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Microfluidic breakups of confined droplets against a linear obstacle:
The importance of the viscosity contrast
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Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as

drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast �η

between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as

a function of its size is either nonmonotonic (�η > 0) or monotonic (�η � 0). In the case of positive viscosity

contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the

critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well

describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally,

and demonstrates that the critical size originating from confinement solely depends on geometrical parameters

of the obstacle.

DOI: 10.1103/PhysRevE.86.036317 PACS number(s): 47.55.df, 47.60.Dx, 47.61.Cb

I. INTRODUCTION

An everyday experience, the breaking of drops and bubbles,

has been extensively studied in a variety of flow geometries

[1,2] and in the physics, chemistry, and engineering of

emulsions and foams [3,4]. Addressing this issue requires

one to determine the minimum energy needed to break an

object and the size and number of the created daughter objects.

Recent advances in microfluidics, which offer possibilities

for handling nanoliter fluid elements, have inspired investi-

gations on the breakup of deformable objects in confined ge-

ometries [5–12]. Most of these studies on geometry-mediated

breakups focus on droplets reaching T junctions [5–8], or

junctions having arbitrary angles [9], while a few deal with

flows past an obstacle, e.g., a square obstruction [5] or a

circular post [12]. Microfluidic technologies raise challenging

scientific questions and they are powerful tools for various

applications that rely on the ability to perform and combine

basic operations such as breaking deformable objects [13].

Yet, establishing a general theoretical framework that fully

describes the break-up dynamics in confined geometries

remains a challenging task because of the numerous governing

parameters potentially at play: the size and speed of an object,

the viscosities of dispersed and transporting phases, the surface

tension, and the geometrical parameters.

Within this setting, here we discuss the breakup of confined

drops in one particular geometry, namely, a linear obstacle.

We show that the selected geometry allows for a solution

to this complex problem: we identify the seven dimension-

less quantities controlling the dynamics, and we present a

theoretical framework that provides a full description of the

break-up dynamics and accounts for the various experimental

observations. Our model provides diagrams mapping the four

hydrodynamic regimes identified experimentally. Our findings

target the hidden nature of viscosity contrast between dispersed

and transporting phases, as they reveal the unexpected exis-

tence of a critical drop size for which the critical capillary
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number for breakup is minimum in the case of positive

viscosity contrasts.

II. EXPERIMENTS

A. Setup and materials

To study the physics of obstacle-mediated breakup, we

work with planar microfluidic devices which consist of a

drop generator based on a flow-focusing method [14], a

dilution module [15] that enables control of the velocity of

the drops without changing their size by infusing additional

continuous phase, and a linear obstacle, placed in a rectangular

microchannel of width w = 130 μm and height h = 45 μm

[see Fig. 1(a)]. The devices are fabricated in polydimethyl-

siloxane (PDMS-Sylgard 184, Dow Corning) using standard

soft lithography techniques [16]. The flow-focusing geometry

produces periodic trains of monodisperse drops in an oil

phase. We work with large drops, their size Ld is larger

than w, herein referred to as “slugs.” We use syringe pumps

(PHD 2000, Harvard Apparatus) to inject the dispersed and

continuous phases at controlled flow rates, which are adjusted

independently until a steady flow of monodisperse slugs with a

desired size Ld = 150–900 μm is obtained. Typical values of

the corresponding flow rates for the dispersed and continuous

phases are qw = 5−200 μl/h and q
f
o = 5−500 μl/h, respec-

tively. The dilution module enables control of the speed of

the slugs v = 0.1–10 mm/s and the distance between slugs

λ = 600−2000 μm by infusing additional continuous phase

at a constant flow rate qd
o = 0−1000 μl/h; hence the total

flow rate is q = qw + q
f
o + qd

o . In all our experiments, the

Reynolds and the capillary numbers are small and span the

ranges 10−3
−10−1 and 10−3

−10−2, respectively. The linear

obstacle of length L = 200−800 μm is parallel to the channel

walls and is off-centered so that slugs may flow in two

gaps (1) and (2), having different widths w1 and w2 < w1,

with W = w2/w1 < 1 [Fig. 1(a)]. In all our experiments, the

interslug distance is large enough so that we study the breakups

of isolated slugs. We record images of the flow close to the

obstacle with a high-speed camera (Phantom V7) working

at 500−5000 frames/s. The speed and the size of a slug
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FIG. 1. (a) Schematic of the setup near the obstacle and top-view

images of the flow defining the ten governing parameters at play.

