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Résumé

We address the problem of coupling 2D Shallow Water equations with 1D Shallow
Water equations (St-Venant equations), as applied to river-floodplain flows. Ma-
thematical coupling conditions are derived classicaly from the 3D Navier-Stokes
equations by integrating over the vertical wetsection, when overflowing occurs. It
leads to extra source terms in the 1D equations. Next we assume to be in a varia-
tionnal data assimilation context, then the optimal control process allows to couple
both models and assimilate data simultaneously (Joint-Assimilation-Coupling algo-
rithms). Two different versions of JAC algorithms are presented and compared. In a
numerical test case, we superimpose the local 2D model on the 1D global model. The
results show the efficiency of the present simultaneous superposition - assimilation
approach.

Key words: Shallow Water equations, Saint-Venant equation, coupling, zoom
model, superposition, optimal control, data assimilation, river, flood plain.
PACS:

1 Introduction

In river hydraulics, operational models are based on 1D Shallow Water equa-
tions with storage areas (also called 1.5D model) since 2D models cannot be
solved for large scale in a reasonable CPU-time, see [4] or e.g. [20,18] for recent
reviews. In 1.5D models, floodplains are modelled by storage areas (static vo-
lumes storing water). These models consist in 1D equations with extra source
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terms which need to be calibrated empirically. Obviously this type of model
does not describe flow dynamics inside the storage area. For any reason, the
end-user of river hydraulics models may have to model the flow inside the sto-
rage areas (e.g. flood plains). Furthermore, in a data assimilation context, one
may have data available in the flooded areas (e.g. spatially distributed water
levels extracted from a satellite image, see [16,15]). Obviously such data are
not represented by the 1D model. A way to use such data is to superimpose
a local 2D zoom model on the 1D global model and to perform a data assi-
milation process for the coupled model 1D-2D. This is the idea we develop in
the present article. We address the mathematical problem of coupling the 1D
Shallow Water equations to the 2D Shallow Water equations (superposition
of a local 2D zoom model over the 1D global model), whereas numerically we
couple both models using an optimal control process.

The coupling problem has already been addressed in few papers. Classicaly,
the geometrical domain (and mesh) is decomposed, the 1D equations are cou-
pled with the 2D ones via boundary conditions at interfaces, see e.g. [20,17,10].
An efficient coupling procedure may be a Schwarz-like algorithm, see e.g. [19].
In the present approach, we superimpose the 2D model on the 1D model. The
coupling terms in the 1D equations are source terms, whereas in the 2D equa-
tions they are boundary conditions at open boundaries (of the 2D model).
Then, we define an algorithm of coupling based on an optimal control process.
Let us recall that the latter is already available if we suppose to be in a va-
riationnal data assimilation context. Thus, we can superimpose both models
and assimilate data simultaneously. Let us point out that the simultaneous
assimilation allows to couple both models accurately since we do use data to
define quantatively the coupling terms.

Shallow-water models (e.g. for river flows) require information on the value of
input parameters (e.g. Manning coefficients), initial conditions and boundary
conditions (e.g. inflow discharge in the main channel) in order to compute a
flow state as reliable as possible, i.e. as close as possible to reality. To this
purpose, data assimilation methods make it possible to combine optimally
the equations of the model and observations. Variationnal data assimilation
is based on the optimal control of the (forward) model. This has been applied
successfully in river hydraulics, see e.g. [5,1,18,3,12,13,14,16,15].

Let us assume that we are in an variationnal data assimilation context : the
model calibration is based on a optimal control process which includes the
adjoint equations and a minimization procedure, see e.g. [12]. Then, we take
advantage of the already existing optimal control process, in order to couple
both models. In other words, we couple both models while at same time we
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assimilate data. This is the basic idea of the Joint Assimilation Coupling (JAC)
algorithms we introduce in the present article. A preliminary approach has
been introduced in [8]. We follow the same idea and we improve the method.
The main improvements are the following. First we derive mathematically the
coupling source terms appearing in the 1D equations from the 3D Navier-
Stokes equations ; second we consider the right characteristics variables at
open boundaries of the 2D model (interfaces between both models) ; third we
present an extra version of JAC algorithm, and we compare it to the first JAC
algorithm introduced in [8].
An extra difficulty when coupling numerically arises from the unmatching
grids (grids do not match both in space and time). Typical ratio of space and
time grids between the 2D and the 1D are ≈ 102 (the discrete 2D model being
the finest one). These differences of grids can be easily handled when using
the present optimal control approach.

