 � c2
0,
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where c0 =
√

γP0/ρ0 is the mean speed of sound. For simplicity, the temporal
fluctuations of the diffusivity, viscosity and heat capacities are neglected. Note
that the zero Mach number assumption for the mean flow implies ~∇p0 = 0
(from Eq. 2) and q0 +∇ · (λ~∇T0) = 0 (from Eq. 4 ). It also implies that the
approximation D/Dt ≈ ∂/∂t holds for any fluctuating quantity since, with
u0 = 0, the non linear convective term is always of second order. Thus Eq. 5
becomes an equation for the pressure fluctuations :

Dp1

Dt
= −γP∇ · ~u1 + (γ − 1)

(
q1 +∇ · (λ~∇T1) + ~~τ 1 :

~~∇~u1

)
(7)

With P = p0 + p1, it is clear that P 2 = p2
0 + 2p0p1 + p2

1 and an estimation of
D(P 2/2)/Dt = p0Dp1/Dt + D(p2

1/2)/Dt is:

DP 2/2

Dt
' ∂p2

1/2

∂t
− γPp0∇ · ~u1

+p0(γ − 1)
(
q1 +∇ · (λ~∇T1) + ~~τ 1 :

~~∇~u1

)
(8)

This equation is valid to third order because ~u1 · ~∇p2
1 was neglected in front

of ∂p2
1/∂t. It further implies that :

1

ρc2

DP 2/2

Dt
' 1

ρ0c2
0

∂p2
1/2

Dt
− p0∇ · ~u1

+
γ − 1

γ

(
1− p1

p0

)(
q1 +∇ · (λ~∇T1) + ~~τ 1 :

~~∇~u1

)
(9)

Moreover, approximating the total derivative of ~u2 by its partial derivative
and neglecting higher order terms, the following third order approximation of
the first term of Eq. 6 can be obtained easily:

ρ
D(~u2/2)

Dt
≈ ρ0

∂(~u2
1/2)

∂t
(10)

The mean pressure P0 being constant over space and the mean velocity being
u0 = 0, the following expression holds for the flux term of Eq. 6:

∇ · (P~u) = p0∇ · ~u1 +∇ · (p1~u1) (11)

Finally, injecting Eqs. 9, 10 and 11 into Eq. 6, the following equation is derived:

∂e1

∂t
+∇ · (p1~u1) =

γ − 1

γp0

(
q1 +∇ · (λ~∇T1)

)
p1 + ~u1 · (~∇ · ~~τ 1) (12)
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which is a conservation equation for the classical acoustic energy:

e1 = ρ0~u
2
1/2 +

1

ρ0c2
0

p2
1/2 (13)

Neglecting the viscous terms gives the classical equation for the acoustic energy
[3]:

∂e1

∂t
+∇ · (p1~u1) =

γ − 1

γp0

p1q1 (14)

The expected Rayleigh term (p1q1) appears as a source term on the RHS of
this equation. The first obvious observation is that the acoustic energy growth
rate depends on the Rayleigh term but also on the acoustic fluxes ∇· (p1~u1) so
that, according to Eq. 14, the Rayleigh criterion is only a necessary condition
for instability to occur. If Eq. 14 is integrated over the whole combustor Ω, a
more proper instability criterion is obtained stating that the combustor will
oscillate (the total acoustic energy will grow) if:∫∫∫

Ω

γ − 1

γp0

p1q1dΩ >
∫∫

Σ

p1~u1dΣ (15)

or, in other words, if the source term due to combustion is larger than the
acoustic losses on the combustor inlets and outlets surface Σ. The practical
implication of Eq. (15) is that the classical Rayleigh criterion should not be
used alone but should include also acoustic losses. This task is difficult in
experiments since it requires the evaluation of acoustic fluxes p1~u1 on the
boundaries of the burner but it can be done in LES. A first closure of Eq. 14
was performed for the first time in a self-excited combustor in 2004 by Martin
et al [14] and showed similar order of magnitudes for the Rayleigh term and
the acoustic losses.

Since no assumption has been made for defining the small amplitude fluc-
tuations (except that they are indeed small compared to the characteristic
scales), Eq. 12 describes a priori the evolution of the energy associated to the
three classical types of disturbances put together (acoustic, entropy, vorticity).
However, as a direct consequence of the zero Mach number assumption, the
pulsation ω 1 associated with the entropy and vortical modes is zero, corre-
sponding to spatial disturbances which do not oscillate over time. Thus the
present analysis essentially deals with acoustic perturbations. However, we
shall see in the next section that the fluctuating flow is not isentropic and
that an extended energy form is required.

