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In view of improving numerical flood prediction, a variational data assimilation
method (4D-var) applied to a 2D shallow water model and using distributed
water level obtained from one Synthetic Aperture Radar (SAR) image is
presented. The RADARSAT-1 image leads to water levels with a ±40 cm
average vertical uncertainty of a Mosel River flood event (1997, France).
Assimilated in the 2D shallow water hydraulic model, these SAR derived
spatially distributed water levels prove to be capable of enhancing model
calibration. Indeed, the assimilation process can identify some optimal Manning
friction coefficients. Moreover, used as a guide for sensitivity analysis, remote
sensing water levels allow also in identifying some areas in the floodplain and
the channel where Manning friction coefficients are homogeneous. This allows
basing the spatial segmentation of roughness coefficient on floodplain hydraulic

functioning.

1. Introduction

High spatial resolution SAR spaceborne images allow the estimation of

distributed water levels in floodplains with reasonable uncertainty by

merging SAR derived flood extent limits with a high-resolution high-

accuracy Digital Elevation Model (DEM), see Ref. 1. Furthermore, to

be reliable, hydraulic models have to be constrained by using various

observed data sets. The model calibration consists in forcing the model to

provide outputs as close as possible to observed data by searching optimal

values of its parameters. A “hand” calibration of Manning coefficients is

often done through trial tests with the use of point observations, such as

recorded hydrographs at stream gauges. The variational data assimilation
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method based on the optimal control theory of partial differential equations

(also called 4D-var method) offers a special powerful tool to fuse in an

optimal sense measurements (observations) and the mathematical model.

In river hydraulics, variational data assimilation methods have been used

successfully for shallow water models.2–10 The present study aims at

investigating whether the variational assimilation of water levels derived

from a flood SAR image could help to enhance the calibration of flood

inundation models. This would help getting benefits of both variational

assimilation and recently developed remote sensing methods, improving

flood model calibration.

2. Flood Description and Data Extraction

The area of interest includes a 28km reach of the Mosel River between

Uckange (France) and Perl (Germany). In this area, the Mosel River

meanders in a flat plain having an average width of 3 km and a mean slope

of 0.05%. It is worth noting the presence of a narrow valley at downflow. The

latter behave as a bottleneck during flood events causing upstream water

retention area. The propagation velocity of the flood peak in the study

area is low, around 2 kmh−1. The peak discharge recorded at Uckange city

stream gauge (upstream boundary) was around 1,450m3s−1, corresponding

to a 4–5 year time return period.

As hydrometric data, discharge hydrographs were available at three

stream gauges located in the study area. These hydrographs are shown

in Fig. 1. Recorded discharge hydrographs araise from calculation using

observed water stage hydrographs and rating curves: relationship between

discharge and water level computed using discharge in situ measurements.

Considering that higher magnitude discharges have been in situ measured

in Uckange than in Perl for the rating curve computation, the Uckange

hydrograph has been assumed more reliable. As a consequence, only the

discharge hydrographs in Uckange and EDF stream gauges are used as

ground truth information in this study. Consequently, available ground

observations are fairly limited. The time series data of discharges at the

EDF gauge station are only available at the beginning and the end of the

flood period; the measurements are lacking during the high flood stage

because of sensor disability (see Fig. 2).

The SAR image (Systematic Map Image product), amplitude coded,

has a pixel spacing of 12.5m, resulting from the sampling of a complex
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Fig. 1. Recorded hydrographs during the flood event at three different locations.

Fig. 2. Observations available: discharge at low water level at EDF gauge station and
one (partial) image.

image of 25m spatial resolution. It was acquired a few hours after the flow

peak, at the beginning of the recession, as shown in Fig. 1. In the area of

interest, namely the Mosel floodplain, the terrain slopes are rather low and

the incidence angle of the RADAR signal does not vary a lot. As a matter
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of fact, during the treatment of the SAR image, namely the flood extent

delineation, we made use of the pixel’s Digital Number (DN).

Furthermore, five air photographs at 1:15,000 scale, flown by the

French National Institute of Geography (IGN) in 1999 out of flooding

period, have been acquired. They have been used to digitize land use

information: buildings, urban areas and sparse habitat, and high vegetation,

forests, sparse trees, hedges, etc. Indeed trees and buildings perturb the

backscattering signal, so we choiced to mask these areas before processing:

the whole process runs using only reliable areas.

