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This paper presents a method for computing the thermo-acoustic modes

in combustors. In the case of a non-isothermal reacting medium, the wave

equation for the pressure fluctuations contains a forcing term related to the

unsteady heat release. Depending on the phase relationship between the

acoustics and the flame, certain linear modes may become unstable, lead-

ing to thermo-acoustic instabilities. The relevant Helmholtz equation is

derived and two approaches for solving the corresponding non-linear eigen-

value problem are proposed. The first one is based on an asymptotic expan-

sion of the solution, the baseline being the acoustic modes and frequencies

for a steady (or passive) flame and appropriate boundary conditions. This

method allows a quick assessment of any acoustic mode stability but is valid

only for cases where the coupling between the flame and the acoustic waves

is small in amplitude. The second approach is based on an iterative algo-

rithm where a quadratic eigenvalue problem is solved at each sub-iteration.

It is more CPU demanding but remains valid even in cases where the re-

sponse of the flame to acoustic perturbations is large. Frequency dependent
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boundary impedances are accounted for in both cases. A parallel implemen-

tation of the Arnoldi iterative method is used to solve the large eigenvalue

problem that arises from the space discretization of the Helmholtz equa-

tion. Several academic and industrial test cases are considered to illustrate

the potential of the method.

Nomenclature

A,C Square sparse matrices of size N which do not depend on ω

A,B, C,D Square sparse matrices of size N which do not depend on ω

B,R Square sparse matrices of size N which depend on ω

nref Reference unit vector

nBC Outward unit vector normal to the boundary

P Complex valued column vector of size N .

u Velocity vector

x Position vector

a, b Real and imaginary parts of the reduced impedance Z.

c Speed of sound

Cp Heat capacity per unit mass at fixed pressure

Cv Heat capacity per unit mass at fixed volume

f Frequency

i Imaginary complex number
√
−1

k Wave number ω/c0.

ky Wave number associated to the y direction, ky =
√

k2 − (mπ/4L)2, m ∈ N.

L, h Length and height of the 2D computational domain.

La Characteristic length scale of the acoustic perturbations

Lf Characteristic length scale of the turbulent flame

M Mach number

m Mode index.

N Size of the non-linear eigen value problem, N = Nv − Nd

n Interaction index

Nd Number of vertices on ∂ΩD

Nv Number of vertices in the unstructured mesh describing Ω

nu Field of interaction index

p Static pressure

q Heat release per unit volume

qtot Volume averaged heat release. Scaling purpose
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r Heat capacities difference Cp − Cv

s Entropy per mass unit

Sref Area of the burner mouth at the reference position

t Time

Ubulk Bulk velocity of the burner. Scaling purpose

xf Infinitely thin premixed flame position

Z Complex impedance

Z0, Z1, Z2 Complex valued constants

Sv Set of vertices of the mesh which do not belong to ∂ΩD

SΩ Set of all the tetrahedral elements in the mesh

Subscripts

0 Time averaged variable or passive flame mode (asymptotic method)

1 Fluctuating quantity or first order term in the asymptotic method

k, j Indices

BC Boundary value

ref Reference for the flame model

Conventions

φ̂ Complex amplitude of the fluctuating quantity φ

L̂p Linear mapping from C to C

L̂u Linear mapping from C
3 to C

ℑ(z) Imaginary part of the complex valued quantity z

∇f Spatial gradient of f

ℜ(z) Real part of the complex valued quantity z

Symbols

δf Effective 1D premixed flame thickness.

ǫ Small parameter of order p1/p0

γ Adiabatic coefficient Cp/Cv

Ω Computational domain

ω Angular frequency

∂Ω Boundary of the computational domain

∂ΩD Subset of the boundary where p̂ = 0

∂ΩN Subset of the boundary where ∇p̂ · nBC = 0

∂ΩZ Subset of the boundary where the reduced impedance Z is imposed

φj Classical linear by parts form function for all node vj belonging to Sv

ρ Mixture density

τ Time delay
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τu Field of time delay

I. Introduction

Combustion oscillations are frequently encountered during the development of many com-

bustion chambers for gas turbines.1–4 To date, these oscillations can not be predicted at the

design stage and correcting actions at later stages proved to be extremely costly. Testing

burners in simplified combustion chambers is a common method to verify their stability but

is also an ambiguous approach because a given burner can produce unstable combustion

in one chamber and not in another. Gas turbine manufacturers have devoted large efforts

in order to handle combustion instabilities issues and a huge amount of expertise has been

gathered by the major companies.5 Still, the mechanisms are not fully understood yet and

predictive methods providing stability analysis at the design level are requested. Table 1

gathers the main characteristics of the methods developed in the past.

A current practice is to model the geometry of the combustor by a network of homo-

geneous (constant density) 1D or 2D axisymmetric acoustic elements where the acoustic

problem can be solved4,7, 8 analytically. The flame is supposed infinitely thin and only ap-

pears at interfaces between the low and large temperature segments. Jump relations are

used to connect all these elements, enforcing pressure continuity and flow rate conservation.

The amplitudes of the forward and backward acoustic waves in each segment are determined

so that all the jump relations and the boundary conditions are satisfied. This can only be

achieved for a discrete set of pulsations ω which are the roots of a dispersion relation in

the complex plane. The main advantage of this approach is that it allows to describe a

complex system with a few lumped elements only, leading to a very low order model that

can be extensively used for pre-design purpose. Extension to azimuthal modes9,10 and 1.5D

networks11 have been proposed recently. The main drawback of this type of approach is

that the geometrical details of the combustor cannot be accounted for and only the first

”equivalent” longitudinal or orthoradial modes are sought for.

An alternative is to perform Large Eddy Simulations (LES) which are well suited to study

the dynamics of turbulent flames (see recent books on turbulent combustion4,28). Multiple

recent papers have demonstrated the power of these methods.12–20 However, an important

limitation of LES is its cost: the intrinsic nature of LES (full three-dimensional resolution of

the unsteady Navier-Stokes equations) makes it very expensive, even on today’s computers.

Moreover, even when they confirm that a combustor is unstable, LES does not say why

and how to control it. Therefore, tools are needed to analyze LES results and to provide

capacities for optimization and control of thermo acoustic oscillations in chambers.

A set of linear transport equations for the perturbations of velocity, temperature and
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Networks of lumped elements

Solved variables wave amplitudes in each element and associated frequency

Advantages
- complex valued boundary impedances
- parametric studies
- possible extension to azimuthal modes

Drawbacks
- no geometrical details
- assumes modes shape

Key references
Lieuwen and Zinn,6 Poinsot and Veynante,4 Stow and Dowling,7

Polifke et al.,8 Evesque and Polifke,9 Evesque et al.,10 Benoit11

Direct method - LES

Solved variables spatio-temporal evolution of all flow quantities

Advantages - accounts for non-linear interactions

Drawbacks

- highly CPU demanding
- only the most amplified mode can be studied in details
- complex boundary impedances difficult to handle

Key references
Murota and Ohtsuka,12 Desjardins and Frankel,13 Angelberger et
al.,14 Caraeni et al.,15 Colin et al.,16 Pitsch and Duchamp de la
Geneste,17 Huang and Yang,18 Pierce and Moin,19 Selle et al.20

Equations for fluctuations in physical space

Solved variables spatio-temporal evolution of fluctuating quantities

Advantages
- intuitive
- possible extension to limit cycle

Drawbacks
- only the most amplified mode can be studied in details
- complex boundary impedances difficult to handle

Key references Pankiewitz and Sattelmayer21

Equations for fluctuations in frequency space

Solved variables
complex amplitude of harmonic fluctuations and associated fre-
quency

Advantages
- several modes computed
- handle complex valued boundary impedances

Drawbacks
- no possible non-linear extension
- non-linear eigenvalue problem

Key references
Culick,22 , Krebs et al.,23 Schuermans et al.,24,25 Martin et al.,26

Selle et al.,27 present paper

Table 1. Computational methods for predicting acoustic modes in combustors.
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density can be derived by linearizing the Navier-Stokes equations.29,30 The local unsteady

heat release appears as a forcing term in the linearized energy equation and is responsible

for combustion noise and thermo-acoustic instabilities. Assuming that an appropriate model

for the unsteady heat release is available, the system of linear partial differential equations

(PDE) for the fluctuating quantities is closed and can be solved. The most natural way to

proceed is then to use a finite element based method to discretize and solve it in physical

space.21 Starting from initial random fields of pressure, velocity and density or temperature,

each PDE is solved in the time domain, discretizing the time derivatives by a Runge-Kutta

algorithm. Depending on the coupling between the flame and acoustics, especially the phase

between the pressure and heat release fluctuations, some modes present in the initial fields

can be amplified and grow exponentially. After a while, the fluctuations are dominated by

the most amplified one (or the less damped one if the flame/acoustics coupling stabilizes

all the fluctuations) and it is possible to examine the spatial structure, frequency of oscil-

lation and growing factor of this particular thermo-acoustic mode. This intuitive approach

provides a natural way to account for the coupling with the flame as well as non-linear sat-

uration effects.21 However, accounting for frequency-dependent impedances at boundaries

is not straightforward when performing the time domain integration. Moreover, from an

engineering point of view, it is certainly not very convenient to gain knowledge only about

the most unstable modes: experience shows that several modes are most often present or at

least dangerous when thermo-acoustic instabilities appear.

A proper framework to analyze combustion stability is the wave equation in a reacting

flow.4 A natural way of gaining information about the whole set of thermo-acoustic modes is

then to consider the Helmholtz equation, the frequency domain version of the wave equation.

