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Abstract

Recent applications of remote sensing techniques produce rich spa-
tially distributed observations for flood monitoring. In order to improve
numerical flood prediction, we have developed a variational data assimi-
lation method (4D-var) that combines remote sensing data (spatially dis-
tributed water levels extracted from spatial images) and a 2D shallow
water model. In the present paper (part I), we demonstrate the efficiency
of the method with a test case. First, we assimilated a single fully observed
water level image to identify time-independent parameters (e.g. Manning
coefficients and initial conditions) and time-dependent parameters (e.g.
inflow). Second, we combined incomplete observations (a time series of
water elevations at certain points and one partial image). This last con-
figuration was very similar to the real case we analyze in a forthcoming
paper (Part II). In addition, a temporal strategy with time overlapping is
suggested to decrease the amount of memory required for long-duration
simulation.

1 Introduction

Numerical flood models based on two-dimensional shallow water equations (St-
Venant equations) are widely used to analyze flood events or the effects of flood
control projects. Computational codes that numerically simulate such surface
flows are becoming more and more efficient and accurate. Nevertheless, in order
to run reliable numerical simulations, one must calibrate the model parameters
and know the boundary conditions (e.g. incoming discharge) and initial condi-
tions. In river hydraulics, the parameter most often calibrated is the Manning
roughness coefficient. Typically, one uses the trial and error method to cali-
brate this spatially distributed parameter. Available observations are only used
to validate the numerical results a posteriori. Calibration ”by hand” can be
time-consuming and successful simulation depends strongly on expert experi-
ences in most cases.
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The variational data assimilation method (4D-var) based on the optimal con-
trol theory of partial differential equations is a powerful tool for optimally fusing
measurements and the mathematical model. On the one hand, this method al-
lows for sensitivity analysis, which can greatly help the expert-user to calibrate
”by hand” (computation of a gradient). On the other hand, it offers an optimal
way of identifying some input parameter values using an optimization procedure.
The optimization procedure minimizes the discrepancy between data and the
model response. This approach, based on the derivation of an adjoint model,
has proven its efficiency in operational meterology (see [17],[4] for pioneering
articles), and more recently in operational oceanography.
In river hydraulics, variational data assimilation methods have been used suc-
cessfully for one-dimensional and two-dimensional shallow water equations in
[1, 5, 2, 23, 3, 11, 7, 12, 13].

Also, models have been calibrated using the GLUE method [16] or, in the
case of one-dimensional equations, Kalman filtering approach [9, 20].
More and more observation data are now available, especially with modern re-
mote sensing techniques. The full potential of heterogeneous observations has
not yet been reached. If good corresponding observation operators are defined,
then variational data assimilation methods can fuse heterogeneous observations
and the mathematical model.

In this paper, we show the potential utility of the variational data assimila-
tion method in river hydraulics if spatially distributed water levels are available.
Such observations can be extracted from satellite images [15, 22]. We show how
the images can help identify some unknown input parameters and optimally fit
the computed flow and observed water levels. The use of a remote sensing im-
age for a Moselle river (France) flood event is described in a forthcoming article
(Part II).

The paper is organized as follows. Section 2 describes the flow model:
two-dimensional shallow water equations. The adjoint model, the full optimal
control process and its implementation are presented in Section 3. Section 4
presents a test case and a definition of the total cost function for assimilation of
spatially distributed water levels. In Section 5, special attention is given to an
extra penalty term in the cost function and the improvement of the identifica-
tion process. In Section 6, we describe the identification of initial conditions or
inflow discharge from ”full images”, i.e. images that provide water levels every-
where in the domain at a single instant. In Section 7, we address the problem
of the identification of inflow discharge when only one partial image is available,
along with pointwise measurements of water level from a gauging station in the
main channel. Finally, because long-term simulations can be hindered by limited
memory, we present in Section 8 a temporal strategy that includes overlapping
to identify time-dependent parameters with a lesser memory requirement.
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2 Two-dimensional flood model

2.1 Basic equations

Shallow water equations(2D-SWEs) effectively model the flooding process in a
floodplain or wetland. Their conservative form is (see e.g. [26]):

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= B(U) (1)

where x and y are the space coordinates, t is time, U is the state of the flow, F

and G are the x- and y-directional flux vectors and B is the source-term vector.
These vectors are defined as follows:

U = (h, hu, hv)
T

= (h, qx, qy)
T

(2)

F = (hu, hu2 +
1

2
gh2, huv)T (3)

G = (hv, huv, hv2 +
1

2
gh2)T (4)

B = (0, gh(S0x − Sfx), gh(S0y − Sfy)T (5)

where h is the water depth, u and v are the velocity components, qx = hu
and qy = hv are the unit discharge components, S0x and Sfx are the bed and
friction slopes respectively along x, and similarly S0y and Sfy along y. The
friction slopes are evaluated using the Manning formula:

