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Abstract

Background: No animal models of autism spectrum disorders (ASD) with good construct validity are currently available;
using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore
a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known
genetic disorder presenting ASD symptoms. The Fmr1-KO is available on different genetic backgrounds (FVB
versus C57BL/6), which may explain some of the conflicting results that have been obtained with these mutants up till
now.

Methods: Fmr1 KO and their wild-type littermates on both the FVB and C57BL/6 genetic backgrounds were examined on a
battery of tests modeling the clinical symptoms of ASD, including the triad of core symptoms (alterations in social
interaction and communication, presence of repetitive behaviors), as well as the secondary symptoms (disturbances in
sensori-motor reactivity and in circadian patterns of activity, epileptic events).

Results: Fmr1-KO mice displayed autistic-like core symptoms of altered social interaction and occurrence of repetitive
behaviors with additional hyperactivity. The genetic background modulated the effects of the Fmr1 deletion and it appears
that the C57BL/6 background may be more suitable for further research on core autistic-like symptoms.

Conclusions: The Fmr1-mouse line does not recapitulate all of the main core and secondary ASD symptoms, but still can be
useful to elucidate the neurobiological mechanisms underlying specific ASD-like endophenotypes.
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Introduction

Despite much recent research on autism spectrum disorders

(ASD), no animal models with good construct validity are

currently available [1]. To develop one, a promising strategy is

the use of models of pathologies that are characterized by autistic

features [2]. The Fmr1 knock-out mouse (Fmr1-KO) is an example

of this approach: it is a confirmed model of Fragile X syndrome

(FXS), a genetic disorder due to a mutation in the FMR1 gene

leading to a lack of FMRP, a protein playing a pivotal role in

synaptic functioning [3,4]. As FXS patients often display autistic

symptoms and approximately 30% of them meet the full

diagnostic criteria for ASD [5,6,7,8,9,10], these two syndromes

may share some common underlying mechanisms [11]. Fmr1-KO

mice present many characteristics of FXS, including macro-

orchidism, hyperactivity, and cognitive deficits [12]. Although this

model has been widely employed in the last years, the possible

validity of the Fmr1-KO mouse as a model for ASD has not been

demonstrated convincingly, for several reasons.

First, behavioral characterizations of Fmr1-KO mice have not

yet systematically taken into account all clinical criteria used to

diagnose ASD and, in addition, most studies on Fmr1-KO mice

have focused on a limited number of behavioral tests only, which

does not reflect the complexity of ASD symptomatology. The

diagnosis of ASD is based on a triad of core symptoms, namely

qualitative and quantitative alterations of social interactions,

deficits in communication, and the occurrence of repetitive/

perseverative behaviors [13]. Beside these main alterations, several

secondary symptoms that are variable in occurrence and severity

can be present. They include increased sensory reactivity [14],

reduced prepulse inhibition (PPI) of the acoustic startle response

([15,16], but see also [17,18]), hyperactivity and sleep-pattern

(circadian) alterations [19,20], increased anxiety [21], and

epileptic seizures [22]. Hence, a useful animal model should

present behavioral features that resemble at least one of the ASD

core symptoms. Of course, an ideal animal model for ASD would

mimic all core autistic features (as assessed by multiple tests) in

association with some of the secondary ones [23].
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To our knowledge, the only core autistic-like symptoms that

have been comprehensively tested in Fmr1-KO mice have been

deficits in social interaction [24,25,26,27,28,29]. The presence of

repetitive/perseverative behaviors has been investigated only

through the evaluation of deficits in putative measures of

behavioral flexibility such as reversal learning and working

memory [30,31,32,33,34], while to date no reports on possibly

altered communication are available. In addition, only some of the

secondary autistic-like characteristics, such as changes in emo-

tionality [27,34,35] and activity [24,27,29,32,35,36,37] have been

assessed. Acoustic startle and its PPI have been investigated

[38,39,40,41,42], but not their dependency on acoustic stimulus

intensity. Finally, neither abnormalities in circadian patterns of

activity, nor the presence of spontaneous episodes of epilepsy (for

evoked seizures see:[34,38,43,44,45,46]) have been evaluated in

Fmr1-KO mice.

The second problem is that studies of autistic-like deficits in the

Fmr1-KO model present contradicting results. For example, Fmr1-

KO mice have been reported to display enhanced [29], normal

[25,27], or reduced levels of social interest and interaction

[24,26,28]. Similarly, they showed enhanced [38,40,41,42,47],

unchanged [34], or reduced [39] PPI, accompanied by reduced

[38,40,41,42,47] or unaltered [34,39] startle reactivity. Apart from

differences in experimental procedures, it is most likely that these

disparate results are due to the use of different genetic

backgrounds, most-frequently the FVB and C57BL/6 (B6). For

example, previous studies have demonstrated that the Fmr1

mutation had opposite effects on the sizes of the hippocampal

intra- and infrapyramidal mossy fiber terminal fields, depending

on the background [27,48]. Surprisingly, apart from some of the

secondary symptoms [34,46,49], a systematic study of the effects of

the Fmr1-deletion on ASD-like features in these two backgrounds

has not been conducted yet. The present study therefore

investigated the possible validity of the Fmr1-KO mouse on both

the FVB and B6 backgrounds as a model for ASD by assessing the

occurrence of autistic-like alterations in behaviors relevant to the

core ASD symptoms (deficits in social interest and recognition,

alterations in social interaction and communication, occurrence of

repetitive behaviors), as well as secondary symptoms (PPI deficits,

presence of epileptic events, alterations in activity and its circadian

patterns).