This equation can be derived by combining the linearized version of the equation of state

with the set of linear PDE’s for each fluctuating quantities. Under the low-Mach number

assumption for the mean velocity field, an approximate equation controlling the propagation

of pressure perturbations in a reacting flow is then obtained and, considering the associated

Helmholtz equation, the initial value problem in the physical domain is transformed into an

eigenvalue problem. The shape of the thermo-acoustic modes is related to the eigenfunctions

and their frequency and growing rate are determined by the eigenvalues. In the case of

classical acoustics in a homogeneous non-reacting medium, finite element based methods are

often used to perform the spatial discretization and transform the Helmholtz equation into a

finite dimension eigenvalue problem.31 When combustion occurs, the flame/acoustic coupling

term makes the eigenvalue problem non-linear with respect to the pulsation of the mode and

classical methods cannot be applied to solve the Helmholtz equation. The ”linear Galerkin”

method proposed by Culick22 consists in writing the solution of the thermo-acoustic problem

as a linear combination of the acoustic modes of the homogeneous (without combustion
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forcing) Helmholtz equation. Assuming that a) the eigenvectors of the homogeneous wave

equation form an orthogonal basis of the linear space of the square integrable functions

defined over the flow domain and b) that the effect of the flame coupling is to slightly

perturb the acoustic modes, Culick showed that one can assess the frequency shift induced

by the unsteady heat release. The stability of the modes is then obtained by studying the sign

of the imaginary part of the frequency shift. This method suffers from two major drawbacks

related to the two assumptions given above. Assumption a) is in fact only valid for particular

choices of the boundary impedance11(see appendix B for more details). Classical examples

of such boundary conditions are pressure imposed outlet and impermeable wall. However,

in the case of a general complex boundary impedance, this condition is not fulfilled and the

Galerkin method can hardly be generalized. Assumption b) is only valid when the amplitude

of the flame response to acoustic perturbations is small. However, considering the limiting

case of small frequency oscillations, it can be shown that this assumption is most likely not

valid for practical cases.32

In this paper, two methods to solve the thermo-acoustic problem written in the frequency

space are described in section IV. The first one is based on an asymptotic expansion of the

solution around the passive flame case and still requires assumption b) but not assumption

a). The second is based on an iterative algorithm and is valid even if neither a) nor b) is

fulfilled. The basic hypothesis are first recalled in section II where the derivation of the in-

homogeneous Helmholtz equation is also given. The spatial discretization and linear algebra

method are then described in section III while basic academic test cases are considering in

section V. Typical results obtained in the case of an industrial annular combustor are also

described to illustrate the 3D capabilities of the method.

II. Basic assumptions and equations

A. Basic equations

To simplify the derivation, we will consider a gas mixture where all species share the same

molar weight and heat capacity. This assumption is not necessary to derive the generalized

acoustic wave equation although it makes the algebra simpler. It is valid for air flames but

must be revisited for the case of H2 − O2 mixtures for example. A direct consequence is

that the heat capacities difference r = Cp −Cv is constant even if Cp, Cv and γ may depend

on temperature. Viscous terms (molecular diffusion of momentum and heat) will also be

neglected in the present analysis as it is usual for the analysis of low frequency acoustic

perturbations.

Under the above assumptions, the mass, momentum and entropy equations read respec-
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tively:
Dρ

Dt
= −ρ∇ · u, (1)

ρ
Du

Dt
= −∇p, (2)

Ds

Dt
=

rq

p
. (3)

Together with the state equation and entropy expression

p

ρ
= rT and s − sst =

∫ T

Tst

Cp(T
′)

T ′
dT ′ − r ln

(

p

pst

)

, (4)

these transport equations describe the spatio-temporal evolutions of all relevant physical

flow quantities.

Eq. 1 to 4 can be linearized by considering the simple case of large scale small amplitude

fluctuations (index 1) super-imposed to a zero Mach number mean flow (index 0) which

depends only on space. The instantaneous pressure, density, temperature, entropy and

velocity fields can then be written as p = p0 + p1, ρ = ρ0 + ρ1, s = s0 + s1 and u = u1 where

the quantities p1/p0, ρ1/ρ0, T1/T0, s1/s0 and
√

u1 · u1/c0 are of order ǫ, where ǫ ≪ 1 and

c0 =
√

γp0/ρ0 is the mean speed of sound. For simplicity, the temporal fluctuations of the

heat capacities are neglected. The zero Mach number assumption (u0 ≃ 0) is valid as soon

as the characteristic Mach number M =
√

u0 · u0/c0 of the mean flow is small compared to

Lf/La where Lf is the thickness of the reaction zone and La is the typical acoustic wavelength

(see appendix A for more details). This result makes the approximation M ≃ 0 reasonable

for many applications. Moreover the zero Mach number assumption implies that ~∇p0 = 0

(from Eq. 2) and q0 = 0 (from Eq. 3 ), the latter condition being acceptable because only

the fluctuating quantities are of interest in the present analysis. Finally this assumption

implies that the approximation D/Dt ≈ ∂/∂t holds for any fluctuating quantity since, with

u0 ≃ 0, the non linear convective terms are always of second order in ǫ.

B. Linearization

Injecting the above expansions for the instantaneous flow quantities into Eqs 1 to 4 and

keeping only terms of order ǫ, one obtains the following set of linear equations for the

fluctuating quantities ρ1, u1, s1 and p1:

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0∇ · u1 = 0, (5)

ρ0
∂u1

∂t
+ ∇p1 = 0, (6)
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∂s1

∂t
+ u1 · ∇s0 =

rq1

p0

. (7)

The linearized state equation and entropy expression are:

p1

p0

− ρ1

ρ0

− T1

T0

= 0 and s1 = Cp

T1

T0

− r
p1

p0

. (8)

Eq. 7 shows that the fluctuating flow is not isentropic as soon as either:

• the mean entropy gradient ∇s0 is not orthogonal to the velocity fluctuations or

• the heat release has an unsteady component q1 6= 0.

In practical applications the geometry of the flow domain is fully 3D and highly complex so

that the first condition is most probably matched as soon as ∇s0 6= 0. Under the zero Mach

number assumption the mean pressure gradient is null and from Eq. 4 the mean entropy

gradient is approximately (neglecting the gradient of Cp and Cv): ∇s0 ≃ −Cp∇ρ0/ρ0 =

Cp∇T0/T0. This shows that the u1 ·∇s0 term in Eq. 7 is non zero in the reacting zone, even

if there is no heat release, viz. q1 = 0 (passive or steady flame). The RHS term of the same

equation is non zero only if the flame has an unsteady behavior (active or unsteady flame).

In order to close the set of equations 5, 6, 7 and 8, a model must be used to express the

unsteady heat release q1 in terms of the other fluctuating quantities.

C. Flame response

Modeling the unsteady behavior of the flame is the most challenging part in the description

of thermo-acoustic instabilities.33 Several models have been proposed in the past to describe

the response of conic or V-shape laminar flames,34 accounting for non-linear saturation ef-

fects35] and equivalence ratio fluctuations.36,37 Most models available so far (if not all of

them) describe the global (integrated over space) heat released in the whole flame zone. For

premixed flames, the most natural way to proceed is to relate this global quantity to the

acoustic velocity in the cold gas region upstream the flame region. The idea behind this

modeling approach is that heat release depends on the flame surface which, the flame speed

being given, is mainly controlled by the fresh gas flow rate. The most classical model follows

seminal ideas by Crocco38,39 and is referred to as the n − τ model. This is essentially a 1D

formulation which stipulates that the global heat release at time t is proportional to a time

lagged version of the acoustic velocity at a reference upstream position xref , usually taken

at the burner mouth:

Q(t) =

∫

Ω

q1(t)dΩ = Sref
γp0

γ − 1
× n × u1(xref , t − τ). (9)
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In this expression, Q(t) is the heat release integrated over the flow domain Ω, Sref is the cross

section area of the burner mouth, u1 denotes the velocity component along the direction x

of the main flow which feeds the flame, the interaction index n controls the amplitude of

the flame response to acoustic perturbations and τ is the time delay between the acoustic

perturbation and the response of the flame. This latter parameter controls the phase between

the acoustic pressure and the unsteady heat release in the flame zone, and thus the value of

the Rayleigh index:

R =

∫

t

∫

Ω

p1q1dΩdt. (10)

According to the classical Rayleigh criterion, flame/acoustics coupling promotes the appear-

ance of instabilities in cases where R > 0, showing the importance of the parameter τ in the

description and prediction of thermo-acoustic instabilities.

Models for the global response of the flame are only justified for acoustically compact

flames, viz. cases where the typical length of the flame region Lf is small compared to the

characteristic acoustic wavelength La. This condition is not always matched for modern

combustors with high efficiency. It is then natural to use a local flame model which would

relate the local unsteady heat release to a reference acoustic velocity in the injector mouth.

The natural way to proceed is then to write:

q1(x, t)

qtot

= nu(x)
u1(xref , t − τu(x)) · nref

Ubulk

, (11)

where nu(x) and τu(x) are fields of interaction index and time lag and nref is a fixed unitary

vector defining the direction of the reference velocity. The scaling by the total heat release

qtot and the bulk velocity Ubulk have been used to make sure that nu(x) has no dimension.

Obviously this modeling approach allows more degrees of freedom than any global model to

represent the actual response of a typical industrial flame (two fields of parameters instead

of two real numbers). However, a large amount of local data is required to tune this kind of

model and for obvious technological reasons these data can hardly be obtained experimen-

tally. The alternative is then to use compressible reacting LES to investigate the response of

a turbulent flame submitted to acoustic perturbations. By performing a spectral analysis of

the unsteady fields of heat release and velocity, it is then possible to determine the optimal

parameter fields nu(x) and τu(x) to match the actual flame response by using Eq. 11.40,41

Using the local flame model given in Eq. 11, Eq. 7 can then be re-written as:

∂s1

∂t
+ u1 · ∇s0 =

r

p0

qtot

Ubulk

nu(x)u1(xref , t − τu(x)) · nref , (12)

and the set of equations 5, 6, 8 and 12 can be solved to determine the thermo-acoustic
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properties of the system.