Sfx =
n2qx

√

(qx)2 + (qy)2

h7/3
, Sfy =

n2qy

√

(qx)2 + (qy)2

h7/3
(6)

where n is the Manning coefficient.
To simulate the flood event with 2D-SWEs, initial conditions and boundary
condition must be defined. Initial conditions are:

U0 =
(

h|t=t0
, qx|t=t0

, qy|t=t0

)T

(7)

The boundary conditions are as follows:

• At upstream boundaries, the normal discharge qn(t) and the normal gra-
dient of elevation ∂h

∂xn
are imposed,

• At open downstream boundaries, elevation h(t) is imposed,

• At land (wall or closed) boundaries, the normal discharge and the normal
gradient of elevation are imposed to vanish:

qn = 0 and
∂h

∂xn
= 0 (8)
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2.2 Numerical method

The 2D-SWEs (1)-(8) are solved using DassFlow software, [11]. The numerical
scheme is a finite volume scheme, implemented on an unstructured mesh (tri-
angles and/or quadrilaterals). The solver uses the rotational invariant property
of the equations, then it uses a local 1D HLLC Riemman solver [26] with a con-
sistent intermediate wave speed, [6]. It has first-order accuracy in space but a
high resolution for flow discontinuity. Time discretization is done using the for-

ward Euler scheme so a stability condition must be respected: ∆t ≤ min(dL,R)
max(|un|+c) ,

where dL,R is the distance between two cell centerse and un is the normal vector
at interface.
The friction source term in momentum equations is semi-implicit in time [11].

Wetting and drying process are taken into account as follows, see e.g. [26]
and [27]. Within the framework of unstructured finite volume methods, one very
small water depth denoted by hǫ is considered the tolerance for determining the
dynamic boundary of a cell interface in the flood front, across which the normal
fluxes are calculated using corresponding methods. The values of water depth
hL, hR on both sides of the calculated cell interface are checked at each time
step. There are three possibilities:

• If both values are zero (in this study, water depths less than hǫ = 10−4 m
are considered zero), we consider the cell dry and zero mass and momen-
tum fluxes are simulated.

• If only one of them is zero, the normal fluxes are calculated with an an-
alytic solution (formula of weir equation, see e.g. [27] p. 876 for more
details)

• If neither of them are zero, the fluxes are calculated using the normal
HLLC scheme.

3 Variational data assimilation method

The variational data assimilation method (also called the 4D-var method) is
based on the optimal control theory, [18]. It provides an optimal way of fitting
the model to observations by calibrating some model parameters, see e.g. [17, 4]
for pioneering articles in which the method is applied to meteorological studies.
We apply the method to 2D-SWEs in order to identify hydraulic parameters.
The method is based on the minimization of a cost function that measures the
discrepancy between the available observations and the computed flow state.
The original code (the forward code) has been converted into a more general
code which includes the forward model, the adjoint model and an optimization
process. The adjoint model is backward in time and includes the observations
as source terms.
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3.1 Adjoint model and optimality condition

A general cost function J is defined as follows:

J(p) =

∫ T

0

∫

Ω

φ(Up,Uobs,p)dΩdt (9)

where φ is a smooth functional measuring the discrepancy between the simulated
state and the observations and Up is the solution of 2D-SWEs (1)-(8). In the
trivial case where observations Uobs are the state variables observed everywhere
and at any time, we set:

φ(Up,Uobs,p) = ‖Uobs − Up‖2 (10)

Hence J depends on the control variables p via the state variables Up. It is an
optimal control of 2D-SWEs. The control variable p can be the initial condi-
tion, the Manning coefficient, the bed elevation, boundary water levels and/or
discharge. In the most general case, p = (U0, n, Zb, qΓ, hΓ)T . Of course, in
practice one cannot identify every parameter at the same time and p contains
one or only few of these variables.
In the next section, we detail the cost functions we consider. In particular we
present some extra penalty terms useful in helping the minimization process
converge to better calibrate model.

The cost function is minimized using a local descent algorithm (first order
method). Thus, we need to compute the gradient of J . We compute it classically
by introducing the adjoint state U∗ (solution of the adjoint state model) [18]:

∂U∗

∂t
+

∂F

∂U

T ∂U∗

∂x
+

∂G

∂U

T ∂U∗

∂y
= −∂B

∂U

T

U∗ +
∂φ

∂U
(11)

where U∗ = (h∗, q∗x, q∗y)T is the adjoint state,

∂F
∂U

T
=





0 −u2 + c2 −uv
1 2u v
0 0 u





∂G
∂U

T
=





0 −uv −v2 + c2

0 v 0
1 u 2v





∂B

∂U

T

=







0 gS0x + 7
3gSfx gS0y + 7

3gSfy

0 −gSfx
2u2+v2

u(u2+v2) −gSfy
u

u2+v2

0 −gSfx
v

u2+v2 −gSfy
u2+2v2

v(u2+v2)







These equations are closed with the final time condition:

U∗|t=T = (0, 0, 0)T (12)

and the following boundary conditions:

• at inflow discharge boundaries and land boundaries,

q∗n = 0 and
∂h∗

∂xn
= 0 (13)
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• and at water level boundaries,

(h∗ + 2unq∗n) = 0 and q∗τ = 0 (14)

where τ is the tangential unit vector.

