
HAL Id: hal-00908072
https://hal.science/hal-00908072v1

Preprint submitted on 22 Nov 2013 (v1), last revised 16 Jul 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding sparse solutions of systems of polynomial
equations via group-sparsity optimization

Fabien Lauer, Henrik Ohlsson

To cite this version:
Fabien Lauer, Henrik Ohlsson. Finding sparse solutions of systems of polynomial equations via group-
sparsity optimization. 2013. �hal-00908072v1�

https://hal.science/hal-00908072v1
https://hal.archives-ouvertes.fr

Finding sparse solutions of systems of polynomial

equations via group-sparsity optimization

F. Lauer1 and H. Ohlsson2,3

1
LORIA, Université de Lorraine, CNRS, Inria, France

2
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

3
Dept. of Electrical Engineering, Linköping University, Sweden

November 22, 2013

Abstract

The paper deals with the problem of finding sparse solutions to systems of polynomial

equations possibly perturbed by noise. In particular, we show how these solutions can be

recovered from group-sparse solutions of a derived system of linear equations. Then, two

approaches are considered to find these group-sparse solutions. The first one is based on

a convex relaxation resulting in a second-order cone programming formulation which can

benefit from efficient reweighting techniques for sparsity enhancement. For this approach,

sufficient conditions for the exact recovery of the sparsest solution to the polynomial system

are derived in the noiseless setting, while stable recovery results are obtained for the noisy

case. Though lacking a similar analysis, the second approach provides a more computationally

efficient algorithm based on a greedy strategy adding the groups one-by-one. With respect to

previous work, the proposed methods recover the sparsest solution in a very short computing

time while remaining at least as accurate in terms of the probability of success. This probability

is empirically analyzed to emphasize the relationship between the ability of the methods to

solve the polynomial system and the sparsity of the solution.

1 Introduction

When faced with an underdetermined system of equations, one typically applies a regularization
strategy in order to recover well-posedness. The choice of regularization depends on the particular
application at hand and should be made to drive the solution towards desired properties. In
the absence of precise goals, the most popular choice favors solutions with minimum ℓ2-norm.
However, an alternative becoming more and more popular is to search for sparse solutions (which
often have non-minimal ℓ2-norm). In the case of a system of linear equations, this alternative
has been investigated in numerous works, see, e.g., [Bruckstein et al., 2009] for a review, and
entails many applications of great importance, particularly for signal processing where it goes
under the name of compressed sensing/sampling [Donoho, 2006, Candès, 2006]. Formally, finding
the sparsest solutions of linear systems can be written as the minimization, under the constraints
of the linear system, of the number of nonzero variables, which is a nonsmooth, nonconvex and
NP-hard problem. Two main approaches can be distinguished to tackle such problems. The first
one, known as Basis Pursuit (BP), relies on a convex relaxation based on the minimization of an
ℓ1-norm, while the second one applies a greedy strategy to add nonzero variables one-by-one. Many
results on the convergence of these methods to the sparsest solution are available in the literature
[Bruckstein et al., 2009, Eldar and Kutyniok, 2012].

More recently, a few works introduced extensions of this problem to nonlinear equa-
tions. In particular, the first greedy approaches appeared in [Blumensath and Davies, 2008,
Blumensath, 2013, Beck and Eldar, 2013, Ehler et al., 2013], while BP algorithms were devel-
oped in [Ohlsson et al., 2013b] to find sparse solutions of systems of quadratic equations and in

1

[Ohlsson et al., 2013a] for more general nonlinear equations. Formally, these problems can be for-
mulated as

min
x∈Rn

‖x‖0 (1)

s.t. yi = fi(x), i = 1, . . . , N,

where yi ∈ R, fi : R
n → R are nonlinear functions and ‖x‖0 = |{j ∈ {1, . . . , n} : xj 6= 0}| denotes

the ℓ0-pseudo-norm of x, i.e, the number of nonzero components xj .
Here, we focus on the case where the fi’s in (1) are polynomial functions of maximal degree d:

yi = fi(x) = pdi (x) = bi +
M∑

k=1

aikx
αk , i = 1, . . . , N, (2)

where {αk}Mk=1 is the set ofM =
∑d

q=1

(
n+ q − 1

q

)
multi-indexes with 1 ≤ |α| ≤ d and xαk are the

corresponding monomials. This includes the particular case considered in [Ohlsson et al., 2013b]
with d = 2, while in [Ohlsson et al., 2013a] this setting is used to deal with the more general case
via the Taylor expansions of the nonlinear functions fi. Note that the formulation in (1)–(2) also
entails cases outside of the quasi-linear setting considered in [Ehler et al., 2013].