The topographic and bathymetric raw data have been provided

respectively by the North-Eastern French Navigation Services (SNNE)

and the DIREN Lorraine as 3D points and 3D lines — calculated by

photogrammetry using air photographs at 1:8,000 scale and SONAR

sounding. The average altimetric uncertainty on the raw data is about 25 cm

(DIREN information) for the floodplain and 1 cm (SNNE information)

for the channel. Using a linear interpolation between points and lines,

a Triangular Irregular Network (TIN) Digital Elevation Model (DEM)

has been generated and then converted to a RASTER DEM (pixel size:

7m), easily superimposable with image data. Hereafter, DEM acronym

will be assigned to the topographic RASTER data. Moreover steep banks,

potentially badly represented, are eliminated from the final process.

3. Water Level Estimation Using SAR Image

Based on the method developed in Ref. 11 providing water level estimates

with a ±18 cm mean uncertainty using flood aerial photographs, the water

level estimation method used in this study is more detailed in Ref. 12 (see

also Ref. 13).

Using the RADARSAT image, this approach provides spatially

distributed water level estimates within a ±40 cm mean uncertainty. It can

seem strange to reach such accuracy with large pixels (25m). Nevertheless,

more than to pixel size, the accuracy in this process relates to DEM accuracy

and the fact that the vertical estimates concern only places with very low

slopes and no perturbing items (trees, houses, etc.).

3.1. Flood extent extraction

To deal with the radiometric uncertainty, the discrimination of flooded and

non-flooded pixels is done using two threshold values. The first threshold
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value, Tmin, aims at detecting only pixels that correspond to water bodies.

Tmin has been determined as the minimum radiometric value of non-

flooded pixels inside grassland areas (outside the floodplain and outside

the permanent water surfaces).12 The second threshold value, Tmax, aims

at detecting all flooded areas, at the risk of detecting in addition non-

flooded areas that have a similar radiometric value to the flooded one. Tmax

has been determined as the maximum radiometric value of water bodies

outside the flooded area, using the SAR image pixels located inside the

Mirgenbach lake. The thresholding of the SAR image using Tmin and Tmax

provide a flood extent map with fuzzy limits, coded as follows (see Ref. 12),

depending on the intensity I of the SAR image pixels: 0, non-flooded

(I > Tmax); 1, flooded (I <Tmin), 2, fuzzy limit (≈ potentially flooded)

(Tmin ≤ I ≤ Tmax).

The innovative point of the SAR image processing is the analysis of

the relevance of the remote sensing-derived flood extent limits for hydraulic

purpose, and especially for water level estimation. To estimate water levels,

the flood extent limits are merged with the underlying DEM. Using such

a merging, any erroneous flood extent limit will lead to errors in water

level estimation. Consequently, flood extent limits prone to error have to be

identified before the merging. Errors in the flood extent limits are mainly

due to emerging objects such as building and high vegetation12 that may

mask water. To treat this potential errors, it has been chosen to remove

all SAR derived flood extent limits located in habitat or vegetation areas.

Considering that radiometric and spatial uncertainties have been taken into

account, the “enlarged” relevant limits are then assumed to include the real

flood extent limits (Hyp. 1 ). These are shaped as small patches which are

sparsely distributed along the floodplain (Fig. 3).

3.2. Preliminary water level estimation

The second part of the process estimates one range of possible water levels

IWLE = [WLmin; WLmax] for each relevant patch. To do so, the maximum

and the minimum elevation values are first extracted inside each relevant

patch using the DEM Z values. Next, the DEM altimetric uncertainty

(uncertDEM) is taken into account by being, respectively, added/subtracted

to the maximum/minimum values extracted previously for each relevant

patch:

IWLE = [min(Zpatch) − uncertDEM; max(Zpatch) + uncertDEM].
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Unavailable water level values

Available water level values

River channel

Fig. 3. Spatial distribution of water level values available after image post-treatment.

Since the DEM altimetric uncertainty is taken into account, Hyp. 1 allows

to assume that each range of water level estimation — IWLE — includes

the real water level (Hyp. 2 ).

3.3. Final water level estimation

The last part of the process uses hydraulic rules to constrain the water level

estimates and reduce their uncertainty, as proposed firstly by Refs. 11 and

14. In a floodplain, hydraulic laws manage the flow, so that water levels

must follow an hydraulic logic: hydraulic energy decreases from upstream

to downstream. With low flow velocity, like in the Mosel floodplain, this

hydraulic rule can be simplified into a decrease of water level in the flow

direction (Hyp. 3 ). To apply Hyp. 3 on the IWLE intervals, flow directions

between patches (locations of the water levels) have to be determined.