Using the adjoint state, we obtain an expression of the gradient of J inde-
pendently of δU, the derivative of the state with respect to p. The components
of the gradient are the following:

• derivative with respect to the initial condition U0

▽U0J =
∂φ

∂U0
− U∗|t=0 (15)

• derivative with respect to the Manning coefficient n

▽nJ =
∂φ

∂n
−

∫ T

0

∂B

∂n

T

U∗dt (16)

where
∂B

∂n

T

=

(

0,− 2

n
ghSfx,− 2

n
ghSfy

)

• derivative with respect to the bed elevation Zb

▽Zb
J =

∂φ

∂Zb
−

∫ T

0

gh(
∂q∗x
∂x

+
∂q∗y
∂y

) (17)

• and derivative with respect to the boundary conditions

1. discharge qΓ

▽qΓ
J =

∂φ

∂qΓ
+ h∗ (18)

2. water depth hΓ

▽hΓ
J =

∂φ

∂hΓ
+ (gh − u2

n)q∗n (19)

Generalized model. Finally, we obtain a ”generalized model” containing the
2D-SWEs (1) (the forward model), its adjoint model (11) and the necessary
optimality condition δJ = 0, see e.g. [17]. This generalized model contains
the observations since they are integrated into the source term φ of the adjoint
model. The solution of this generalized model provide an optimal fit of the
simulated state and the observations; this leads to the calibrated model we
seek.
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3.2 Full optimization process and DassFlow software

The generalized model described previously is implemented into the software
DassFlow, [11]. DassFlow is a software dedicated to variational data assimila-
tion and coupling as applied to river hydraulics. For simulatenous coupling1D-
2D flows models and data assimilation we refer to [21].
The L-BFGS algorithm [8] is used for minimization. The adjoint solver is not
obtained by discretizing the equations (11) , using a finite volume scheme, for
example, but by directly differentiating the source code, which solves the for-
ward model 2D-SWEs (1). The code differentiation is done using the automatic
differentiation tool Tapenade, [10].

The global optimization process can be summarized as follows: given an
initial guess of the control variable p0,

1. the forward model 2D-SWEs (1) (finite volume scheme) are solved, and
the cost function J is computed – this is the forward code;

2. the adjoint code (obtained by automatic differentiation) is run – this gives
the adjoint state and the gradients of J ;

3. a new control variable value pk is computed using the iterative minimiza-
tion algorithm (L-BFGS algorithm, M1QN3 subroutine, [8]);

4. and it is verified that the solution has converged. If the solution has not
converged, it is necessary to return to step 1 with the new control variable
value pk.

The stop criteria is:
‖ ▽ Jk‖
‖ ▽ J0‖

≤ ǫ (20)

where ‖▽Jk‖ and ‖▽J0‖ are the gradient norm at the initial and current
iteration step k respectively, and ǫ is a small value (typically 10−4).

4 Test case and cost function

The efficiency of the proposed method was evaluated through a test case.This
test case (described below) contains all the main features of a real case we
consider in a forthcoming paper (Moselle River, Part II, see [14]). There are
two main reasons to elaborate on our method for a test case:

1. We consider twin experiments. Giving the ”unknown” set of parameters,
we create the observations numerically. Then, the generated accurate
observations are assimilated into model to retrieve this ”unknown” set of
parameters. Therefore, through twin experiments, it can be easily verified
the accuracy of the method.

7



Let us add that observations are perfect since they arise from the model.
In real cases, models are not perfect and fitting their response with (real)
observations generates extra difficulties.

2. A set of observations helps us understand what we can and cannot expect
in terms of parameter identification/calibration. Typically, we cannot
expect to identify all parameters, boundary conditions and Manning co-
efficients through the same process. Also, the test case flood duration is
much shorter than the real one. Hence, time computations are also much
shorter.

4.1 The test case

The simulated river is small and consists of a flat main channel (with a bed
elevation -2.5m, width 10 m) and a flood plain with complex topography, see
Fig. 1(a). The computational domain is illustrated in Fig.1(b) and discretized
with hybrid quadrilateral and triangular grid cells. The mesh consists of 787
cells and 809 nodes.