The present paper proposes a new BP approach to solve (1)–(2), which, in comparison with
the previous works [Ohlsson et al., 2013b, Ohlsson et al., 2013a], is more simple and amounts to
solving an easier optimization problem. More precisely, the method proposed in Sect. 2.1 relies on
a simple change of variable sufficient to result in an efficient algorithm implemented as a classical
ℓ1-minimization problem. However, the structure of the polynomials is discarded and the solution
may not satisfy the original polynomial constraints. Note that this change of variable is also
found in [Ohlsson et al., 2013a], though with constraints handled in a more complex manner, and
closely related to the lifting technique of [Ohlsson et al., 2013b] for quadratic BP and the one of
[Vidal et al., 2005] for subspace clustering.

The method in [Ohlsson et al., 2013b] enforces the structure of the quadratic polynomials via
rank constraints, which lead to optimization problems with additional levels of relaxation and the
introduction of a parameter tuning the trade-off between the minimization of the ℓ1-norm on the
one hand and the satisfaction of the rank constraint on the other hand. In [Ohlsson et al., 2013a],
the structure of higher-degree polynomials is enforced by a set of quadratic constraints on the
monomials1, which are then relaxed as in [Ohlsson et al., 2013b].

Instead, the method proposed in Sect. 2.2 implements the structural knowledge via group-
sparsity. This results in an ℓ1/ℓ2-minimization, i.e., a second-order cone program (SOCP) which
can be solved more efficiently. In addition, this SOCP formulation is easily extended in Sect. 2.4
to benefit from reweighting techniques for improving the sparsity of the solution.

The conditions for exact recovery of the proposed BP methods are analyzed in Sect. 2.3. In
particular, we show that though the simple ℓ1-minimization does not include structural constraints,
exact recovery occurs for sufficiently sparse cases. A similar condition is proved for the ℓ1/ℓ2-
minimization based on group-sparsity.

The greedy approach is discussed in Sect. 3, where two variants are proposed: an exact al-
gorithm for solving the group-sparsity optimization problem in small-scale cases and an approx-
imate one which remains efficient in higher-dimensional settings. Previous greedy approaches
[Blumensath, 2013, Beck and Eldar, 2013] considered the problem in its sparsity-constrained form,
where the sum of squared errors over the equations (2) is minimized subject to ‖x‖0 ≤ s for an
a priori fixed s. The iterative hard thresholding of [Blumensath, 2013] is a gradient descent algo-
rithm with an additional projection onto the feasible set at each iteration via a simple thresholding
operation. In [Beck and Eldar, 2013], this is interpreted as a fixed point iteration enforcing a nec-
essary (but not sufficient) optimality condition, which requires a well-chosen step-size to converge
satisfactorily. In particular, the step-size must be an upper bound on the Lipschitz constant of

1For example, consider the monomials u1 = x1, u2 = x2, u3 = x1x2, u4 = x2

1
x2, then the structure of u3 and u4

is enforced by u3 = u1u2 and u4 = u1u3. But note that since these constraints are relaxed in the final formulation,
the estimation can yield u3 6= u1u2, which then recursively implies that all monomial constraints involving u3 are
meaningless.

2

the gradient of the objective function, which however is not (globally) Lipschitz continuous for
polynomials in (2) with degree d > 1. The sparse-simplex algorithm of [Beck and Eldar, 2013] is
a coordinate descent method which enjoys similar but less restrictive convergence properties while
being parameter-free. However, for polynomial equations as in (2), each iteration requires solv-
ing several one-dimensional minimizations of a polynomial of degree 2d, which becomes difficult
for d > 2. On the contrary, the proposed greedy algorithms remain simple thanks to the group-
sparse and linearized formulation of the problem: each iteration requires only solving least-squares
problems.

Extensions of the methods are discussed in Sections 4 and 5. In particular, Section 4 deals with
the issue of purely nonlinear polynomials, for which the solution to (1)–(2) cannot be estimated as
directly as for polynomials involving linear monomials, but which arise in important applications
such as phase retrieval [Kohler and Mandel, 1973, Gonsalves, 1976, Gerchberg and Saxton, 1972,
Fienup, 1982, Marchesini, 2007, Candès et al., 2013b, Candès et al., 2013a]. Then, the case where
the equations (2) are perturbed by noise is considered in Sect. 5. In particular, the analysis
provides stable recovery results for polynomial BP denoising in the flavor of the one obtained in
[Donoho et al., 2006] for linear BP denoising.

Finally, numerical experiments in Sect. 6 show the efficiency of the proposed methods and
extensions. Results are in line with the ones found in classical sparse optimization with linear
constraints. In particular, all methods can recover the sparsest solution in sufficiently sparse cases
and the greedy approach is the fastest while the BP methods based on convex relaxations benefit
from a slightly higher probability of success.

