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Order constraints for single machine scheduling with non-linear cost

Christoph Dürr∗† Oscar C. Vásquez∗‡

Abstract

Typically in a scheduling problem we are given jobs of

different processing times pj and different priority weights

wj , and need to schedule them on a single machine in

order to minimize a specific cost function. In this paper we

consider the non-linear objective function
∑

wjC
β
j , where

Cj is the completion time of job j and β > 0 is some arbitrary

real constant. Except for β = 1 the complexity status of

this problem is open. Past research mainly focused on the

quadratic case (β = 2) and proposed different techniques to

speed up exact algorithms. This paper proposes new pruning

rules and generalizations of existing rules to non-integral β.

An experimental study evaluates the impact of the proposed

rules on the exact algorithm A*.

1 Introduction

In a scheduling problem the goal is to produce a schedule
for the given jobs, that minimizes some objective func-
tion, usually depending on the job completion times,
under problem specific constraints. One natural goal is
to minimize the maximum completion time among all
jobs, akamakespan. Another natural goal is to minimize
the average completion time. A common way to com-
bine these two objectives is to minimize the Lβ-norm of
the completion times, for some constant β > 1. As an
example, the TEX-typesetting system uses the ℓ3 metric
to compute optimal line breaks.

In this paper we consider the more general objective
function

∑

j wjC
β
j where wj is the given priority weight

of job j, Cj its completion time and β some fixed
positive constant. For convenience we introduce the
function f : t 7→ tβ , and call it the penalty function.
We consider the most simple setting, where we are
given n jobs, each job j has a processing time pj and
a priority weight wj , and a schedule consists of an
ordering of these jobs on a single machine. Here the
completion time of job j is simply pj plus the sum of the
processing times over all jobs that are scheduled before
j. There are several motivations to this scheduling
problem. Some machines have a learning effect, and
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their efficiency is increasing during the execution, while
some other machines have a wear and tear effect and
their efficiency is decreasing during the execution. This
can be expressed with values of β respectively smaller
or greater than one. Moreover in [17, 11] a particular
dynamic voltage scheduling problem optimizing quality
of service and energy consumption is reduced to this
same objective function for some 0 < β < 1.

Embarrassingly very little is known about the com-
putational complexity of this problem, except for the
special case β = 1, where scheduling jobs in order of de-
creasing Smith ratio wj/pj leads to the optimal sched-
ule, as has been found out 60 years ago [14]. Most re-
search focused on the quadratic objective function, i.e.
for β = 2, and exact algorithms have been proposed
[12, 5, 13, 2, 16].

Two research directions were applied to this prob-
lem, approximation algorithms and branch and bound
algorithms. Approximation algorithms have been pro-
posed for the more general problem 1||∑ fj(Cj), where
every job j is given an increasing penalty function fj(t),
that does not need to be of the form wjt

β . Bansal and
Pruhs [3] provided a constant ratio approximation algo-
rithm based on a geometric interpretation. This factor
has been improved from 16 to 2 + ǫ via a primal-dual
approach by Cheung and Shmoys [4]. Epstein et al. con-
sidered the problem 1||∑wjf(Cj), and provided a 4+ǫ
approximation algorithm for the setting where f is an
arbitrary increasing differentiable penalty function cho-
sen by the adversary after the schedule has been pro-
duced. A polynomial time approximation scheme has
been provided by Megow and Verschae [11] for general
monotone penalty functions f .

Finally, Höhn and Jacobs [9] derived a method to
compute the tight approximation factor of the Smith-
ratio-schedule for any particular monotone increasing
convex or concave cost function. In particular for
f(t) = tβ they obtained for example the ratio 1.07 when
β = 0.5 and the ratio 1.31 when β = 2.

For branch-and-bound algorithms pruning rules
were proposed which reduce the number of nodes in the
search graph, having a direct effect on the running time.
For example, if we knew, that without loss of generality
in an optimal schedule, job i is never scheduled after
job j — which we denote by i ≺g j — then we could



eliminate roughly half of the potential orderings, and
reduce the number of explored nodes.

So an extensive literature was devoted to finding
stronger rules, which are weaker conditions on the job
characteristics that would still imply i ≺g j. The
contribution of our paper is to provide new rules and
generalize existing ones to arbitrary values of β > 0. We
conclude this paper with an experimental study of the
impact of our proposed pruning rules to the performance
of an exhaustive search procedure.