Figure 1. Modelling outline : a global 1D model with superposed local 2D models.

Outline of the paper is as follows. In Section 2, we derive the 1.5D model from
the 3D Navier-Stokes equations, in particular the coupling source terms in the
1D equations. In other respect, the 2D Shallow Water equations are recalled.
In Section 3, we focus on the coupling conditions between both models. In
Section 4, we present the two Joint Assimilation Coupling (JAC) algorithms.
In Section 5, we perform numerical tests. Coupling and data assimilation are
done simultaneously using the two JAC type algorithms. We show the effi-
ciency of both algorithms, and we discuss advantages and drawbacks of each
algorithm. In Appendix A, we derive the expression of characteristics of the
2D model (conditions at open boundaries).

2 Mathematical models

2.1 Derivation of the 1.5D model

The 1.5D model is based on the classical 1D Shallow-Water equations (or
Saint-Venant equations). Nevertheless, since our goal is to couple the 1D equa-
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tions with the 2D equations, we must take into account transfers through the
two lateral boundaries of the 1D main channel, see figures 1 and 2. To this
end, we follow the classical derivation of 1D Saint-Venant equations, but in
the derivation we keep the lateral transfer terms if overflowing at lateral boun-
daries. This leads to source terms in the 1D equations.

Let us consider the 3D incompressible Navier Stokes equations in the domain
represented in Fig. 2. We impose no-slip boundary conditions at bottom and
the kinematic equation at free surface.
We denote by : h the water depth, u the velocity, zb the topography, and
zs = (h + zb) the water elevation. We assume that at its extremities, the 1D
main channel is open (open boundaries), Fig. 1. Furthermore, local overflowing
occurs (in flooded areas, it will be modeled by the 2D equations) but no
overflowing occurs at the 1D channel extremities.
We denote by bk(x), k = 1, 2, the 1D channel lateral boundaries, Fig. 2. We
denote by (tk,nk), k = 1, 2, the unit tangential - external normal vectors to
the lateral boundary k. We have :

n1 =
1

δ1

(∂xb1,−1)T and n2 =
1

δ2

(−∂xb2, 1)T with δk =
√

1 + (∂xbk)2 , k = 1, 2.

We denote by S the wet cross section and by Q the lineic-discharge in the
main channel :

S =
∫ b2

b1

∫ zs

zb

dz dy and Q =
∫ b2

b1

∫ zs

zb

u dz dy (1)

Mass conservation. Using standard notations, the mass conservation equation
writes : ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. By integration over S we get :

∫ b2

b1

∫ zs

zb

∂u

∂x
dz dy

︸ ︷︷ ︸

A

+
∫ b2

b1

∫ zs

zb

∂v

∂y
dz dy

︸ ︷︷ ︸

B

+
∫ b2

b1

∫ zs

zb

∂w

∂z
dz dy

︸ ︷︷ ︸

C

= 0 (2)

We can re-write expressions A, B and C, using Leibniz’s integration rule and
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Figure 2. Configuration and notations. Up : Overview of the 1D channel. Down :
1D cross section with overflowing

the no-slip condition at the bottom :

A =
∫ b2

b1

(

∂

∂x

∫ zs

zb

u dz − uS
∂zs

∂x

)

dy

=
∂

∂x

∫ b2

b1

∫ zs

zb

u dz dy −
[∫ zs

zb

u dz
]

b2

∂b2

∂x
+

[∫ zs

zb

u dz
]

b1

∂b1

∂x
−

∫ b2

b1
uS

∂zs

∂x
dy

︸ ︷︷ ︸

CL1

B =
∫ b2

b1

(

∂

∂y

∫ zs

zb

v dz − vS
∂zs

∂y

)

dy

=
[∫ zs

zb

v dz
]

b2

−
[∫ zs

zb

v dz
]

b1

−
∫ b2

b1
vS

∂zs

∂y
dy

︸ ︷︷ ︸

CL2

C =
∫ b2

b1
wS dy

︸ ︷︷ ︸

CL3

In other respect, the free surface boundary condition gives :