2 Polynomial basis pursuit

This section develops two basis pursuit approaches to find sparse solutions of systems of polynomial
equations via the minimization of an ℓ1-norm for the first one and of a mixed ℓ1/ℓ2-norm for the
second one. The methods are developed under the following assumption, which will be relaxed in
Sect. 4.

Assumption 1. For all j ∈ {1, . . . , n}, ∃i ∈ {1, . . . , N} such that aik 6= 0 for k determined such
that (αk)l = δj,l, l = 1, . . . , n.

In particular, Assumption 1 ensures that the polynomials include a linear part, or more precisely,
that for all variable xj , j = 1, . . . , n, the monomial xj has a nonzero coefficient in at least one of
the polynomials.

2.1 Polynomial basis pursuit via ℓ1-minimization

We start by rewriting the constraints in (1)–(2) as

yi = fi(x) = bi +

M∑

k=1

aikx
αk = aT

i φ(x) + bi, (3)

where ai = [ai1, . . . , aiM]T and φ : Rn → R
M is a mapping that computes all the monomials

of degree q, 1 ≤ q ≤ d, with n variables. Note that x is embedded in φ(x) as the components
corresponding to the n multi-indexes αk(j), j = 1, . . . , n, such that

(
αk(j)

)
l
= δj,l, l = 1, . . . , n.

Assuming that these are the first components of φ(x), i.e., k(j) = j, we also define the (linear)
inverse mapping φ−1 : RM → R

n, such that φ−1(φ(x)) = x, as

φ−1(φ) =

[
In 0
0 0

]
φ,

where In is the n-by-n identity matrix.
The high-dimensional lifting by φ allows us to recast (1)–(2) as a standard (i.e., linear) problem

in sparse optimization:

min
φ∈RM

‖φ‖0 (4)

s.t. Aφ = y − b,

3

where A = [a1, . . . ,aN]T , b = [b1, . . . , bN]T and φ(x) is replaced by an unstructured vector φ. This
constitutes the first level of relaxation in the proposed approach, where the components of φ are
not constrained to be interdependent monomials. While this yields a rather crude approximation,
it will serve as the basis for the refined approach of Sect. 2.2, where additional structure will be
imposed on φ.

The second level of relaxation comes from the BP approach, in which problems such as (4) are
typically solved via the convex relaxation

φ̂ = arg min
φ∈RM

‖Wφ‖1 (5)

s.t. Aφ = y − b,

where W = diag (‖A1‖2, . . . , ‖AM‖2), with Ak the kth column of A, is a diagonal matrix of
precompensating weights. Then, for polynomial BP, an estimate of the solution to (1)–(2) can be

easily computed under Assumption 1 as x̂ = φ−1(φ̂).
The literature on basis pursuit and compressed sensing tells us that the sparser the solution

to (4) is, the more likely the convex relaxation (5) is to yield its recovery. Here, by construction
we know that there is at least a very sparse vector φ(x0) satisfying the constraints: with x0 the
sparse solution to (1)–(2), the sparsity level ‖φ(x0)‖0/M is better than ‖x0‖0/n, as stated by
Proposition 1 below. Note that a better bound implying an increased level of sparsity depending
on d for very sparse cases is derived in Appendix A.

Proposition 1. Let the mapping φ : Rn → R
M be defined as above. Then, the vector φ(x) is at

least as sparse as the vector x in the sense that the inequality

‖φ(x)‖0
M

≤ ‖x‖0
n

holds for all x ∈ R
n.

Proposition 1 implies that if (1)–(2) has a sparse solution then so does (4). To prove Proposi-
tion 1, we first need the following lemma.

Lemma 1. For all triplet (a, b, c) ∈ (N∗)3 such that a ≥ b, the inequality

1

a

(
a+ c− 1

c

)
≥ 1

b

(
b+ c− 1

c

)

holds.

Proof. On the one hand, we have

1

a

(
a+ c− 1

c

)
=

(a+ c− 1)!

a c!(a− 1)!
=

1

a c!

c−1∏

i=0

(a+ i) =
1

c!

c−1∏

i=1

(a+ i)

and a similar expression with b instead of a. On the other hand, with a ≥ b, we have, ∀i ∈ N,

a+ i ≥ b+ i ⇒ 1

c!

c−1∏

i=1

(a+ i) ≥ 1

c!

c−1∏

i=1

(b+ i)

which then yields the sought statement.

We now give the proof of Proposition 1.

Proof. By construction, the number of nonzeros in φ(x) is equal to the sum over q, 1 ≤ q ≤ d, of
the number of monomials of degree q in ‖x‖0 variables. This yields

‖φ(x)‖0
M

=

∑d
q=1

(
‖x0‖0 + q − 1

q

)

∑d
q=1

(
n+ q − 1

q

) =
‖x‖0
n

1
‖x‖0

∑d
q=1

(
‖x0‖0 + q − 1

q

)

1
n

∑d
q=1

(
n+ q − 1

q

)

4

Since n ≥ ‖x‖0, Lemma 1 gives the bound

1

‖x‖0

d∑

q=1

(
‖x0‖0 + q − 1

q

)
≤ 1

n

d∑

q=1

(
n+ q − 1

q

)

from which the statement follows.