Materials and Methods

Animals
Subjects were adult (1261 weeks old) male Fmr1-KO and their

wild-type littermates. The original Fmr1 knock-out mutation was

generated using 129P2 stem cells [12]. Breeders of C57BL/6J-

Fmr1tm1Cgr/Nwu (B6) or FVB.129P2-Fmr1tm1Cgr/J (FVB) were

originally obtained from Neuromice.org (Northwestern University,

IL 60208, USA; MGI ID: 1857169) and The Jackson Laboratory

(Bar Harbor, ME 04609, USA; Stock number: 004624),

respectively. Wild-type males were from either the C57BL/6J or

the FVB.129P2-Pde6b+Tyrc-ch/AntJ strains, originally purchased

respectively from Charles River (L’Arbresle, France) and The

Jackson Laboratory (Bar Harbor, ME 04609, USA; Stock number:

004828). Breeding trios were formed by mating two heterozygous

females with an appropriate wild-type male. After 2 weeks the sire

was removed and the females were single caged and left

undisturbed until weaning of the pups. Mice were weaned at 21

days of age and group-housed with their same-sex littermates (3–

5/cage). On the same day, tail samples were collected for DNA

extraction and subsequent PCR assessment of the genotypes as

previously described [12].

Only litters including males of both genotypes (+/N and 2/N)

were used for experiments. A total of 61 subjects were subjected to

behavioral testing: 31 on the B6 background (15 wild-type and 16

KO) and 30 on the FVB background (16 wild-type and 14 KO). A

different batch of adult (1061 weeks old) mice (5 behaviorally-

naive animals per genotype/background) was employed for EEG

measurements.

NMRI mice (30 males and 30 females) were used as stimulus

animals in the social tests. This strain was chosen because it differs

from both genetic backgrounds on which the Fmr1 KOs are

maintained. It is also commonly employed in studies of social

behavior, because of its good levels of sociability [50,51]. Juvenile

(3 weeks old) males and adult (12 weeks old) virgin females of the

NMRI strain were purchased from Janvier (Le Genest-Saint-Isle,

France), housed in same-sex groups, and left undisturbed for a

week before being used for testing.

All animals were housed in polycarbonate standard cages

(33615614 cm in size; Tecniplast, Limonest, France), provided

with sawdust bedding (SAFE, Augy, France) and a stainless steel

wired lid. Food chow (SAFE, Augy, France) and water were

provided ad libitum. The animals were maintained in a tempera-

ture- (22uC) and humidity- (55%) controlled vivarium, under a

12:12 hr light–dark cycle (lights on at 7 a.m.).

Behavioral procedures
Behavioral tests commenced at 1261 weeks of age, as follows.

Starting on day 1, a three-compartment test for sociability and

preference for social novelty was administered, followed on day 3

by a direct social interaction test with a juvenile male, and on day

5 by a spontaneous alternation test in a Y-maze. On day 7,

prepulse inhibition of the acoustic startle reactivity (PPI) was tested

followed on day 11 by circadian modulation of locomotor activity,

and, finally, on day 13 by a direct social interaction test with an

adult female. Tests that relied mainly on observations of

spontaneous behavior were conducted first in order to minimize

possible undesirable transfer effects; tests that involved stressful

stimulation, such as the acoustic startle test, or required social

isolation, such as the assessment of circadian activity and social

interaction with a female, were conducted last. All behavioral tests

were carried out during the light phase of the cycle.

All 61 subjects were tested in the three-compartment test, direct

social interaction with a juvenile male, spontaneous alternation,

and PPI. In the three-compartment test, data from one FVB-KO

and one B6-WT mouse were lost due to a problem with video

recording: the analyses were therefore conducted on 30 B6 (14

WT and 16 KO) and 29 FVB (16 WT and 13 KO). The circadian

modulation of activity was tested on a subgroup of 57 mice (14 B6-

WT, 16 B6-KO, 15 FVB-WT and 12 FVB-KO), while the test of

direct social interaction with a female was conducted on a

subgroup of the latter of 54 mice (12 B6-WT, 15 B6-KO, 15 FVB-

WT and 12 FVB-KO).

All experimental procedures were in accordance with the

European Communities Council Directive of 24 November 1986

(86/609/EEC) and local French legislation.

Sociability and preference for social novelty in the three
compartment test

Apparatus. The testing apparatus employed here is similar to

the one previously described by others [52,53]. It consisted of 3

compartments (Fig.1): a central chamber (45618625 cm)

connected on each side to another compartment (456

20625 cm) through a small rectangular opening (1565 cm).

The floors and walls (1 cm thick) of all compartments were made

of transparent Plexiglas. Each side compartment contained a

Autistic-Like Symptoms in Fmr1-KO Mice
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round stimulus cage (10 cm in diameter, 7 cm high) made of wire

mesh (hole size: 0.760.7 cm) covered by a plastic roof (5 cm high).

A metal weight was attached to the roof in order to keep the

stimulus cage stable. Each stimulus cage was placed at a distance

of 6 cm from the back wall and 4 cm from the sides. Tracking

images from a camera above the center of the apparatus were

analyzed with Ethovision (Version 3.1, Noldus Technology,

Wageningen, The Netherlands).

Procedures. Experimental and stimulus mice (4-week old

NMRI male mice) were individually housed in standard

polycarbonate cages provided with sawdust, food, and water

bottles and left undisturbed in the experimental room for about

10 min before testing began. Each experimental subject was then

introduced in the middle of the central compartment and allowed

to explore the apparatus for 3 trials of 5 min each:

N Trial 1 (habituation): the stimulus cages were empty; basal

levels of exploration were assessed.

