Marc Honnorat
email: marc.honnorat@imag.fr>

Joel Marin
email: joel.marin@imag.fr>

Jerome Monnier
email: jerome.monnier@imag.fr>

Xijun Lai
email: laixijin@gmail.com>

Marc Honnorat -Joël

Marin -Jérôme Monnier -Xijun Lai

Joël Marin

Jérôme Monnier

DassFlow v1.0: a variational data assimilation software for 2D river flows

Keywords: Variational data assimilation, parameter identification, river hydraulics, flood Assimilation variationnelle de données, identification de paramètres, hydraulique fluviale, inondations

published or not. The documents may come

Introduction

The St-Venant equations (shallow water) can describe accurately river flows, in the main channel (1D geometry) or in the major bed (flood plain, 2D geometry). Nevertheless, in order to carry out a reliable numerical simulation, models require input parameters such as bed elevation, roughness coefficients in addition to initial and boundary conditions. Generally, these parameters are approximated (eg roughness coefficients), missing (eg inflow boundary conditions or initial conditions) or subjected to uncertainties. Moreover, the governing equations themselves may model ideal configurations, which not necessarily correspond to real configurations. Classicaly, expert-users of computational river flow softwares, see e.g. [?], must perform many simulations (hence spend time) in order to calibrate the numerical model related to a given configuration (trial-error tests). On the other hand, observations from in-situ gauge stations (eg water elevation) or remote sensing observations (satellite images, air photographs, video images) are very important sources of information on the flow state, but they are not qualitatively integrated into the simulation process. To improve the quality of the simulation, data assimilation methods combine in an optimal sense the information from the model and observated data. This allows to identify some parameter values consistent with reality, and /or initial conditions. Variational data assimilation method, see e.g.

[?], [?], is based on the optimal control theory, [?], and it aims to fuse the dynamical model and observations by minimizing a cost function which measures the discrepancy between the simulation results and physical measurements. This method is operational in meterology and since more recently in oceanography. In river hydraulics, variational data assimilation methods have been used for the identification of model parameters in 1D channels, [?, ?], and in 2D, [?, ?, ?, ?, ?, ?, ?, ?]. In real configurations, observations are available only in very small quantities. At best, water levels are measured at very few gauge stations (information very sparse in space); velocity measurements are even more scarce since they require complex human interventions.

DassFlow is a river hydraulics simulation software designed for variational data assimilation on simple hydraulic configurations for research purpose. The model is based on the bidimensional shallow-water equations, solved by the finite volume method using the HLLC approximate Riemann solver. The minimization procedure is based on the L-BFGS algorithm, [?]), which requires the computation of the gradient of the cost function. Since the forward code is written in Fortran 95, the adjoint code is generated by the automatic differentiation tool Tapenade [?] developped by the Tropics project-team at INRIA Sophia-Antipolis. DassFlow software is interfaced with few free and commercial pre and post-processors (SIG tools, mesh generators, visualization tools), which allows to performs computations with real data.

In Section 2, we present the Shallow Water model. In section 3, we present the Variational Data Assimilation method (4D-Var). In Section 4, we detail the finite volume scheme, then the way the adjoint code is automatically generated. In Section 5, we compare some solutions of the forward model with either explicit solutions or real measures (benchmarks INRIA for the forward code). In Section 6, we consider twin experiments which show the capabilities of DassFlow (benchmarks for the data assimilation software). In appendix we detail characteristics boundary conditions and Riemann invariants.

The present research report treats of the mathematical and numerical features of Dassflow only. Concerning the code itself, we refer to the user manual [?] and the developer guide [?].

2 The shallow water model (St Venant)

The equations

The river hydraulics model is based on the bidimensional shallow water equations in their conservative formulation. The state variables are the water depth h and the local discharge q = hu, where u = (u, v) T is the depth-averaged velocity vector. On a domain Ω and for a computational time interval [0, T], the equations are:

           ∂ t h + div(q) = 0 in Ω×] 0, T] ∂ t q + div 1 h q ⊗ q + 1 2 g∇h 2 + gh∇z b + g n 2 q 2 h 7/3 q = 0 in Ω×] 0, T] h(0) = h 0 , q(0) = q 0 + boundary conditions (see section 2.2) (1)
where g is the magnitude of the gravity, z b the bed elevation, n the Manning roughness coefficient, h 0 and q 0 the initial conditions for the state variables. The quantity c = √ gh denotes the local wave celerity. It is important to notice that if the bed elevation is constant (∇z b = 0) and without the friction term, (1) is an hyperbolic system. Moreover, a transport equation related to a tracer Φ is considered:

∂ t hΦ + div(qΦ) = s f (2)
with initial and boundary conditions. s f is the tracer source term.