2.2 Polynomial basis pursuit via ℓ1/ℓ2-minimization (group sparsity)

The approach proposed above relies on a rather crude approximation. Thus, the polynomial
equations are not guaranteed to be satisfied by the solution x̂, due to the factorization of the
polynomial that may not hold for φ̂. In other words, the linearization in (3) together with the
direct optimization of φ discard the desired structure for φ. In practice, the solution x̂ can be

checked a posteriori with yi
?
= pdi (x̂), i = 1, . . . , N . But in order to increase the probability of

obtaining a satisfactory solution, i.e., one which satisfies the original polynomial constraints, we
must embed the structure of the polynomial in the problem formulation.

Let define the index sets

Ij = {k ∈ {1, . . . ,M} : (αk)j 6= 0}, j = 1, . . . , n. (6)

Then, the structural information we aim at embedding is given by the following implication:

∀j ∈ {1, . . . , n}, ∀k ∈ Ij ,

{
xj = 0 ⇒ (φ(x))k = 0,

(φ(x))k 6= 0 ⇒ xj 6= 0,
(7)

which formalizes the fact that whenever a variable is zero, all monomials involving this variable
must be zero. Such a structure can be favored via group-sparsity optimization, as detailed next.

Let define the set of mappings ϕj : Rn → R
m, each computing the subset of components of φ

involving the variable xj (see Appendix C for the precise value of m). Note that these mappings
are nonlinear in x but linear in φ(x): ϕj(x) = W jφ(x), where W j is an m-by-M matrix filled with
zeros except for a 1 on each row at the kth column for all k ∈ Ij . Further define the ℓ0-pseudo-norm
of a vector-valued sequence as the number of nonzero vectors in the sequence:

‖{uj}nj=1‖0 = |{j ∈ {1, . . . , n} : uj 6= 0}| .

We call φ a group-sparse vector if ‖{W jφ}nj=1‖0 is small. By construction and due to (7), a sparse
x leads to a group-sparse φ(x) with

‖{W jφ(x)}nj=1‖0 = ‖x‖0.

Therefore, in order to solve (1)–(2) we search for a group-sparse solution to the linear system
Aφ = y − b.

Such group-sparse solutions can be found by solving

min
φ∈RM

‖{W jφ}nj=1‖0 (8)

s.t. Aφ = y − b.

Let define the ℓp/ℓq-norm of a vector-valued sequence as

‖{uj}nj=1‖p,q =




n∑

j=1

‖uj‖pq




1

p

.

Problem (8) can be relaxed by replacing the ℓ0-pseudo-norm with an ℓp/ℓq-norm. In this paper we
only consider the case p = 1 and q = 2, i.e.,

‖{W jφ}nj=1‖1,2 =

∥∥∥∥∥∥∥



‖W 1φ‖2

...
‖W nφ‖2




∥∥∥∥∥∥∥
1

,

5

but other norms could be used, such as the ℓ1/ℓ∞-norm. This yields the convex relaxation2

φ̂ = arg min
φ∈RM

n∑

j=1

‖W jφ‖2 (9)

s.t. Aφ = y − b,

which is easily reformulated as a Second Order Cone Program (SOCP) that can be solved
by generic software such as CVX [Grant and Boyd, 2013, Grant and Boyd, 2008] or MOSEK
[Andersen and Andersen, 2000] (more efficient dedicated solvers can also be found, e.g.,
[Deng et al., 2011]). Finally, adding precompensating weights as in the ℓ1-minimization of Sect. 2.1
is straightforward. We only apply a slight change to the definition of W j in order to replace all
1’s by the values of the weights: each 1 at a column k is replaced by the value of ‖Ak‖2. The
reason for introducing these precompensating weights will become clear in the analysis of Sect. 2.3,
where (9) always refers to a formulation using these weights.

Adding structure via constraints. All components of the mapping φ(x) involving only even
degrees of base variables xj are nonnegative. These structural constraints can help to drive the
solution towards one that correctly factorizes and corresponds to a solution of the polynomial
equations. This is obtained by solving

φ̂ = arg min
φ∈RM

n∑

j=1

‖W jφ‖2 (10)

s.t. Aφ = y − b

φk ≥ 0, ∀k such that (αk)j is even for all j.

This optimization problem is not more difficult to solve than (9) since we simply added nonnega-
tivity constraints to some variables.