D. Wave equation

Taking the time derivative of Eq. 5, adding the divergence of Eq. 6 over ρ0 and using Eqs.

8 and 7 to eliminate ρ1 yields the following wave equation for the pressure fluctuations p1:

∇ ·
(

1

ρ0

∇p1

)

− 1

γp0

∂2p1

∂t2
= −γ − 1

γp0

∂q1

∂t
. (13)

If the zero Mach number assumption is not made, it is not possible to manipulate the set

of equations 5, 6, 7 and 8 in order to obtain a scalar wave equation. It is then necessary to

consider the original set of equations, either written in the time domain or in the frequency

space, in order to solve the thermo-acoustic problem. Note also that no assumption has

been made about the spatial evolution of the isentropic coefficient γ to derive Eq. 13. If γ

is constant over space, one recovers the classical equation for inhomogeneous medium with

the elliptic term being ∇ · (c2
0∇p1).

Eq. 13 being linear, it is natural to introduce harmonic variations at frequency f =

ω/(2π) for pressure, velocity and local heat release perturbations:

p1 = ℜ (p̂(x) exp(−iωt)) ,

u1 = ℜ (û(x) exp(−iωt)) , (14)

q1 = ℜ (q̂(x) exp(−iωt)) .

Introducing Eq. 14 into Eq. 13 lead to the following Helmholtz equation :

∇ ·
(

1

ρ0

∇p̂

)

+
ω2

γp0

p̂ = iω
γ − 1

γp0

q̂(x), (15)

where ρ0 and γ depend on the space variable x and the unknown quantities are the complex

amplitude p̂(x) of the pressure oscillation at frequency f and pulsation ω. In the frequency

space, the zero Mach number assumption induces iωû = ∇p̂/ρ0 and the flame model Eq. 11

translates into :

q̂(x) =
qtot

iωρ0(xref)Ubulk

nu(x)eiωτu(x)∇p̂(xref) · nref . (16)

Introducing Eq. 16 into Eq. 15 leads to :

∇ ·
(

1

ρ0

∇p̂

)

+
ω2

γp0

p̂ =
γ − 1

γp0

qtot

ρ0(xref)Ubulk

nu(x)eiωτu(x)∇p̂(xref) · nref . (17)

This paper will focus on the resolution of Eq. 17 but the methodologies developed can be
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applied to the more general case where the complex amplitude of the heat release is given

by:

q̂(x) = L̂u [∇p̂(x)] + L̂p [p̂(x)] , (18)

where L̂u and L̂p are two linear operators acting on ∇p̂ and p̂ respectively. The wave equation

for the complex pressure amplitude is then

∇ ·
(

1

ρ0

∇p̂

)

+
ω2

γp0

p̂ = iω
γ − 1

γp0

[

L̂u [∇p̂] + L̂p [p̂]
]

, (19)

which reduces to Eq. 17 for the particular choice:

L̂p : ĝ(x) 7−→ 0,

(20)

L̂u : v̂(x) 7−→ qtot

iωρ0(xref)Ubulk

nu(x)eiωτu(x)v̂(xref) · nref .

Of course the general formulation Eq. 18 has the potential to include more general effects

than the local n− τ model described by Eqs. 11 and 16. For example, defining L̂u as in Eq.

20 and L̂p as:

L̂p : ĝ(x) 7−→ qtot

iωp0

np(x)eiωτp(x)ĝ(xref), (21)

would allow relating the unsteady heat release to the complete acoustic field at the reference

position xref instead of the velocity field only, consistently with the matrix identification

approach for flame modeling.42,43 In Eq. 21, np(x) and τp(x) are fields of interaction index

and time delay describing the effect of acoustic pressure on the unsteady heat release. Al-

though the effects of the acoustic pressure are often neglected in flame transfer formulations,

relating the unsteady heat release to the complete acoustic field (velocity and pressure) is

highly desirable for cases where the flame is not compact or when its distance to the injector

mouth is not small compared to the acoustic wavelength.44 Note finally that the fields of

interaction index nu(x), np(x) and time delay τu(x), τp(x) may also depend on the frequency

of the perturbations acting on the flame, although this dependency has not been explicitly

written for simplicity.

E. Boundary conditions

Denoting by nBC the outward unit normal vector to the boundary ∂Ω of the flow domain,

three types of boundary conditions are usually used for acoustics:

• Zero pressure: this corresponds to fully reflecting outlets where the outer pressure is
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imposed strongly to the flow domain, zeroing the pressure fluctuations:

p̂ = 0, on boundary ∂ΩD, (22)

• Zero normal velocity, viz. û ·nBC = 0: this corresponds to fully rigid walls or reflecting

inlets where the velocity of the incoming flow is imposed, zeroing the velocity fluctu-

ations. Under the zero Mach number assumption, Eq. 6 can be used to re-write this

condition as a Neumann condition for the acoustic pressure:

∇p̂ · nBC = 0, on boundary ∂ΩN , (23)

• Imposed reduced complex impedance Z = p̂/ρ0c0û ·nBC. Under the zero Mach number

assumption, this condition can be re-written as a Robin condition for the acoustic

pressure:

c0Z∇p̂ · nBC − iωp̂ = 0, on boundary ∂ΩZ , (24)

Associated with the homogeneous boundary conditions 22, 23 and 24 on ∂Ω = ∂ΩD

⋃

∂ΩN

⋃

∂ΩZ ,

equation 17 defines a non-linear eigenvalue problem which is the basis of the numerical tool

described in the present paper.

III. Numerical methods for the passive flame problem

The major difficulty in solving the thermo-acoustic problem given in Eqs. 19 or 17 comes

from the strong non-linearity of the RHS term with respect to the pulsation ω. As a first step,

it is then natural to consider the purely acoustic problem obtained by neglecting the unsteady

flame effect. This means taking nu(x) = np(x) = 0 (or more generally L̂u = L̂p = 0) and

finding p̂(x) and ω satisfying:

∇ ·
(

1

ρ0

∇p̂

)

+
ω2

γp0

p̂ = 0, (25)

with boundary conditions 22, 23 and 24. Since complex geometries must be handled properly,

a finite element based method is first used to discretize Eq. 25 and obtain a finite-dimension

eigenvalue problem which can then be solved by using an appropriate linear algebra method.

A. Spatial discretization

A finite element strategy is used to discretize the exact geometry of the combustor so that

no assumption is made a priori regarding the shape of the modes. This feature gives the
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Helmholtz solver the potential to test the effect of geometrical changes on the stability of

the whole system. Denoting the flow domain and its boundary by Ω and ∂Ω respectively,

lets consider a finite element mesh made of linear elements (triangles in 2D, tetrahedra in

3D). The mesh consists of Ne elements Ωj (j ∈ 1, ..., Ne), Nv vertices vk (k ∈ 1, ..., Nn) of

which Nd are located on the boundary ∂ΩD. We call Sv the set of vertices of the mesh which

do not belong to ∂ΩD and SΩ the set of all the elements. Also, for each node vj ∈ Sv, we

denote by φj the piecewise linear shape function which equals 1 at node vj and 0 for all

vk 6=j. The complex unknown function p̂(x) is then approximated by p̂(x) =
∑

j:vj∈Sv
p̂jφj,

the homogeneous Dirichlet boundary condition on ∂ΩD being then automatically satisfied.

Finding p̂(x) for every x ∈ Ω is then equivalent to determine the N = Nv − Nd complex

coefficients p̂j. To do so, we follow the classical Galerkin finite element method: start from

Eq. 25, replace p̂(x) by its approximation, multiply by the test function φk and integrate

over the flow domain to obtain:

∀k : vk ∈ Sv,
∫

Ω

φk∇·
(

1
ρ0

∇
∑

j:vj∈Sv
p̂jφj

)

dx + ω2
∫

Ω
φk

γp0

∑

j:vj∈Sv
p̂jφjdx = 0. (26)

Integrating the first term by parts, inverting the integration and summation operations and

making use of Eq. 22-24, one obtains :

∀k : vk ∈ Sv, −
∑

j:vj∈Sv

∫

Ω

1

ρ0

∇φk · ∇φjdx p̂j

+iω
∑

j:vj∈Sv

∫

∂Ω

1

ρ0c0Z
φkφjdσ p̂j + ω2

∑

j:vj∈Sv

∫

Ω
1

γp0

φkφjdx p̂j = 0. (27)

Note that only ∂ΩZ contributes to the boundary term because φk(x) = 0, ∀k : vk ∈
Sv, ∀x ∈ ∂ΩD and because ∇p̂ · nBC = 0 on ∂ΩN . Introducing the symmetric matrices

A, B and C of size N and of generic element:

Akj = −
∫

Ω

1

ρ0

∇φk∇φjdx,

Bkj =

∫

∂ΩZ

i

ρ0c0Z
φkφjdσ, (28)

Ckj =

∫

Ω

1

γp0

φkφjdx,

14 of 44



the following discrete form of the acoustic problem defined by Eqs. 25, 22, 23 and 24 is

obtained:

AP + ωB(ω)P + ω2CP = 0, (29)

where P is the column vector containing the N complex coefficients p̂j. Note that A and

C are real matrices while B is complex except in the particular case where the reduced

impedance Z is purely imaginary.

B. Linear algebra

In general, the boundary impedance Z is a function of the pulsation and the matrix B

depends on ω. Equation 29 then constitutes a non-linear eigenvalue problem of size N which

can be formally written as:

Find ω ∈ C and P 6= 0 such that R(ω)P = 0, (30)

where R is a square matrix of size N which depends on ω. No general algorithm exists for

solving this type of eigenvalue problems except for particular dependencies of the operator

R on ω. For example, when R is polynomial (of degree d) in ω, the problem 30 can be

re-written as a linear eigenvalue problem of the form SQ = ωQ where Q is a matrix of size

d×N which does not depend on ω and Q is a column vector of length d×N whose N first

rows contains P.