(b)–(e) Typical flow behaviors of slugs having the same size meeting

an obstacle at different speeds. For large enough speeds, breakup

occurs without (b) or with (c) the retraction of an interface in the

narrow gap. The slug does not break at lower speeds; this occurs with

the invasion and subsequent retraction of an interface of the narrow

gap (d) or without the invasion of this gap (e). ℓi denotes the position

of an interface in the ith gap, i = 1 or 2. White arrows indicate the

flow direction in both gaps. Scale bars 100 μm.

are obtained from image processing using a custom-written

MATLAB software.

We use two liquid-liquid systems. For the first one, we use

different mass percentages of water-glucose mixtures (from

100/0 to 56/44) to vary the viscosity of the dispersed phase

from ηd = 1–7 mPa s. The continuous phase is hexadecane

(Sigma-Aldrich), whose viscosity is ηc = 3 mPa s. The inter-

facial tension between the two phases is γ = 6.5–5 mN/m, for

the range of viscosities of the mixtures we prepare. The glucose

is purchased from Sigma-Aldrich, and we use deionized

water (Millipore, 18 M� cm). The second system consists

of deionized water dispersed in a viscous silicone oil (Fluka)

whose viscosity is ηc = 50 mPa s. The liquid-liquid surface

tension is γ = 9.7 mN/m. For both systems, a surfactant

(sodium dodecyl sulfate, Sigma) is solubilized in the dispersed

phase (concentration, 15 g/L). Viscosities and surface tensions

are measured using an Anton Paar MCR 301 rheometer and

pendant drop tensiometry, respectively.

B. Experimental results

We begin by studying the response of a fluid system for

which ηd > ηc. We vary v and we observe the behavior of

slugs having the same size meeting the same linear obstacle.

We find four different hydrodynamic regimes as v decreases

[Figs. 1(b)–1(e) and movies S1–S4 in [17]). In the first two, the

collision with the obstacle yields breakup. In the first, when a

slug collides with the obstacle, two fluid-fluid interfaces invade

gaps (1) and (2) and move forward. The slug breaks into two

daughter drops emitted in both gaps when its rear edge meets

the obstacle [Fig. 1(b) and movie S1] [17]. In the second,

breakup is preceded by a drastically different dynamics of the

two-fluid interface invading the narrow gap (2): as time elapses,

it suddenly stops and begins to recede [Fig. 1(c) and movie S2].

In the third, a receding interface is also observed in the narrow

gap; however, the slug does not break as its rear edge reaches

the obstacle after total withdrawal of this interface [Fig. 1(d)

and movie S3]. No propagation, and thus no retraction, is

observed in gap (2) for lower speeds: the slug does not break

and flows through gap (1) [Fig. 1(e) and movie S4] [17].

Systematic variations of v and Ld provide diagrams map-

ping these dynamical behaviors reported for two illustrative

fluid systems whose viscosity contrasts have opposite signs

[Figs. 2(a) and 2(b)]. When ηd > ηc, we observe two distinct

sequences of regimes as v decreases for slugs either larger

or smaller than a critical slug size Lcr

d
. When Ld > Lcr

d
,
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FIG. 2. (Color online) Experimental diagrams characterizing the

dynamical behavior for (a) ηd > ηc and (b) ηd < ηc as a function

of Ld and v. A slug may (orange and red symbols) or may not (blue

and cyan symbols) break against the obstacle. These regimes can

occur with (orange and cyan symbols) or without the retraction of a

two-fluid interface in gap (2) (red and blue symbols). The dashed lines

are guides for the eyes and indicate the transition between breakup

and no breakup regimes. The length of the obstacle is L = 300 μm.

(a) Viscous water-glucose mixture (44 wt.% glucose) in hexadecane

and W = 0.5. (b) Water in a viscous silicone oil and W = 0.6.
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we find the sequence of four regimes previously discussed.