Other forms of prior knowledge can be easily introduced in (10). For instance, if (tight) box
constraints on the variables are available, then lower and upper bounds on all monomials can be
derived. Finally, note that these structural constraints can also be added to the ℓ1-minimization (5).

2.3 Analysis

The following derives conditions of exact recovery of the sparse solution to the system of polynomial
equations via various convex relaxations. These conditions are based on the mutual coherence of
the matrix A as defined e.g. in [Donoho and Huo, 2001, Bruckstein et al., 2009].

Definition 1. The mutual coherence of a matrix A = [A1, . . . ,AM] is

µ(A) = max
1≤i<j≤M

|AT
i Aj |

‖Ai‖2‖Aj‖2
.

In order for the mutual coherence of A to be defined, we focus on the case where the following
assumption holds.

Assumption 2. All columns Ak of the matrix A are nonzero, i.e., Ak 6= 0, k = 1, . . . ,M ,
or, equivalently, for all k ∈ {1, . . . ,M}, ∃i ∈ {1, . . . , N} such that the corresponding polynomial
coefficient aik 6= 0.

Assumption 2 is slightly more restrictive than Assumption 1, which only constrains the n first
columns of A. If Assumption 2 does not hold, the following analysis can be reproduced under

Assumption 1 by considering the submatrix Ã ∈ R
N×M̃ containing the M̃ nonzero columns of

A and a similarly truncated mapping φ : Rn → R
M̃ . Adjustments then need to be made where

numbers of columns are used, i.e., by substituting M̃ ≤ M and m̃j ≤ m for M and m. However,

2Note that since all the groups have the same number of variables, they need not be weighted by a function of
the number of variables in each group.

6

for the case where both Assumptions 1 and 2 do not hold, i.e., of zero columns corresponding to
base variables, Ak = 0, k ∈ {1, . . . , n}, x̂ cannot be obtained by the inverse mapping φ−1. This
particular case will be discussed in Sect. 4.

Note that whenever a condition requires the mutual coherence µ(A) to be defined, Assumption 2
implicitly holds. In such cases, Assumption 2 will not be explicitly stated in the theorems below.

2.3.1 ℓ1-minimization method

The result below characterizes a case where the simple ℓ1-minimization method is sufficient to solve
the sparse optimization problem (1)–(2).

Theorem 1. Let x0 denote the unique solution to (1)–(2). If the inequality

‖x0‖0 <
n

2M

(
1 +

1

µ(A)

)
(11)

holds, then the solution φ̂ to (5) is unique and equal to φ(x0), thus providing x̂ = φ−1(φ̂) = x0.

Proof. Assume (1)–(2) has a unique solution x0. Then, Aφ = y − b has a solution φ0 = φ(x0)
with a sparsity bounded by Proposition 1 as

‖φ0‖0 ≤
M

n
‖x0‖0.

But, according to Theorem 7 in [Bruckstein et al., 2009], if

‖φ0‖0 <
1

2

(
1 +

1

µ(A)

)

then, on the one hand, φ0 is the sparsest solution to Aφ = y− b, and on the other hand, it is also
the unique solution to (5). Thus, if (11) holds, φ0 is the unique solution to both (4) and (5), i.e.,

φ̂ = φ0. Since x̂ is given by the first components of φ̂ and x0 by the ones of φ0, this completes
the proof.

Other less conservative conditions can be similarly obtained by considering the exact value of
‖φ0‖0 or tighter bounds (see Appendix B), but these do not take the form of a simple inequality on
‖x0‖0. Another condition for very sparse cases (with ‖x0‖0 ≤ n/d− 1) can be similarly obtained
by using Proposition 2 in Appendix A instead of Proposition 1.

2.3.2 ℓ1/ℓ2-minimization method

The first result below shows that the group-sparse problem (8) can be used as a proxy for the
polynomial problem (1)–(2).

Theorem 2. If the solution φ∗ to (8) is unique and yields x∗ = φ−1(φ∗) such that x∗ is a
solution to the system of polynomial equations (2), then x∗ is the sparsest solution to the system
of polynomial equations, i.e., the unique solution to (1)–(2).

Proof. Assume there is an x0 6= x∗ solution to the polynomial system (2) and at least as sparse as
x∗. Then

Aφ(x0) = y − b

and
‖{W jφ(x0)}nj=1‖0 = ‖x0‖0 ≤ ‖x∗‖0 ≤ ‖{W jφ

∗}nj=1‖0,
which contradicts the fact the φ∗ is the unique solution to (8) unless φ(x0) = φ∗ and x0 = x∗.

The next result provides a condition on the sparsity of the solution to (1)–(2) under which it
can be recovered by solving the convex problem (9). This result requires the following lemma.