As mentioned previously, the numerical experiments used synthetic data
(twin experiments).
Initial conditions were defined as being the steady flow driven by a constant
inflow discharge Qin = 6.0 m3/s. This inflow does not lead to flood inundation
(the river flows within the main channel). We generate the reference flow by
imposing the following inflow discharge (see the reference solution in Fig. 2):

Qin(t) = 6 + 4.5t exp (−t/60) (21)

4.2 The cost function

We assume that observations are elevation values only. These observations come
either from gauging stations or satellite images, see e.g. [15, 22]. Those from
gauging stations are limited to certain points (two or three different locations at
best) but densely distributed over time. On the other hand, if they are extracted
from a satellite image they represent only one instant value in time (one image,
typically) but are densely distributed over space. We denote the elevation values
observed with hobs and we present below the different terms used to define the
cost function we minimize.

4.2.1 Basic cost function

Let us assume we have N satellite images with perfect information i.e. observed
elevation is available everywhere in the computational domain. The basic cost
function is:

Jobs(p) =
1

2

N
∑

k=1

(h − hobs
k )T W−1(h − hobs

k ) (22)
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where k is the index number of the image and W is a matrix of error covariances
which represents the confidence of the quality of observations.

4.2.2 Extra net-mass flux term

Only the magnitude of the water level is taken into account in the definition of
Jobs. However, spatially distributed observations are spread out across space.
They can therefore provide information related to the water slope, which is a
driving force behind flood flow. Thus, we extend the cost function with an extra
penalty term, Jflux, which measures the discrepancy of net mass flux (where
image is available):

Jflux(p) =
1

2

N
∑

k=1

(q − q̃obs
k )T W−1(q − q̃obs

k ) (23)

where q is the computed discharge (net mass flux) and q̃obs is ”mix” net mass
flux. As a matter of fact, q̃obs is computed using the observed elevation, hobs,
and the computed velocity (u, v)T , q̃obs = hobs(u, v)T .
In the next section, we show that this extra term improves the minimization
process since it quantifies a discrepancy related to the second component of the
state solution U.

4.2.3 Regularization term and total cost function

Inverse problems for strongly non-linear systems such as the present one are
generally ill-posed, and especially if very few observations are available. In order
to regularize the present identification problem (the cost function is a priori
non-convex), we introduce the following extra regularization term (Tikhonov
regularization [25]):

Jreg(p) =
1

2

∣

∣

∣

∣

∂U

∂t

∣

∣

∣

∣

2

(24)

Finally, we minimize the total cost function. J is a weighted sum of (22), (23)
and (24):

J = Jobs + αJflux + βJreg (25)

where α and β are weight coefficients.

4.2.4 Scaling

A good Hessian matrix condition number is very helpful in further improving
the efficiency of the minimization algorithm, particularly if the control variables
have different order of magnitude, see e.g. [24]. Here, we use a basic variable
transformation method.
We define the scaled control variable as p′ = L−1p, then we obtain the gradient
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g and the Hessian matrix H as follows: g′ = LT g and H ′ = LT HL. Using
this transformation, the new components of the control variable p′ are scaled to
unity and the condition number of the new Hessian matrix is improved.
In real problems, difficulties may be encountered in setting up the transforma-
tion matrix L. For greater simplicity, we choose a diagonal matrix L and set its
coefficients such that the different components of the control variable have the
same order of magnitude.

5 Choice of cost function

In Section 4.2, a cost function, with three terms, to assimilate the spatially
distributed water levels image into the flood model is presented. The first term
Jobs is a square norm which directly measures the discrepancy between the ob-
served and calculated variables. The third regularization term Jreg improves
the ill-posedness of inverse problems, especially the assimilation problem of the
spatially distributed water level images which are usually observed at long time
intervals. This penalty term is introduced to constrain solutions slowly evolving
in time and to obtain the smoothing and physically reasonable solution. Read-
ers may refer to related references for detailed descriptions of the performance
of this term, see e.g. [25].

The second term of Jflux is specially proposed to improve the assimilation of
the observed image according to the characteristics of the image observations.
To examine the performance of this penalty term, the experiment of Qin iden-
tification was conducted by test case. In this experiment, Qin was considered
only control variable and identified with a single full image. The cost function
J (Eq. (25)) without a regularization term, i.e. β = 0, is used to understand
the special function of Jflux in image assimilation. The first guess was that Qin

is constant, i.e. Qin = 6.0 m3/s. Other parameters, such as initial conditions
and manning coefficients, were given. The stop criterion ǫ of the convergence
of minimization was set at 10−4. The maximum number of iteration steps was
limited to 50 for contrasting.