N Trial 2 (sociability): a stimulus mouse was introduced in one of

the stimulus cages, while a novel object (a plastic grey cylinder,

6 cm in diameter, 2 cm high) was introduced in the opposite

cage (sides were counterbalanced within experimental groups);

preferential exploration of the social versus non-social novel

stimuli was measured.

N Trial 3 (social novelty preference): as trial 2, but the object was

exchanged for a novel stimulus mouse; preferential exploration

of the novel versus familiar social stimulus was evaluated.

At the end of each trial the experimental animal was confined in

the central compartment by means of two Plexiglas magnetic doors

for 30 sec. At the end of the third trial the apparatus as well as the

object and the stimulus cages were cleansed with water and dried.

Variables measured. Exploration of each stimulus was

assessed by measuring the time spent in each contact area, a

20622 cm area containing the stimulus cage (see Fig. 1). A

percentage score was also computed for the last two trials as

follows:

N On trial 2: Sociability score = 1006Tsocial stimulus/(Tsocial stimulus

+ Tnon-social stimulus),

N On trial 3: Social novelty preference score = 1006Tnovel social

stimulus/(Tnovel social stimulus + Tfamiliar social stimulus).

Finally, the total distance moved in the entire apparatus was

measured in meters in each trial.

Direct social interaction with a juvenile male
Apparatus. Direct social interaction was assessed in a

30615622 cm plastic cage with 3 cm of sawdust and a plastic

roof with a 1768 cm central opening.

Procedures. Experimental and stimulus mice were habituated

to the experimental room as before. Each experimental mouse was

then introduced into the testing cage and left to habituate for 5 min.

An unfamiliar stimulus mouse (a 4-week old NMRI male) was then

introduced into the testing cage through the roof opening. The

testing session lasted 3 min, but was stopped immediately if

aggressive episodes occurred. The testing cage was cleansed with

water and the sawdust was renewed between sessions.

Variables measured. Testing sessions were recorded and

videos were analyzed with Observer XT (version 7, Noldus, The

Netherlands), taking only the experimental animal into account.

One observer who was unaware of the genotype of the animals

scored both frequency and duration for each of the following

behavioral categories and elements [54,55]:

N Affiliative behaviors: sniffing the head and the snout of the

partner, its anogenital region, or any other part of the body;

allogrooming (grooming the partner); traversing the partner’s

body by crawling over/under from one side to the other.

N Nonsocial activities: rearing (standing on the hind limbs

sometimes with the forelimbs against the walls of the cage)

and digging. Time spent in self-grooming (the animal licks and

mouths its own fur) was analyzed separately, since this is

sometimes considered representing repetitive behavior

[23,26,54,56,57].

Spontaneous alternation
Apparatus. Spontaneous alternation was assessed in a grey,

plastic Y-maze, placed on a table 80 cm high and located in the

middle of a room containing a variety of extramaze cues. The

three arms of the Y-maze were similar in appearance and spaced

at 120u from each other. Each arm was 42 cm long and 8 cm

wide. The entire maze was enclosed by a wall 15 cm high and

0.5 cm thick. Tracking images from a camera above the maze

were analyzed with Ethovision.

Procedures. Mice were habituated to the experimental room

as before and then introduced at the end of one of the arms and

allowed to explore the maze for 5 min. Allocation of the start arm

was counterbalanced within experimental groups.

Variables measured. An entry into one of the arms was

scored by an observer unaware of the genotype of the animals

when all four paws of the animal were placed inside an arm.

Spontaneous alternation, expressed as a percentage, refers to that

proportion of arm choices differing from the previous two [58,59].

Thus, if an animal made the following sequence of arm choices: A,

B, C, B, A, B, C, A, the total number of alternation opportunities

would be six (total entries minus two) and the percentage

alternation would be 67% (four out of six).

Prepulse inhibition of the acoustic startle reflex
Apparatus. The apparatus (SR-LAB, San Diego Instruments,

San Diego, CA, USA) and procedures were previously described in

detail [60,61,62,63,64]. Briefly, animals were acclimatized to the

Figure 1. Schematic representation of the apparatus used for
the three compartment test. The apparatus consisted of three
rectangular compartments made of transparent Plexiglas. A stimulus
cage (wire mesh, 10 cm in diameter, here represented as a dark grey
circle) allowing visual, olfactory and partial tactile contact was placed in
each side compartment. Performance in the task was evaluated across
three 5-min trials, based on the relative time spent in the contact areas
(highlighted in light grey).
doi:10.1371/journal.pone.0017073.g001
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apparatus for 5 min. The first six trials consisted of six pulse-alone

trials, two for each pulse intensity (100, 110, or 120 dBA), presented

in a pseudorandom order. Subsequently, ten blocks of trials were

presented. Each block consisted of three pulse-alone trials, one for

each pulse intensity, three prepulse-alone trials (+6, +12, or +18 dB

units above the background of 65 dBA), nine possible combinations

of prepulse-plus-pulse trials (3 levels of pulse63 levels of prepulse),

and one no-stimulus trial (i.e., background alone). These 16 trials

were presented in a pseudorandom order within each block, with a

variable intertrial interval of a mean duration of 15 sec. The session

was concluded with a final block of six consecutive pulse-alone trials

as in the first block.