Boundary conditions

We split the boundary Γ of the domain Ω in three parts (see figure 2.1). We denote by:

• Γ in the part where the flow is incoming (type INFLOW)

• Γ out the part where the flow is outgoing (type OUTFLOW)

• Γ wall the part where it is a closed boundary (type WALL)

Figure 2.1: The simulation domain and its boundaries

The user has a large choice of boundary conditions, depending on the boundary condition type.

Wall boundary conditions

On Γ wall , we consider a slip condition:

u • n | Γc (t) = 0 , ∂h ∂n | Γc (t) = 0 ∀ t ∈]0, T]

Inflow conditions

Few boundary conditions are possible at inflow ie on Γ in .

Discharge imposed

We have:

(q • n) | Γin = -q in (t) , ∂h ∂n | Γin (t) = 0 ∀ t ∈]0, T]

INRIA

Incoming characteristics

The characteristic variables of the system are:

w 1 = u • n + g h0 h, w 2 = u • τ and w 3 = u•n-g h0 h, associated to the eigenvalues λ 1 = u 0 •n+c, λ 2 = u 0 •τ and λ 3 = u 0 •n-c respectively. Let us recall that: c = √ gh 0 .
We detail more concerning the characteristics in appendix A. The characteristic w k is incoming if λ k < 0 and outgoing otherwise. The characteristics boundary conditions are implemented as follows:

. For each point of the boundary, we compute the three eigenvalues λ k .

. For each λ k , -if λ k ≥ 0, then w k is incoming; thus it is evaluated from external data, -if λ k < 0, then w k is outgoing; thus it is evaluated from the internal simulation domain.

. Then, the model variables can be retrieved as follows:

-u • n bnd = w1+w3 2 -u × n bnd = w 2 -h bnd = h0 g w1-w3 2

Outflow conditions

Few boundary conditions are possible at outflow ie on Γ out .

Homogeneous Neumann

∂h ∂n | Γout (t) = 0 , ∂q ∂n | Γout (t) = 0 ∀ t ∈]0, T] Water elevation prescribed h | Γout (t) = z out (t) -z b | Γout , ∂(u•n+2c) ∂n | Γout (t) = 0 ∀ t ∈]0, T]
This boundary condition should be applied only in case of sub-critical flow. We refer to appendix B for a justification of the relation

∂(u•n+2c) ∂n | Γout (t) = 0 RR n°0123456789

Incoming characteristics

This case is similar to those related to the inflow boundary Γ in .

Rating curve

A rating curve is a relation between the normal discharge q • n and the water height h : q • n = f (h). Such a relation can be used to specify outflow boundary conditions if combined with the relation:

∂(U+2 √ gh) ∂n = 0.
To this end, we solve the following non-linear system (see figure 2.2):

q • n = f (h) u • n + 2 √ gh = u • n + 2 √ gh int (3)
where u • n + 2 √ gh int is computed from the interior of the domain. 3 Variational data assimilation (4D-var)

The DassFlow software is designed for variational data assimilation (classicaly called 4D-var method). Variational data assimilation is based on the optimal control theory, see [?], [?].

Briefly, this method consists to compute a control vector value k minimizing a cost function which measures the discrepancy between the computed variable and available data.

In our case the control vector k can include the initial condition, boundary conditions, manning coefficient and bed elevation. For example, if inflow discharge is prescribed and water elevation is prescribed, we get: k = (h 0 , q 0 , q in , z out , n, z b) T

INRIA

If we impose incoming characteristics for both inflow and outflow boundaries, we get:

k = (h 0 , q 0 , [w in 1 , w in 2 , w in 3], [w out 1 , w out 2 , w out 3], z out , n, z b) T
We set below the observation function H(k; h, q) and the cost function J(k) = H(k; h, q) which measures the discrepancy between the state of the system (computed variable) and observations. Then the optimal control problem we solve reads:

M in k J(k) (4)
where (h, q) is the solution of the forward model (1).

This optimization problem is solved numerically by a descent algorithm. Thus, we need to compute the gradient of the cost function. This is classicaly done by introducing the adjoint model.

Let us point out that initial conditions, boundary conditions, manning coefficients and bed elevation are only potential control variables. In practice, one manages to identify very few of them only at the same time.

Observations and cost function

Given observations, we define the cost function J which measures the discrepancy between the computed variable (state of the system) and the available data.