Based on this configuration, Qin was identified with the single observed im-
ages taken at different given flooding times: Timag = 80 s,Timag = 100 s,Timag

= 120 s and Timag = 200 s, respectively. In all four experiments, Jflux greatly
improved the minimization process, and hence the quality of parameter iden-
tification. As an illustration, the identification results with Timag = 120 s are
plotted in Fig. 2 and Fig. 3. Oscillations in Fig. 2 are due to the lack of regu-
larization (introduced in the term Jreg). This is a classical behavior of 4D-var
algorithms if not using a regularization term. Nevertheless, its lack allows to
distinguish the influence of the new term Jflux. And it is clearly shown in Fig.
3 that the final value of the observation term Jobs in J is lower than in the one
without Jflux. In conclusion, with Jflux, one can identify reasonably well Qin

, but without Jflux the convergence of the optimization process is much more
difficult and worth. In other words, more information from images is assimilated
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into the flood model by virtue of Jflux.

6 What can we identify with a full image?

In order to understand the assimilation of spatially distributed water levels, and
specifically, to learn, which parameters we can identify from full images (here, a
”full image” means that water levels are available in each cell of the computa-
tional domain; hereafter, an image is referred as to spatially distributed water
level observations), three groups of assimilation experiments were conducted.

6.1 Identification of initial conditions

We wanted to identify U0 (initial conditions) only using one single image. Other
parameters (inflow discharge, Manning coefficients, etc) were given. The first
guess of U0 is still water with water levels interpolated between the upstream
and downstream values. Inflow discharge was given by (21) (see the reference
solution in Fig. 2).

We considered four cases depending on what time the image was taken: we
assimilate one full image at Timag=20s, Timag=40s, Timag=60s (near flood peak
time) and Timag=80s, respectively.
The decrease of the cost function vs iterations is plotted in Fig. 4. It is shown
that the convergent processes becomes stiff when the observed time of the image
is far from the starting time. The assimilation experiments failed due to the
numerical instability caused by the over-correction of initial conditions for the
image at Timag =100s (the time at the period of flood recession) or for the
subsequent ones.

We computed the root-mean square (RMS) error of the water level z and the
norm velocity

√
u2 + v2. At a given time t and for a quantity φ its expression

is:

‖φ‖RMS (t) =

√

∑ (φid(t) − φref (t))2

n
(26)

where, φid and φref are, respectively, the identified and reference values and n
is the number of cells. The RMS errors for water level and velocity norm are
plotted in Fig. 5.
Let us recall that we identify the initial conditions. Fig. 5 (a) shows that, after
calibration, the lowest error at initial time is for Timag = 20s and the highest one
is for Timag = 80s. At final time, the lowest error is, inversely, for Timag = 80s
and the highest for Timag = 20s. All of this remains true for the velocity norm,
Fig. 5 (b), except for initial time, where the best RMS error is not obtained for
Timag = 20s.
As an additional experiment, the 15 images of time interval t=20s during the
flood period were assimilated into the model to identify the initial conditions.
The corresponding results are also plotted in Fig.4 and 5. The best estimation
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of the flow state throughout the whole flood period is obtained when these ob-
servations are assimilated.

The earlier image includes more information from initial conditions than
the subsequent one. As flood routing, the initial information may be advected
outside of the computational field by the flood wave. The influences of initial
conditions on flow states becomes weaker and weaker with the routing of the
flood in this limited area. As a matter of fact, one may conclude that the
controlled parameters can not be identified unless the assimilated observations
include the enough information induced by these parameters. This remark can
also be explained by the following experiments.

6.2 Identification of inflow discharge

The experiment described in Section 5 was expanded by adding the regulariza-
tion term Jreg, see (25). From this experiment, we wanted to learn whether
one can identify an inflow hydrograph with water levels information alone. The
configurations of all experiments were the same as those described in Section 5.
The results of identified Qin with single image at Timag = 80s, Timag = 100s,
Timag = 120s and Timag = 200s respectively, are presented in Fig. 6. Using the
proposed cost function, a smoothing Qin hydrograph was successfully identified.

For the time of images Timag =80s and Timag =100s, Fig. 6 (a) and (b)
respectively, the two cost functions lead to quite similar results. Both allow
to identify well the flood peak. However, the extended cost function including
the term Jflux gives slightly better results. The cost function without the ex-
tra term Jflux fails to identify the flood peak by assimilating images at Timag

=120s and Timag =200s, Fig. 6 (c) and (d) respectively, while the cost function
including all terms gives a good identification of Qin.

From Fig. 2, one may note an interesting but reasonable phenomenon that
the inflow discharge has no correction at the time after the observed time. This is
because that there are no driven sources (originating from the cost function) for
the backward integration of adjoint model when the regularization term in time
Jreg is deactivated. Even if the regularization term is active, the hydrograph is
smoothed out in time, a significant difference from real conditions.

Physically, the images are observations of the flow state at the observed
instant Timag which is driven by Qin before it. Therefore, there are no obser-
vations of Qin after Timag to be used to identify the hydrograph.