Variables measured. Reactivity scores obtained on the first

and the last blocks of six consecutive pulse-alone trials were

separately analyzed to measure startle habituation. The data

obtained in the remaining trials were categorized into three main

different subsets according to their relevance to distinct behavioral

constructs [60,61,62,63,64]. First, startle reactivity was assessed by

the reactivity scores obtained in the intermediate pulse-alone trials.

Second, reactivity on prepulse-plus-pulse trials relative to middle

pulse-alone trials was used to estimate prepulse inhibition. Third,

to measure prepulse-elicited reactivity we included data from

prepulse-alone and no-stimulus trials.

To better conform to the assumptions of parametric ANOVA, a

natural logarithmic transformation was applied to the startle

reactivity scores [60,61,62,63,64]. First, PPI was assessed by

analyzing the raw reactivity scores on intermediate pulse-alone

and on prepulse-plus-pulse trials. We analyzed the linear coefficients

derived from each reactivity curve using a 3-way ANOVA with

background and genotype as between- and pulse intensity as within-

subject factors. Second, PPI was analyzed converting the reactivity

data into percent scores (%PPI= 1006 (pulse-alone 2 prepulse-

plus-pulse)/pulse-alone) calculated for each subject for each of the

nine possible prepulse-plus-pulse combinations and analyzed in a

similar way as the raw scores. The analysis of both raw and percent

scores is widely employed in mouse studies [60,62,65,66,67,68] as a

necessary precaution in case experimental groups show large

differences in their startle reactivity.

Circadian modulation of locomotor activity
Apparatus. The apparatus (Actimeter system, Imetronic,

France) consisted of an isolated plastic cupboard (1.80 m high,

1 m wide, 0.6 m deep) containing 8 transparent plastic cages

(21611617 cm) with a grid floor. A metal food dispenser and a

water bottle were inserted in the front wall of each cage, while two

horizontal lines of infrared captors (two for each line, interline

distance = 25 mm, distance between two captors = 12.5 cm) were

mounted along each of the longer side walls. The cages were

illuminated 12 hrs per day starting from 7 a.m. The rack was

connected to an electronic interface to communicate with a

computer for automatic data storing.

Procedures. Each mouse was introduced into an activity

cage at 6 p.m. and left undisturbed for the subsequent 25 hrs.

Variables measured. Locomotor activity was evaluated

based on the number of breaks of the infrared captors. The first

testing hour was analyzed separately in 10-min bins, in order to

evaluate the locomotor response and habituation to a novel

environment. The remaining 24 hrs were analyzed in 1 hr-blocks

with the 12 hr-dark/light phase as a further within subject factor,

in order to assess the circadian modulation of locomotor activity.

Immediately after testing, mice were housed singly in

30615614 polycarbonate cages (Tecniplast, Limonest, France)

covered by a metal grid and with approximately 3 cm of sawdust

on the floor.

Direct social interaction with an adult female
Apparatus and procedures. Direct social interaction was

assessed in the home cage in which the animals were isolated for

about 36 hrs after the previous test. Experimental and stimulus

mice were habituated to the experimental room as described for

the previous experiments. An unfamiliar stimulus mouse (a 12-

week old NMRI female) was then introduced into the testing cage

and left there for 5 min.

During the test an ultrasonic microphone (Bat detector U30,

Ultrasound Advice, UK) set on frequency division 10 was

suspended 10 cm above the cage. Vocalizations were recorded

using the Spectrogram 15 program (Visualisation Software LLC,

sampling rate 48 kHz, format 16 bit) and analyzed with Avisoft

SASLab Pro (Version 5. 013, Avisoft, Berlin, Germany) after a fast

Fourier transformation (FFT). Spectrograms were generated with

an FFT-length of 512 points, a time window overlap of 50%

(100% Frame, FlatTop window), a frequency resolution of

488 Hz, and a time resolution of 1 ms. Call detection was

provided by an automatic threshold-based algorithm and a hold

time (0.04 s) mechanism.

Variables measured. Testing sessions were recorded and

videos were analyzed with Observer XT, as described for the test

with a juvenile male mouse. In addition, the frequency of

mounting attempts was also recorded. Vocalizations were

analyzed in terms of both frequency and mean duration.

EEG analysis
Surgery. The occurrence of epileptic episodes was assessed

following a classical protocol [69]. All animals were anesthetized

(ketamine 60 mg/kg, xylazine 15 mg/kg, i.p.) and five monopolar

tungsten rod electrodes were implanted and fixed to the skull with

cyanoacrylate glue and acrylic cement. Four electrodes were

placed bilaterally over the frontal and parietal cortex and one over

the cerebellum (reference electrode). Animals were allowed to

recover for at least two weeks before testing.

Apparatus and procedures. Mice were placed in a

15615630 cm Plexiglas cage containing sawdust within a

Faraday cage. EEG recordings were collected during a 3 hr-

session of free exploration which was repeated on 5 consecutive

days. The electrodes were connected to the EEG apparatus with

flexible wires and EEG activities were recorded using a digital

acquisition system (Coherence 6.0.0.2, Deltamed-France,

sampling rate 1024 Hz).

Variables measured. The presence of epileptic activity,

absence seizures (characterized by spike-wave discharges) or

interictal events was assessed by visual inspection of video-EEG

recordings.

Statistical analysis
All data were analyzed by ANOVA with genetic background B6

or FVB and Fmr1 genotype (+/N or 2/N) as between-subject

factors. Within-subject factors were included as needed. Post-hoc

comparisons were performed using Fisher’s LSD test. Data are

presented as mean 6 SEM throughout.

All statistical analyses were carried out using SPSSH 13.0 for

Windows (Release 13.0.1, SPSS Inc. Chicago IL, USA) and a was

set at 0.05.