1 indeed ω = ku0 where k is the wavenumber of the perturbation and u0 = 0 under
the zero Mach number assumption.
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3 The fluctuation energy (FE) equation

3.1 Why the AE (acoustic energy) form should not be used in flames

Eq. 12 is a valid equation for e1 but there is no evidence that this is the relevant
quantity to describe the level of fluctuations in a turbulent reacting flow.
Actually, the following simple example suggests that e1 is not an appropriate
measure of the fluctuation activity in a non-isentropic flow. Let us consider
an hypothetical flow which initially contains only entropic linear fluctuations
but no acoustic waves. The amount of AE associated with this ”Flow 1”
would be exactly zero since no velocity/pressure fluctuations are associated
with the entropy mode (see Eq. 13). Hence ”Flow 1” would be given the
same amount of energy as the corresponding steady flow. A more disturbing
observation is that, taking Flow 1 as an initial condition, it is easy to show that
e1 would increase as soon as the diffusivity λ is not zero, even in the absence
of combustion: indeed, in this simple non-reacting but initially non-isentropic
flow, Eq. 7 shows that p1 cannot remain zero since∇·(λ~∇T1) 6= 0 if an entropy
fluctuation exists initially. Hence e1 increases at time t = 0 while the amount
of fluctuations present in the flow necessarily decreases due to diffusivity. This
result is clearly not satisfactory and shows that the classical acoustic energy
defined by Eq. 13 is inadequate in a non-isentropic flow. In his paper, Chu [4]
gave a tentative definition of what should be a fluctuation energy in such flows
and insisted that it must decrease when viscosity/diffusivity effects cannot be
neglected: this definition obviously does not apply to the AE form of Eq. 13.
The fact that the quantity e1, which comes from classical acoustic theory, is
not relevant to purely entropic fluctuations is not very surprising. This means
however that another quantity should be used in the case of reacting flows in
order to characterise the global amount of fluctuations properly and that this
energy should include entropy fluctuations.

3.2 An extended fluctuation energy

A natural way to proceed is then to start from Eq. 6 and combine it with an
equation for entropy. Starting from the Gibbs equation:

Tds = CvdT − P

ρ2
dρ = des −

P

ρ2
dρ (16)
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and using the continuity equation, the state equation (p = ρrT ) as well as Eq.
4 leads to:

Ds

Dt
=

r

P

(
q +∇ · (λ~∇T ) + ~~τ :

~~∇~u
)

(17)

Multiplying Eq. 17 by Ps/rCp and adding it to Eq. 6 directly gives:

ρ
D~u2/2

Dt
+

1

ρc2

DP 2/2

Dt
+

P

rCp

Ds2/2

Dt
+∇ · (P~u) =

s + r

Cp

(
q +∇ · (λ~∇T ) + ~~τ :

~~∇~u
)

+ ~u · (~∇ · ~~τ) (18)

This equation is exact and can be linearized like Eq. 6 in section 2.2. Suppose
that an entropy perturbation of small amplitude s1 is super-imposed to the
mean flow s0. Then, since Ds0/Dt = ~u1 · ~∇s0, Eq. 17 gives

Ds1

Dt
=

r

P

(
q1 +∇ · (λ~∇T1) + ~~τ 1 :

~~∇~u1

)
− ~u1 · ~∇s0 (19)

so that, with

Ds2/2

Dt
=

Ds2
1/2

Dt
+

Ds1s0

Dt
+

Ds2
0/2

Dt
(20)

the following equation holds to third order:

P

rCp

Ds2/2

Dt
' P0

rCp

∂s2
1/2

∂t
+

1

Cp

(
q1 +∇ · (λ~∇T1) + ~~τ 1 :

~~∇~u1

)
+

P0

rCp

s1~u1 · ~∇s0(21)

The other terms of the LHS of Eq.18 have already been linearized in section
2.2 and, keeping only the second order terms, the linearized form of Eq. 18
becomes an equation for the fluctuation energy (FE equation) etot:

∂etot

∂t
+∇ · (p1~u1) =

T1

T0

(
q1 +∇ · (λ~∇T1)