In the particular cases where Z does not depend on ω, Eq. 29 is a quadratic eigenvalue

problem since this equation can be re-written as R(ω)P = 0 where R = A+ ωB+ ω2C and

A, B and C are constant matrices. Quadratic eigenvalue problem are rather well known from

a theoretical point of view.45 One efficient way of solving them numerically is to convert

them into an equivalent linear problem of size 2 × N . This can be done for example by

introducing the new column vector

Pω = ωP, (31)

and re-writing Eq. 29 as

AP + BPω + ωCPω = 0. (32)

Eqs. 31 and 32 can then be re-written under the following matrix form

[

0 −I

A B

] [

P

Pω

]

+ ω

[

I 0

0 C

] [

P

Pω

]

= 0, (33)
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where I is the unit matrix of size N . Thus the solutions (ω,P) of the quadratic problem

obtained from 29 when B is constant can be computed from the linear eigenvalue problem

of size 2 × N defined by Eq. 33.

Several numerical methods can then be used to assess the eigenmodes. Direct methods are

exact and have the advantage to provide all the eigenmodes. For example, the QR algorithm

is the most efficient way of producing the Shur decomposition of the matrix defining the linear

eigenvalue problem and is the method of choice when the size of the problem is typically

less than 1000. Since only the first few frequencies are usually of interest from a physical

point of view, it is more appropriate to use an iterative method which can be applied for

large problems (N > 105). For example, Krylov-based algorithms performed a partial Shur

decomposition of the matrix of interest and allow the user to focus on a reduced number of

eigenvalues. We are using a parallel implementation of the Arnoldi method46 available in

the P-ARPACK library.

Note that the assumption that B does not depend on ω is not necessary for Eq. 29 to

define a quadratic eigenvalue problem. Indeed, the matrix B being multiplied by ω in Eq.

29, the problem remains quadratic in ω as long as the impedance takes the following form:

1/Z = 1/Z0 + Z1ω + Z2/ω, (34)

where Z0, Z1 and Z2 are complex valued constants. The eigenvalue problem Eq. 29 can be

written as:

AP + ωBP + ω2CP = 0, (35)

where the matrices A, B and C are defined as:

Aij = Aij +

∫

∂ΩZ

iZ2

ρ0c0

φiφjdσ,

Bij =

∫

∂ΩZ

i

ρ0c0Z0

φiφjdσ, (36)

Cij = Cij +

∫

∂ΩZ

iZ1

ρ0c0

φiφjdσ,

and do not depend on the pulsation. The linearization process leading to Eq. 33 can then be

applied to A, B and C respectively. Eventually, frequency dependent boundary impedance

of the form Eq. 34 can be accounted for by a linear eigenvalue problem of size 2 × N .
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IV. Accounting for the active flame effect

Solving Eq. 25 as in the previous section means finding the eigenmodes of the burner, tak-

ing into account the presence of the flame through the mean temperature field but neglecting

its unsteady effects. The boundary conditions are also accounted for and this approximation

can provide relevant information about the shape and real frequency of the first modes of the

combustor. However, since there is no coupling between the acoustics and the flame, there is

no hope to discriminate between stable and unstable modes, which is the ultimate objective

when addressing thermo-acoustic problems. The objective of this section is to discuss how

the effect of the flame/acoustic coupling can be accounted for. In this case, the appropriate

equation is Eq. 17 (or Eq. 19) instead of Eq. 25.

A. Asymptotic method

In this approach,47 the flame is considered as a perturbation of the situation without com-

bustion. Under this assumption, eigenfrequencies and eigenmodes (ω, p̂) of Eq. 17 are sought

as first order expansions of the form :

ω = ω0 + νω1 + O(ν2), p̂ = p̂0 + νp̂1 + O(ν2), (37)

where (ω0, p̂0) are solutions of the homogeneous eigenvalue problem Eq. 25 and ν is a small

parameter of the problem and O(ν2) stands for terms of order ν2 or higher. The ν parameter

should be a measurement of the amplitude of the flame response so that the asymptotic

analysis naturally retrieves the passive flame results when the flame/acoustic coupling tends

to zero. For example in the case of the local n− τ model Eq. 16, it is natural to define ν as:

ν =

∫

Ω

|nu(x)| dx, (38)

As suggested by global acoustic energy budgets,4 the eigenmode stability is determined

by the whole spatial distribution of the flame and the boundary losses. This means that the

asymptotic expansion should not be applied on the local equation 17 but on a global balance

equation over the domain. Multiplying Eq. 17 by the complex pressure amplitude p̂ and

integrating over space, one obtains:

∫

Ω

p̂∇ ·
(

1

ρ0

∇p̂

)

dΩ +

∫

Ω

ω2

γp0

p̂2dx =

∫

Ω

(γ − 1)

γp0

qtot

ρ0(xref)Ubulk

nu(x)eiωτu(x)p̂∇p̂(xref) · nrefdx. (39)

Injecting Eq. 37 into Eq. 39 and keeping only first order terms in ν gives the following
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equation:

∫

Ω

p̂0

[

∇ ·
(

1

ρ0

∇νp̂1

)

+
ω2

0

γp0

νp̂1

]

dx = −2ν

∫

Ω

p̂2
0ω0ω1dx

+

∫

Ω

(γ − 1)

γp0

qtot

ρ0(xref)Ubulk

nu(x)eiω0τu(x)p̂0 ∇p̂0(xref) · nrefdx. (40)

The LHS term can be simplified by using a reduction order method48 in which p̂1 = p̂0F1,

F1 being a function of x. Thanks to this relation, the LHS term of Eq. 40 becomes:

∫

Ω

p̂0

[

∇.

(

1

ρ0

∇νp̂1

)

+
ω2

0

γp0

νp̂1

]

dx = ν

∫

∂Ω

1

ρ0

p̂2
0∇F1 · nBCdσ, (41)

which is obviously null on ∂ΩD since p̂0 = 0. Moreover, since the eigenmodes with flame

(ω, p̂) and without flame (ω0, p̂0) satisfy the same boundary conditions, one can show that

∇F1 · nBC = 0 on ∂ΩN and that the following relation is valid to first order in ν on ∂ΩZ ,

∇F1 · nBC =
iω1

c0Z(ω0)

(

1 − 1

Z(ω0)

∂Z

∂ω
(ω0)

)

. (42)

Introducing this relation in the RHS term of Eq. 41, an expression for the perturbation νω1

can be obtained:

νω1 =
qtot

ρ0(xref)Ubulk

∫

Ω
(γ − 1)nu(x)eiω0τu(x)p̂0∇p̂0(xref) · nrefdx

2ω0

∫

Ω
p̂2

0dx +
∫

∂ΩZ

ic0p̂2

0

Z(ω0)

(

1 − 1
Z(ω0)

∂Z
∂ω

(ω0)
)

dσ
. (43)

In the case where the denominator of Eq. 43 is not null, this equation provides a simple way to

check whether an eigenmode without combustion (ω0, p̂0) is made stable (ℑ(ω0 + νω1) < 0)

or unstable (ℑ(ω0 + νω1) > 0) by the coupling with the unsteady flame. It generalizes

the linear procedure proposed by Culick22 to cases where the boundary impedance is finite

(|Z| 6= ∞ and Z 6= 0). Of course it is only valid for cases where the amplitude of the flame

response is small, viz. ν << 1. Considering the limiting case of small frequency oscillations,

it can be shown that this assumption is most likely not valid for practical cases where the

burnt-to-fresh gas temperature ratio is of order 3 or larger.32 It is thus desirable to develop

a more general method which would remain valid when the amplitude of the flame response

is large. Deriving such method is the objective of the next section.

B. Iterative method

In order to handle cases where the amplitude of the flame response is not small, the finite

element formalism applied previously to Eq. 25 is now extended to Eq. 17 and associated

boundary conditions Eqs. 22-24. The LHS of Eq. 17 and boundary terms on ∂ΩZ will give
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rise to the LHS of Eq. 29 or Eq. 35 under the assumption Eq. 34. Using again the finite

element formalism, the RHS term of Eq. 17 can be discretized to give rise to DP where D
is a complex valued square matrix of size N whose generic element is

Dkj =

∫

Ω

γ − 1

γp0

qtot

ρ0(xref)Ubulk

nu(x)eiωτu(x)φk∇φj(xref) · nrefdx. (44)

Note that D is a sparse, complex valued matrix which is neither symmetric nor hermitian.

Eventually, the discretized thermo-acoustic problem consists in the following eigenvalue prob-

lem of size N :

AP + ωBP + ω2CP = D(ω)P. (45)

In general, D depends non-linearly on the pulsation ω and no polynomial approximation

can be given for this matrix. Indeed, typical models for the unsteady heat release involve

a time delay (between a velocity and/or pressure perturbation and the response of the

flame) which converts into an exponential term in ω in the Fourier space, thus in D. As a

consequence, the eigenvalue problem given by Eq. 45 can hardly be re-written as a linear

eigenvalue problem of larger dimension as done in the previous section and the classical

linear algebra algorithm cannot be used to solve the problem efficiently. An option is then to

use an iterative method to solve Eq. 45, the kth iteration consisting in solving the quadratic

eigenvalue problem in ωk defined as:

(A−D(ωk−1))P + ωkBP + ω2
kCP = 0. (46)

A natural initialization is to set D(ω0) = 0 so that the computation of the modes without

flame coupling is in fact the first step of the iteration loop. Usually, only a few (typically

less than 5) iterations are enough to converge toward the complex pulsation and associated

mode. Finally, the algorithm to solve Eq. 45 is formally given by:

Algorithm I:

1. Find the first few eigenfrequencies ω1
0, ω2

0, ω3
0, ... without flame coupling by solving

Eq. 29,

2. Select one of these frequencies and call it ω0,

3. Set D(ω0) = 0 and k = 1,

4. Solve Eq. 46,

5. Assess the error η = |ωk − ωk−1|/|ω0|,
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6. iterate on k until η is small enough

To study the convergence of this algorithm, it is appropriate to consider the following

eigenvalue problem Pω:

(Pω) (A−D(ω))P + ΩBP + Ω2CP = 0, (47)

where ω is a complex number and Ω and P are the eigenvalue and eigenvector respectively.