Results

Sociability and preference for social novelty in the three
compartment test

Habituation (trial 1). Animals did not show a preference for

any compartment or contact area during the first 5 min-trial [all

Autistic-Like Symptoms in Fmr1-KO Mice
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Fs,1, ns; data not shown]. No differences between backgrounds

or genotypes were observed for locomotor activity [all Fs,1, ns;

data not shown].

Sociability (trial 2). Mice preferentially explored the contact

area containing the novel stimulus mouse compared to that with

the novel object [F(1,55) = 24.13, p,0.0001]. This preference was

similar in both genotypes [genotype6contact area: F(1,55) = 2.23,

ns] and backgrounds [background 6 contact area: F,1, ns], as

also confirmed by the analysis of the sociability scores [genotype:

F(1,55) = 2.09, ns; background: F,1, ns; Fig.2A].

Locomotor activity did not differ between Fmr1-KO and WT

mice, but was higher in the FVB compared to the B6 background

[F(1,55) = 10.16, p,0.01; B6: 1.6960.07, FVB: 2.1960.14].

Social novelty preference (trial 3). Mice preferentially

explored the novel stimulus mouse compared to the familiar one

[F(1,55) = 7.19, p,0.05]. However, this preference was absent in

Fmr1-KO mice of both backgrounds [genotype 6 contact area:

F(1,55) = 3.24, p = 0.08; contact area effect in WT:

F(1,28) = 13.58, p,0.01, in KO: F,1, ns; social novelty

preference scores, genotype: F(1,55) = 4.31, p,0.05; Fig.2B].

No differences in social recognition were observed between

backgrounds [background6 contact area: F,1, ns; social novelty

preference scores, background: F(1,55) = 1.12, ns; Fig.2B]. Fmr1-

KO and WT displayed comparable levels of locomotion but FVB

were again more active than B6 [F(1,55) = 7.87, p,0.01; B6:

1.6560.063, FVB: 2.0960.15].

Direct social interaction with a juvenile male
Surprisingly, some mice attacked the juvenile stimulus mouse

before the end of the 3-min test causing early interruption of the

encounter. These mice included 3 B6-WT (out of 15), 5 B6-KO

(out of 16) and 1 FVB-WT (out of 16). In light of this unexpected

finding we analyzed the latency to the first attack in all animals,

assigning the maximum value of 180s to non-attacking mice

(Fig.3A). The results showed that the Fmr1 mutation caused an

increased tendency to attack the juvenile stimulus, but only in the

B6 background, B6-KO differing from both B6-WT and FVB-KO

[background 6 genotype: F(1,57) = 3.99, p = 0.05, post hoc:

p,0.05].

Subsequent behavioral analyses of the non-attacking animals

demonstrated that Fmr1-KOdid not differ fromWT in the time spent

performing affiliative behaviors (Fig.3B) or in their involvement in

non-social activities, including self-grooming (data not shown).

Furthermore, no background effects were detected for any

behavior.

Spontaneous alternation
Fmr1-KO and WT displayed comparable levels of spontaneous

alternation (mean percent alternation rates varied between 50 and

64) and general exploration (mean numbers of entries varied

between 41 and 51). In contrast, the two genetic backgrounds

differed on both behavioral measures: FVB showed higher levels of

spontaneous alternation [F(1,57) = 19.16, p,0.0001] and more

entries into the arms of the maze [F(1,57) = 5.90, p,0.05] than

B6.

Acoustic startle response
One B6-KO exhibited a baseline startle value deviating more

than 2SD from its group mean and was excluded from data

analysis [61,70]. Statistical analyses therefore used data from 30

B6 (15 WT and 15 KO) and 30 FVB (16 WT and 14 KO).

Acoustic startle habituation. There was a general

reduction in the acoustic startle response from the first to the

last block of pulse-alone trials [2-trial block effect: F(1,56) = 5.74,

p,0.05], without any differences between genotypes or

backgrounds (data not shown). Furthermore startle reactivity

increased with pulse intensity [F(2,112) = 255.99, p,0.0001], an

effect that was less prominent in Fmr1-KO of both backgrounds,

showing a weaker startle response to the highest 120 dBA pulse

than WT [genotype 6 pulse: F(2,112) = 4.64, p,0.05, post hoc:

p,0.05; Fig.4A]. Differences between the two backgrounds were

detected in the overall levels of startle reactivity that were critically

modulated by the intensity of the pulse stimulus: B6 showed

stronger responses to the 100 dBA and lower ones to the 120 dBA

pulses compared to FVB [background 6 pulse: F(2,112) = 61.1,

p,0.0001, post hoc: p,0.05; Fig.4-B].

Pulse reactivity on intermediate trials. The analysis of the

intermediate pulse alone trials confirmed the pattern of results

observed during habituation. Fmr1-KO mice of both backgrounds

showed lower levels of startle response to the highest 120 dBA

pulse level compared to the WT animals [genotype 6 pulse

intensity: F(2,112) = 4.1, p,0.05, post hoc: p,0.05; ln-

transformed reactivity to 120 dBA, Fmr1-KO: 4.6460.09, WT:

4.3660.08]. Background differences were found again: B6

showing stronger responses to the 100 dBA and lower ones to

the 120 dBA pulses than FVB [background 6 pulse:

F(2,112) = 66.35, p,0.0001, post hoc: p,0.05; ln-transformed

reactivity, B6: 2.8660.07, FVB: 2.4060.07 at 100 dBA; B6:

3.9960.08, FVB: 4.9960.08 at 120 dBA].