2 Pruning rules

Consider a schedule where i, j are scheduled one after
the other, with job i starting at time t. Then the
exchange of jobs i, j has some effect to the objective
value of the schedule, which depends on jobs i, j and
on time t. We denote by i ≺ℓ(t) j the property that
the order i, j generates a strictly smaller cost than the
order j, i. If it holds for all time points t ∈ [a, b], then
we denote this property by i ≺ℓ[a,b] j, and if it holds
everywhere we denote it simply by i ≺ℓ j.

The previously introduced properties generalize to
situations where i and j are not scheduled adjacently.
We say that i, j satisfy the global order property for
interval [a.b] if whenever in some schedule S, the
completion times of jobs i, j satisfy

a ≤ Cj − pj ≤ Ci − pi − pj ≤ b,

then S is sub-optimal.1

Again if this property holds for all intervals, then
we use simply the notation i ≺g j.

We state the following conjecture, motivated by
partial results and experiments.

Conjecture 1. For all jobs i, j, i ≺ℓ j implies i ≺g j.

A proof for this conjecture is given in this paper,
for the case β = 2. Also during the experimental
study, described in the last section of this paper, we
successfully verified the conjecture on all the instances
of our tests cases.

Interestingly the stronger implication i ≺ℓ[a,b] j ⇒
i ≺g[a,b] j does not hold. A counter example consists of
the instance for β = 2 with pi = 13, wi = 7, pj = 8, wj =
5, pk = 1, wk = 1. For t = 19/18, we have i ≺ℓ[0,t) j
and j ≺ℓ(t,∞) i. But the unique optimal solution is the
sequence jki, meaning that we don’t have i ≺g[0,t) j.
This contrasts with Theorem 5.1, which states that the
implication holds whenever pi ≤ pj .

1From the proof of Theorem 5.1 it will become clear why we

require this lower bound on Cj .

3 Related work

Previous research focused mainly on the quadratic
penalty function, i.e. β = 2. Branch-and-bound ap-
proaches with pruning rules implying order properties
have been proposed, see [16, 2, 13, 1, 5, 15]. In 2000,
Mondal and Sen [12] conjectured that β = 2, (wi ≥
wj)∧ (wi/pi > wj/pj) implies the global order property
i ≺g j, and provided experimental evidence that this
constraint would significantly improve the runtime of a
branch-and-prune search. Recently, Höhn and Jacobs
[7] succeeded to prove this conjecture. In addition they
improved local and global order conditions and gener-
alized them to integer constants β ≥ 2. An extensive
experimental study analyzed the effect of these rules to
the performance of the branch-and-prune search.

We distinguish the following known rules.

Sen-Dileepan-Ruparel [13] for any β > 0, if wi > wj

and pi ≤ pj , then i ≺g j.

Höhn-Jacobs-1 [7] for β ∈ N, β ≥ 3, if wi/pi ≥
βwj/pj then i ≺ℓ j.

Höhn-Jacobs-2 [7] for β ∈ N, β ≥ 3, if wi ≥ wj and
wi/pi > wj/pj then i ≺ℓ j.

Mondal-Sen-Höhn-Jacobs Conjectured in [12],
proved in [7]. For β = 2 the two previous rules are
enforced by the stronger implication i ≺g j.

In this paper we characterize the condition i ≺ℓ j,
and provide new sufficient conditions for the property
i ≺g j. For the special case β = 2 actually i ≺ℓ j implies
i ≺g j.

4 Preliminaries

To simplify notation, throughout the paper we assume
that no two jobs have the same processing time, weight
or Smith-ratio (weight over processing time). For
convenience we extend the notation of the penalty
function f to the makespan of schedule S as f(S) :=
f(
∑

i∈S pi). Also we denote by F (S) the cost of
schedule S.

We define the following function on t ≥ 0

φij(t) :=
f(t+ pi + pj)− f(t+ pj)

f(t+ pi + pj)− f(t+ pi)
,

and

∆ij(t) := wjf(t+ pj) + wif(t+ pi + pj)

− wif(t+ pi)− wjf(t+ pi + pj),

Note that φij(t) is well defined since f is strictly
increasing by assumption and the durations pi, pj are



non-zero. It is this function φij that permits us to
analyze algebraically the local order property, since

i ≺ℓ(t) j ⇔ φij(t) <
wi

wj

⇔ ∆ij(t) > 0.

The following technical lemmas show a connection
between the properties of function f : t 7→ tβ and
properties of function φij , and show properties of f .

Lemma 4.1. If pi 6= pj then φij is strictly monotone,
in particular:

• If pi > pj and β > 1, then φij is strictly increasing.

• If pi < pj and β > 1, then φij is strictly decreasing.

• If pi > pj and β < 1, then φij is strictly decreasing.

• If pi < pj and β < 1, then φij is strictly increasing.