)
− P0

rCp

s1~u1 · ~∇s0 + ~u1 · (~∇ · ~~τ 1) (22)

where etot is defined by:

etot = ρ0~u
2
1/2 +

1

ρ0c2
0

p2
1/2 +

P0

rCp

s2
1/2 (23)
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Equation 22 was first derived by Chu [4] except for the term in ~∇s0 which
vanishes in the case where the mean flow entropy s0 is uniform over space.
It generalizes the classical acoustic energy (AE) form (Eq. 6) to the case
of entropy/acoustic fluctuations and degenerates naturally to it in isentropic
flows. Note that, in the general case, this FE (fluctuation energy) form must
integrate the fluctuations of three variables p1, u1 and s1 while the acoustic
energy e1 included only two. 2 The fact that entropy is present in this extended
energy does not mean that the entropy mode of fluctuation has been added to
the analysis. Indeed, the zero Mach number was still used for the linearization
process leading to the extended form Eq. 23. This means that only acoustic
fluctuations are oscillating over time because the entropy and vortical modes
correspond to the null frequency. However, Eq. 19 shows that the acoustic
modes are not isentropic when unsteady heat release and/or mean entropy
gradient are present. The extended form of the fluctuation energy is a natural
way of accounting for this property.

Integrated over space, this equation suggests that the classical Rayleigh cri-
terion

∫∫∫
V p1q1dV should be replaced by

∫∫∫
V T1q1dV in order to characterize

the stability of a combustor. Specificaly, the global fluctuation energy in the
system grows when (neglecting viscous effects):

∫∫∫
Ω

(
T1q1

T0

− P0

rCp

s1~u1 · ~∇s0

)
dΩ >

∫∫
Σ

p1~u1 · ~ndΣ (24)

This criterion extends the classical Rayleigh criterion to the case where the net
energy flux at the boundaries cannot be neglected and the entropy fluctuations
are significant. It also extends the initial equation of Chu to the case where the
entropy field is not constant over space, which is always the case when combus-
tion occurs. The second term of the LHS was not present in the Chu’s paper [4]
and does not seem to have been discussed earlier. It describes how the overall
fluctuation energy decreases when a positive fluctuation of entropy (s1 > 0)

is convected towards region with larger mean entropy (~u1 · ~∇s0 > 0), which is
an expected result. A rough estimate of the order of magnitude of this term
(without accounting for the phase shifts between the different terms) can be
obtained as follows. Under the zero Mach number assumption, the mean pres-
sure field P0 is constant so that ~∇s0 = Cp/T0

~∇T0. Moreover, |u1| ∝ |p1|/ρ0c0

for acoustic perturbations and, assuming that the main source of entropy fluc-
tuations is the unsteady heat release, one obtains ω|s1| ∝ r|q1|/P0, where ω

is the pulsation. Introducing Lf = |~∇T0|/T0, the characteristic thickness of
the flame brush, and λ = 2πc0/ω, the characteristic acoustic wavelength, the

maximum (assuming optimal phase shifts) order of magnitude of the ~∇s0 term
in Eq. 24 is given by |p1||q1| × λ/(2π(γ− 1)Lf )× (γ − 1)/γP0. The equivalent

2 Another expression for etot is: etot = ρ0~u
2
1/2 + c20

γρ0
ρ2
1/2 + ρ0Cv

T0
T 2

1 /2.
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estimate of the classical Rayleigh term in Eq. 15 leads to (γ − 1)|p1||q1|/γP0.
Since Lf can be much smaller than λ, this means that the additional term
related to the non uniform mean entropy field is potentially larger than the
classical Rayleigh term. Specific post-processing of unsteady LES data will be
necessary to address this issue more precisely.

More generally, the derivation of Eq. 24 shows how arbitrary the stability
criteria can be since their form depends on the choice of the energy used to
characterize the fluctuations. This issue is discussed in the next section.

3.3 About the choice of an energy form

At this point, two energies (Table 1) have been defined, leading to two differ-
ent equations (Table 2) but also to different instability criteria (Eq. 15 and
24). Table 3 compares these criteria with the classical Rayleigh criterion in
the simplest case where heat diffusivity and viscosity are both zero and mean
entropy s0 is constant. The criteria are also integrated with time over a period
of the instability τ . The first form (AE) leads to a stability criterion (Eq. 15)
extending the Rayleigh criterion while the second one (FE) leads to a criterion
(Eq. 24) which is very different. Interestingly, the AE Rayleigh criterion pre-
dicted instability when pressure and heat release fluctuations were in phase
while the FE criterion requires temperature and heat release to be in phase.