Consider also the operator F defined as :

F : C −→ C

ω 7−→ F(ω), (48)

where F(ω) is the eigenvalue of Pω which minimizes the quantity |F(ω) − ω|. It is obvious

from the definitions of the problem Pω and operator F that any complex number ω satisfying

F(ω) = ω is an eigenfrequency of the non-linear eigenvalue problem 45. As a consequence, if

algorithm I converges, it provides a solution to the thermo-acoustic problem. Besides, thanks

to the fixed point theorem, algorithm I converges as soon as F is a contracting operator in

a neighborhood of ω0. The validity of this condition can hardly be shown in the general

case since F strongly depends on the flame response through the D term in the problem

Pω which stems from the discretization of the coupling term. Indeed, the behavior and

regularity of the local interaction index nu(x) and time delay τu(x) with respect to both x

and ω are far from understood. The only way to gain information about this term seems

to post-process experimental43 or numerical data.26 In any case, obtaining general results

about the contracting properties of the operator F from physical arguments is out of reach of

the current understanding of the thermo-acoustic instabilities. However, in all the practical

cases considered so far,11,26,49 the above algorithm proved to be stable and to converge in

less than 4 − 5 iterations, suggesting good contracting properties for F .

V. Numerical results

The methodologies presented in the previous sections have been implemented in a 3D fi-

nite element based in-house acoustic solver called AVSP. Computations without active flame

effects in 3D geometries and fully-reflecting boundary conditions were presented in Selle et

al.27 where the ability of the approach to describe turning modes in a swirled combustor

was also established. Computations where the acoustic flame coupling is accounted for in

3D geometries were discussed in Martin et al.,26 showing the potential of the method to

discriminate between stable and unstable thermo-acoustic modes in a swirled staged com-
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bustor. These previous studies were illustrations of the joint use of acoustic and LES solvers

to predict thermo-acoustic instabilities and understand their connections with hydrodynamic

instabilities and acoustic tones. The present paper focuses more on the numerical strategy

on which the thermo-acoustic solver is based and the objective of this section is to illustrate

the potential of the method. The selected test cases include:

• an isothermal 2D domain with various boundary conditions,

• an anisothermal 2D domain with an active flame and simple boundary conditions,

• an anisothermal 3D industrial configuration with various boundary conditions.

• an anisothermal 3D domain with an active flame and complex valued boundary con-

ditions,

The first two test cases allow a precise comparison of the numerical results with available

analytical solutions in cases where 1D and 2D modes are subjected to partially reflecting

boundary conditions and where 1D modes are coupled to an infinitely thin active flame. The

third one illustrates the 3D capabilities of the formulation and the importance of accounting

for complex valued boundary impedances. The fourth one is an illustration of acoustic

calculations with complex valued impedance and 3D active flame.

A. Isothermal academic calculations

The computational domain is a rectangular cavity of length L = 0.5 m and height h = 0.1

m where the speed of sound is c0 = 450 m/s (Fig. 1). The unstructured mesh contains

11367 triangular cells and 5813 nodes and is uniform over the domain. Two sets of boundary

conditions are considered in the following sub-sections.

1. Longitudinal 1D modes

Longitudinal modes are considered first. A homogeneous Neumann condition (|Z| = +∞) is

imposed at the bottom and top boundaries. The same condition is used at the left boundary

while a complex impedance (Z = a + ib) is imposed at the right side (see Fig. 1). In this

case, the problem admits a set of 1D solutions (longitudinal modes).

Frequencies: Seeking for 1D harmonic solutions, viz. p(x, t) = ℜ [p̂(x)exp(−iωt)], the prob-

lem can be formulated as follows :

∂2p̂

∂x2
+

ω2

c2
0

p̂ = 0

with
∂p̂

∂x
= 0 for x = 0 and

∂p̂

∂x
− iω

c0Z
p̂ = 0 for x = L, (49)
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Figure 1. Schematic of the computational domain for computing the longitudinal modes of
the isothermal 2D domain.

and the eigenfrequencies are equal to

fm = m
c0

2L
+

c0

2πL
arctan(

−i

Z
), m ∈ N. (50)

In the case where Z is a purely reactive impedance, viz. Z = ib with b ∈ R, Eq. 50 shows that

the eigenfrequencies are real, consistently with the fact that the eigenmodes are marginally

stable in this case because there is no acoustic flux at the boundaries. On the other hand,

when Z is a purely resistive impedance, viz. Z = a with a ∈ R, the eigenfrequencies are

complex valued and equal to:

f = m
c0

2L
− i

c0

4πL
ln

(

a + 1

a − 1

)

, m ∈ N. (51)

If (a + 1)/(a − 1) > 0, viz. |a| > 1, the real part of f is a multiple of the half-wave mode

frequency c0/2L while in the case where (a + 1)/(a − 1) < 0, viz. |a| < 1, ℜ(f) belongs to

the quarter-wave modes family. In any case, the real part of the frequency does not depend

on a and its imaginary part does not depend on the mode index m. The numerical results

are in full good agreement with these analytical findings as illustrated in Figs. 2 and 3.

Figure 2. Influence of purely reactive impedance Z = ib on the 1D modes eigenfrequencies.
Left: real part of the frequency. Right: Imaginary part. ◦ numerical results, —analytical
solution. Abscissa represent b.
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Figure 3. Influence of purely resistive impedance Z = a on the 1D modes eigenfrequencies.
Left: real part of the frequency. Right: Imaginary part. ◦ numerical results, —analytical
solution. Abscissa represent a.

Orthogonality of the modes: In general, the eigenmodes of the acoustic problem with finite

complex valued impedance are not orthogonal (see appendix B for more details). This is

illustrated in table 2 for the first four eigenmodes corresponding to Z = 0 and Z = i. Recall

that the inner product of two eigenmodes p̂n(x) and p̂m(x) is defined as:

< p̂n, p̂m >=

∫

Ω

p̂n(x)p̂∗m(x)dx, (52)

and is zero if and only if p̂n(x) and p̂m(x) are orthogonal. It follows from Appendix B that

< p̂n, p̂m >= 0 when Z = 0 as soon as m 6= n. The computed products are indeed very small

as shown in table 2. In the case Z = i, the inner products are not expected to be zero and

the following expression can be derived:

| < p̂m, p̂n > | =
1

2(m + n) − 1)
×

√

2(4n − 1)

(4n − 1)π − 2
×

√

2(4m − 1)

(4m − 1)π − 2
. (53)

Table 2 shows that the agreement with computed inner products is again very good. Note

that large values (e.g. < p̂1, p̂2 >≃ 0.15) are obtained. Assuming that the acoustic modes

form an orthogonal functional basis is thus not justified and can lead to large errors in the

case of finite valued boundary impedances.

Case < p̂1, p̂2 > < p̂1, p̂3 > < p̂1, p̂4 > < p̂2, p̂3 > < p̂2, p̂4 > < p̂3, p̂4 >

Z = 0 2 × 10−5 7 × 10−4 2 × 10−5 4 × 10−5 10−3 6 × 10−5

Z = 0 - Exact 0 0 0 0 0 0

Z = i 0.15 0.10 0.08 0.076 0.056 0.051

Z = i - Exact 0.151 0.106 0.081 0.076 0.062 0.052

Table 2. Inner products from the first four modes for Z = 0 and Z = i. The eigenmodes are
normalized by imposing < p̂m, p̂m >= 1. Indices correspond to the mode number in Eq. 50.
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2. 2D modes

This section proposes a comparison between numerical and analytical results in the case of

2D modes. An homogeneous Neumann condition (|Z| = +∞) is now imposed at the bottom,

left and right boundaries while a complex impedance (Z = a+ ib) is imposed at the top edge

of the computational domain (see Fig. 4).

BC û.n   =0BC

û.n   =0BC

û.n   =0

xL

Z=a+ib

y

h

0

Figure 4. Schematic of the computational domain for computing the 2D modes of the isother-
mal 2D domain.

Seeking for 2D harmonic solutions, viz. p(x, y, t) = ℜ [p̂(x, y)exp(−iωt)], the problem

can be formulated as follows :

∂2p̂

∂x2
+

∂2p̂

∂y2
+

ω2

c2
0

p̂ = 0

with
∂p̂

∂x
= 0 for x = 0, L;

∂p̂

∂y
= 0 for y = 0; (54)

and
∂p̂

∂y
− iω

c0Z
p̂ = 0 for y = h.

The relevant dispersion relation is then :

e2jkyh(ky −
k

Z
) − (ky +

k

Z
) = 0, ky =

√

k2 −
(mπ

L

)2

, m ∈ N. (55)

In the case of a purely reactive impedance, viz. Z = ib with b ∈ R, there is no acoustic

flux at the boundaries and consistently, the wave number k = ω/c0 given by Eq. 55 is real

(see Fig. 5). On the other, when Z is a purely resistive impedance, viz. Z = a with a ∈ R,

the acoustic flux at the top boundary depends on the mode index and both the real and

imaginary parts of the eigenfrequencies depend on a (see Fig. 6). In any case, the comparison

between the analytical (Eq. 55) and numerical eigenfrequencies shows very good agreement.
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Figure 5. Influence of purely reactive impedance Z = ib on the 2D modes eigenfrequencies.
Left: real part of the frequency. Right: Imaginary part. ◦ numerical results, —analytical
solution. Abscissa represent b.