Proof. See Figure 1 for an illustration of the claimed
properties. Since φij(t) = 1/φji(t), it suffices to
consider the case pi > pj .

t

φij(t)

0

pi/pj

1

for f(t) =
√
t

for f(t) = t2

t

φij(t)

0

pi/pj

1

for f(t) =
√
t

for f(t) = t2

Figure 1: Examples of the function φij(t) for β = 0.5
and β = 2, as well as for the cases pi > pj and pi < pj .

Fix an arbitrary t ≥ 0. For convenience let T be a
fictive job of processing time t. We will show that

φ′
ij(t) =

[f ′(T ij)− f ′(Tj)][f(T ij)− f(T i)]
−[f ′(T ij)− f ′(T i)][f(T ij)− f(Tj)]

[f(T ij)− f(T i)]2
> 0.

(4.1)

Since the denominator of this fraction is positive,
we can focus on the numerator:

[f ′(T ij)− f ′(Tj)][f(T ij)− f(T i)]

− [f ′(T ij)− f ′(T i)][f(T ij)− f(Tj)]

= f ′(T ij)f(T ij)− f ′(Tj)f(T ij)

− f ′(T ij)f(T i) + f ′(Tj)f(T i)

− f ′(T ij)f(T ij) + f ′(T i)f(T ij)

+ f ′(T ij)f(Tj)− f ′(T i)f(T i)

= f ′(T ij)f(Tj)− f ′(Tj)f(T ij)

+ f ′(T i)f(T ij)− f ′(T ij)f(T i)

+ f ′(Tj)f(T i)− f ′(T i)f(Tj).

Up to factor β inequality (4.1) is equivalent to

(t+ pj)
β−1tβ−1((t+ pj)− t)

+ (t+ pi)
β−1tβ−1(t− (t+ pi))

+ (t+ pj)
β−1(t+ pi)

β−1((t+ pi)− (t+ pj)) > 0

≡ (t+ pj)
β−1tβ−1pj

+ (t+ pj)
β−1(t+ pi)

β−1(pi − pj) > (t+ pi)
β−1tβ−1pi

≡ (pj/pi)(1/(t+ pi))
β−1

+ (1− pj/pi)(1/t)
β−1 > (1/(t+ pj))

β−1

Using a function h : x 7→ (1/x)β−1 we reformulate this
inequality as

(pj/pi)h(t+ pi) + (1− pj/pi)h(t) > h(t+ pj).

Note that h(x) is a strictly convex function for
positive x and β > 1, which implies

λh(x1) + (1− λ)h(x2) > h(λx1 + (1− λ)x2)

for any 0 < λ < 1 and x1, x2 > 0.
We choose λ = pj/pi, x1 = t+pi, x2 = t and obtain

λx1 + (1− λ)x2 = (pj/pi)(t+ pi) + (1− pj/pi)(t)

= tpj/pi + pj + t− tpj/pi

= t+ pj .

In summary we obtain the inequalities

(pj/pi)h(t+ pi) + (1− pj/pi)h(t)

>h((pj/pi)(t+ pi) + (1− pj/pi)t)

=h(t+ pj),

completing the proof. ✷

Lemma 4.2. For any jobs i, j, we have

lim
t→∞

φij(t) = pi/pj .



Proof. We prove this claim using the generalized bino-
mial theorem. Here

(

β
k

)

is defined for any real positive
valued β as β (β−1) · · · (β−k+1)/k!. By definition its
value is zero iff β is integral and 0 ≤ β ≤ k − 1. Then
we have

(t+ pi + pj)
β =(t+ pj)

β + β(t+ pj)
β−1pi

+
∞
∑

k=2

(

β

k

)

(t+ pj)
β−k(pi)

k.(4.2)

Therefore the limit can be expressed as (where the
sum ranges for k from 2 to infinity)

lim
t→∞

φij(t)

= lim
t→∞

(t+ pi + pj)
β − (t+ pj)

β

(t+ pi + pj)β − (t+ pi)β

= lim
t→∞

β(t+ pj)
β−1pi +

∑
(

β
k

)

(t+ pj)
β−k(pi)

k

β(t+ pi)β−1pj +
∑

(

β
k

)

(t+ pi)β−k(pj)k

= lim
t→∞

β(1 + pj/t)
β−1pi +

∑
(

β
k

)

1
tk−1 (1 + pj/t)

β−k(pi)
k

β(1 + pi/t)β−1pj +
∑

(

β
k

)

1
tk−1 (1 + pi/t)β−k(pj)k

=
pi
pj

.