By contrast, only regimes without retraction in gap (2) are

observed when Ld < Lcr

d
[Fig. 2(a)]. Remarkably, the transition

between breakup and no-breakup regimes is nonmonotonic,

with a global minimum point at Ld = Lcr

d
. In addition, the

critical slug speed to observe a two-fluid interface invading the

narrow gap presents a crossover at Ld ≈ Lcr

d
, since this speed

is constant for Ld > Lcr

d
and decreases with Ld for Ld < Lcr

d

[Fig. 2(a)]. By contrast, when ηd < ηc, the transition between

breakup and no-breakup regimes is a monotonically increasing

function of Ld , a critical slug size is not observed, and the

critical speed at which an interface enters the narrow gap is

constant over the whole range of slug sizes [Fig. 2(b)].

III. INTERPRETATION

A. Model

To explain the diversity of our findings, we begin by

describing the transport of slugs in microfluidic conducts

at low Reynolds and capillary numbers. Building on earlier

works [12,18], we assume that the speed v of a slug flowing

in a channel of constant cross section hw varies with q the

total flow rate as v =
q

hw
, and that the flows of the slug and

the continuous phase satisfy Darcy’s law, with an effective

viscosity ηeff

d
for the slug [19]. Hence, the pressure drop �p

over a portion ℓ of the slug reads

�p =
ηeff

d
ℓq

h3w
f

(

w

h

)

, (1a)

where f (w
h

) is a known dimensionless function which can

be written f ≈ 12[1–0.63(w
h

)−1]−1 for h < w [20]. There is

also a pressure drop across the front edge of the slug due to

the curved two-fluid interface, which we write approximately

as [9,12]

�pcurv =
2γ

w

(

1 +
w

h

)

. (1b)

In our model, the pressure drop given in Eq. (1b) accounts

for the presence of curved interfaces. However, for simplicity’s

sake, we derive our model considering flat interfaces rather

than curved. These physical arguments help to rationalize the

dynamics starting at t = 0 when a slug meets the obstacle.

Since we work at constant flow rates, a two-fluid interface

always invades gap (1) at t = 0 and begins to move forward at

a speed dℓ1/dt [see Fig. 1(b) defining ℓ1]. After the collision,

our observations show that the velocity of the slug v remains

roughly constant until the rear edge of the slug reaches the

obstacle. In our simple model, since we consider slugs having

flat interfaces, we assume that the time tf at which the rear

edge of the slug meets the obstacle is tf =
Ld−cw

v
, where c

is a free parameter O(1) that depends on the dimensionless

parameters of the cross section of the channel, i.e., w
h

, w2

h
, and

w2

Wh
. As breakup occurs, provided that a two-fluid interface has

invaded gap (2) and has not completely withdrawn from this

gap at tf , we next work with the dimensionless time T =
t
tf

.

B. Invasion of the narrow gap

We now derive the condition required to observe a

two-fluid interface invading gap (2). We begin with the

situation where one interface has entered the gap (1) and

is located at ℓ1(T ) = X1(T )L � L. At T , the conservation

of the total flow rate gives X1(T ) =
(Ld−cw)w

Lw1
T = αT and,

using Eq. (1), we write the pressure drop over L in gap

(1), �p =
ηcLq

h3w1
f1[(1 + �ηX1) +

2Z
C

(1 +
w1

h
)], where �η =

(ηeff

d
− ηc)/ηc and Z = (f1h

−2wL)−1 with f1 = f (w1

h
) are two

dimensionless parameters, and C =
ηcv

γ
is the capillary number.

�η is a free parameter that depends on the unknown effective

viscosity ηeff

d
. The evolution of �p over time strongly depends

on the sign of �η. When a low-viscosity fluid is displacing at

constant flow rate a fluid having a larger viscosity, the pressure

drop in gap (1) decreases with time. By contrast, when �η > 0,

�p increases with T . As shown below, this dependence on �η

controls the invasion dynamics of the narrow gap. Physically,

a two-fluid interface may begin to fill up gap (2) only when

�p overcomes the capillary pressure
2γ

w2
(1 +

w2

h
) required for

a curved interface to exist in this narrow gap. This condition

can be mathematically expressed as 1 + �ηX1 > C⋆

C
, where

C⋆ = 2Z 1−W
W

. When �η < 0, the term on the left-hand side

of the inequality, 1 + �ηX1, decreases with T , so that the

time Tp at which an interface begins to propagate in gap (2) is

Tp = 0 whenever C > C⋆. By contrast, when �η > 0, this term

increases with T so that Tp =
1

α�η
( C⋆

C
− 1) � 0. Two conditions

need to be fulfilled to allow propagation in gap (2), X1(Tp) � 1,

which corresponds to the situation considered, and Tp < 1.