CL1 + CL2 + CL3 =
∫ b2

b1

∂zs

∂t
dy
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Thus, Equation (2) becomes :

∂S

∂t
+

∂Q

∂x
= K1

with :

K1 = −
{[∫ zs

zb

v dz
]

b2

−
[∫ zs

zb

u dz
]

b2

∂b2

∂x
−

[∫ zs

zb

v dz
]

b1

+
[∫ zs

zb

u dz
]

b1

∂b1

∂x

}

(3)

Without overflowing, at lateral boundaries (i.e. at y = bk, k = 1, 2) we have
zs = zb and K1 = 0. Thus, we obtain the first equation of the standard 1D
St-Venant equations.
With overflowing and if coupling with a 2D model,

[∫ zs

zb
u dz

]

bk

and
[∫ zs

zb
v dz

]

bk

, k =

1, 2, represent the lineic-discharges on the two lateral boundaries in x-direction
and y-direction respectively.

Let us introduce the mean discharge at lateral boundary k :

q̄k = ([
∫ zs

zb

u dz]bk
, [

∫ zs

zb

v dz]bk
) k = 1, 2

We set the normal mean discharge at lateral boundaries :

qnk
= q̄k.nk k = 1, 2 (4)

Then we obtain : K1 = −δ1qn1
− δ2qn2

. If the canal width variation is small
then δk ≈ 1 and : K1 ≈ −(qn1 + qn2).

Let us assume that the canal width variation is small (δk ≈ 1). Then the mass
conservation equation becomes :

∂S

∂t
+

∂Q

∂x
= −(qn1 + qn2) (5)

The values qnk
, k = 1, 2, have to be provided by the 2D model.

Momentum conservation. Using standard notations, we consider the following
3D Navier-Stokes momentum equation : ∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
+ w ∂u

∂z
+ 1

ρ
∂p
∂x

= ν∆u.

Using the incompressibility condition, this gives : ∂u
∂t

+ ∂u2

∂x
+ ∂uv

∂y
+ ∂uw

∂z
+ 1

ρ
∂p
∂x

=
ν∆u.
As previously, we integrate the equation over the wet cross section S. Again,
we assume that the canal width variation is small. We denote by H the mean
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transverse water depth and by Zb the mean transverse topography. We consi-
der the following hydrostatic pressure : p = −ρg(z − (H + Zb)). We use the
boundary conditions at bottom and free surface, we use the Leibniz’s integra-
tion rule. We obtain :

∂Q

∂t
+

∂

∂x

(

β
Q2

S

)

+ g S
∂(H + Zb)

∂x
= K2 − gSSf (6)

where the nonlinear friction term Sf , deriving from the viscous term, is mo-
delled using the classical Manning-Strickler’s law. The Boussinesq coefficient
β is defined by :

β =
S

Q2

∫ b2

b1

∫ zs

zb

u2 dz dy

Let us remark that if u is constant over the cross section S then β = 1.
The source term K2 is :

K2 = −
[∫ zs

zb

uv dz
]

b2

+
[∫ zs

zb

uv dz
]

b1

−
[∫ zs

zb

u2 dz
]

b1

∂b1

∂x
+

[∫ zs

zb

u2 dz
]

b2

∂b2

∂x
(7)

Let us point out that without overflowing zs = zb at lateral boundaries, the
term K2 vanishes, and we obtain the standard 1D St-Venant equations.

Let us introduce the following two coefficients :

γk =

[∫ zs

zb
uv dz

]

bk[∫ zs

zb
u dz

]

bk

[∫ zs

zb
v dz

]

bk

, αk =

[∫ zs

zb
u2 dz

]

bk
([∫ zs

zb
u dz

]

bk

)2 , k = 1, 2

If (u, v) does not depend on z on lateral boundary bk, k = 1, 2, then γk =
αk = 1/hk.