✷

Lemma 4.3. For a < b and pi > pj,

pi
pj

· f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)
≥ 1.

Proof. When f is convex, the second fraction is clearly
greater than 1. So we focus on the concave case. For
this purpose we define the function

g(x) := x(f(b+ x)− f(a+ x))

and show that g is increasing, implying g(pi)/g(pj) ≥ 1
as required. So we have to show g′(x) > 0 in other
words

f(b+ x)− f(a+ x) + x(f ′(b+ x)− f ′(a+ x)) ≥ 0

or

(b+ x)β + xβ(b+ x)β−1 ≥ (a+ x)β + xβ(a+ x)β−1.

To establish the last inequality, we introduce another
function

r(z) := (z + x)β + xβ(z + x)β−1

and show that r is increasing, implying r(b) ≥ r(a). By
analyzing its derivative we obtain

r′(z) = β(z + x)β−1 + xβ(β − 1)(z + x)β−2

= (z + x)β−2(β(z + x) + xβ(β − 1))

= (z + x)β−2(βz + xβ2),

which is positive as required. This concludes the proof.
✷

Lemma 4.4. For t ≥ 0 let the function q be defined as

q(t) :=
f(t+ pj)− f(t)

f(t+ pi)− f(t)
=

(t+ pj)
β − tβ

(t+ pi)β − tβ
.

For pi > pj, if β > 1 then q is increasing and if
0 < β < 1 then q is decreasing.

Proof. We show only the convex case, the concave case
is analogous. First, we compute the first derivative of q

q′(t) = β

((t+ pi)
β − tβ)((t+ pj)

β−1 − tβ−1)
−((t+ pj)

β − tβ)((t+ pi)
β−1 − tβ−1)

((t+ pi)β − tβ)
2

We now show that q′ is strictly increasing. Since the
denominator of this fraction is positive, we can focus on
the numerator. Up to factor β this is equivalent to:

(t+ pi)
β(t+ pj)

β−1 − (t+ pi)
βtβ−1

−tβ(t+ pj)
β−1 + tβtβ−1

−(t+ pj)
β(t+ pi)

β−1 + (t+ pj)
βtβ−1

+tβ(t+ pi)
β−1 − tβtβ−1.(4.3)

We use the transformation

(t+ pi)
β(t+ pj)

β−1 − (t+ pj)
β(t+ pi)

β−1

= (t+ pi)(t+ pi)
β−1(t+ pj)

β−1

− (t+ pj)(t+ pj)
β−1(t+ pi)

β−1

= (t+ pi)
β−1(t+ pj)

β−1(pi − pj)

to transform (4.3) into

(t+ pi)
β−1(t+ pj)

β−1(pi − pj)

− (t+ pi)
β−1tβ−1pi + (t+ pj)

β−1tβ−1pj

which is positive if and only if

(pj/pi)(1/(t+ pi))
β−1 + (1− pj/pi)(1/t)

β−1

>(1/(t+ pj))
β−1.

Using function h : x 7→ (1/x)β−1 we reformulate this
inequality as

(pj/pi)h(t+ pi) + (1− pj/pi)h(t) > h(t+ pj).

Note that h(x) is a strictly convex function for positive
x and β > 1, which implies

λh(x1) + (1− λ)h(x2) > h(λx1 + (1− λ)x2)



for any 0 < λ < 1 and x1, x2 > 0.
We choose λ = pj/pi, x1 = t+pi, x2 = t and obtain

λx1 + (1− λ)x2 = (pj/pi)(t+ pi) + (1− pj/pi)(t)

= tpj/pi + pj + t− tpj/pi

= t+ pj .

In summary we obtain the required inequality

(pj/pi)h(t+ pi) + (1− pj/pi)h(t)

>h((pj/pi)(t+ pi) + (1− pj/pi)t)

=h(t+ pj).

This concludes the proof. ✷

5 Main Results

In [13] it has been shown that if job j has both longer
processing time than i and smaller weight than i,
then i ≺g j, whereas in [7, 12] some conditions on
jobs i, j imply the global order property were given
for the quadratic penalty function. We enforce these
statements using properties of φij(t).

Theorem 5.1. (Rule 1) Let f be an arbitrary strictly
increasing penalty function. Fix two jobs i, j, an in-
terval [a, b] and suppose i ≺ℓ[a,b] j. If pi ≤ pj then
i ≺g[a,b] j.