As proposed in Ref. 12, some flow directions between patches have been

determined using the shape of the SAR derived flood extent and the lines

perpendicular to the elevation contour lines, oriented from the highest to

the lowest elevation, called steeper lines hereafter. Furthermore, the main

flow directions are assumed to be convergent toward the river channel,

following the steeper lines. The steeper lines around relevant patches have
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been determined using the contour lines derived from the DEM. Using

this criterion, some up-/down-stream relationship between patches have

been determined. At the floodplain scale, these relationships constitute an

hydraulic hierarchy of the relevant patches. Consequently, according to Hyp.

3, the water level must decrease from the patch A to the patch B if A is

upstream of B. Due to Hyp. 2 this induce the following constraints:

Nmax(B) ≤ Nmax(A) (constraint on the maxima),

Nmin(A) ≥ Nmin(B) (constraint on the minima).

To apply these constraints, the algorithm that has been developed, is

flow oriented and impose a decrease on the maxima from upstream to

downstream, and vice et versa, an increase on the minima from downstream

to upstream. This finally provides intervals of constrained water level

estimation IWLE = [WLmin; WLmax], with a half mean range of about

±40 cm.

As a consequence, the method allows the definition of a set of

distributed water levels across the floodplain at the satellite overpass time.

These remote sensing-derived water levels are then used as new observation

for the hydraulic modeling.

As a matter of fact, remote sensing derived data are assumed to be

an observation of water depth along the floodplain. The single image is

extracted from the satellite image at 6:00 am, Feb 28, 1997. The locations

where the water level values have been extracted are shown in Fig. 3.

4. Mathematical Model with Variational Data

Assimilation (4D-var)

For more details, we refer to Refs. 13 and 15. Numerical computations are

performed by using the DassFlow software.6

4.1. Mathematical model

The flood flow is modeled by the two-dimensional shallow water equations

(2D-SWEs), see Refs. 13 and 15 for more details. The unknowns are h

the water depth, Qx = hu and Qy = hv the unit discharge in the x- and

y-directions ((u, v) is the velocity). The friction slopes are evaluated using

the Manning formula.
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The full inverse model (with variational data assimilation) includes

the forward model (2D SWEs), the adjoint model and the minimization

algorithm. The 2D-SWEs is solved using a finite volume method on

unstructured meshes. The adjoint model is directly derived from the source

codes of forward model by automatic differentiation. The cost function J

that has to be minimized is defined in detail below. As a matter of fact,

the optimization problem to be solved is: minp J(p), where p is the control

variable. Here, the latter is the Manning coefficient (spatially distributed).

We refer to Refs. 13 and 15 for more details.

4.2. Preliminary forward run

As a preliminary study, the Manning coefficients are set to an a priori

“reasonable” constant value (equal to 0.025). Then, the simulation results

are compared with the available measurements, namely the water stage

hydrograph at the middle gauge station (EDF) and the SAR image derived

water levels in the floodplain at the satellite passover time.

The computed water level at EDF gauge station is very close to

measurements; while in floodplain at image time, the computed water level

fits much less with available data. Nevertheless, this preliminary forward

run shows that the numerical model can reproduce the flow; and the current

solution will be the first guess solution (see next section).

Let us point out that the Manning value imposed (0.025) is the

best value we found by hand, i.e., using a classical trial-error approach.

Furthermore, we did not improve significantly the result if using the land-

use information or not (and imposing classical Manning values related to

the land-use considered). We refer to Ref. 13 for more details.

4.3. Cost function

The cost function J to be minimized (see Section 4.1) contains three terms:

Jobs(p) = Jobs + αJflux + βJreg (α and β are weight coefficients to be set).

(1) Jobs corresponds to the discrepancy between the observations and the

computed flow state.

(2) Jflux corresponds to the discrepancy of net mass flux.

(3) Jreg is a regularization term for smoothing time-dependent control

variables p.
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The term (Jobs + αJflux) is defined as follows:

Jobs + αJflux

=
1

2σ2
z

∑

m

[

zTimag
(xm, ym) − zobs

Timag
(xm, ym)

]2
[

1 + α‖(u, v)(xm, ym)‖2
]

+
γ1

2σ2
Q

[

∫ T1

0

(Q(t) − Qobs(t))2dt +

∫ T

T−T2

(Q(t) − Qobs(t))2dt

]

where σz and σQ are the standard deviations of observations, Timag is the

image time, (xm, ym) is the position of water level measurements, γ1 is

a weighting coefficient, T1 and T2 are the time periods of the discharge

measurement available at EDF station (see Fig. 2), T is the assimilation

time period.