Let us assume that : β = δk = 1, k = 1, 2, and (u, v) does not depend on z on
lateral boundaries. Then we obtain the following shallow momentum equation :

∂Q

∂t
+

∂

∂x

(

Q2

S

)

+ g S
∂(H + Zb)

∂x
= − (u|1qn1 + u|2qn2) − gSSf (8)

Let us remark that if no 2D equations are available to model the overflowing,
then one can set u|k = Q

S
, k = 1, 2, at lateral boundaries and we obtain get

the classic so-called ”1D model with storage area” (also called 1.5D model),
see e.g. [4], [18].
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Rectangular cross-section case. For the sake of simplicity, we consider rectan-
gular cross sections in the main channel, then : S = bH , where b is the channel
width. If we define the pressure term, see e.g. [9] :

P = gS
H

2
= g

S2

2b

then we have :
∂P

∂x
= g(

∂b

∂x

H2

2
+ S

∂H

∂x
).

Finally the equations (5) and (8) can be written as an hyperbolic system with
source terms as follows :







∂S

∂t
+

∂Q

∂x
= −(qn1 + qn2)

∂Q

∂t
+

∂

∂x

(

Q2

S
+ P

)

− g
∂b

∂x

H2

2
+ gS

∂Zb

∂x
= −(qn1u|1 + qn2u|2) − gSSf

(9)

The source term

Ψ = (−(qn1 + qn2), −(qn1ut1 + qn2ut2)) (10)

is the coupling term with the 2D equations.

2.2 The 2D model

The 2D hydraulics model is based on the classical bidimensional Shallow-
Water equations in their conservative formulation. The unknowns are the wa-
ter depth h and the local discharge q = hu = (qx, qy), where u = (u, v)T is
the depth-averaged velocity vector. Equations are :







∂t h + ∂xqx + ∂yqy = 0

∂tqx + ∂x(
q2
x

2
+

1

2
gh2) + ∂y(

qxqy

h
) = −g[h∂xzb +

n2‖q‖
2

h7/3
qx]

∂tqy + ∂x(
qxqy

h
) + ∂y(

q2
y

2
+

1

2
gh2) = −g[h∂yzb +

n2‖q‖
2

h7/3
qy]

(11)

where zb is the bed elevation and n is the Manning roughness coefficient.
The system is closed with appropriate boundary conditions (see later) and
initial conditions (h0, q0). As previously, the system can be written as a 2D
hyperbolic system with source terms ; the source terms are the friction term
plus the topography term (right hand-sides of Equation (11)).
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3 Coupling conditions between the two models

We focus on the interactions between the two models 1.5D and 2D. These
interactions are bilateral : from the 1.5D model to the 2D model, and from
the 2D model to the 1.5D model.
The information exchange from the 1.5D model to the 2D model is done
through the boundary conditions of 2D model (at its open boundaries). Since
it is an open boundary condition problem, since the equations are hyperbolic, it
is natural to introduce characteristic variables [2] whose definitions are detailed
in Appendix A. In short, at interfaces we impose that incoming characteristics
in 2D model equal those computed by the 1.5D model (see Fig. 3) :

∫

Γl

wi ds = W Γl

i ; l ∈ {in, out}, i = 1, 2 (12)

The information exchange from the 2D model to the 1.5D model is done via
the source term Ψ defined previously, see (10).

Figure 3. Information transfer. 1D main channel Ω1, 2D flood plain Ω2, overflowing
boundaries Γ1, Γ2

4 The Joint-Assimilation-Coupling (JAC) algorithms

If the goal is to couple both models only, different coupling algorithms can
be considered. One can consider the most classical one : a Schwarz-like algo-
rithm, those global in time for example, see e.g. [19]. We have tested such an
approach, see [7] for details, and this leads to satisfying results : after few ite-
rations only, both models are coupled in an efficient way. Therefore, if forward
modelling only is required, a Schwarz algorithm global in time is a simple
and reliable approach to couple both models. In case of inconsistant grids (in
space and time) between the 1.5D and the 2D models, one can use efficient
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interpolation procedures to transfer information between both models.
Now, let us assume that we are in a calibration context based on variatio-
nal data assimilation, see e.g. [11] [12]. That suppose a whole optimal control
process based on adjoint equations and a minimization algorithm is already
implemented. In that case, one can take advantage of the existing optimal
control process to couple both models simultaneously. In other words, one can
couple both models while at same time we assimilate data into the coupled
model. In addition, the assimilation allows to couple both models accurately
since we do use data to define quantatively the coupling terms.
First, we recall the variational data assimilation principles. Then, we consider
the JAC algorithm introduced [8], but here we use it with the coupling condi-
tions derived rigorously in Section 2. Next, we introduce a new version of JAC
algorithm (the ”sequential version”). Also, we compare both algorithms, we
discuss their respective advantages and drawbacks.