Proof. Suppose that pi ≤ pj . Let I be an instance
containing jobs i, j and S a schedule on I of the form

S = AjBiD,

for some job sequences A,B,D. Let a be the total
processing time of A and b the total processing time
of AB. Then we have a = Cj − pj ≤ Ci − pi − pj = b
where Ci, Cj are the respective completion times in S.
We show that exchanging the jobs i and j decreases
the cost of the schedule. In particular we show the
following inequality, where we dropped the suffix D of
the schedules, since those jobs cancel in the difference
anyway,

max
t∈[a,b]

φij(t) [F (AijB)− F (AiBj)]

>F (AjiB)− F (AjBi).(5.4)

This inequality would conclude the proof, for the fol-
lowing reason. First we claim

max
t∈[a,b]

φij(t) ≤ 1,

which holds by definition of f in case pi ≤ pj . This
implies the stronger inequality

F (AijB)− F (AiBj) > F (AjiB)− F (AjBi),

or equivalently

(5.5) F (AjBi)− F (AiBj) > F (AjiB)− F (AijB).

Since i ≺ℓ(a) j implies that the right hand side is non-
negative, this would conclude the proof.

In order to show inequality (5.4), for every job
k ∈ B we denote by tk the completion time of k in the
schedule ABij. In (5.4) we distinguish the contributions
of jobs i, j and all jobs k ∈ B. In particular for every
job k in B we have

max
t∈[a,b]

φij(t)wk [f(tk + pi + pj)− f(tk + pi)]

≥wk [f(tk + pi + pj)− f(tk + pj)](5.6)

since

φij(tk)wk [f(tk + pi + pj)− f(tk + pi)]

=wk [f(tk + pi + pj)− f(tk + pj)] .

We denote by pB the total processing time over all
jobs in B. Then since f(Ci − pB) < f(Ci) and since
maxt∈[a,b] φij(t) < wi/wj we have

max
t∈[a,b]

φij(t)wj [f(Ci − pB)− f(Ci)]

>
wi

wj

· wj [f(Ci − pB)− f(Ci)] .(5.7)

Adding (5.6) and (5.7) establishes the required inequal-
ity (5.4). ✷

The following statement permits us to enumerate
some conditions on job pairs and their Smith-ratios,
which imply either a local or a global order property.

Theorem 5.2. (Rule 2) If f is an increasing strictly
convex function, wi/pi > wj/pj and wi > wj, then
i ≺ℓ j. On the other hand if f is an increasing strictly
concave function, wi/pi > wj/pj and wi < wj, then
i ≺g j.

Proof. First, we consider the case of a convex function
f .

For 0 < λ < 1, we have

(1− λ)f(x1) + λf(x2) ≥ f((1− λ)x1 + λx2).

We choose λ = wj/wi, x1 = t+ pi + pj , x2 = t+ pj and
have:

(1− wj/wi)f(t+ pi + pj) + wj/wif(t+ pj)

≥f(t+ pi + pj − wjpi/wi) > f(t+ pi).



The latter inequality holds by case assumption on
Smith-ratios of jobs i and j, and the strict monotonicity
of f . Thus, we have:

(1− wj/wi)f(t+ pi + pj) + wj/wif(t+ pj)− f(t+ pi)

=∆ij(t)/wi > 0,

which implies i ≺ℓ j.
For the concave case, we have the implication i ≺ℓ

j by a similar argument. To prove the implication
global, we observe that pi < pj follows from the
case assumption, and applying Theorem 5.1 permits to
conclude i ≺g j. ✷

Finally, we refine the above statements for the
function of the form f(t) : t 7→ tβ , with β ∈ R

+.

Theorem 5.3. (Rule 3) Let i, j be two jobs with pj <
pi. If

β > 1 and
wi

wj

≥
(

pi
pj

)β

or 0 < β < 1 and
wi

wj

≥
(

pi
pj

)2

then

i ≺g j.

Proof. Let i, j be two jobs with the required properties.
Let A,B be two arbitrary job sequences. We will show
that the schedule AjBi is suboptimal, thus showing that
i ≺g j.

First if F (AjBi) ≥ F (ABji), then by i ≺ℓ j we
have F (AjBi) ≥ F (ABji) > F (ABij). So from now on
we assume F (AjBi) < F (ABji). Note that we could
have assumed F (AjBi) < F (AjiB) as well, but do not
have use for it.

To conclude the proof, we will show F (AjBi) >
F (AiBj). In particular we will show the inequality

F (ABji)− F (ABij) < F (AjBi)− F (AiBj)

or equivalently

(5.8) F (ABji)− F (AjBi) < F (ABij)− F (AiBj).

Let a be the total processing time of A and b the
total processing time of AB. For every job k ∈ B we
denote by tk the completion time of k in the schedule
AB.