PPI (Reactivity scores). PPI was demonstrated by the

negative values of the mean linear coefficients of the reactivity

curves (Fig.4, C–D). The magnitude of PPI was enhanced in Fmr1-
KO mice, but only on the B6 background [genotype 6

background: F(1,56) = 3.9, p = 0.05]. Post-hoc comparisons

confirmed that B6-KO displayed higher levels of PPI than B6-

WT and FVB-KO (Fig.4C). PPI was higher in B6 than FVB, but

only at the lowest pulse level [Fig.4D; background 6 pulse

[F(2,112) = 5.83, p,0.01].

Percent PPI. As expected [62,65,66,71], PPI increased with

prepulse intensity [F(2,112) = 11.04, p,0.0001] and the

magnitude of this effect was modulated by the pulse level [pulse

6 prepulse: F(4,224) = 15.79, p,0.0001]. The analysis of the

percent values led to a pattern of genotype and background

differences similar to that described above (data not shown). The

Fmr1 mutation enhanced PPI, and this effect tended to be

more prominent in B6, although the genotype 6 background

Figure 2. Sociability (A) and preference for social novelty (B) in
the three compartment test. Exploration of each stimulus was
assessed by measuring the time spent in each contact area, i.e., a
20622 cm area containing the stimulus cage. Data are mean 6 SEM.
*p,0.05. The dotted line represents chance level (50%).
doi:10.1371/journal.pone.0017073.g002
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interaction was not significant [F(1,56) = 2.89, p = 0.10].

Background differences in the expression of PPI were also

confirmed, B6 showing higher PPI levels than FVB, but only at

the lowest pulse intensity [background 6 pulse F(4,224) = 3.03,

p = 0.05].

Prepulse reactivity. The reactivity on prepulse alone trials

was also evaluated separately, including trials where only

background noise was presented (data not shown). The startle

response of all animals increased with the intensity of the prepulse

stimulus [F(3,168) = 3.29, p,0.0001] and this effect was similar in

both Fmr1-KO and WT. Animals from the B6 background showed

higher levels of prepulse reactivity compared to FVB, but this

difference was observed only at the highest 83 dBA prepulse level

[background 6 prepulse: F(3,168) = 3.29, p,0.05, post hoc:

p,0.05; ln-transformed reactivity at 83 dBA, B6: 2.4960.06,

FVB: 2.3360.06].

Figure 3. Aggression and affiliation in the direct social interaction with a juvenile male mouse. A: Attack latency (for non-attacking mice
the maximum value of 180s was assigned). B: Time spent in affiliative behavior. Data are mean 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0017073.g003

Figure 4. Startle reactivity and prepulse inhibition (PPI). A-B: Startle reactivity during the first and the last block of pulse alone trials; C–D: PPI
expressed as the linear coefficient of the reactivity data. Data are mean 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0017073.g004
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Locomotor activity and its circadian modulation
Activity and locomotor habituation during the first testing

hour. The first hour of testing was analyzed separately in 10-

min time bins, in order to evaluate exploration of the novel

environment and locomotor habituation (Fig.5A, B). Locomotor

activity decreased over time [F(5,265) = 33.32, p,0.0001] and this

was similar in Fmr1-KO and WT of both backgrounds (data not

shown). Nonetheless, Fmr1-KO were overall more active during

the first hour than their WT littermates [F(1,53) = 5.15, p,0.05]

and this effect was larger in the FVB background [background6

genotype: F(1,53) = 4.01, p = 0.05]. Post-hoc comparisons

confirmed that FVB-KO were more active than both FVB-WT

and B6-KO (p,0.05; Fig.5-A).

Differences between the two backgrounds were also observed

(Fig.5-B, F(1,53) = 34.05, p,0.0001), FVB mice being less active

and habituating faster [background 6 bins: F(5,265) = 6.40,

p,0.0001] than B6.

Changes in locomotor activity during 24 hrs. The analysis

of the subsequent 24 h (starting at 7 pm) confirmed the results

observed during the habituation phase. Fmr1-KO were overall more

active than WT [F(1,53) = 4.57, p,0.05], but this effect was mostly

observed in the FVB background [background 6 genotype:

F(1,53)= 5.43, p,0.05; post-hoc: p,0.05; Fig.5-C]. As before, B6

was more active than FVB, although only during the 12 hrs of

darkness [background 6 light/dark phase: F(1,53) = 16.92,

p,0.0001; post-hoc: p,0.05; Fig.5D]. The activity profile of

Fmr1-KO of both backgrounds was comparable to that observed

in WT (Fig. 5E, F). All animals showed highest levels of activity

during the first 4-5 hrs of the dark period, which were drastically

reduced during the light phase [1 hr-bin effect: F(11,583) = 4.007,

p,0.0001; light/dark phase effect: F(1,53) = 200.39, p,0.0001,

1 hr-bin6 light/dark phase: F(11,583)= 41.28, p,0.0001; Fig.5E].

Direct social interaction with an adult female
Fmr1-KO spent less time in affiliative behaviors [F(1,50) = 4.78,

p,0.05; Fig.6A] and showed a non-significant tendency to display

more mounting attempts [F(1,50) = 3.08, p= 0.09; Fig.6B] com-

pared to WT. It should be noted here that even if mounting

attempts would have been classified as an affiliative behavior, the

effect of the Fmr1 mutation would have remained significant (data

not shown). Fmr1-KO also showed higher levels of self-grooming,

depending on the background: B6-KO spent more time performing

self-grooming than both B6-WT and FVB-KO [background 6

genotype: F(1,50) = 5.07, p,0.05, post hoc: p,0.05; Fig.6-C].