Figure 6. Influence of purely resistive impedance Z = a on the 2D modes eigenfrequencies.
Left: real part of the frequency. Right: Imaginary part. ◦ numerical results, —analytical
solution. Abscissa represent a.
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B. Active flame calculation in an academic test case

This section presents a calculation where the influence of the flame considered as an acoustic

element is accounted for. The configuration is 1D and consists of a duct of length L = 0.5 m

and constant cross section where the fresh gas are separated from the hot gas by an infinitely

thin flame located at the middle of the duct (Fig. 7). Modeling the unsteady effects of the

c =694.36 m/s

T =1200 K1 

1 2

τFlame front (n,  )

p̂=0
2

c =347.18 m/s

T =300 K

û.n   =0

L/2
0 L x

û.n   =0 

BCû.n   =0

BC

BC

Figure 7. 1D model problem for the acoustic/flame coupling

flame thanks to the classical n − τ model38,39 (Eq. 9) and assuming that the hot-to-fresh

gas temperature ratio is T2/T1 = 4 (which means that the speed of sound in the hot gas c2

is twice as large as in the fresh gas c1 while the density ratio is ρ2/ρ1 = 0.25), the dispersion

relation takes a rather simple form provided Dirichlet or Neumann boundary conditions are

used at x = 0 and x = L.50 For example, in the case where the acoustic velocity is zero at

the inlet (x = 0) and the pressure is fixed at the outlet (x = L), the eigenfrequencies of the

problem are solutions of the following dispersion equation:

cos

(

L

4c1

ω

) [

cos2

(

L

4c1

ω

)

− 1

4

Γ(1 + neiωτ ) − 1

Γ(1 + neiωτ ) + 1
− 3

4

]

= 0, (56)

where the dimensionless coefficient Γ is the acoustic impedance ratio

Γ =
ρ2c2

ρ1c1

. (57)

Note that a more general solution of this problem is given in Kaufmann et al.50 where a

jump in the duct cross section is allowed at the flame position. The solutions of Eq. 56 are

also discussed in details in this reference, especially in the limit case n −→ 0. In the more

general case where the interaction index is not small, Eq. 56 can be numerically inverted

for any values of the unsteady flame model parameters n and τ . In this section, these exact

eigenfrequencies are compared to the numerical results obtained by the asymptotic method
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and the iterative algorithm described in sections IV-A and IV-B respectively.

Although analytically tractable, this test case is very demanding for any finite element

based method. Indeed, discrepancies between the numerical and analytical results can be

expected for two main reasons:47

• in the simulations, the flame front is not infinitely thin as in the analytical model; it

is at least as thick as the typical cell size in the interface region. This is a classical

difficulty when Dirac delta functions are discretized,

• the reference point needed in the flame model Eq. 9 must belong to the fresh gas side

to be consistent with the philosophy of the n − τ model. Since the flame thickness

is not zero, the fresh gas region does not extend to the middle of the duct and the

reference point cannot be strictly located at x = L/2 = 0.25 m.

Two 2D unstructured meshes have been considered, one coarse mesh (M1) and one fine

mesh (M2). To keep the expected errors as small as possible, both meshes are refined near the

middle of the duct, as shown in Fig. 8 for mesh M1. Using the finer mesh M2 should reduce

the analytical/numerical discrepancies because a) the classical numerical errors stemming

from the spatial gradient approximations are reduced and b) the flame thickness can be

made smaller and the reference position can be chosen closer to its theoretical value L/2.

The main characteristics of meshes M1 and M2 are gathered in table 3 where the minimal

flame thickness and maximal reference position allowed by each mesh are also given.

Mesh triangles nodes flame region xref

M1 12000 6000 0.249 ≤ x ≤ 0.251 0.2488

M2 78000 39000 0.2498 ≤ x ≤ 0.2502 0.2495

Table 3. Characteristics of meshes M1 and M2 and associated best physical values.

Figure 8. 2D unstructured mesh M1 for the 1D active flame calculations.

Regarding the flame characteristics, two different values of the interaction index have

been considered, viz. n = 0.01 and n = 5, corresponding to a small and large amplitude of

the flame response respectively. Regarding the time delay, a value leading to both stable and

unstable modes among the first few eigenfrequencies has been selected, namely τ = 10−4 s.

For each value of n, a field of local interaction index nu(x) has been constructed so that the

27 of 44



models given in Eqs. 9 and 11 correspond to the same flame response amplitude. A simple

way to proceed is to assume that nu(x) is constant by parts, equal to η in the flame region

and 0 anywhere else. Then, integrating Eq. 11 over space and equating the result to Eq. 9

gives the following connection between the classical and local interaction index:

nu(x) = η =
n

δf

× Ubulk

qtot

× γp0

γ − 1
, if xf − δf/2 < x < xf − δf/2,

nu(x) = 0 elsewhere, (58)

where δf is the thickness of the effective flame region in the computation and xf is the mean

position of the flame, viz. xf = L/2 = 0.25 m.

When the amplitude of the flame response is small, figure 9 (left) shows that both the

asymptotic method and the iterative algorithm provide results in good agreement with the

analytical solution, even if the coarser mesh M1 is used. With the selected time delay, the

flame acoustic coupling makes the first and fourth modes stable while the second one is

not modified (this mode admits a velocity node at the middle of the duct which zeroes the

coupling term50) and the third mode is amplified by the presence of the flame. The passive

flame calculation leads to marginal modes (consistently with the purely reflecting bound-

ary conditions) in good agreement with the theoretical real eigenfreqencies. The stabiliz-

ing/destabilizing effect of the unsteady flame is well captured by both numerical methods,

showing that the linearization process proposed in section IV-A is valid in this case.

Figure 9. Location in the complex frequency plane of the first four eigenfrequencies for the
active flame 1D test case. Left: n = 0.01, Right: n = 5. Time delay is τ = 10−4 s in both
cases. : exact frequencies, ♯: passive flame calculation, ◦: asymptotic method, × iterative
algorithm. Numerical results based on mesh M1.

When the amplitude of the flame response is large (n = 5), figure 9 (right) shows that

only the third mode is amplified by the flame/acoustic coupling, the first and the forth

being damped and the second one being left unchanged. The passive flame calculation still

produces marginal modes but the amplitude of the flame response being large, the associated

real eigenfreqencies do not match the theoretical values very well. Large differences between

the asymptotic method and the analytical solution also appear in this case. This is not

28 of 44



very surprising since the ’small’ parameter of the problem, Eq. 38, is indeed larger than

unity and the developments given in section IV-A are not justified. A better agreement is

obtained when the iterative algorithm of section IV-B is used instead. The error increases

with frequency, which is classical for finite element based methods, and is larger for the

imaginary part of the eigenfrequencies. For example, the error on the real part of the third

mode is close to 3.3 % while it is more than 22 % for the imaginary part. In order to

investigate the sources of the error, the finer mesh M2 was used instead of M1. Relative

errors on the frequency f of the third mode are given in Fig. 10 for different calculations

based on the iterative algorithm. R1 and R2 corresponds to calculations using respectively

M1 and M2 with the corresponding flame front description and reference point definition

(see table 3). R21 corresponds to a simulation where M2 was used together with the flame

front and reference point definition allowed by M1. Thus comparison between R1 and R21

gives indications about the numerical errors associated with the finite element approximation

while comparing R21 and R2 gives indications about the effect of not considering an infinitely

thin flame. In any case, the error on the real part ℜ(f) of the frequency is very small and

virtually not affected by the level of approximation. The error on the imaginary part ℑ(f)

remains significant in the case R21, although smaller than in the case R1, indicating that

the numerical errors are significant when M1 is used. Using the fine mesh and associated

physical parameters description, run R2, the error is again reduced significantly, indicating

that the finite flame thickness effects are not negligible. Note that the algorithm requires

only 1 iteration to provide a good approximation of ℜ(f) with less than 1 % error while 2

iterations are required to reach the same accuracy on ℑ(f).
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Figure 10. Relative errors (%) on the frequency of the 3rd mode from runs R1 ( ), R21
( ) and R2 ( ) versus the iteration number. Left: Real part, Right: Imaginary part
of the frequency. The corresponding exact values are ℜ(f) = 1227.3 and ℑ(f) = 41.6. Iteration
0 corresponds to passive flame calculations.
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C. Steady flame calculations in an annular test rig

The 3D acoustic solver is now used for characterizing the acoustic modes of an industrial

demonstrator developed by the SNECMA MOTEURS company (SAFRAN Group). More

precisely, an annular combustor consisting of a plenum connected to a combustion chamber

with 18 swirled burners is considered. The geometry also contains 216 dilution holes evenly

dispatched around the annular combustion chamber. The 3D unstructured mesh contains

roughly 3.8 × 105 nodes and 106 tetraedra (see Fig. 11). The fields of density and speed of

Figure 11. 3D unstructured mesh of the annular combustor.

sound are inputs of the acoustic solver and they were obtained by performing a Reynolds-

Averaged Navier-Stokes calculation over a 360/18 ≃ 20 degrees sector, the result of which

being duplicated to produce the requested 360 degrees fields. Figure 12 illustrates the 3D

nature of the data provided to the acoustic solver and the necessity to compute them by using

an appropriate 3D CFD tool. In the same way, accounting for the acoustic/flame coupling

would require complete fields of interaction index and time delay as discussed in section

II-C. This would essentially require performing a LES of a 20 degrees sector of the annular

combustor and post-processing the results in order to optimize nu(x) and τ(x).26 Such

simulation has not been performed yet on the geometry of interest and only passive flame

acoustic calculations will be presented in this section. Note also that the adiabatic coefficient

γ was considered constant in the following calculations. Two runs have been performed in

order to illustrate the importance of accounting for complex boundary impedance when

dealing with annular combustors.