4.1 Variationnal data assimilation principles

Variationnal data assimilation consists to make fit in an optimal way the
computed state with observations. This is done by minimizing a cost func-
tion measuring the discrepancy between both. The local minimization proce-
dure requires the gradient of cost function, it is obtained by solving adjoint
equations, see e.g. [12,13,14,16,15]. If we denote by k the control variable (in
floodplain flows, it can be for example inflow discharge or Manning roughness
coefficients), the optimization problem is :

min
k

J(k)

where J(k) = G(k;yk), yk is the state of the system at k given. The cost
function is generally in the following form :

J(k) = Jobs(k) + Jreg(k)

where the cost function term Jobs is defined by : Jobs = ‖y−yobs‖2
∗. It measures

the discrepancy between the computed state y and observations yobs in a given
norm ‖.‖∗.
The regularization term Jreg (Tikhonov’s regularization) is very usefull on
one hand to ”convexify” the cost function, on the other hand to smooth the
control variable. As an example, if the control variable is the inflow discharge
k = Qin(t) (like in the numerical tests in next section), one can set : Jreg =

1

2

∣
∣
∣
∣
∣

∂Qin

∂t

∣
∣
∣
∣
∣

2

.
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4.2 Joint Assimilation Coupling (JAC) type algorithms

The relaxed JAC algorithm. The JAC algorithm originally introduced in [8] is
as follows, see Fig. 4. We relax the dependency between the 1.5D and the 2D
model and we control the resulting weakly coupled model. In others words, in
addition of classical control variables (here, inflow discharge), we control the
2D incoming characteristics at the 2D open boundaries. In other respects, we
add the following term to the cost function :

Jcoupling(k) =
∫ T

0
[

∑

l∈{in,out}

W Γl

i −
∫

Γl

wids ] dt ; i = 1, 2 (13)

Then the total cost function we minimize becomes :

Jtot(k) = α1DJ1D(k) + α2DJ2D(k) + αcouplingJcoupling(k) + αregJreg(k) (14)

where J1D and J2D are classical cost function terms in data assimilation (as
described above). The α! coefficients are setted ”at best” as it is usualy done
in multi-objective optimization i.e. they are valued in order to balance at best
all terms after convergence.

As we show it in next section, the resulting ”relaxed JAC algorithm” (Fig. 4) is
efficient and quite robust. On the other hand, its drawbacks are the following :
i) tunning the α∗ coefficients can be awkward (it is a multi-objective opti-

mization problem)
ii) it requires the adjoint code of the ”weakly coupled model”. It is not very

difficult to obtain from each adjoint codes but not straightforward.

The sequential JAC algorithm. Now, we define a sequential version of JAC
algorithm. The basic idea is to control both models in a sequential way, see
Fig. 5. The resulting ”sequential JAC algorithm” presents the following three
advantages :
i) it requires the adjoint codes of the two (physical) forward models sepa-

ratively (and not the adjoint code of an unphysical forward model)
ii) the optimization problem related to the 2D model is a classical variatio-

nal data assimilation problem. It does not make define extra cost function
terms, thus it is not a more complex multi-objective optimization problem.
Furthermore, this remark remains true at second stage (optimization pro-
blem related to the 1.5D model) if data are available in flood plain only
(like it is the case in forthcoming numerical results)

iii) the two optimization problems are solved sequentially, therefore sepa-
ratively.

Nevertheless, as we will show it in next section, this algorithm present a draw-
back when identifying inflow boundary conditions for example, since it requires
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a special treatment of the so-called ”blind period” (see next section).