7

Lemma 2. Let A = [A1, . . . ,AM] be an N ×M matrix with mutual coherence µ(A) as defined
in Definition 1. Let W be the M × M -diagonal matrix of entries wi = ‖Ai‖2. Then, for all
δ ∈ Ker(A) and i ∈ {1, . . . ,M}, the bound

w2
i δ

2
i ≤

µ2(A)

1 + µ2(A)
‖Wδ‖22 (12)

holds.

Proof. For all δ ∈ Ker(A), we have Aδ = 0 ⇒ ATAδ = 0, which further implies
W−1ATAW−1Wδ = 0 and

−Wδ =
(
W−1ATAW−1 − I

)
Wδ.

Then, we have

w2
i δ

2
i = (Wδ)

2
i =

(
(W−1ATAW−1 − I)Wδ

)2
i

=




M∑

j=1

(
W−1ATAW−1 − I

)
i,j

(Wδ)j




2

≤
M∑

j=1

(
W−1ATAW−1 − I

)2
i,j

(Wδ)2j .

Note that W−1ATAW−1 is a normalized matrix with ones on the diagonal and off diagonal

(i, j)-entries equal to
|AT

i Aj |
‖Ai‖2‖Aj‖2

and bounded by µ(A) via Definition 1. Thus, we obtain

w2
i δ

2
i ≤ µ2(A)

∑

j 6=i

w2
j δ

2
j

and, by adding µ2(A)w2
i δ

2
i to both sides, the bound

w2
i δ

2
i ≤

µ2(A)

1 + µ2(A)

M∑

j=1

w2
j δ

2
j ,

which is precisely (12).

Theorem 3. Let x0 be a solution to the polynomial equations (2) and φ0 = φ(x0). If the condition

‖x0‖0 <
1

2
√
m

√
1 +

1

µ2(A)
,

where m is the number of components of φ associated to a variable, holds, then φ0 is the unique
solution to (9) using precompensating weights in the W j’s.

Proof. The vector φ0 is the unique solution to (9) if the inequality

n∑

j=1

‖W j(φ0 + δ)‖2 >
n∑

j=1

‖W jφ0‖2

holds for all δ 6= 0 satisfying Aδ = 0. The inequality above can be rewritten as
∑

j∈I0

‖W jδ‖2 +
∑

j /∈I0

‖W j(φ0 + δ)‖2 − ‖W jφ0‖2 > 0,

where I0 = {j ∈ {1, . . . , n} : W jφ0 = 0}. By the triangle inequality, ‖u + v‖2 − ‖u‖2 ≥ −‖v‖2,
this condition is met if ∑

j∈I0

‖W jδ‖2 −
∑

j /∈I0

‖W jδ‖2 > 0

8

or
n∑

j=1

‖W jδ‖2 − 2
∑

j /∈I0

‖W jδ‖2 > 0. (13)

By defining Gj as the set of indexes corresponding to nonzero columns of W j , Lemma 2 yields

‖W jδ‖22 =
∑

i∈Gj

w2
i δ

2
i ≤ mj

µ2(A)

1 + µ2(A)
‖Wδ‖22,

where mj = m is the number of components of φ associated to a variable xj . Due to the fact that⋃
k∈{1,...,n} Gk = {1, . . . ,M}, we also have

‖Wδ‖22 =

M∑

i=1

w2
i δ

2
i ≤

n∑

k=1

∑

i∈Gk

w2
i δ

2
i =

n∑

k=1

‖W kδ‖22 ≤
(

n∑

k=1

‖W kδ‖2
)2

,

which then leads to

‖W jδ‖22 ≤ m
µ2(A)

1 + µ2(A)

(
n∑

k=1

‖W kδ‖2
)2

.

Introducing this result in (13) gives the condition

n∑

j=1

‖W jδ‖2 − 2(n− |I0|)
µ(A)

√
m√

1 + µ2(A)

n∑

k=1

‖W kδ‖2 > 0.

Finally, given that |I0| = n− ‖{W jφ0}nj=1‖0 = n− ‖x0‖0, this yields
n∑

j=1

‖W jδ‖2 − 2‖x0‖0
µ(A)

√
m√

1 + µ2(A)

n∑

k=1

‖W kδ‖2 > 0. (14)

or, after dividing by ‖{W jδ}nj=1‖1,2 and rearranging the terms,

‖x0‖0 <

√
1 + µ2(A)

2µ(A)
√
m

,

which can be rewritten as in the statement of the Theorem.

Corollary 1. Let x0 be a solution to the polynomial equations (2) and m be the number of com-
ponents of φ associated to a variable. If the condition

‖x0‖0 <
1

2
√
m

√
1 +

1

µ2(A)

holds, then x0 is the unique solution to the minimization problem (1)–(2) and it can be computed

as x0 = φ−1(φ̂) with φ̂ the solution to (9).