Indeed, physically, invasion can no longer occur when the rear

end of a slug reaches the obstacle, which gives the condition

Tp < 1. Using these conditions, one finds that this occurs when

C > C⋆

1+α�η
for α � 1 and when C > C⋆

1+�η
for α � 1. For both

positive and negative viscosity contrasts, if those conditions

are not fulfilled when the fluid-fluid interface exits gap (1),

the pressure drop in this gap suddenly decreases and remains

constant over time, �p =
ηcLq

h3w1
f1(1 + �η). In that case, the

pressure drop can no longer become larger that the capillary

pressure needed to accommodate the presence of a curved

interface in the narrow gap and the invasion of the narrow gap

never occurs. Our experiments concur with these theoretical

predictions [Figs. 3(a) and 3(b)].

C. Dynamics of the two-fluid interfaces

At T � Tp, the dynamics of the interfaces present in both

gaps are governed by a set of two coupled first-order ordinary

differential equations. The conservation of the total flow rate

gives the first equation:

dX1

dT
+ W

dX2

dT
= α. (2a)

The second equation is given by the equality of pressure drops

over both sides of the obstacle:

(1 + �ηX1)
dX1

dT
− FW (1 + �ηX2)

dX2

dT
= α

C⋆

C
(2b)

for X1 � 1 and X2 � 1;

(1 + �η)
dX1

dT
− FW (1 + �ηX2)

dX2

dT
= α

C⋆

C

1 +
w2

h

1 − W
(2c)

for X1 > 1 and X2 � 1, with F = f (w2

h
)/[Wf ( w2

Wh
)].
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FIG. 3. (Color online) Diagrams mapping the break-up dynamics

as a function of Ld/L and C for (a) �η > 0 and (b) �η < 0. The

solid lines are predictions of our model for the transitions between

regimes that are compared to experimental data of Figs. 2(a) and

2(b). Symbols are identical to those of Fig. 2. The dimensionless

quantities are (a) W = 0.5, w

h
= 3, w2

h
= 0.7, Z = 2.4 × 10−3,

and (b) W = 0.6, w

h
= 3, w2

h
= 0.8, Z = 2.1 × 10−3. The two

free parameters are (a) c = 0.9 and �η = 8, and (b) c = 0.6 and

�η = −0.2. The model predicts the critical capillary numbers above

which an interface enters the gap (2): C⋆

1+�η
for �η > 0 and α � 1,

C⋆

1+α�η
, for �η > 0 and α � 1, and C⋆ for �η < 0. When �η > 0, we

find that η
eff

d > ηc, which is consistent with the literature [21]. By

contrast, when �η < 0, we determine that ηd < η
eff

d < ηc. Similar

results have been reported and discussed in [22].

D. Conditions for retraction

The retraction of a two-fluid interface in gap (2) observed

in two regimes can be expressed as dX2

dT
< 0. Using Eq. (2),

one finds that the sign of dX2

dT
is given by the sign of

(1 + �ηX1) −
C⋆

C
for X1 � 1 and X2 � 1, and by the sign of

(1 + �η) −
C⋆

C

1+
w2
h

1−W
for X1 > 1 and X2 � 1. Consequently,

when �η � 0, retraction may only begin when X1(T = T1) =

1, provided that C < C⋆

1+�η

1+
w2
h

1−W
= C⋆⋆ and T1 < Tf = 1; experi-

mental observations corroborate this prediction (see movie S3

in [17]). By contrast, when �η < 0, the retraction may occur

at T = Tr < T1, when the interface in gap (1) reaches the posi-

tion X1(Tr) =
1

�η
( C⋆

C
− 1) < 1, for C � C⋆

1+�η
and Tr < 1. The

retraction may also begin at T = T1 when C⋆

1+�η
� C < C⋆⋆ and

T1 < 1. We use these conditions to compute numerically the

transitions between the two break-up regimes. The resulting

predictions concur with experiments [see Figs. 3(a) and 3(b)].