Behavioral differences were also found between the two genetic

backgrounds: FVB were more engaged in affiliative behaviors

[F(1,50) = 149.62, p,0.0001, Fig.6-A] and less in non-social

activities [F(1,50) = 5.69, p,0.05, Fig.6D] than B6.

Ultrasonic vocalizations. Fmr1-KO and WT emitted

comparable ultrasonic vocalizations in terms of both frequency

(Fig.7A) and duration (Fig.7B). However, there was a significant

effect of background: FVB emitted a higher number of

Figure 5. Locomotor habituation and circadian modulation of activity. A-B: Locomotion during the first testing hour; C–D: Total activity
during the subsequent 24 hrs; E: 24 hr activity profile. Data are mean 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0017073.g005
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vocalizations [F(1,50) = 19.1, p,0.0001; Fig.7-A] and of longer

duration [F(1,50) = 54.69, p,0.0001; Fig.7-B].

EEG analysis
Fmr1-KO of both backgrounds displayed EEGs which were

comparable to those of WT (Fig. 8). No seizures, absences, or

interictal events were observed in any animal during any of the five

consecutive 3-hr recording sessions.

Discussion

Our data show (i) that the Fmr1 phenotype partially reproduces

core symptoms of ASD with a very limited recapitulation of

secondary autistic-like alterations and (ii) that the effects of the

Fmr1-KO deletion are in part modulated by the genetic

background. An overview of the results obtained is given in

Table 1.

Autistic-like symptoms in Fmr1-KO mice
Fmr1-KOs of both genotypes displayed a deficit in the

preference for social novelty in the three compartment test, but

had intact levels of sociability, in agreement with recent reports on

the B6 [26] and the B6 6 FVB backgrounds [25]. Despite the

absence of ASD-like reduced levels of social interest, this lack of

preference for social novelty may be interpreted as an autistic-like

deficit in social recognition. Furthermore, Fmr1-KO of both

backgrounds showed reduced social investigation, although this

effect was dependent on the nature of the social stimulus, because

it was observed only during the interaction with an adult female.

This deficit does not seem to be due to reduced levels of sexual

interest, since Fmr1-KO actually displayed more mounting

attempts than WT (albeit non-significantly). Indeed, reductions

in affiliative behaviors have been observed in Fmr1-KOs also

during interaction with an ovariectomized female [28]. Besides

these quantitative alterations, some qualitative changes were also

observed in the social behavior of Fmr1-KOs in the B6

background. Here, an unexpected tendency to attack a juvenile

stimulus mouse was found (i.e. a social stimulus that normally does

not elicit aggressive responses). This resembles the signs of

aggressiveness that have been reported in autistic patients

[72,73,74,75,76]. In sum, it appears that Fmr1-KO display

inappropriate responses in social situations.

B6-KO were also the only ones showing signs of repetitive

behaviors by being more engaged in self-grooming during social

interaction with an adult female. This result is corroborated by

previous studies conducted in the B6 [26] and the B6 6 FVB

backgrounds [25], and it could be interpreted as a form of

repetitive behavior due to increased emotional distress induced by

the social context. Interestingly, increased self-grooming has been

reported in other proposed mouse models for ASD as well (such as

neuroligin-1 [56] and neurexin-1a KO mice [57], as well as the

BTBR strain [54,57]). Nonetheless, the occurrence of repetitive/

perseverative behaviors seems to be modeled only partially by the

Fmr1-KO, given our results in the Y-maze and previous findings

from others on reversal learning in multiple backgrounds [34].

The B6 background was also more sensitive to the effects of the

Fmr1 mutation on PPI, but the direction of these effects was

opposite to expectation: Fmr1-KOs displayed enhanced PPI. To

our knowledge, there are no reports of increased PPI in ASD or

FXS patients. On the contrary, most studies report PPI deficits in

ASD [15,16] (albeit subtle ones and with the exception of two

experiments on younger subjects that reported no differences

[17,18]), and FXS patients display more severe PPI deficits

[17,40]. The magnitude of the acoustic startle response is also

unaltered or even mildly increased in autistic and FXS patients

[15,16,17,40], in contrast to what is observed here in both

Figure 6. Social and non-social behaviors in the direct social interaction with an adult female. A: Time spent on affiliative behaviors
towards an adult female. B: Frequency of attempts to mount the female. C: Self-grooming. D. Time spent on non-social activities. Data are mean 6
SEM. *p,0.05.
doi:10.1371/journal.pone.0017073.g006

Figure 7. Ultrasonic vocalizations during the direct social
interaction with an adult female. A: Frequency. B: Mean duration.
Data are mean 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0017073.g007
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backgrounds. Interestingly, these incongruent effects on PPI and

startle have been consistently replicated across different mouse

studies [38,39,40,41,42,47]. Only one previous report has

described a PPI deficit in B6-KO [39], but it did not use acoustic

stimuli and measurements of whole body startle response. It should

be noted that the enhanced PPI in B6-KO is not due to the

decrease in startle response, as the effect on PPI is found at all

pulse intensities, but for startle only at the highest pulse level. We

therefore conclude that although sensorimotor response and

gating are obviously influenced by Fmr1-KO in both humans

and mice, the direction of the effects is opposite. The reasons for

this discrepancy between the two species remain unknown; some

authors have suggested a more important role of other FMRP-

related proteins such as FXR2 in the mouse. This hypothesis needs

further investigation, but is supported by the observation of PPI

deficits in Fxr2-KO mice [77].