Thus, one segment of the inflow hydrograph (from 0 to Timag) can be suc-
cessfully identified when assimilating spatially distributed water levels if the
proper cost function is adopted.
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6.3 Identification of initial conditions and inflow discharge

Finally, we conducted numerical experiments to identify both the inflow dis-
charge and initial conditions. If we observe only a single image as we did previ-
ously, the optimization process fails to converge. Observations are not enough
to identify both input parameters. If we observe a few full images, we can suc-
cessfully identify succesfully inflow discharge and initial conditions. We present
numerical results obtained from observing 15 full images with time intervals
of 20s, from t = 20s to t = 300s. The identified inflow discharge is shown in
Fig. 7(a) and the corresponding cost function and norm gradient which decrease
with each iteration step are plotted in Fig.7(b). The differences between the
identified and the reference initial conditions in water level and norm velocity,
are shown in Fig. 8.

7 Can we identify the inflow discharge with par-
tial images and/or in-situ measurements?

In real cases, it is not realistic to expect a full dense image like the one con-
sidered in the previous section. It is more reasonable to assume that we have
at best a single ”partial image” and some water level measurements inside the
main channel. In this section, we consider numerical experiments utilizing a
partial image and partial in-situ measurements with exactly the same configu-
rations as those studied in Part II of this paper (see [14]). We assume that we
have the water level hydrograph at a middle gauge station (Fig. 1) but only at
the beginning and ending of the flood period (t ∈ [0, 30]s and t ∈ [200− 300]s),
see Fig. 9, and potentially one ”partial image”. By partial image, we mean
water levels at the three floodplain blocks, as plotted in Fig. 1(b).

In the legends of subsequent figures, we use “TS” (for “Time Series”) to
denote results from only the water level hydrograph at the middle gauge station
only, and ”IMAG” to denote results that take the partial image into account as
well.

We conducted three different experiments. In all of them, we observed at
least the water level hydrograph at the middle gauge station ”TS”, and tried
only to identify the inflow discharge. Other parameters (initial conditions, Man-
ning coefficients etc) were given. The first guess was constant: Qin = 6.0 m3/s.

Let us notice that we treat in detail the identification problem of Manning
coefficients in Part II, [14].

Experiment 1. We tried to understand the contribution of one partial image
to the identification process. To do so, we did not consider the regularization
term Jreg in (25) (i.e. β = 0). We performed two identification processes, one
with Timag = 100s and Timag = 120s respectively. The corresponding inflow
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hydrograph is plotted in Fig. 10.
First, we note that very large oscillations exist. This is classical and due to the
lack of regularization.
The interesting result is that the different images give the same identifiable time
interval (see 42s in our experiments, Fig. 10). Let us recall that the the forward
model can be viewed as a constraint on the minimization problem. If we’ve
added the regularization term, one would not be able to distinguish precisely
the time interval affected by the image. These numerical results illustrate the
partial image can constraint the inflow hydrograph successfully during one finite
time interval. Also, in the sequel, Experiment 1 is useful to define a good image
frequency (see Experiment 3).

Experiment 2. We introduced again the regularization term Jreg, from
(25), and tried to identify the inflow hydrograph by assimilating the images
at Timag = 100s and Timag = 120s, respectively. The corresponding results are
plotted in Fig. 11.

This experiments also demonstrates that the extra term Jflux from (25)
(whether α vanishes or not), is helpful to identify the inflow discharge.

In summary, these numerical experiments show that if the time series (”TS”)
and partial images are available within the right time interval, it is possible to
correctly identify the hydrograph of Qin. Without the extra information pro-
vided by the partial images (ie. with TS only), it is impossible to identify Qin.

Experiment 3. Since we noticed in Experiment 1 the need to respect a
maximum time interval to correctly identify the flood hydrograph, we used
three partial images at Timag = 60s, Timag = 100s and Timag = 140s, in
this last experiment. The time series was the same as previous experiment.
By assimilating these three partial images, it is possible to obtain a perfect
identification of Qin. Results, obtained using the complete form of cost function
J are plotted in Fig.12.

8 Overlapping strategy and improvement of com-
putational cost

The adjoint method makes it possible to efficiently compute the gradients of
J with respect to control variables. However, the computational cost, includ-
ing the CPU time and memory requirement, is much higher than that of the
classical forward model. The memory requirement, in particular, is enormous.
Basically, one needs to store all the state variables U from the initial time to the
final time at each control volume, in order to solve the adjoint model backward
in time. Nevertheless, this is not completely true since automatic differentia-
tion tools like Tapenade try now include a strategy for balancing storage and
re-computation, see [10]; but the storage approach still remains the basis for
adjoint model computation. Thus, the typical amount of memory is insufficient
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for some practical long-duration flood modeling.