In the present version, we assume that water depth and discharge are available at some point and some time instant. In the forthcoming version of DassFlow, we will assume to have some extra observations such as trajectories at surface (lagrangian data).

Given such (eulerian) observations, we define the cost function as the sum of three terms.

• The first term measures the discrepancy between observation data and computed state variable :

J obs (k) = 1 2 T 0 C h h(k, t) -h obs (t) 2 + T 0 C q q(k, t) -q obs (t) 2
where C h and C q are restriction operators.

• The second term measures the discrepancy of the flux: • The third term is a classical regularization term. For example, if we control inflow discharge, we set:

J f lux (k) = 1 2 T 0 G(k, t) -G obs (k, t) 2 RR n°0123456789 with G(k, t) -G obs (k, t) = ∆t |K i | 4 j=1 T -1 ij G 1 (U L , U R) -G 1 (ŨL , U R) with ŨL = [h obs , h obs u, h obs v] T and G 1 (U L , U R)
J p (k) = 1 2 ∂ 2 tt q in 2
Finally, the cost function writes :

J(k) = α obs J obs (k) + α f lux J f lux (k) + α p J p (k) (5)
where α obs , α f lux and α p are scaling coefficients which must be setted by user.

Adjoint model

In order to compute efficiently all partial derivatives of the cost function J(k) with respect to the components of the control vector k, we introduce the adjoint model, [?].

[?].

INRIA

Given the state of the system (h, q), solution of the forward model, we compute (h * , q *), solution of the adjoint model:

                             ∂ t h * -1 h 2 (q • ∇) q * • q + gh div(q *) -g q * • ∇z b + 7 3 g n 2 q h 7/3 q • q * = α obs C T h C h h -h obs + α f lux D k (G -G obs) T (G(k, t) -G obs (k, t)) ∂ t q * + ∇h * + 1 h (q • ∇) q * + 1 h (∇q *) T q -g n 2 q h 7/3 q * -g n 2 h 7/3 q (q⊗q)q * = α obs C T q C q q -q obs h * (T) = 0 , q * (T) = 0 . (6)
Let us point out that the adjoint model is reverse in time, and it includes the observations. Concerning its boundary conditions, for example in the case of inflow discharge prescribed at inflow and water elevation prescribed at outflow, we get:

C.L. : q * | Γin = 0 , (q * • n) | Γ wall = 0 , (q * • τ) | Γout = 0 , (∂ n h *) | Γin∪Γ wall = 0 , h * + 2(u • n)(q * • n) | Γout = 0 . (7)
Given the state (h, q) and the adjoint state (h * , q *), one obtains the following expression of the partial derivatives of the cost function (independent of the derivative of the state):

∂j ∂h 0 (k) = -h * (0) , ∂j ∂q 0 (k) = -q * (0) , ∂j ∂z b (k) = - T 0 div gh(t)q * (t) dt , ∂j ∂n (k) = 2 g n T 0 u(t) h(t) -1 3 u(t), q * (t) Ω dt , ∂j ∂q in (k) = α p ∂ 2 tt T ∂ 2 tt q in -h * | Γq , ∂j ∂z out (k) = (q * • n) c 2 -(u • n) 2 | Γz . (8)
A single integration of the direct model (1) followed by a single integration backward in time of the adjoint model (6)-(7) allow to compute all components of the gradient of the cost function (see figure 3.4).

The optimal control problem (4) is solved using a local descent algorithm, more precisely the L-BFGS algorithm (a quasi-Newton method), implemented in the M1QN3 routine, see [?, ?]. Thus, these partial derivatives are used as input to the minimization algorithm M1QN3. The global optimization process is represented in Fig. 3.4.

In practice, we don't implement the adjoint model presented above but we compute the partial derivatives directly by differentiating the forward code using an automatic differentiation tool, see next section.

Forward code

Adjoint code

Numerical implementation

In this section, we describe on one hand the finite volume scheme solving the forward model and its implementation, on the other hand the automatic differentiation of the forward code in order to obtain the partial derivatives of J. For more details concerning the numerical implementation of the finite volume scheme, one can consult [?], [?].

INRIA 4.1 Forward code and numerical scheme

The forward (or direct) model (1) is discretized using by a finite volume method based on the approximate Riemann solver HLLC, see e.g. [?]. The 2D mesh can be a mix of triangular and quadrangular cells.