• Run A: An homogeneous Neumann condition is used for the solid walls and inlets

(entrance of the plenum and the dilution holes) while the classical zero pressure fluc-

tuations condition is imposed at the outlet of the combustion chamber,

• Run B: The same conditions as in Run A are used for the solid boundaries and the

inlets but for the outlet of the combustion chamber a frequency dependent impedance
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Figure 12. Temperature field in the combustor. Scale is from 450 (black) to 2500 K (white).

is now prescribed in order to account for the sonic surface that is present downstream

the combustion chamber when the combustor is connected to a turbine. The frequency

dependent impedance was obtained from classical acoustic theory51 for nozzles assum-

ing that the first compressor blades row is choked. Real and imaginary part of the

corresponding impedance are shown in figure 13.

Figure 13. Frequency dependent reduced boundary impedance imposed at the combustion
chamber exit for Run B. Left: Real part, Right: Imaginary part

The frequencies associated with the first 4 modes of Runs A and B are gathered in tables 4

and 5 respectively. Since there is no acoustic loss in Run A (all the boundary conditions

Mode Number ℜ(f) 2πℑ(f) Mode description

1 658 Hz 0 rad/s 1st Longitudinal

2 728 Hz 0 rad/s 1st Longitudinal-1st Orthoradial

3 890 Hz 0 rad/s 1st Longitudinal-2nd Orthoradial

4 1101 Hz 0 rad/s 1st Longitudinal-3rd Orthoradial

Table 4. Frequency and decay rate of the first 4 eigenmodes of the 3D annular combustor.
Run A
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Mode Number ℜ(f) 2πℑ(f) Mode description

1 344 Hz −24.5 rad/s 1st Orthoradial

2 686 Hz −25.1 rad/s 2nd Orthoradial

3 846 Hz −10.1 rad/s 1st Longitudinal

4 896 Hz −12.3 rad/s 1st Orthoradial-1st Longitudinal

Table 5. Frequency and decay rate of the first 4 eigenmodes of the 3D annular combustor.
Run B

are fully reflecting in this case), the imaginary part of the corresponding eigenfrequencies

is always zero. For Run B, the outlet impedance mimics the presence of a chocked nozzle

downstream the combustion chamber and part of the acoustic energy is leaving the compu-

tational domain through this boundary. Accordingly, all the modes are damped in Run B.

In the case where the classical outlet condition is used (Run A), all the modes are essentially

longitudinal in the combustion chamber. This result is in contradiction with the fact that

turning modes are often observed in annular combustors.10,23,52 It is actually an artifact of

the classical outlet condition which imposes zero pressure fluctuations and prevents modes

with phase differences within the outlet plane from existing. This is confirmed by the results

of Run B where three families of modes were found :

• orthoradial modes where the acoustic pressure field in the plenum and combustion

chamber is virtually axi-symmetric (not exactly axi-symmetric because the geometry

is truly 3D because of the injectors and the dilution holes) - see Fig. 14, modes a and

b,

• longitudinal modes where the acoustic pressure field depends mostly on the axial dis-

tance along the ’symmetry’ axis - see Fig. 14, mode c,

• coupled modes where the pressure field in the plenum and combustion chamber depends

both on the axial distance and the azimuthal angle - see Fig. 14, mode d,

These modes structures are not obtained if the outlet impedance is set to zero, as it is usual

for outlets in acoustic simulations (Run A). Moreover, the lowest frequency mode, close to

350 Hz, is not captured in the Z = 0 case. This illustrates the importance of prescribing

proper acoustic boundary conditions for predicting the eigenmodes of annular combustors.

D. 3D Active flame calculations

Three dimensional acoustic calculations based on the AVSP code and including complex

impedance and active flame were discussed recently by Martin et al.26 These authors con-
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a: First orthoradial mode - f = 344 Hz b: Second orthoradial mode - f = 686 Hz

c: First longitudinal mode - f = 846 Hz
d: First orthoradial/first longitudinal
mode - f = 896 Hz

Figure 14. Modulus of the pressure amplitude for the first four modes of the annular combustor
- Run B. Scale is from 0 (white) to 1 (black).
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sidered a swirled staged combustor which proved to be unstable both experimentally and

numerically by LES. The acoustic calculations showed that :

• when no coupling with the flame is considered and Neumann/Dirichlet boundary con-

ditions are used at the inlet/outlet, three acoustic modes (1L, 2L, 3L) are found below

1000 Hz, with frequencies close to 312, 431 and 841 Hz respectively,

• when complex valued impedance is prescribed at the outlet, all the acoustic modes are

damped because of the acoustic losses at the boundary. The decay rates of the first

three modes are close to −48, −32 and −4.5 rad/s respectively,

• when a complex valued impedance is used and the flame is made active, the real

frequencies of the first three modes are only slightly shifted. Moreover, the 1L mode is

heavily damped with a decay rate of −588 rad/s, 3L becomes virtually marginal and

2L becomes unstable with a growing rate close to 600 rad/s,

• these results compare favorably with the LES calculations performed under the same

conditions and showing that the turbulent flame oscillates at approximately 380 Hz,

the shape of the LES pressure fluctuations along the combustor axis being very close

to the shape of the 2L unstable acoustic mode. Moreover, the 2L mode growing rates

from the acoustic solver and the LES code are in fair agreement.

The study of Martin et al.26 demonstrated the ability of the method presented in section

IV-B to detect the existence of an unstable mode in the case of an unstable configuration.

It is also important that the method predicts stability in the case of a stable configuration,

even if the flame-acoustic coupling is accounted for thanks to the local n − τ model of

section II-C. As a complement to the results26 summarized above, a stable configuration is

thus considered in the remaining of this section in order to better illustrate the the acoustic

calculation procedure with 3D active flame.

The burner considered is a modified version of a single Siemens hybrid burner operated

at 17 Mpa. Fully premixed methane / air is injected through two coaxial swirlers (diagonal

and axial) at an equivalence ratio of 0.42 for the axial and 0.53 for the diagonal swirler.

The flow rates injected in the combustion chamber are respectively 1.7 kg/s for the axial

and 17.7 kg/s for the diagonal swirler. More details about the geometry of the burner can

be found in previous references dedicated to the structure of the corresponding turbulent

steady flame,20 the effect of piloting on the flame,53 the relationship between hydrodynamic

and acoustic fluctuations.27 The same burner was also used by Giauque et al.54 to assess

flame transfer functions from LES, including local interaction index and time delay maps.

Note also that in the following the Siemens burner is not mounted on a cylindrical or square

combustion chamber as in the previous studies;20,27,53 a geometry more representative of the
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actual combustion chamber is used instead. To the author’s knowledge, no instability were

found experimentally under the considered operating conditions.

The computational domain is shown in Fig. 15. The tetrahedral mesh is refined in the

injection region in order to better capture the mean temperature gradient and flame response.

As shown in Fig. 15, only a 360/24 = 15 degrees sector of the full configuration is considered.

Note however that no major issues are expected in performing the acoustic calculation of

the 360 degrees geometry (such calculation has been presented in section V-C for a passive

flame case). The only technical difficulty to perform a 360 degrees active flame calculation

is in defining one reference position per sector, which does change neither the mathematical

nature of the underlying eigenvalue problem nor the related numerical issues. Although no

information about the azimuthal modes can be obtained from 15 degrees calculations, such

computations are presented below to illustrate the method.

Figure 15. 3D unstructured mesh for the acoustic analysis of the Siemens combustor.

As in section V-C, the fields of density and speed of sound are inputs of the acoustic

solver and they were obtained by performing a Reynolds-Averaged Navier-Stokes calculation

over the computational domain. The flame transfer function was assessed by introducing

acoustic perturbations at the diagonal swirler entrance as described in Giauque et al.54 The

difference with this reference however is that a broad band excitation was used instead of

an harmonic signal. The Wiener-Hopf42 equation was then used in order to obtained the

local flame transfer function in the range 100 − 600 Hz by post-processing the LES results.

Typical maps of interaction index and time delays are given in Fig. 16 while the frequency

dependence of these parameters is depicted in Fig. 17. Significant variations of the overall

amplitude of the flame response are obtained when the frequency evolves from 100 to 600

Hz.

The frequencies associated with the first five acoustic modes are gathered in table 6.

Results from both passive and active flame simulations are included. In both case, Neu-

mann and axi-periodic conditions were used for the liner and lateral boundaries respectively.
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Figure 16. Typical maps of the interaction index (left column) and time delay (right column)
at 300 Hz (top row) and 500 Hz (bottom row). The time delay is only plotted in regions where
the amplitude of the flame response (interaction index) is significant.

Figure 17. Volume averaged interaction index (left) and time delay (right) versus frequency.
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Complex valued impedances were prescribed at the combustion chamber inlet and outlet. In

absence of experimental measurements, values consistent with the partially reflecting bound-

ary conditions used in the LES performed to assess the flame response (shown in Figs. 16 and

17) were chosen, viz. 1/Z = −1 − 7540i/ω for the outlet55 and 1/Z = −1.67 for the inlet.

With these values, the boundaries have a low-pass filter behavior,55 the cut-off frequency

being close to 600 Hz. Note also that the boundary impedances are of the form Eq. 34

so that all the passive flame modes have been obtained by solving the quadratic eigenvalue

problem Eq. 35 only once. For each mode, the iterative procedure of section IV-B has then

been used to obtain the active flame modes. In general, two iterations proved enough to

reach a fair convergence of the complex frequency except for the first mode for which a third

iteration has been necessary.