Control

Variables 2D incoming charac.

Coupling var. : B.C. (input var.) :

Discrepancy between: 

o Averaged 2D 

charac. 
1D charac. at interface

o DATA solution at measure points

Cost function :

2D Model

0 −−> T

0 −−> T

1D Model

1D solution

2D solution

Inflow discharge

1D source term 

Figure 4. The relaxed JAC algorithm

Discrepancy between: 

Cost function :

0 −−> T

1D Model

1D solution

o Averaged 2D 

charac. 
1D charac. at interface

o DATA solution at measure points

o DATA solution at measure pointsDiscrepancy between: 

Cost function :

B.C. (input var.) :

Inflow discharge

Control

Variables 2D incoming charac.

Coupling var. :

2D Model

0 −−> T

2D solution

1D source term 

Figure 5. The sequential JAC algorithm
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5 Numerical tests

We seek to test and compare numerically the two JAC algorithms presented
previously. To this end, we perform twin experiments. That means a prelimi-
nary run of the forward model provides observations. Next, input variables
are changed, and we set them to a priori values (”first guesses”). Finally,
the inverse problem consists to retrieve the ”reference” input variables values.
The numerical tests are performed using our software DassFlow [12,11]. It a
computational software for free surface flows, including a variationnal data
assimilation process. Both models (1.5D and 2D) are solved using well balan-
ced finite volume schemes (HLL and HLLC respectively), explicit in time. We
refer to [12,6] for more details.

Test case description. The computational domain contains a main channel
and a floodplain, see Fig. 6 a). The main channel is a straight-line (length
200 m) with a flat bottom, and the 2D flood plain is a disk (diameter 100 m)
centered in the domain. Because of the dynamic wet/dry front (flood event),
we do not consider a flat bottom in the 2D flood plain. Thus, we consider the
virtually realistic bathymetry represented in Fig. 6 a).

The mesh is unstructured and contains 1400 cells. Boundary conditions at the
1D channel extremities are as follows. An hydrograph is prescribed at inflow
boundary (see the reference curve in Fig. 7 a)), while homogeneous Neumann
conditions are imposed at outflow boundary.

Let us point out that the solution of the forward coupled model (1D in the
main channel coupled with the 2D in the flooded area) is exactly the same as
the full 2D solution (difference in L∞-norm is about 10−7). A detailed study
of the present numerical coupled model is done in [7].

The identification problem (inverse problem) we consider is the following. Gi-
ven water height measurements at two gauging stations located in the 2D flood
plain, see Fig. 6 a) and b), we seek to identify the 1D inflow hydrograph. Let
us recall that the present tests are twin experiments, thus the measurements
have been created using the model with the ”right” 1D inflow hydrograph (i.e.
the 1D inflow hydrograph we seek to retreive in the inverse problem).
Let us notice that the data we assimilate can be represented by the 2D model
only (they would not be assimilable by a 1D model). Thus, we do assimilate
2D ”local” data in order to calibrate / identify input variables of the 1D ”glo-
bal” model.
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Concerning the CPU times of JAC algorithms, they are both similar to the
CPU-time of the data assimilation process for one model only (for example
if using the 2D model only). It means that the extra coupling feature of the
algorithms does not affect significantely the convergence speed of the minim-
zation process. Let us recall that the order of magnitude of a variational data
assimilation process (4D-var) of 100 iterations (see Fig. 7 b) is about 400 times
the cost of one run of the forward model.
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Figure 6. a) Bathymetry. b) Observations : water height at two ”gauging stations”
in flood plain.

The relaxed JAC algorithm. We consider the algorithm presented in Fig.
4. The total cost function to minimize is given by (14). In the present test
case, we have J1D = 0 because no observation is available in the 1D channel.
As mentionned previously, since the problem is multi-objective optimization
problem, one must pay a particular attention to the choice of the ratio

αcoupling

α2D
.