The finite volume scheme

Equations (1) are rewritten as follows :

∂ t U + ∂ x (G(U)) + ∂ y (H(U)) -(S g (U) + S f (U)) = 0, (x, y) ∈ Ω 2 , t ∈ (0, T) where U = [h, q x , q y] T , G(U) = [q x , q 2 x /h + gh 2 /2, q x q y /h] T H(U) = [q y , q x q y /h, q 2 y /h + gh 2 /2] T S g (U) = [0, gh∂ x z b , gH∂ y z b] T
z b is the topography term, S f is the 2D friction term (Manning law) and g is the magnitude of the gravity.

For the finite volume K i of the mesh, we define the mean value of the state variable U :

U i = 1 |K i | Ki U dΩ , (9)
where |K i | denotes the surface of the cell. We integrate the equation over K i , we use the divergence theorem, we use the rotational invariance property of the equations [?], then we obtain:

Ki ∂ t U dx + Ni j=1 Eij T -1 ij G(T ij U) ds - Ki (S g (U) + S f (U)) dx = 0 (10)
where N i denotes the number of faces of the cell K i (3 or 4), E ij is the cell interface and T ij is the rotation of angle θ ij between the normal to E ij and the horizontal plane, Fig. 4.5:

T =   1 0 0 0 cos θ sin θ 0 -sin θ cos θ  
Using the forward Euler scheme for temporal discretization, the equation becomes:

U m+1 i = U m i - ∆t |K i | Ni j=1 T -1 ij G m (T ij U i) + ∆t S m g (U i) + ∆t S m+1 f (U i) (11)
where m = 0, ..., T /∆t is the time index, ∆t is the time step used for the 2D model integration. S m+1 f denotes the friction term treated semi-implicitely in time.

The difficulty is to compute the numerical flux

G m (T ij U i) = Eij G(T ij U) ds.
The rotational invariance property of the equations allows to reduce the 2D shallowwater problem to a sum of 1D local Riemann problems. These 1D Riemann problems are solved using the HLLC solver which consists to approximate the 1D flux G, see e.g. [?] and [?]. Moreover, the topography term S g is included in the HLLC solver (see section 4.1.2). Thus, (11) writes :

U m+1 i = U m i - ∆t |K i | Ni j=1 T -1 ij Gm (T ij U i) + ∆t S m+1 f (U i) (12)
Only the friction term is treated outside the HLLC numerical flux. It is discretized semi-implicitely in time as follows:

S m+1 (U i) =     0 -g n 2 u h 4/3 m (q x) m+1 -g n 2 u h 4/3 m (q y) m+1    
where n is the manning coefficient.

The local 1D Riemann problem

We detail below the computation of an approximation of the 1D flux G. This is done as follows. 2)

If V = [H, Q n , Q τ]
T where (τ, n) denotes the tangential and normal unit vectors respectively, we have the local normal 2D flux:

G(V) = [Q n , Q 2 n /H + gH 2 /2, Q n Q τ H] T
In the homogeneous case (S g = 0), the 2D finite volume solver consists to solve, for each edge, the following local 1D Riemann problem:

∂ t V + ∂ n G(V) = 0 with V (x, 0) = V L if x n < 0 ; V (x, 0) = V R if x n > 0. The normal flux G(V) is computed using the HLLC solver, [?].
Finally, we obtain the new solution U m+1 i using (11).

In the non-homogeneous case (S g = 0), the topography term is included in the flux term, using the following modification of G 2 (V) proposed by LeVeque [?] :

G(V) = G(V) +   0 1 2 g(h L + h R)(z bR -z bL) 0  

Stability condition

Since we use the forward Euler scheme in time, we do not have linear system to solve but the time step must respect a stability condition (CFL type). In the present case, this CFL stability condition is, see [?]:

CFL = ∆t max (u + c) min(d L,R) ≤ 1 , (13)
where d L,R is the distance between the cell L and the center of the edge separing it from cell R.

Boundary conditions

In this section, we describe the way we impose the different boundary conditions described in section 2.2.

Let us consider a "boundary cell" L, ie it has no neighboor through its edge i, (see figure 4.6). In the context of a finite volume scheme, we have to evaluate the flux through the edge i. Thus, it becomes natural to define a "ghost-cell" R, for each boundary cell L.

L R

i In order to impose a boundary condition (e.g. inflow dicharge, incoming characteristics etc), we set a particular value to U R = (h R , u R , v R) T such that the boundary condition is imposed when solving the local Riemann problem through the edge i (ie by computing the numeric flux G(U L , U R)). Let us detail the values U R required for each type of boundary conditions.

Wall conditions On Γ wall , we consider slip type conditions, then:

• Homogeneous Neumann condition on h is imposed by setting h R = h L • Slip condition on u is imposed by setting u R = -u L and v R = v L
Inflow conditions On Γ in , we impose one of the two following boundary conditions.