Analytical expressions for the transition between break-up

regimes with and without retraction in gap (2) can also be

derived both for �η > 0 and �η < 0 (see the Appendix); in

both cases, the transition is a plateau given by C = C⋆⋆ when

Ld/L is large enough [see Figs. 3(a) and 3(b)].

E. Conditions for breakup

Breakup occurs whenever an interface has entered the

narrow gap and X2(T = 1) > 0. The transition between

breakup and no-breakup regimes thus corresponds to X2(1) =

0. Using this condition and solving Eq. (2), our numerical

simulations well-capture this transition [Figs. 3(a) and 3(b)].

Interestingly, finding an analytical expression is straightfor-

ward when �η � 0 and α � 1: since T1 � 1 for any value

of C, the retraction of an interface in gap (2) never occurs

as observed experimentally [Fig. 3(a)]; breakup is obtained

for C > C⋆

1+α�η
. As suggested by the experiments, the model

predicts a nonmonotonic and a monotonic transition for

�η > 0 and �η � 0, respectively (Fig. 3). Our model therefore

confirms the existence, when �η > 0, of a characteristic size

Lcr

d
for which breaking occurs at a minimum capillary number

Ccr . Figure 4 shows that the experimental critical capillary

number Ccr correlates with the predicted one C⋆/(1 + �η).

Studying the variations of Lcr

d
for different fluid systems and

values of Z, we find that the critical size does not depend on

�η and varies with the geometrical parameters as the predicted

0
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5
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0
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0 250 500
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103 C�
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3
C

cr L
c
r

d
(μ

m
)

Lw1

w
(μm)

FIG. 4. Evolution of Ccr with C⋆ for �η > 0. For both fluid

systems, the experimental data collapse onto a single line whose

slope is 1/(�η + 1). Inset: Evolution of the critical slug size Lcr

d
with

Lw1

w
. The fluid systems are (�) water in hexadecane, (�) a viscous

water-glucose (28 wt.% glucose) mixture in hexadecane, and (•)

a viscous water-glucose mixture (44 wt.% glucose) in hexadecane.

The ratio of the widths of the gaps is W = 0.48. Each data point

corresponds to a value of Z = 0.8–3.8×10−3. The dashed line stands

for the linear fit Lcr

d
=

Lw1

w
+ 0.9w.
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expression Lw1

w
+ cw (inset of Fig. 4). In this figure, assuming

that the value of c for W = 0.48 is close to the one (c = 0.9)

determined for W = 0.5 in Fig. 3(a), we find that experiments

correlate with theoretical predictions.

IV. CONCLUSION

Despite the apparent complexity of a problem with ten

governing parameters [Fig. 1(a)], we provide a theoretical

framework describing the break-up dynamics of deformable

objects in terms of the pertinent dimensionless quantities

(C,Ld

L
,�η,W,Z,w

h
,w2

h
). Our model is based on very strong

approximations and its derivation employs the most basic

physical arguments. Yet, for a given device, this model fully

captures experimental observations in the plane ( Ld

L
,C) using

only two free parameters, the effective viscosity ηeff

d
and the

numerical constant c. Our findings bring the role of viscosity

contrast to light, showing that the evolution of the critical

capillary number to break a drop as a function of its size is

either nonmonotonic (�η > 0) or monotonic (�η � 0). These

results uncover a critical size originating from confinement for

which the critical capillary number for breakup is minimum

when the viscosity contrast is positive. The break-up dynamics

of drops against a linear obstacle bear a resemblance to

the well-known Saffman-Taylor instability [23], a problem

which originates from the displacement of a fluid by another

one and depends on the viscosity contrast between the two

fluids [24]. In closing, it is worthwhile mentioning that similar

experiments can be performed with bubbles rather than drops.