5. Calibration of Spatially Distributed Manning Friction

Coefficients (Land-Cover Based Spatial Distribution)

The Manning friction coefficients n, that represents the resistance to the

flow in channels and floodplains, are empirical. In fact we must point out

that (n) does not really exists, since it is strongly scale dependent, because it

integrates all the friction processes at all scale. This section aims at showing

the capability of SAR derived spatially distributed water levels to enhance

the Manning coefficient calibration, in comparison to a “hand” calibration

using trial-error tests. Thus, the data assimilation method presented here

uses “orthogonal data”: water heights derived from water limits versus

classical water depths in gauge station, see Fig. 2.

In this section, the spatial distribution of Manning friction coefficient

is based on land-cover classes as classically done. Various cases have been

considered depending on the total number of classes taken into account

(between 1 and 10). The domain is decomposed by using land-cover

classes, one Manning coefficient value n being set by land-cover class. Four

various decompositions have been investigated, depending on the total class

number:

(a) A lumped n value: one constant value all over the domain.

(b) Three classes (distributed n) consisting of the main channel and the left

and right floodplains.
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Fig. 4. Land cover: 10 classes (Case d) in the text.

(c) Five classes consisting of the main channel, the bridges (same n value

for all bridges), the small lakes, and the left and right floodplains.

(d) Ten classes according to the land-cover classification presented in Fig. 4.

In all numerical experiments, the assimilation period is 66 h from 12:00,

Feb 25th (flood event starting time) to 6:00 am, Feb 28, 1997 (SAR image

acquisition time).

Identification of Manning coefficients using synthetic data (twin

experiments). We performed identification experiments based on synthetic

data, see Ref. 13 for more details. They showed that the SAR derived

spatially distributed water levels and the stream gauge in situ measurements

can identify properly the spatial distributed Manning coefficients, at least if

three land-cover classes only are considered and if the mathematical model

is perfect (i.e. observations corresponds to the modeled flow) and no error

is introduced in measurements. These last two features are very important.

Next, we use the real data and we will notice that the (real) identification

problem is much more difficult to solve numerically, even with three land-

cover classes only.
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Identification of Manning coefficients using real data. In all cases

(depending on the land-cover number), the computed value of the main

channel is the same whatever the initial guess n0 (e.g. 0.033, 0.020, 0.025 or

0.050) and the total class number. On the contrary, n in other land-cover

classes are almost not modified during the optimization process. This result

is consistent with the forthcoming sensitivity analysis (see next section),

runs which shows that the total cost function is almost insensitive to the n

values outside the main channel.

Using real data, sensitivities can become different, and the identification

problems become much more difficult. In the present case, the few sensitivity

of the model to the Manning coefficient outside the channel is mainly due to

the rather low time return period of the investigated flood event (4–5 years).

The results show that the water levels in the floodplain is more influenced

by the water level inside the channel (and thus by the channel Manning

coefficient) instead of the floodplain Manning coefficient.

In Figs. 5 and 6, we plot the difference between the computed

and the observed water levels where image information is available and

when considering 1, 3 and 10 land-cover classes. Figure 7 shows the

comparison between simulated and observed discharge hydrographs at the

EDF middle gauge station (in function of time). These results show that

after the identification of an “optimal” set of Manning coefficient values, the

computed flow state is much closer to the observations than that computed

using the forward hand-calibrated model (i.e. with n values resulting of the

trial-error tests-“hand” calibration).

6. Sensitivity Analysis and Manning Decomposition

The previous section shows that our variational data assimilation process is

capable of enhancing significantly the calibration of the distributed Manning

friction coefficients, and consequently the accuracy of the numerical model.

Nevertheless, all computations have been done with an a priori : the

Manning coefficients have been defined spatially distributed according to

given land-use classes (between 1 and 10). This a priori is rather traditional.

Nevertheless, does this necessary lead to the most accurate numerical

model? In the current section, we aim at answering to this question. To

meet this aim, a sensitivity analysis is performed without any a priori for

the Manning spatial distribution (i.e. any land-use is defined).