.

Inflow discharge

The inflow discharge is imposed (unit in m 3 s -1). This corresponds to the discharge through the whole boundary and it is distributed in each cell such that the normal velocity u L is constant along the boundary.

-Homogeneous Neumann on h are prescribed by setting h R = h L .

-The inflow discharge is prescribed by setting u R = -q in (t) A n , where A n is the boundary wet section area, and v R = v L .

.

Incoming characteristics

Once incoming and outgoing characteristics w 1 , w 2 and w 3 are computed in the ghost cell as described in appendix A, we set:

-h R = w1-w3 2c -u R = w1+w3 2hR -v R = w 2

INRIA

Outflow conditions On Γ out , we impose one of the four following boundary conditions.

. Water elevation

-We impose h R = z prescribed -(z b) R , where (z b) R is the bathymetry in the ghost- cell. -v R = v L -We impose (u R + 2 √ gh R) = (u L + 2 √ gh L), that is u R = (u L + 2 √ gh L -2 √ gh R).
.

Homogeneous Neumann We impose h R = h L , u R = u L and v R = v L .
. Incoming characteristics Once incoming and outgoing characteristics w 1 , w 2 and w 3 are computed in the ghost cell as described in appendix A, we set:

-h R = w1-w3 2c -u R = w1+w3 2hR -v R = w 2
. Rating curve -As described in section 2.2.3, we solve:

q R = f (h R) u R + 2 √ gh R = u L + 2 √ gh L (14)
-In addition we impose: v R = v L

Adjoint code

In practice, there exists three approaches to compute the adjoint state variable, then the gradient of the cost function.

1. The discretized continuous gradient can be obtained from the adjoint model (6)-(7) discretized using an appropriate numerical scheme which is then implemented.

2. The discrete gradient can be obtained from the adjoint of the direct numerical scheme and its implementation.

3. The "computational gradient" is obtained from the differentiation of the forward code directly.

This last approach ensures a better consistency between the computed cost function (including all types of errors -errors of discretization, rounding errors, iterative algorithms etc-) and its gradient since it is the computed cost function which is differentiated. A large part of this extensive task can be automated using algorithmic differentiation, see [?]. In the case of DassFlow, the direct code is written in Fortran 95 and it is derived using the automatic differentiation tool Tapenade [?].

How to use the adjoint code?

We describe how to define the direct code, then what is the response of the adjoint code automatically generated and finally how to use it.

Let K be the space of control variables and Y the space of the forward code response. In the case of DassFlow, we have :

k = (y 0 , q in , z out ,
dY = ∂M ∂k (k) • dk
The adjoint model is defined as the adjoint operator of the tangent model. This can be represented as follows: ∂M ∂k (k) * : Y ′ -→ K ′ . It takes dY * ∈ Y ′ an input variable and provides the adjoint variable dk * ∈ K ′ at output, see figure 4.9:

dk * = ∂M ∂k (k) * • dY *
Now, let us make the link between the adjoint code and the "computational gradient". • dY * , dk

INRIA dY dk ∂M ∂k (k)
K ′ ×K = dY * , ∂M ∂k • dk Y ′ ×Y (15)
or, using the relations presented above:

dk * , dk K ′ ×K = dY * , dY Y ′ ×Y . (16)
If we set dY * = (0, 1) T and by denoting the perturbation vector dk = (δy 0 , δn, δz b , δq in) T , we obtain:

0 1 , dy * dJ * Y ′ ×Y =       δy * 0 δn * δz * b δq in * δz * out       ,       δy 0 δn δz b δq in δz out       K ′ ×K
Moreover, we have by definition:

dJ = ∂J ∂y0 (k) • δy 0 + ∂J ∂n (k) • δn + ∂J ∂z b (k) • δz b + ∂J ∂qin (k) • δq in + ∂J ∂zout (k)
• δz out Therefore, the adjoint variable dk * (output of the adjoint code with dY * = (0, 1) T) corresponds to the partial derivatives of the cost function J:

∂J ∂y0 (k) = y * 0 ∂J ∂n (k) = n * ∂J ∂z b (k) = z * b ∂J ∂qin (k) = q * in ∂J ∂zout (k) = z * out RR n°0123456789
In summary, in order to compute the "computational gradient" (partial derivatives of the cost function J using differentiation of the forward code), first, one runs the direct code then one runs the adjoint code with dY * = (0, 1) T as input.