The only secondary autistic-like symptom displayed by Fmr1-

KO mice was hyperactivity, although this was observed only in the

FVB background and seems to be critically dependent on the

testing conditions as the activity levels of Fmr1-KO were

comparable to those of WT in all behavioral tests other than the

24 hr-monitoring. This result highlights the importance of test

Figure 8. EEG analysis. Left: Examples of bipolar electrocorticographic recordings from each experimental group, illustrating the clear absence of
any seizures, absences, or interictal events. Right: Electrode placements. 1 and 2: frontal cortex. 3 and 4: parietal cortex. Ref: cerebellar reference
electrode.
doi:10.1371/journal.pone.0017073.g008

Table 1. Summary of the results.

Type of ASD-like

symptom

Expected ASD-like

symptoms Behavioral test Fmr1-KO Phenotype

Background of the

Fmr1-KO phenotype

Differences between B6

and FVB backgrounds

CORE deficits in social interest three compartment test

(trial 2)

normal levels of sociability none B6 moved less than FVB

CORE deficits in social recognition three compartment test

(trial 3)

lack of preference for
social novelty

B6 and FVB B6 moved less than FVB

CORE aggressive tendencies direct social interaction

with a juvenile male

shorter latency to
attack the non-threatening
social stimulus

B6 only none

CORE deficits in social interaction direct social interaction

with a juvenile male

normal levels of affiliation none none

CORE deficits in social interaction direct social interaction

with an adult female

reduced affiliation B6 and FVB B6 showed less affiliation

CORE impaired communication direct social interaction

with an adult female

unaltered ultrasonic
vocalizations

none B6 emitted fewer and shorter
ultrasonic calls

CORE occurrence of repetitive
behaviours

Y-maze normal levels of
spontaneous alteration

none B6 alternated and moved less

CORE occurrence of repetitive
behaviours

direct social interaction

with an adult female

enhanced levels of
self-grooming

B6 only none

SECONDARY sensory hyper-response acoustic startle test reduced acoustic startle
response to strong stimuli

B6 and FVB B6 showed lower startle
response to the highest pulse
level

SECONDARY PPI deficits acoustic startle test increased PPI B6 only B6 had less PPI at the lowest
pulse intensity

SECONDARY hyperactivity first hr activity analysis overall hyperactivity FVB only B6 are more active

SECONDARY abnormal circadian activity
patterns

24 hrs-activity analysis normal light-dark activity
profile

none B6 are more active in the dark
phase

SECONDARY epileptic episodes EEG recordings normal EEG, no signs of
seizures

none none

doi:10.1371/journal.pone.0017073.t001
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duration and apparatus, an issue that has been raised by previous

studies (see [78] for review).

Further studies using more different test situations are needed to

definitely exclude altered ultrasonic communication in the Fmr1-
KO, for example by testing pup calls towards the dam [79,80]. In

addition, the absence of epileptic tendencies is surprising in view of

the increased seizure susceptibility reported in both FXS and

ASD. Our results, however, are in agreement with previous studies

showing no difference in the responsiveness to chemical convul-

sants [38], but not with reports of increased sound- and kindling-

induced seizures [34,38,43,44,45,46].

The impact of the genetic background
Our findings show that the genetic background partially

modulates the Fmr1 autistic-like phenotype, in such a way that

certain alterations appear only in a specific background. As shown

in Table 1, this modulation was rather subtle, since many

important abnormalities were observed in both backgrounds. This

pattern of results differs from the opposite effects found for the

sizes of IIPMF terminal fields reported for the B6 and FVB

backgrounds [27,48]. It should be interesting to determine the

genetic bases of this epistatic interaction, although that would be a

far from trivial undertaking.

It should perhaps be noted here that ‘‘background’’ in this

experiment not only consists of all genes in the genome differing

between the FVB and B6 strains, but also by the pre- and postnatal

maternal environment. There is no obvious way to control for this,

barring laborious cross-fostering and embryo-transfer experiments.

However, our observations of maternal behavior from PND 1 to 7

in heterozygous females did not detect any significant differences

in the amount of maternal care (nursing postures, grooming of the

pups) received by B6 and FVB pups, although B6 dams spent

slightly more time in the nest (data not shown). While we cannot

exclude that maternal effects are (partly) responsible for the

background effects reported here, we feel that this is rather

unlikely.

Based on our results, both backgrounds can be employed for

modeling specific features of ASD. Even so, the B6 background

seems to be the most suitable one for future autism research, since

it presents more autistic-like core symptoms, in terms of both

quantitative and qualitative alterations, even though this back-

ground already shows the lowest levels of social affiliation,

ultrasonic vocalizations, and spontaneous alternation.

Conclusion: Is the Fmr1-KO mouse a valid model for
ASD?
The findings presented here clearly demonstrated that Fmr1-

KO mice model only some specific autistic-like deficits. According

to the view that the ideal ASD model should reproduce all core

symptoms and some secondary ones [23], the Fmr1-KO should

therefore be of limited validity only, especially in view of the lack

of communication deficits that are reported here for the first time.

However, some authors have suggested that the triad of core

symptoms may, or even cannot, have a unitary explanation and

should instead be fractionated and studied separately [81].

According to this view, a model displaying only some individual

symptoms may still be valuable for future ASD research (as also

suggested for other neuropsychiatric disorders [82]). Hence, the

Fmr1-KO can still serve as a useful tool to investigate the

neurobiology of specific ASD endophenotypes, with the design of

novel therapeutic approaches as an ultimate goal.
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