As a matter of fact, this choice may influence the convergence process. Here,
choosing

αcoupling

α2D
= 0.001, all terms of the cost function minimized are ”well-

balanced” after convergence. As a first guess for the control variable (the inflow
discharge), we choose a constant value equals to 6m3/s, see the green curve in
Fig. 7 a). The results obtained are presented in Fig. 7. After convergence, one
can remark the perfect recovery of the 1D inflow hydrograph and incoming
characteristics with the corresponding reference solution (see the blue and red
curves in Fig. 7 a), c) and d)).

Blind period phenomena.
Let us remark that a blind period phenomena prevents us to identify boundary
conditions at the end of the time interval. This blind period corresponds to
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the time required by the information to travel from the inflow boundary to
the nearest observation point. Using a mean wave speed value (u +

√
gh), one

can estimate roughly this blind period to 12s. Of course, one cannot identify
the inflow discharge during this lap of time since its value does not affect the
observations.
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Figure 7. Relaxed JAC algorithm : a) Identification of inflow hydrograph. b)
Convergence history of the cost function. c) Identification of inflow incoming cha-
racteristic. d) Identification of outflow incoming characteristic.

The sequential JAC algorithm. We consider the algorithm presented in
Fig. 5.
First step of the algorithm is the identification of 2D incoming characteristic
variables. The forward model is the 2D model only. Given a first guess for
incoming characteristics at open boundaries, we perform a full identification
process which gives after convergence, optimal values for the incoming charac-
teristics. The results obtained are presented in Fig. 8 a) and b). They show
an excellent recovery of the identified 2D incoming characteristics with the
reference ones (red curves). Of course, we observe the same blind period phe-
nomena as before. That is why, one can consider that the identified incoming
characteristics are accurate until a time t∗ (here t∗ ≈ 160s), whereas one can-
not identify the incoming characteristics in the time interval [t∗, T ].
After the first step, one can compute the ”calibrated” source term Ψ in the
1D equations.
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Second step is the identification of the 1D inflow discharge, given the cali-
brated source term Ψ. The forward model is the 1D model only. Since no 1D
observation is available, we minimize the Jcoupling term only (plus a standard
regularization term), see Equation (13), which measures the discrepancies of
inflow characteristics at interfaces. The results obtained are presented in Fig.
8 c). Again, we obtain a very good recovery of the identified inflow discharge
with the reference one (red curve). The convergence of the algorithm is pre-
sented in Fig. 8 d).

Blind period phenomena.
Because of the blind period phenomena in the first step, the second step may
fail if we considere the identified incoming characteristics during the whole
time interval [0, T ]. As a matter of fact, since the adjoint equations propagate
the information reverse in time, the variationnal data assimilation process
would propagate the error at all time. Hence, before performing the second
step we have to skip the degenerated time period in the Jcoupling term. It means
we integrate in the time interval [0, t∗] only, instead of [0, T ]. Then, the 1D
hydrograph is very well retrieved, see Fig. 8 c), excepted of course after the
critical time t∗.

In summary, these two numerical tests show that both JAC algorithms allow
to : a) couple accurately the 1D and 2D equations ; b) calibrate the 1D ”global”
model using observations in the 2D local zoom model.
The relaxed JAC algorithm is efficient and robust but it is sensitive to the
weight coefficients values and requires the derivation of an unphysical adjoint
code. The sequential JAC algorithm has the great advantage to separate the
two optimization processes (based each of them on the ”standard” adjoint
code). They can be performed sequentially.
Concerning the incontrovertible blind period, in the sequential JAC algorithm,
one have to truncate ”by hand” the assimilation time interval at second step.
If not, the second identification process (4D-var algorithm for the 1D model)
propagates the error at all time step and the minimization process fail to
converge (to the right solution at least).