By hypothesis the left hand side is positive, and
by wi/wj > pi/pj and Lemma 4.3 we can bound it as

(denoting WB(z) :=
∑

k∈B wk(f(tk + z)− f(tk)))

F (ABji)− F (AjBi)

=wj(f(b+ pj)− f(a+ pj))−WB(pj)

<wi(f(b+ pi)− f(a+ pi))

− wi

wj

f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)
WB(pj)

<wi(f(b+ pi)− f(a+ pi))

− wi

wj

f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)
min
t≥0

f(t+ pj)− f(t)

f(t+ pi)− f(t)
WB(pi).

In order to upper bound the later expression by

≤ wi(f(b+ pi)− f(a+ pi))−WB(pi)

= F (ABij)− F (AiBj)

as required, it suffices to show

wi

wj

f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)
min
t≥0

f(t+ pj)− f(t)

f(t+ pi)− f(t)
≥ 1.

This last step distinguishes two cases.
Case β > 1. By Lemma 4.4 the last fraction is

minimum at t = 0, where it has the value (pj/pi)
β . By

assumption wi/wj ≥ (pi/pj)
β , the product of the first

and last fraction is at least 1. By convexity of f , the
second fraction is lower bounded by 1 as well, and we
are done.

Case 0 < β < 1. By Lemma 4.4 the last fraction
is minimum at the limit t → ∞, where it has the value
pj/pi. By assumption wi/wj ≥ (pi/pj)

2, we have that

wi

wj

f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)
min
t≥0

f(t+ pj)− f(t)

f(t+ pi)− f(t)

≥
(

pi
pj

f(b+ pi)− f(a+ pi)

f(b+ pj)− f(a+ pj)

)(

pi
pj

pj
pi

)

which is at least 1 by Lemma 4.3. This concludes the
proof of the theorem. ✷

We provide a proof of the special case β = 2 of our
conjecture.

Theorem 5.4. Consider the penalty quadratic mono-
mial function and fix two arbitrary jobs i, j. If i ≺ℓ j
then i ≺g j.

Proof. The case pi ≤ pj , is covered by Theorem 5.1 for
the interval [0,∞).

For the case pi > pj , by Lemma 4.1, φij is strictly
increasing and by Lemma 4.2 we have for any t ≥ 0

φij(t) < pi/pj .

Thus, φij(t) < wi/wj for any t ≥ 0 (or equivalently
i ≺ℓ j) if only if pi/pj ≥ wi/wj . Finally, from the
Mondal-Sen-Höhn-Jacobs rule we obtain i ≺g j (see [7]).
✷



In summary we obtain the following rules

Corollary 5.1. (our rules) Let i, j be two jobs,
with pi > pj.

If β > 1
if (pi/pj)

β ≤ wi/wj then i ≺g j
if pi/pj < wi/wj then i ≺ℓ j (*)
if wi/wj < φij(0) then j ≺g i
else ∃t∗ : wi/wj = φij(t

∗) and i ≺ℓ[0,t∗) j
and j ≺g[t∗,∞) i

if β < 1
if (pi/pj)

2 ≤ wi/wj then i ≺g j
if φij(0) < wi/wj then i ≺ℓ j
if wi/wj < pi/pj then j ≺g[0,t1] i
else ∃t∗ : wi/wj = φij(t

∗) and i ≺g[0,t∗) j
and j ≺ℓ[t∗,∞) i,

where in case β = 2 (*) is enforced by the implication
i ≺g j.

Proof. We consider the case β > 1. The case β < 1 is
symmetric, and the case β = 2 follows from the previous
theorem. The first is Rule 3. For the second condition,
φij is strictly increasing by Lemma 4.1, and has limit
pi/pj . Therefore pi/pj < wi/wj implies i ≺ℓ j.

Monotonicity of φij together with φij(0) > wi/wj

implies φij(t) > wi/wj for all t ≥ 0 as well, that is
j ≺ℓ i. The implication j ≺g i follows by Theorem 5.1.

If none of the inequalities holds, by Lemma 4.1 and
continuity of φij there must be a unique time t∗ such
that φij(t

∗) = wi/wj . In addition we have i ≺ℓ[0,t∗) j
and j ≺ℓ(t∗,∞) i. We apply Theorem 5.1 to conclude
j ≺g(t∗,∞) i. ✷

Figure 2 illustrates the contribution of our rules for
a penalty function f : t 7→ tβ .