Mode Number Flame ℜ(f) 2πℑ(f) Mode description

1
passive
active

66 Hz
95 Hz

−80.3 rad/s
−83.8 rad/s

2
passive
active

388 Hz
381 Hz

−75.2 rad/s
−58.1 rad/s

3
passive
active

557 Hz
558 Hz

−119 rad/s
−152 rad/s

4
passive
active

796 Hz
795 Hz

−122 rad/s
−45.2 rad/s

5
passive
active

798 Hz
807 Hz

−10.5 rad/s
−7.5 rad/s

Table 6. Frequency and decay rate of the first 5 eigenmodes of the Siemens combustor for both
the passive and active flame calculations. The shape of the passive flame modes are shown in
the right column. Modulus of the pressure amplitude is shown with scale from 0 (white) to 1
(black). Active flame modes have very similar shape.
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Differently from the case investigated in Martin et al.,26 the flame-acoustic coupling in the

present configuration does not modify the acoustic modes substantially. The real frequency

shift is 2 % or less for all modes except for the first one for which the frequency shift is

more significant. All the passive flame modes are damped because of the acoustic radiation

through the inlet and outlet boundaries. Note that the acoustic losses are less significant

for the first radial mode (the 5th mode in table 6). The active flame calculations show that

the flame acoustic coupling has either a stabilizing effect (modes 1 and 3) or a destabilizing

effect (modes 2, 4 and 5). Even if this effect is sometimes significant (see mode 4), it is

always compensated by the damping effect of the boundaries so that the growing rate keeps

a negative value for each mode, consistently with the overall stable behavior of the test rig.

VI. Conclusion

A finite element based methodology has been developed in order to determine the thermo-

acoustic modes of industrial systems like annular combustors. The method allows to handle

frequency dependent complex valued impedance at the boundaries as well as 3D, distributed

and unsteady flames. Two ways of accounting for the flame/acoustic coupling have been

developed and proved to give similar results in the limit case of small flame response ampli-

tude. Several academic cases have been considered in order to validate the procedure and its

ability to handle complex geometries has been illustrated by considering an annular combus-

tor with 18 swirled injectors. A 15 degrees sector of another annular combustor has also be

considered as an example of acoustic calculation including acoustic/flame coupling. Coupled

to RANS/LES codes to provide the required input data, the numerical approach described

in this paper can be used to predict the thermoacoustic modes of industrial systems and

associated stability.

Appendix A: Validity of the zero Mach number assumption

To quantify the validity of the zero Mach number assumption, we first note that the

time and length scales for any fluctuation (density, velocity or entropy) are La/c0 and La

respectively where La is the acoustic wavelength of the perturbation and c0 the speed of

sound. For example, the ∂ρ1/∂t in Eq. 5 is of order ǫρ0c0/La. Besides, we note that the

steady part of the fields of density, velocity or entropy can evolve significantly over the

flame brush thickness Lf . Considering this quantity as the relevant length scale for assessing

gradients of time averaged fields, the order of magnitude of the terms appearing in the linear

counterpart of Eqs. 1, 2 and 4 can be assessed. Of course, the linearization is performed

without assuming u0 ≃ 0 so that constraints on the mean Mach number M =
√

u0 · u0/c0
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consistent with the zero Mach number assumption can be obtained afterward.

For example, the linearization of the continuity equation, Eq. 1, gives:

∂ρ1

∂t
+ u1 · ∇ρ0 + ρ0∇ · u1 + u0 · ∇ρ1 + ρ1∇ · u0 = 0, (59)

Note that the first three terms do not depend on the mean velocity field and were already

present in Eq. 5. The two other terms of Eq. 59, namely u0 · ∇ρ1 and ρ1∇ · u0, involve the

mean velocity field and can be neglected if they are small compared to the time derivative,

viz. small compared to ǫρ0c0/La. Their order of magnitude being ǫρ0Mc0/La and ǫρ0Mc0/Lf

respectively, it follows that the zero mean flow assumption is justified as long as the Mach

number is such that M ≪ 1 and M ≪ Lf/La.

The same methodology can be applied to Eqs. 2 and 4. Linearizing Eq. 2 without

assuming that the mean flow is at rest, one obtains Eq. 6 enriched by the terms ρ0u1 · ∇u0,

ρ0u0 · ∇u1 and ρ1u0 · ∇u0 at the LHS. By comparison with the time derivative term in

Eq. 6, these terms are negligible if M ≪ Lf/La, M ≪ 1 and M ≪
√

Lf/La respectively.

Regarding Eq. 4, the only new term when the mean flow is not at rest is u0 ·∇s1 which can be

neglected compared to ∂s1/∂t when M ≪ 1. Eventually, Table 7 gathers all the constraints

that must be matched on the mean Mach number for the zero mean flow assumption to hold.

For low frequency modes of typical combustors, the flame brush thickness is smaller than

Equation Constraint

mass M ≪ 1 and M ≪ Lf/La

momentum M ≪ Lf/La, M ≪ 1 and M ≪
√

Lf/La

entropy M ≪ 1

Table 7. Summary of the constraints on the mean Mach number implied by the zero mean
flow assumption.

the acoustic wavelength and M ≪ Lf/La is most likely the most restrictive constraint on

M .

Appendix B: Orthogonality of the eigenmodes

Consider p̂1(x) and p̂2(x) two eigenmodes of Eq. 15 associated to angular frequencies ω1

and ω2. The objective of this appendix is to precise the conditions under which these two

modes are orthogonal. We first extend the classical inner product in order to account for

the spatial variations of γ, defining the following 1/γ-weighted inner product:

< p̂1, p̂2 >γ=

∫

Ω

p̂1(x)p̂∗2(x)

γ
dx, (60)
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By definition, the eigenvectors p̂1(x) and p̂2(x) are orthogonal if their 1/γ-weighted inner

product is zero, viz. < p̂1, p̂2 >γ= 0. Note that this definition of the orthogonality of the

eigenvectors reduces to the more classical one, viz. < p̂1, p̂2 >= 0, when γ is constant over

the flow domain (see Eq. 52).

Taking the complex conjugate of Eq. 15 applied to (p̂2(x), ω2) one obtains

p̂∗2
γ

= − p0

ω∗2
2

∇ ·
(

1

ρ0

∇p̂∗2

)

− i
γ − 1

γω∗
2

q̂∗, (61)

and the < p̂1, p̂2 >γ inner product is equal to :

< p̂1, p̂2 >γ= −
∫

Ω

p0

ω∗2
2

p̂1∇ ·
(

1

ρ0

∇p̂∗2

)

dx − i

∫

Ω

γ − 1

γω∗
2

p̂1q̂
∗dx. (62)

The second integral strongly depends on the unsteady heat release. In the case of a com-

plex turbulent flame and given the current knowledge and understanding of flame acoustic

coupling, there is no reason to believe that this term should be zero or that it can be com-

pensated by the first integral which does not depend on combustion. Thus in the case of an

unsteady flame, the thermoacoustic modes are most likely non-orthogonal.

Let us now consider the more interesting passive flame case for which the orthogonality

of the modes is sometimes assumed.22 Integrating the first integral of Eq. 62 by parts leads

to

< p̂1, p̂2 >γ=
p0

ω∗2
2

∫

Ω

1

ρ0

∇p̂1 · ∇p̂∗2dx − p0

ω∗2
2

∫

∂Ω

1

ρ0

p̂1∇p̂∗2 · nBCdσ, (63)

Integrating again by parts and using Eq. 15 applied to (p̂1, ω1) lead to:

(

1 − ω2
1

ω∗2
2

)

< p̂1, p̂2 >γ=
p0

ω∗2
2

∫

∂ΩZ

1

ρ0

(p̂∗2∇p̂1 − p̂1∇p̂∗2) · nBCdσ, (64)

Note that the boundary integral is taken over ∂ΩZ only because neither ∂ΩD nor ∂ΩN con-

tribute given that either p̂1 = p̂∗2 = 0 or ∇p̂1 · nBC = ∇p̂∗2 · nBC = 0 on these boundaries. At

this point, it is useful to consider the two distinct cases:

Case 1: ∂ΩZ is empty: In this case, only Neumann or Dirichlet conditions are pre-

scribed and the angular frequencies are real valued (ω∗
2 = ω2) since there is no acoustic

radiation through the boundaries. Eq. 64 reduces to

(

1 − ω2
1

ω2
2

)

< p̂1, p̂2 >γ= 0, (65)

which shows that p̂1 and p̂2 are orthogonal as soon as ω1 6= ω2. Since one can always find
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orthogonal eigenvectors sharing the same eigenfrequency by using the Gram-Schmidt orthog-

onalisation procedure, the acoustic problem admits a set of orthogonal eigenvectors when

∂ΩZ is empty.

Case 2: ∂ΩZ is not empty: Excluding the particular case where ω1 = ω∗
2, the eigen-

vectors p̂1 and p̂2 are orthogonal only if the boundary integral in Eq. 64 turns out to be

zero. In other words, the eigenvectors of the acoustic problem with finite impedance are

non orthogonal in the general case. A sufficient condition for zeroing the RHS of Eq. 64 is

obviously:

p̂∗2∇p̂1 · nBC = p̂1∇p̂∗2 · nBC, on ∂ΩZ , (66)

Making use of Eq. 24, this constraint can be re-written as

ω1

Z(ω1)
= − ω∗

2

Z∗(ω2)
, (67)

The following analytic form for Z(ω) ensures that Eq. 67 is satisfied for any values of ω1

and ω2:

Z(ω) = iR0ω, R0 ∈ R, (68)

Thus a sufficient condition for the acoustic problem to admit orthogonal eigenvectors is that

the boundary impedance, if finite, is given as in Eq. 68. Note that a particular case is the

Dirichlet condition Z = 0.
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