[19] propose a temporal strategy that consists of splitting the whole assimila-
tion period into several sub-intervals, then carrying out the assimilation process
sequentially over each sub-interval. The final state of the previous sub-interval
serve as the first guess of the subsequent sub-interval. [19] focuses on the ac-
curacy of the final time solution for a quasi-geostrophic oceanographic model
(the control variable is the initial condition). Then, they defined a ”progressive”
temporal strategy that better identified for the initial control state.

In the present study, we adapt the sequential temporal strategy of [19] to
the specific components of our river hydraulics problem: the identification of
inflow hydrograph (time-dependent parameter), Manning coefficients and/or
initial conditions (time-independent parameters).

In the following descriptions of the assimilation experiments, we refer the
previous sequential strategy as the ”temporal strategy without overlapping”
and the new strategy defined below as the ”temporal strategy with overlap-
ping” .

All the assimilation experiments took the following (dense) observations into
account: a water level hydrograph almost continuous over time (elevation values
at the gauge station, every 2s) and five partial images at Timag = 40, 60, 80, 120
and 160s.

8.1 Temporal strategy without overlapping

The temporal strategy without overlapping efficiently identifies time-independent
parameters: from the observations listed above, we identified the Manning
roughness coefficients in three different land-use areas (the main channel, left
floodplain and right floodplain). We conducted three assimilation experiments:
1) the original experiment which did not include any temporal strategy; 2) the
two-sequences experiment which split the assimilation period [0, 300] in two sub-
intervals ([0, 60] ∪ [60, 300]); 3) the four-sequences experiment which split the
assimilation period into four sub-intervals ([0, 40]∪[40, 80]∪[80, 120]∪[120, 300]).
The first guess of one sub-interval was the converged value of the previous sub-
interval.
The resulting values are presented in Table 1. The mean values of the resulting
Manning coefficients are close to the true values. The temporal strategy without
overlapping works well for the identification of Manning coefficients which are
time-independent parameters.
Since there is no overlapping in time and since the speed of convergence of
the minimization algorithm is not affected by the time-splitting, the time-
computation of the identification process is similar to that of the process without
the temporal strategy. But, the required memory is roughly divided by the num-
ber of sub-intervals, much less than that of the original process.
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8.2 Temporal strategy with overlapping

8.2.1 Principles of the algorithm

We adapted the sequential temporal strategy of [19] (i.e. the temporal strategy
without overlapping) to the specific river hydraulics problems. As a matter of
fact, the strategy must be adapted to time-dependent parameters like inflow
discharge, since information takes time to propagate to the location of observa-
tions. Hence, if observations are not dense enough there is a blind period during
which the time-dependent parameter is not identifiable. This phenomenon is
apparent at the end of the period of assimilation in all of the previously pre-
sented figures: the inflow is not well simulated, but rather extended because of
the regularization term. In fact, during this period of time, inflow values have
no effect on the observations. The blind period represents the time of response
of the control variables to the observations. Therefore, we cannot apply the
temporal strategy without overlapping to simulate inflow. We propose a new
temporal strategy with overlapping. Its fundamental principle is described in
Fig. 13 (b).
The assimilation period is divided into several sub-intervals as it was in previ-
ous experiments, but with overlapping. We denote the length of this overlapped
period with Tretro (retrogressive time). The initial conditions for the new sub-
sequence are defined by the computed flow state of the previous sub-interval.
The first guess of control variables in the new sub-sequence is defined as the
value identified during the previous sub-interval.

8.2.2 Identification of inflow discharge

We present some assimilation experiments based on the temporal strategy with
overlapping below. Like the previous experiments, these considered the follow-
ing observations: a water level hydrograph almost continuous over time (eleva-
tion values at the gauge station every 2s ) at the gauge station, and five partial
images at Timag = 40, 60, 80, 120 and 160s, see Fig. 1b.
We tried only to identify the inflow discharge Qin(t) . The initial guess was the
constant value Qin = 6m3/s. Other parameters were given. We considered four
sub-sequences and compared the results obtained using the original method (no
temporal strategy) with those obtained using temporal strategy without overlap-
ping and the temporal strategy with overlapping. In the case of no overlapping,
the assimilation period was split as follows: [0, 40]∪[40, 80]∪[80, 120]∪[120, 300].
In the case of overlapping, it was split as follows: [0, 60] ∪ [40, 100] ∪ [80, 140] ∪
[120, 300] (i.e. Tretro = 20s). The resulting inflow discharge is plotted in Fig.14.

The original method and that based on the temporal strategy with overlap-
ping give excellent results: we retrieved the reference solution. The temporal
strategy without overlapping, on the other hand, does not provide a very good
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solution. Because it enables us to identify Qin(t) while shortening the assimila-
tion periods, hence saving memory. The temporal strategy with overlapping, is
perhaps the most preferable method.