Proof. Assume there exists another solution x1 6= x0 to (1)–(2), and thus with ‖x1‖0 ≤ ‖x0‖0.
Then, Theorem 3 implies that both φ(x1) and φ(x0) are unique solutions to (9) and thus that

φ(x1) = φ(x0) = φ̂. But this contradicts the definition of the mapping φ implying φ(x1) 6= φ(x0)
whenever x1 6= x0. Therefore the assumption x1 6= x0 cannot hold and x0 is the unique solution
to (1)–(2), while φ−1(φ̂) = φ−1(φ(x0)) = x0.

Theorem 4. Let φ̂ be a solution to (9) and m be the number of components of φ associated to a
variable. If the condition

‖{W jφ̂}nj=1‖0 <
1

2
√
m

√
1 +

1

µ2(A)

holds, then x̂ is the unique solution to both (8) and (9). If, in addition, x̂ = φ−1(φ̂) satisfies the
polynomial constraints (2), then x̂ is the unique solution to (1)–(2).

9

Proof. By following steps similar to those in the proof of Theorem 3 with φ̂ instead of φ0, we

obtain (by replacing ‖x0‖0 by ‖{W jφ̂}nj=1‖0 in (14)) that φ̂ is the unique solution to (9). Then,

let φ∗ be a solution to (8). This implies ‖{W jφ
∗}nj=1‖0 ≤ ‖{W jφ̂}nj=1‖0 and, under the condition

of the Theorem,

‖{W jφ
∗}nj=1‖0 <

1

2
√
m

√
1 +

1

µ2(A)
. (15)

By following similar steps again, we obtain that φ∗ is also the unique solution to (9) and thus that

φ∗ = φ̂ is the unique solution to (8).

Finally, since φ̂ is the unique solution to (8), if x̂ satisfies the polynomial equations (2), Theo-
rem 2 implies that x̂ is the solution to (1)–(2).

In comparison with Theorem 3, Theorem 4 provides a condition that only depends on the
estimate obtained by solving (9) rather than on the sought solution.

2.4 Enhancing sparsity

In practice, convex relaxations as the ones described above provide a good step towards the solution
but might fail to yield the exact solution with sufficient sparsity. In such cases, it is common practice
to improve the sparsity of the solution by repeating the procedure with a well-chosen weighting
of the variables as described in [Candès et al., 2008, Le et al., 2013]. These techniques can be
directly applied to improve the ℓ1-minimization method of Sect. 2.1 while they are adapted below
to group-sparsity as considered in Sect. 2.2.

2.4.1 Iterative reweighting

The classical reweighting scheme of [Candès et al., 2008] for sparse recovery improves the sparsity
of the solution by solving a sequence of linear programs. It can be adapted to the group-sparse
recovery problem by iteratively solving

φ̂ = arg min
φ∈RM

n∑

j=1

µj‖W jφ‖2 (16)

s.t. Aφ = y − b

φk ≥ 0, ∀k such that (αk)j is even for all j,

with weights µj initially set to 1 and refined at each iteration by

µj =
1

‖W jφ‖2 + ǫ

for a given small value of ǫ > 0.
The basic idea is to decrease the influence of groups of variables with large ℓ2-norms that are

assumed to be nonzero in the solution while increasing the weight of groups with small norms in
order to force them towards zero.

2.4.2 Selective ℓ1/ℓ2-minimization

The Sℓ1M algorithm proposed in [Le et al., 2013] is another reweighted ℓ1-minimization mechanism
which sets a single weight at zero at each iteration. Though requiring more computation time than
the previous approach due to a number of iterations equal to the number of non-zero elements,
this algorithm can recover sparse solutions in cases where the classical reweighting scheme of
[Candès et al., 2008] fails. Other advantages include the absence of a tuning parameter and the
presence of a convergence analysis [Le et al., 2013]. The Sℓ1ℓ2M algorithm below is an adaptation
of Sℓ1M to group-sparse problems.

1. Initialize all weights µj = 1, j = 1, . . . , n.

10

2. Solve the weighted group-sparse problem (16).

3. Find k ∈ argmaxj∈{1,...,n} ‖W jφ‖2.

4. Set µk = 0 (to relax the sparsity constraint on the kth group).

5. Repeat from Step 2 until
∑n

j=1 µj‖W jφ‖2 = 0.

Note that in this algorithm, the number of iterations is equal to the number of nonzero groups3,
which, for polynomial basis pursuit, is ‖x0‖0 and is typically small. This results in a fast and
accurate method for polynomial basis pursuit, as will be seen in Sect. 6.

3 Greedy approach

As mentioned in the introduction, there are two major techniques to minimize an ℓ0-pseudo-
norm. We now consider the second one, i.e., the greedy approach, to solve problem (8) with two
flavors: the exact method and the approximate method. The exact method is intended for small-
scale problems where the number of possible combinations of base variables remains small. The
approximate method is designed to circumvent this limitation and applies to much larger problems.