As our model also predicts the volumes of both daughter drops

or bubbles created upon breakup [25], this could help the

design of commercial obstacle-mediated break-up devices for

tailoring bidisperse emulsions and foams [26].
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APPENDIX: ANALYTICAL DERIVATIONS OF THE

TRANSITIONS BETWEEN BREAK-UP REGIMES

WITH AND WITHOUT RETRACTION IN GAP (2)

1. The case �η > 0

As explained in the main text, for �η � 0, the withdrawal

of the two-fluid interface in gap (2) occurs at T = T1, provided

that C < 2Z
1+�η

1+
w2
h

W
= C⋆⋆ and T1 < 1. One has to make a

distinction between two possible cases, depending on whether

α � 1 or α � 1. When α � 1, by integrating Eq. (2a) between

Tp and T1, using X2(T1) = αT1−1
W

, X2(Tp) = 0, X1(T1) = 1, and

the expression of Tp derived in the text, it is straightforward to

show that T1 is a solution of the following quadratic equation:

�ηF

2W
α2T 2

1
+ αT1

[

C⋆

C
+ F

(

1 −
�η

W

)]

+ �η
F − W

2W

−(1 + F ) −
δ

2�η

(

C⋆

C
− 1

)2

= 0, (A1)

where δ = 0 for C � C⋆, and δ = 1 for C � C⋆. Consequently, the

condition T1 < 1 imposes that C < C⋆

Y
, where Y is the positive

solution of the following equation:

�ηF

2W
α2

+

[

αF

(

1 −
�η

W

)

+ �η
F − W

2W
− (1 + F )

]

+αY − δ
(Y − 1)2

2�η
= 0. (A2)

In the (Ld

L
, C) plane, breakup without the retraction of the

interface in gap (2) therefore occurs when C is larger than the

critical capillary number min(C⋆⋆,
C⋆

Y
).

When α � 1, as discussed in the main text, one finds a

single transition between regimes without a receding interface

in the narrow gap, breakup being observed when C > C⋆

1+α�η
.

2. The case �η < 0

The situation is slightly more complex when �η < 0. As

pointed out in the text, when C � C⋆

1+�η
, the retraction of

the two-fluid interface in gap (2) may occur when X1 < 1,

at a time T = Tr at which the fluid-fluid interface present in

gap (1) reaches the position X1(Tr) = 1
�η

( C⋆

C
− 1). Following

a similar approach to the one described above, integrating

Eq. (2a) between T = 0 and Tr , and using X2(Tr) = αTr−X1(Tr )

W

and X2(0) = 0, one shows that Tr is the solution of the following

quadratic equation:

�ηF

2W
α2T 2

r
+ αTr

[

C⋆

C

(

1 −
F

W

)

+ F

(

1 +
1

W

)]

−
1

�η

(

C⋆

C
− 1

) [

1 + F +
1

2W

(

C⋆

C
− 1

)

(W − F )

]

= 0.

(A3)

One experimentally witnesses such a phenomenon only pro-

vided that Tr < 1, a condition imposing that C < C⋆

Y
, where Y

is now the positive solution of the following second-degree

polynomial equation:

�ηF

2W
α2

+ α

[

Y

(

1 −
F

W

)

+ F

(

1 +
1

W

)]

−
Y − 1

�η

[

1 + F +
Y − 1

2W
(W − F )

]

= 0. (A4)

Although in the case C � C⋆

1+�η
withdrawal of the two-fluid

interface in gap (2) can no longer be observed for X1 < 1, it

may begin at Tr = T1, when X1(T1) = 1, provided that C < C⋆⋆.

Since Tp = 0, following the same approach as the one used

in Sec. I, one shows that T1 is a solution of Eq. (A1) with

δ = 0. To observe receding, the condition T1 < 1 must hold.

This additional condition imposes that

C <
αC⋆

1 + F −
�η

2W
(F − W ) −

F�ηα2

2W
− αF

(

1 −
�η

W

)
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To summarize, in the (Ld

L
, C) plane, breakup without a

receding interface in gap (2) is observed when C is larger

than the critical capillary number C⋆

Y
for C � C⋆

1+�η
and

min(C⋆⋆,
αC⋆

1+F−
�η

2W
(F−W )−

F�ηα2

2W
−αF (1−

�η

W
)
) for C � C⋆

1+�η
.

As discussed in the main text, for both �η � 0 and �η < 0,

the transition is a plateau given by C = C⋆⋆ when Ld/L is large

enough.
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