6 Experimental study

We conclude this paper with an experimental study,
evaluating the impact of the proposed rules on the
performance of a search procedure. Following the
approach described in [7], we consider the Algorithm
A* [6]. The search space is the directed acyclic graph
consisting of all subsets S ⊆ {1, . . . , n}. Note that
the potential search space has size 2n which is already
less than the space of the n! different schedules. In
this graph for every vertex S there is an arc to S\{j}
for any j ∈ S. It is labeled with j, and has cost
wjt

β for t =
∑

i∈S pi. Every directed path from the
root {1, . . . , n} to {} corresponds to a schedule of an
objective value being the total arc cost.

So the goal is to compute the minimum distance
between these two vertices. We use the algorithm A* for
this purpose, which explores the graph using a priority
queue containing arcs pointing to vertices that still need
to be visited. An arc (S′, S) has a weight corresponding
to the distance from the root to S through this arc plus
a basic lower bound of the optimum cost of scheduling
S, which we choose to be simply

∑

i∈S wip
β
i .

Pruning is done when constructing the list of out-
going arcs at some vertex S. Potentially every job i ∈ S
can generate an arc, but ordering constraints might pre-
vent that. Let j be the label of the arc leading to S
(assuming S is not the root). Let t1 =

∑

k∈S pk. Now
if j ≺ℓ(t1−pi) i, then no arc is generated for job i ∈ S.
The same thing happens when there is a job k ∈ S with
i ≺g[0,t1] k. In a search tree such a pruning would cut
the whole subtree attached to that arc, but in a directed
acyclic graph the improvement is not so dramatic, as the
typical indegree of a vertex is linear in n.

6.1 Random instances We adopt the model of ran-
dom instances described by Höhn and Jacobs. All previ-
ous experimental results were made by generating pro-
cessing times and weights uniformly from some interval,
which leads to easy instances, since any job pair i, j sat-
isfies with probability 1/2 global precedence, i.e. i ≺g j
or j ≺g i. As an alternative, Höhn and Jacobs [7] pro-
posed a random model, where the Smith-ratio of a job is
selected according to 2N(0,σ2) with N being the normal
distribution centered at 0 with variance σ. Therefore
for β = 2 the probability that two jobs satisfy global
precedence depends on σ, since the Höhn-Jacobs-1 rule
compares the Smith-ratio among the jobs.

We adopted their model for other values of β as
follows. When β > 1, the condition for i ≺g j of our
rules can be approximated, when pj/pi tends to infinity,
by the relation wi/pi ≥ βwj/pj . Therefore in order to
obtain a similar “hardness” of the random instances for
the same parameter σ for different values of β > 1, we
choose the Smith-ratio according to 2N(0,β2σ2). This
way the ratio between the Smith-ratios of two jobs is a
random variable from the distribution 22N(0,β2σ2), and
the probability that this value is at least β depends only
on σ.

However when β is between 0 and 1, the condition
for i ≺g j of our rule can be approximated when
pj/pi tends to infinity by the relation wi/pi ≥ 2wj/pj ,
and therefore we choose the Smith-ratio of the jobs
according to the β-independent distribution 2N(0,4σ2).

The instances of our main test sets are generated
as follows. For each choice of σ ∈ {0.1, 0.2, . . . , 1} and
β ∈ {0.5, 0.8, 1.1, . . . , 3.2}. We generated 25 instances
of 20 jobs each. The processing time of every job



Figure 2: Job j compared to a fixed job i. Labels of particular functions: (a) wj = wi(pj/pi)
2, (b)

wj = wi((pi + pj)
β − pβi )/((pi + pj)

β − pβj ), (c)wj = wipj/pi, (d) wj = wipj/2pi, (e) wj = 2wipj/pi and (f)

wj = wi(pj/pi)
β .

is uniformly generated in {1, 2, . . . , 100}. Then the
weight is generated according to the above described
distribution. Note that the problem is independent on
scaling of processing time or weights, motivating the
arbitrary choice of the constant 100.

6.2 Hardness of instances As a measure of the
hardness of instances, we consider the portion of job
pairs i, j which satisfy global precedence. By this we
mean that we have either i ≺g[0,t1] j or j ≺g[0,t1] i for t1
being the total processing time over all jobs excepting
jobs i, j. Figure 4 shows this measure for various choices
of β.

The results depicted in Figure 4 confirm the choice
of the model of random instances. Indeed the hardness
of the instances seems to depend only little on β, except
for β = 2 where particular strong precedence rules have
been established. In addition the impact of our new
rules is significant, and further experiments show how
this improvement influences the number of generated
nodes, and therefore the running time. Moreover it is
quite visible from the measures that the instances are
more difficult to solve when they are generated with a
small σ value.