One run of the forward model plus the adjoint model, without running

the full optimization process, gives the gradient of cost function J with
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Fig. 5. Water levels (m) at image blocks, i.e. where image information is available
(see Fig. 3). Vertical bars correspond to the measures with estimated uncertainties. The
four curves correspond to the preliminary forward run and the three calibrated model
responses (depending on the land classes number considered; VDA-nXX = 1, 3 and
10 land classes) (Recall: VDA =Variational Data Assimilation = 4D-VAR algorithm;
direct= forward model without VDA (“hand” calibrated model).

respect to the Manning coefficients. These gradient values represent the

local sensitivity of the cost function with respect to the Manning coefficients.

They help one to understand which Manning area is the most important to

calibrate.

First, we perform sensitivity analysis in the case the Manning is

decomposed by the 10 land-uses defined previously, see Fig. 4. We show the

10 spatially distributed gradient values in Table 1. This sensitivity analysis

suggests that the most important Manning value to focus on is in the main

channel, than much less important are the vegetation area, the bridge (in

main channel), gravel area and grassland area. Others land-use values are

negligible.

This sensitivity analysis result is consistent with the calibration

process presented in previous section: the optimization algorithm calibrate

essentially the main channel value.
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Fig. 6. Difference of water depth (m) at image instant (6:00, Feb 28, 1997) between
observations and computed values using the calibrated model (Manning is calibrated in
three land classes, Case b).

Fig. 7. Measured discharge hydrographs (m3s−1) at the middle gauge station EDF, and
computed one using the calibrated model (Manning is calibrated in three land classes,
Case b; at downstream, elevation is imposed).
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Table 1. Sensitivity analysis. Gradient values for 10 land-uses (at Manning
value constant everywhere n = 0.033).

Channel Vegetation Bridge Gravel Grassland

881.54 e+ 6 43.75 e+ 6 17.76 e+ 6 3.64 e +6 −1.06 e+ 6
Left Right Snaked land Urban Downstream channel
0.07 e+ 6 0 0 0 0

No a priori land-use case

Next, a sensitivity analysis with no a priori on the Manning decomposition

has been performed: we define one Manning value for each mesh cell, and

we compute the gradient value for each cell. In particular in the main

channel, there are as many potential values as cells. The computed spatially

distributed gradient values are shown in Fig. 8.

The present sensitivity analysis suggests defining few Manning areas

inside the main channel (at least four in the present case). More generally,

Fig. 8. Sensitivity analysis. Gradient value: cost function with respect to the Manning
coefficient in each finite volume cell (there is no a priori land-use).
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this suggests to define the Manning areas not upon the land-use (or

land-cover) but upon “sensitive areas”. Furthermore, the combination of the

satellite image and runs of sensitivity analysis indicates the most important

Manning areas we need to calibrate (including inside the main channel).

7. Conclusion

By using a variational data assimilation approach (4D-var), we have

investigated potential contributions of SAR derived spatially distributed

water levels for the identification of time-independent parameters (Manning

coefficients) in a shallow-water flood model.

The spatially distributed water levels have been derived from a SAR

image by employing the method developed in Ref. 12. They have been

obtained with a ±40 cm mean uncertainty, using a RADARSAT-1 image of

the 1997 flood event of the Mosel river. This has been possible by using both

an analysis of the relevance of SAR derived flood extent limits for hydraulic

purposes, and a merge between the relevant limits and a highly resolution

DEM, under hydraulic coherence constraints inspired from Refs. 11 and

14. Such a water level estimation provides spatially distributed information

at the time of a satellite overpass while classical in situ measurements are

punctually available.

Numerical experiments conducted in this study indicate that a rather

dense information in space is of great benefit for the identification

of unknown parameters (Manning friction coefficient). Indeed, the

assimilation of the SAR derived water levels, in addition to an incomplete

discharge hydrograph, proves to be capable of identifying Manning

friction coefficients, while the ground data alone does not allow such an

identification. Furthermore, a sensitivity analysis conducted by using the

SAR derived water levels, shows that a spatial distribution of the friction

coefficient based on land-cover may not necessarily lead to the better model

results. Indeed, these water levels, used as a guide in the sensitivity analysis,

can define areas of Manning friction homogeneity, without apparent link

with land-cover. Such sensitivity analysis may finally base the Manning

parameter spatial distribution more on the model hydraulic functioning,

than on the land-cover.

In a near future, with the launch of new radar satellites with better

spatial and radiometric resolutions and more suitable wavelength, the

uncertainties of water levels estimates will presumably be further reduced.
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The capability of SAR derived water levels may be enhanced to help the

identification of model parameters using variational assimilation.
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