Automatic differentiation Tapenade [?] is an automatic differentiation tool for Fortran programs. It is devopped by the Tropics team [?] at INRIA Sophia-Antipolis. Tapenade works using source code transformation : it builds the tangent and/or adjoint code automatically from the direct code written in Fortran. One refers also to [?] to get a detailed description of how automatic differentiation works.

Adjoint code validation

We describe below how we check the validity of the adjoint code. Classicaly, we check that it is actually the adjoint of the tangent linear code (scalar product test) and that it computes correctly the partial derivative of the cost function (gradient test).

Scalar product test

The objective of this test is to check if the adjoint code is actually the adjoint of the tangent linear code. In other words, we check the relation (15) :

• Given an arbitrary dk ∈ K, we compute using the tangent linear code : dY = ∂M ∂k • dk • Given an arbitrary dY * ∈ Y, we compute using the adjoint code :

dk * = ∂M ∂k *

• dY *

• Then, we compute the following scalar products :

. sp 1 = dY * , dY Y

. sp 2 = dk * , dk K

• And we check if sp 1 = sp 2 or not.

Gradient test

The objective of this test is to check if the adjoint variables dX * computed by the adjoint code correspond to the partial derivatives of the cost function. The Taylor expansion of the cost function j at k for a small perturbation α δk (where α ∈ R +) writes :

j(k + α δk) = j(k) + α ∂j ∂k (k) • δk + o α δk . (17
)

INRIA

We set:

I α = j(k + α δk) -j(k) α ∂j ∂k (k) • δk . (18
)
According to (17), one must have: lim

α→0 I α = 1.
The gradient test consists to check this property:

• For an arbitrairy k, we compute ∂j ∂k (k) with the adjoint code. • With the direct code, we compute j(k).

• For n = 0, . . . , N :

• We compute α = 2 -n ;
• With the direct code, we compute j(k + α δk) ;

• We compute I α ; • We check if lim α→0 I α = 1 or not.
|I α -1| α #################################### ## TEST DU PRODUIT SCALAIRE ## #################################### Appel du

Water at rest

The first test is the water at rest with a variable topography. We check if the finite volume solver is "well balanced" or not, see e.g. [?]. That means that it must preserves at least water at rest solutions.

Steady solution and Manning-Strickler formula

This test case aims to check the well known Manning-Strickler formula that links water height, discharge and manning coefficient in the case of a steady and uniform state. In the present case (a rectangular and very large channel), the water height h can be computed by: h = q 3/5 n 3/5 L -3/5 i -3/10 (19

)
where q is the water discharge, n the Manning coefficient, L the canal length and i = sin(α).

This test case consists to compare the steady state solution obtained by DassFlow, to the expression (19).

This test case allows to validate or not the balance between the topography term and the friction term.

Dambreak

This test case simulates a dam-break with a flat bottom and without friction. The domain dimension is 50m × 10m, the topography is constant. There is a discontinuity at x = 25m. The initial condition is the following :

h(x, y) = 1 if x ≤ 25 0.1 if x > 25 see fig. 5.12. INRIA and u(x, y) = 2.5 if x ≤ 25 0 if x > 25 x z Figure 5
.12: Initial condition on h for the dambreak test case

The simulation time is 3s and the time step is 0.01. We perform this test case with a regular structured mesh (with n x = 200 and n y = 20) and with an unstructured triangular mesh (based on the same mesh for boundaries). Results are shown in figure 5.13.

Real data test case: Moselle river

In this section, we present a forward run on real data and compare the results with available measures. The study concerns the flood event from Feb.25 1997, 12h00 to Mars.2 1997, 12h00 of Moselle river. The mesh has 2340 cells and 2430 nodes, and it is a mix of triangles and quadrangles, see fig. 5.15. It includes the topography defined at the center of cells and was generated using the ArcGIS software. Time step is dt = 2s. This flood event test case is studied in [?] and data come from [?].

Boundary conditions are imposed using real measures obtained during the flood event. The hydrographs showing the inflow discharge prescribed at inflow boundary and the water elevation prescribed at outflow boundary are shown in figure 5.14.

In order to validate the numerical solution, we compare it to measures available at the EDF gauge station located approximatively in the middle of the main channel, see fig. 6 Benchmarks for the full code (data assimilation)

In this section, we present some twin experiments results. A "twin experiment" means that a first run of the direct model provides observations. Then control variables are changed (we set them as a "first guess") and we run DassFlow in the data assimilation mode in order to try to retreive the control variable values that generated the observations.