6.3 Comparison between forward and back-

ward variant In this section, we consider two variants

of the above mentioned algorithm. In the forward ap-
proach, a partial schedule describes a prefix of length t
of a complete schedule and is extended to its right along
an edge of the search tree, and in this variant the basic
lower bound is

∑

i∈S wi(t+ pi)
β . However in the back-

ward approach, a partial schedule S describes a suffix of
a complete schedule and is extended to its left. Kaindl,
Kainz and Radda [10] give experimental evidence that
the backward variant generates for some problems less
nodes in the search tree, and this fact has also been
observed by Höhn and Jacobs [7].

We conducted an experimental study in order to
find out which variant is most likely to be more efficient.
The results are shown in Figure 5. The values are most
significative for small σ values, since for large values the
instances are easy anyway and the choice of the variant
is not very important. The results indicate that without
our rules the forward variant should be used whenever
β < 1 or β = 2, while with our rules the forward variant
should be used when β > 1.

Later on, when we measured the impact of our
rules in the subsequent experiments, we compared the
behavior of the algorithm using the most favorable
variant dependent on the value of β as described above.

6.4 Timeout During the resolution a timeout was
set, aborting executions that needed more than a million



nodes. In Figure 3 we show the fraction of instances
that could be solved within the limited number of nodes.
From these experiments we measure the instance sizes
that can be efficiently solved, and observe that this limit
is of course smaller when σ is small, as the instances
become harder. But we also observe that with the usage
of our rules much larger instances can be solved.

When β is close to 1, and instances consist of jobs of
almost equal Smith-ratio, the different schedules diverge
only slightly in cost, and intuitively one has to develop
a schedule prefix close to the makespan, in order to
find out that it cannot lead to the optimum. However
for β = 2, the Mondal-Sen-Höhn-Jacobs rule make the
instances easier to solve than for other values of β,
even close to 2. Note that we had to consider different
instance sizes, in order to obtain comparable results, as
with our rules all 20 job instances could be solved.

 0.5  1  1.5  2  2.5  3  3.5  0.1

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

beta

sigma

 0.5  1  1.5  2  2.5  3  3.5  0.1

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

beta

sigma

Figure 3: Proportion of instances which could be solved
within the imposed time limit of a million nodes, with
(below) and without (above) the new rules.

6.5 Improvement factor In this section we mea-
sure the influence on the number of nodes generated
during a resolution when our rules are used. For β = 2
we compare our performance with the Mondal-Sen-
Höhn-Jacobs rule, while for other values of β we com-
pare with the Sen-Dileepan-Ruparel rule. For fairness

we excluded instances where the timeout was reached
without the use of our rules. Figure 6 shows the ratio be-
tween the average number of generated nodes when the
algorithm is run with our rules, and when it is run with-
out our rules. Clearly this factor is smaller for β = 2,
since the Mondal-Sen-Höhn-Jacobs rules apply here.

We observe that the improvement factor is more
important for hard instances, i.e. when σ is small. From
the figures it seems that this behavior is not monotone,
for β = 1.1 the factor is less important with σ = 0.1
than with σ = 0.3. However this is an artifact of our
pessimistic measurements, since we average only over
instances which could be solved within the time limit, so
in the statistics we filtered out the really hard instances.

7 Performance measurements for β = 2

For β = 2, the authors of [7] provide several test sets to
measure the impact of their rules in different variants,
see [8]. For completeness we selected two data sets from
their collection to compare our rules with theirs.

The first set called set-n contains for every number
of jobs n = 1, 2, . . . , 35, 10 instances generated with
parameter σ = 0.5. This file permits to measure the
impact of our rules as a function on the instance size.

The second test set that we considered is called
set-T and contains for every parameter σ =
0.100, 0.101, 0.102, . . . , 1.000 3 instances of 25 jobs. Re-
sults are depicted in figure 7.

For a general analysis, we generated instances de-
scribed in section 6.1, and compared the average number
of nodes generated with and without our rules.

8 Performance depending on input size

In addition we show the performance of the algorithm
with our rules, in dependence on the number of jobs.
Figure 8 shows for different number of jobs the number
of generated nodes averaged over 100 instances gener-
ated with different σ parameters, exposing an expected
running time which strongly depends on the hardness
of the instances.
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Figure 4: Proportion of job pairs that satisfy a global precedence relation as function of the parameter σ used in
the random generation of the instances.
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Figure 5: Proportion of instances for which the forward variant generated less nodes than the backward variant.
The values are plotted as function of σ, both for the resolution with our new rules and without.
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Figure 6: Average improvement factor as function of β and σ
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Figure 7: Improvement ratio for test sets set-n (left) and set-T (right)
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