6 Conclusion

In this paper, we have coupled mathematically and numerically the 2D shallow-
water equations (SWE) in (h, q) variables with the 1D SWE in (S, Q) variables,
when overflowing occurs. Instead of a domain decomposition approach, we fol-
lowed a superposition approach. The coupling term in 1D equations are source
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Figure 8. Sequential JAC algorithm. First step : Idendification of incoming cha-
racteristic at inflow (a) and at outflow (b). Second step : c) Identification of inflow
hydrograph. d) Convergence history of cost function.

terms derived from the 3D Navier-Stokes equations (similarly to 1D SWE
with storage areas). The coupling terms in the 2D equations are the incoming
characteristics at open boundaries. The coupling algorithm is based on an
optimal control process. As a matter of fact, we assumed to be in a varia-
tional data assimilation context (4D-var algorithm), thus an optimal control
loop (including adjoint equations and a minimization algorithm) is supposed
to be available. Then, we can assimilate data and superimpose both models
simultaneously. That approach presents few advantages. First, data enable to
calibrate the model as it is done classicaly, but also enable to quantify the
information transmitted between both models (i.e. to quantify the coupling
terms). Second, if one has 2D data only (in the flood plain for example), the
superposition of the 2D ”local” model over the 1D one combined with the
assimilation process, allows to calibrate the 1D ”global” model. We present
two Joint-Assimilation-Coupling (JAC) algorithms. Both present advantages
and drawbacks. Numerical tests on an academic configuration are performed.
They show the relevancy and the accuracy of these two JAC algorithms. Fi-
nally, the present approach (coupling/superposition and simultaneous data
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assimilation) can be naturally extended to the 3D Navier-Stokes equations -
1D SWE system.

A Characteristics boundary conditions

In this section, we detail how we define open boundary conditions for 2D mo-
dels. It is based on the theory of characteristics, see e.g. [21,2].
Let us consider the 2D SW equations near the boundary, in the non-conservative
form and linearized around a mean value (h0, u0, v0), with a flat bottom and
without friction :







∂u
∂t

+ u0
∂u
∂x

+ v0
∂u
∂y

g ∂h
∂x

= 0
∂v
∂t

+ u0
∂v
∂x

+ v0
∂v
∂y

+ g ∂h
∂y

= 0
∂h
∂t

+ u0
∂h
∂x

+ v0
∂h
∂y

+ h0

(
∂u
∂x

+ ∂v
∂y

)

= 0

(A.1)

In a matrix form, this gives :

Ut + A1 Ux + A2 Uy = 0 (A.2)

with U = [h, u, v]T , A1 = (u0 0 h0, 0 u0 0, g 0 u0)
T and A2 = (v0 0 0, 0 v0 h0, 0 g v0)

T

Let n = [n1, n2]
T and τ be respectively the normal and the tangent vec-

tor to the boundary. The matrix A = n1 A1 + n2 A2 has 3 eigenvectors :
w1 = u · n +

√
g
h0

h, w2 = u · τ and w3 = u · n −
√

g
h0

h. They are associated

to the eigenvalues λ1 = u0 · n + c, λ2 = u0 · τ and λ3 = u0 · n− c (c =
√

gh0)
respectively. These eigenvectors w1, w2 and w3 are the so-called characteristic
variables.

We rewrite (A.2), using w1, w2 and w3 :







∂w3

∂t
+ λ3

∂w3

∂xn

+ u0 · τ ∂w3

∂xτ
− c ∂v

∂xτ
= 0

∂w2

∂t
+ λ2

∂w2

∂xn

+ u0 · τ ∂w2

∂xτ
+ c

2
∂(w1−w3)

∂xτ
= 0

∂w1

∂t
+ λ1

∂w1

∂xn

+ u0 · τ ∂w1

∂xτ
− c ∂v

∂xτ
= 0

(A.3)

If we neglect the variations along xτ , (A.3) becomes a system of transport
equations of wk at speed λk in the normal direction n. Given an open boundary,
wk is incoming if λk < 0 and outgoing otherwise.
Following [2], relevant open boundary conditions can be defined by imposing
only the incoming characteristic variables on each boundary.
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données caractéristiques de l’imagerie aérienne. PhD Thesis, Institut National
Polytechnique de Toulouse, 2004.

[19] B. Smith, P. Bjorstad, W. Gropp. Domain Decomposition. Cambridge
University Press, 1996.

[20] G. Steinebach, S. Rademacher, P. Rentrop, M. Schulz. Mechanisms of coupling
in river flow simulation systems. J. Comp. Appl. Math., vol 168, pp 459-470,
2004.

[21] E F. Toro. Shock-Capturing Methods for Free-Surface Shalow Flows. Wiley and
Sons, Ltd, 2001.

20