Identification of a local topography

Our first twin experiment concerns the identification of the topography in a small scale and academic case. The domain is 30 m long and 4 m large, and the topography is defined by : z b (x, y) = 0.9 exp -1 4 (x -10) 2 exp -(y -1) 2 + 0.7 exp -1 8 (x -20) 2 exp -2(y -3) 2

(20)

The inflow boundary is at x = 0, the outflow boundary at x = 30. Boundaries y = 0 and y = 4 are walls. We use a rectangular structured mesh of dimension 90 × 20. Bed roughness, defined by its Manning coefficient, is uniform (n = 0.025). We impose a constant discharge q in = 8 m 3 /s at x = 0 and a constant water height h out = 1.4 m at x = 30. We obtain a steady state solution after about 80 s of simulation. Figure 6.17 shows the water height of this steady state solution and the topography. From this steady state solution, we extract the forthcoming observations: h obs and u obs every 0.02 s during 20 s on each volume. The objective of this test case is to retreive the topography. The first guess used is a flat bottom. We use the datassim mode, see [?], with the following cost function :

j 1 (z b) = 1 2 T 0 h(t) -h obs (t) 2 Ω + q(t) -q obs (t) 2 Ω dt , (21)
Figure 6.18 shows the cost function and the norm of its gradient normalized by its initial values, vs iterates (a) and the identified topography (b). We can notice that convergence is obtained and the reference topography is well retreived.

Identification of inflow discharge

We consider a toy test case which includes many features of real cases (eg. Moselle river). The computational domain contains a main channel (river) and floodplains, see figures 6.19 and 6.20).

Again, the present test case is a twin experiment. At the inflow boundary, we set the inflow discharge shown if figure 6.21 (a) simulating a flood event.

Then we perform a forward run to generate observations at points 1 and 2 shown with black stars in figure 6.20(a). Then, we suppose that the inflow discharge is constant (4.95 m 3 s -1), and we try to retreive its real value by assimilating observations. We present in Figure 6.21 the identified inflow discharge for different experiments. In Fig. 6.21(a), observations are h and q at each cell and each time step. In Fig. 6.21(b), observations are h at point 1 and (h, q) at point 2, both at each time step. In Fig. 6.21(c), observations are h at point 1 only, but at each time step.

We can notice that the identified inflow discharge is good even with the observation of h at point 1 only. Also, we can notice that the end of the flood event is not well identified. This is the "blind period" phenomena: for example in case (c), the inflow discharge after 270 s can not be identified because the information from the inflow boundary did not reach yet the gauge station.

Identification of Manning coefficients

We consider the same toy test case presented above but we seek to identify manning coefficients in given land-use. Manning coefficients are defined using five different land uses as follows, see figure 6.22:

• In the main channel : n = 0.025 (gravelly main channel)

• Right to the main channel : n = 0.066 (flood plain with bushes)

• Left to the main channel : n = 0.04 (flood plain with little vegetation)

• Near gauging station number 1 : n = 0.03 (pasture, farmland)

• Near outflow boundary condition : n = 0.10 (urban)

Again, this test case is a twin experiment: a forward run generates the observations. For the present test case, the observations are water height at any time at gauge station 1, see figure 6.20(a). As first guess we consider a constant Manning (n = 0.010). The data assimilation process allows to recover perfectly the values used to generate the observations: In a matrix form, this gives:

Area

U t + A 1 U x + A 2 U y = 0 (23) with U = [h, u, v] T , A 1 =   u 0 0 g 0 u 0 0 h 0 0 u 0   , and A 2 =   v 0 0 0 0 v 0 g 0 h 0 v 0   Let n = [n 1 , n 2]
T and τ be respectively the normal and the tangent vector to the boundary (see Fig A.23). The matrix If we neglect the variations along x τ , (24) becomes a system of transport equations of w k at speed λ k in the normal direction n. Given an open boundary, w k is incoming if λ k < 0 and outgoing otherwise.

A = n 1 A 1 + n 2 A 2 has 3 eigenvectors: w 1 = u • n + g h0 h, w 2 = u • τ and w 3 = u • n -
Then, the characteristics boundary conditions are implemented as follows:

• For each point of the boundary, we compute the eigenvalues λ 1 , λ 2 and λ 3 .

• For each λ k , -if λ k < 0, then w k is incoming and must be specified from external data.

-if λ k ≥ 0, then w k is outgoing and must be computed from internal data.

INRIA

• Then the state variables can be recovered from characteristics values by:

-u • n bnd = w1+w3 2 -u • τ bnd = w 2 -h bnd = h0 g w1-w3
2

The remaining question is to compute the outgoing characteristics using internal data. Since the finite volume solver is explicit, at current time step n, we need values of the state variable in ghosts cells at time step n -1, see section 4.1.4. This is done using a simple linear extrapolation in the normal direction of the normal, see figure A.23.