Since overlapping time periods are introduced in the new strategy, its com-
putational time is slightly longer than that of the original one. Nevertheless,
these experiments show that the extra computational time is negligible. We
present computational times of the present experiments in Table 2.The total
time remains almost the same with or without the temporal strategy since the
convergence of the minimization process is slighltly improved when using the
temporal strategy with overlapping.

9 Conclusion

Using a variational data assimilation approach (4D-var), we have investigated
potential contributions of spatially distributed water level data to the identifi-
cation of both time-independent parameters (initial condition, Manning coef-
ficients) and time-dependent parameters (inflow discharge) in a shallow-water
flood model. In real-world flooding situation such as the one addressed in Part
II [14], spatially distributed water level data are extracted from a satellite im-
age. Such images offer spatially distributed information of the flood stage in
the floodplain at one time instant, while more classical measurements, such as
water level values at a gauge station offer data points distributed across time.

Numerical experiments conducted in this study indicate that data distributed
densely over space is of great benefit to the identification of unknowns parame-
ters (initial conditions and/or inflow). However, accurate identification of time-
dependent parameters (e.g. inflow) depends greatly on the time of the available
image. They have been successfully identified when both a partial image and
partial in situ mesurements (water levels) are available. As an example, we have
demonstrated the simulation of inflow and reconstruction the flood flow state.
This shows that water level observation images may compensate for unavailable
in situ measurements during a flood event.

We have contributed to the evolving methodology by introducing an extra
term into the cost function that greatly improves the identification process. This
term provides some information related to the velocity components of the model,
despite the fact that only observations of water level are assimilated. We have
also introduced a new temporal strategy with overlapping that can remedy the
memory requirement difficulties of long-term simulations. This temporal strat-
egy achieves a prediction of the same quality as the original data assimilation
process but with much less memory and with similar CPU time.

This study contributes to the basic understanding of the assimilation of spa-
tially distributed water levels into shallow-water flood models. It demonstrates
that the use of a satellite image improves parameter identification processes,
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and, thus, flood prediction. However, a more challenging task is the assimilation
of actual remote sensing data with many unknown (and uncontrolled) errors.
The real application of the proposed method is demonstrated in a forthcoming
paper (Part II).

Acknowledgements

The authors would like to thank Christian PUECH (Cemagref Montpellier,
France) for his very important help to setting up the problem.
This research has been supported by Région Rhône-Alpes, France ( ”numerical
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Figure 2: Identification of Qin with a single full image at Timag = 120s. Com-
parison of identified discharge when minimizing Jobs (solid line) and Jobs +Jflux

(long dashed line). The circles are the reference solution. Qin cannot be iden-
tified after the observed time (see detailed explanation in the text).

Table 1: Temporal strategy: Comparison of identified and true values of n

Experiment Sequence Main channel Left floodplain Right floodplain
True value 0.0180 0.030 0.040

First Guess 0.0100 0.0100 0.0100
Original 0-300s 0.0181 0.0313 0.0404

Two Seq. 1 0-60s 0.0200 0.0316 0.0402
2 60-300s 0.0178 0.0314 0.0411
Mean value 0.0187 0.0315 0.0407

Four Seq. 1 0-40s 0.0195 0.0318 0.0399
2 40-80s 0.0191 0.0304 0.0404
3 80-120s 0.0189 0.0299 0.0402
4 120-300s 0.0174 0.0329 0.0370
Mean value 0.0187 0.0313 0.0394
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Table 2: Temporal strategy experiments: computational costs

Experiment Number of Sequences CPU time(s)
Original 1 84.990
Tretro = 0s 4 67.030
Tretro = 20s 4 85.071
Tretro = 25s 4 86.074
Tretro = 30s 4 110.598
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Figure 6: Identification of Qin with one single full image at Timag = 80s (a) or
Timag = 100s (b) or Timag = 120s (c) or Timag = 200s (d): Comparison of the
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Figure 8: Identification of initial conditions and inflow discharge by assimilating
15 full images: differences between identified and true initial conditions in water
level (Z) (a) and norm velocity
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Figure 11: Experiments with a partial image and in-situ measurements ”TS”:
Comparisons of identified discharge with image at Timag = 100s (a) and Timag =
120s (b), using cost function with or without the extra term Jflux
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Figure 12: Experiments with three partial images and measurements in-situ
”TS”: Identification of inflow discharge (dot line).
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Figure 13: Temporal strategy: a) without overlapping; b): with overlapping
(with retrogressive time Tretro)
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Figure 14: Identification of inflow discharge and temporal strategies: compari-
son of the original method (solid line), temporal strategy without overlapping
(long dashed line) and temporal strategy with overlapping (short dashed line).
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