A relevant question is then to determine which of these two forms is the most
adequate. This can be done by pursuing the simple test case mentioned in
Section 3.1: consider a domain with zero fluxes on boundaries and no combus-
tion source term. A ’good’ energy, according to Chu’s definition[4] should only
decrease in this situation and this decrease should be caused by dissipation.
For simplification, the thermal diffusivity and molecular viscosity are assumed
to be constant for this exercice and the gradients of the mean entropy s0 and
heat capacity ratio γ are neglected. Starting from the equations of Table 2,
integrating over the whole domain and setting q1 and all boundary fluxes to
zero leads to the following equations:

∂

∂t

∫∫∫
Ω

e1dΩ = −λ
γ − 1

γp0

∫∫∫
Ω

~∇p1 · ~∇T1dΩ−
∫∫∫

Ω

~~τ 1 :
~~∇~u1dΩ (25)

and

∂

∂t

∫∫∫
Ω

etotdΩ = − λ

T0

∫∫∫
Ω

(~∇T1)
2dΩ−

∫∫∫
Ω

~~τ 1 :
~~∇~u1dΩ (26)

The last term at the RHS is shared by both energy forms and is always negative
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since it is the classical dissipation function related to the velocity fluctuations.
This means that both e1 and etot decrease when only viscosity is present. This
is however not the case when only diffusivity is present and Eq. 25 and 26 pro-
vide a better understanding of Chu’s criterion to choose an energy definition:
if the flow is isentropic, pressure (p1) and temperature (T1) fluctuations are
in phase and the RHS term of Eq. 25 is always negative so that the acoustic
energy (AE) form e1 is a proper estimate of energy. In all other cases, however,
the RHS term of Eq. 25 can take any sign, increasing or decreasing the energy
and making the AE form e1 a quantity of limited interest. On the other hand,
the RHS term of Eq. 26 is a truly dissipative term in all flows, even if they
are not isentropic. This suggests that only the FE form of the energy should
be used in flames. Whether this linearized form is valid in flames which ex-
hibit very large entropy fluctuations remains to be checked. Post-processing
of LES fields of compressible reacting turbulent flows will also be needed to
estimate the magnitude of the different terms of the criterion derived for the
FE form, Eq. 24. Specifically, such data would be necessary to precise the
behavior of the T1q1 term with respect to its classical p1q1 counterpart as well
as the magnitude of the term related to the mean entropy gradient.

4 Conclusion

This paper describes the construction of conservation equations for fluctuation
energies in reacting flows. The AE (Acoustic Energy) form is first constructed
starting from a non-linear energy equation. It is shown that the usual Rayleigh
term is the source term of this equation but that another term (acoustic losses)
plays a significant role in the budget of this equation. Second, it is shown that
the AE form is insufficient to describe fluctuations in flames where entropy
waves play a role. A new energy (FE for Fluctuation Energy) is defined and its
conservation equation is derived. This equation shows that a different stability
criterion is obtained in which temperature and heat release must be in phase to
trigger the instability, while the Rayleigh criterion predicted instability when
pressure and heat release are in phase. Another source term due to entropy
gradients is also exhibited. These fundamental equations are believed to be
building blocks to analyze results produced by recent compressible Large Eddy
Simulations of turbulent flames in which all terms of the energy equations can
be examined. On the long term, closing budgets of fluctuation energies in
LES of unstable combustors could impact the understanding of combustion
instabilities like budgets of turbulent kinetic energy did for turbulence near
wall-bounded flows [12, 13] fifteen years ago.
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Tables

AE e1 = ρ0~u
2
1/2 + 1

ρ0c20
p2
1/2

FE etot = ρ0~u
2
1/2 + 1

ρ0c20
p2
1/2 + P0

rCp
s2
1/2

Table 1
Definitions of the Acoustic Energy (AE) and of the Fluctuation Energy (FE).

AE ∂e1
∂t +∇ · (p1~u1) = γ−1

γp0

(
q1 +∇ · (λ~∇T1)

)
p1 + ~u1 · (~∇ · ~~τ1)

FE ∂etot
∂t +∇ · (p1~u1) = T1

T0

(
q1 +∇ · (λ~∇T1)

)
− P0

rCp
s1~u1 · ~∇s0 + ~u1 · (~∇ · ~~τ1)

Table 2
Conservation equations for the Acoustic Energy (AE) and Fluctuation Energy (FE).

Classical Rayleigh
∫∫∫

Ω p1q1dtdV > 0

Extended Rayleigh (γ−1)
γp0

∫∫∫
Ω p1q1dtdV >

∫∫
Σ p1~u1 · ~ndΣ

Chu 1
T0

∫∫∫
Ω T1q1dtdV >

∫∫
Σ p1~u1 · ~ndΣ

Table 3
Summary of criteria for combustion instability for zero thermal diffusivity, zero
viscosity and constant mean entropy. These criteria should also be integrated over
time but this integration is not indicated here for clarity.
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