B Riemann invariants and boundary conditions

This section details why the relation ∂ ∂n (u • n + 2c) = 0 is imposed if either water elevation or a rating curve is prescribed. We refer to ([?], section 1.3).

Let us consider the 1D shallow water equations with flat topography and without source term: The idea is to transform this equation in the form :

U t + B U x = 0 (
d dt (U + ω) = 0 (26
)
where ω is a quantity to be determined. Since gA b is not constant, we have to solve :

dω = gb A dh (27)
In case of a rectangular channel, we obtain: w = 2 √ gh. This means that (U + 2 √ gh) and (U -2 √ gh) are conserved along characteristic curves of direction λ 1 and λ 2 respectively.

For an outflow boundary (u • n > 0), λ 1 > 0 and (U + 2 √ gh) must be computed from the interior of the domain. Since the present finite volume solver is explicit in time, we need values of the state variable on the boundary at time n -1 when computing those of time n. Then, we use a simple extrapolation in the direction of the normal to compute the quantity (U + 2 √ gh) on the boundary. Using a 0-order extrapolation, we find the well-known condition :

∂(U + 2 √ gh) ∂n = 0
Link with the characteristics boundary conditions INRIA

Figure 2

 2 Figure 2.2: Outflow BC: Rating curve and U + 2 √ gh = 0

Figure 3 . 3 :

 33 Figure 3.3: Flux through all edges of cell L

 Figure 3.4: Variational data assimilation process

Figure 4

 4 Figure 4.5: Adjacent cells and use of the rotational invariance property of the equations

Figure 4 . 6 :

 46 Figure 4.6: Internal cell L at boundary and ghost cell R

Figure 4 . 7 :

 47 Figure 4.7: Representation of the direct model. The tangent model becomes ∂M ∂k (k) : K -→ Y. It takes as input variable a perturbation of the control vector dk ∈ K, then it gives the variation dY ∈ Y as output variable, see figure 4.8) :

Figure

 Figure 4.8: Representation of the tangent model.

Figure 4 .

 4 Figure 4.10 (b) shows an example of the scalar product test.

Figure 4 .

 4 Figure 4.10 (a) shows a result of the gradient test. |I α -1| is plotted against α in logarithmic scale. The convergence is good until α > 10 -7 . When α is smaller, the approximation of the partial derivatives is not reliable anymore due to truncation errors, see e.g. [?].

 code linaire tangent... Appel du code adjoint... <Xd

Figure 4 .

 4 Figure 4.10: Adjoint code validation

Figure 5 .

 5 Figure 5.11: Steady state solution for the Manning test case

 Figure 5.13: Dam break test case (all y values are superposed). a) and b) on a regular structured mesh, c) and d) on an unstructured triangular mesh. a) and c) represent h, b) and d) represent u.

 Figure 5.14: Moselle river. a) Inflow discharge imposed. b) Elevation prescribed at outflow boundary.

Figure 5 .

 5 Figure 5.15: Moselle river. Mesh and water depth computed on Feb.26 1997 14h00

Figure 6

 6 Figure6.17: Identification of the topography. Topography and steady state elevation.

 Figure 6.19: Toy test case mesh (a) and bathymetry (b)

 Figure 6.21: In green : reference inflow discharge. In red : identified inflow discharge. (a): Observation of (h, q) everywhere; (b): Observation of h at point 1 and (h, q) at point 2. (c): Observation of h at point 1 only.

g

 h0 h. They are associated to the eigenvaluesλ 1 = u 0 • n + c, λ 2 = u 0 • τ and λ 3 = u 0 • n -c (c = √ gh 0)respectively. These eigenvectors w 1 , w 2 and w 3 are the so-called characteristic variables.We rewrite (23), using w 1 , w 2 and w 3 :

 Figure A.23: Computation of characteristic variables in a ghost cell using a linear extrapolation of the values in cells (black points).

 25) with U = [h, U] T , B = U A/b g U , and b(x) is the canal width. The matrix B has 2 eigenvalues λ 1 = U + g A b and λ 2 = U -g A b . The corresponding left eigenvectors are Λ 1 = g, Lagrangian derivative in the direction of the curve of slope λ 1 .

RR n°0123456789

One can notice that the transported quantities obtained are different from those of appendix A. This can be explained by the use of linearized equations in appendix A.

Let us linearize (26) around (h 0 , U 0) :

We get:

By setting in (26), we get:

Assuming h ′ and U ′ are small, we find the expression of section A :