Exact greedy algorithm. The exact method is implemented as follows, where we let ǫ = 0 if
the polynomial system of equation is assumed to be feasible, and ǫ > 0 otherwise.

1. Initialize: n̂ = 0 and e = +∞.

2. n̂← n̂+ 1.

3. For all combinations C of n̂ variables among n:

(a) Set S = {1, . . . ,M} \⋃k/∈C Ik, where the index sets Ik are defined as in (6).

(b) Build the submatrix AS with the columns of A with index in S.

(c) Solve
φS = arg min

φ∈R|S|
‖ASφ+ b− y‖22.

(d) Update e← min{e, ‖ASφS + b− y‖22}.
(e) If e ≤ ǫ, compute φ̂ by setting its components of index in S to the values in φS and the

others to 0. Return x̂ = φ−1(φ̂).

4. If n̂ < n, repeat from Step 2, otherwise return an infeasibility certificate.

In Step 3.(a), S corresponds to the support of φ(x) when supp(x) = C, where C is a combination
of n̂ indexes from 1 to n. The maximal number of least squares problems to solve in Step 3.(c) is
2n. But many of these are spared by starting with the sparsest combinations and stopping as soon
as a solution is found. Thus, if a sparse solution x0 with ‖x0‖0 < n exists, it is found in less than
∑‖x0‖0

q=1

(
n
q

)
iterations.

With ǫ = 0, the exact greedy algorithm above can be slightly modified to compute all the
solutions to (8), simply by letting the for loop in Step 3 complete instead of returning as soon as a
solution is found. As a result, the algorithm could provide a uniqueness certificate for the solution
of (8) from which Theorem 2 could be applied to conclude that the solution coincides with the
unique minimizer of (1)–(2).

3The maximal number of iterations is the number of groups n, but if the correct sparsity pattern is recovered
then the algorithm stops earlier.

11

Approximate greedy algorithm. The approximate method is similar except that it explores
only a single branch of the tree of possible combinations. Its implementation uses a set S of retained
variables (more precisely, S contains the indexes of these variables):

1. Initialize the set of nonzero variables: S = ∅.

2. For all j ∈ {1, . . . , n} \ S,

(a) Set Sj = {1, . . . ,M} \
⋃

k/∈S∪j Ik, where the index sets Ik are defined as in (6).

(b) Build the submatrix ASj
with the columns of A with index in Sj .

(c) Solve
φj = arg min

φ∈R
|Sj |
‖ASj

φ+ b− y‖22.

3. Select the variable that minimizes the error if added to S:

k = arg min
j∈{1,...,n}

‖ASj
φj + b− y‖22.

4. Update S ← S ∪ k.

5. Repeat from Step 2 until ‖ASk
φk + b− y‖22 ≤ ǫ.

6. Compute φ̂ by setting its components of index in Sk to the values in φk and the others to 0.

7. Return x̂ = φ−1(φ̂) and the error ‖ASk
φk + b− y‖22.

The algorithm starts with an empty set of nonzero variables S and adds a single variable to that
set at each iteration. The variable retained at a given iteration is the one that, if added, leads to
the minimum sum of squared error for the equations ASj

φj = y−b. In Step 2.(a), Sj corresponds
to the support of φ(x) when supp(x) = S ∪ j. Note that the value of the minimizer φk is not
retained but re-estimated at the next iteration. The reason for this is that there is no guarantee
that the components of φk correspond to monomials of base variables.

4 Purely nonlinear polynomials

We now consider the case of purely nonlinear polynomials pdi (x) without a linear part for some
variables, i.e., with aik = 0, i = 1, . . . , N for some k ∈ {1, . . . , n} (according to the ordering of the
multi-indexes, the linear monomials correspond to the first coefficients with 1 ≤ k ≤ n). For this
specific case where Assumption 1 does not hold, some of the n first columns of A are zero and the
corresponding components of φ are unconstrained, thus set to arbitrary values in φ̂. As a result,
not only the analysis of Sect. 2.3 does not hold, but the estimate x̂ cannot be directly obtained by
the inverse mapping φ−1 as the first components of φ̂.

However, the core of the method remains applicable to purely nonlinear polynomials. More
precisely, we can solve (5), (9) or (10) (or apply a reweighting scheme of Sect. 2.4) to obtain φ̂ and
the corresponding support of x̂ as

supp(x̂) = {j : ‖W jφ̂‖2 6= 0},

while the greedy algorithms of Sect. 3 directly estimate supp(x̂). Then, the estimate x̂ can be

computed from the higher-degree monomials as, e.g., x̂j = ± q
√
φ̂jq, where the subscript jq denotes

the index such that (φ(·))jq : x 7→ xq
j . The precise procedure to compute x̂ actually depends on

the monomials involved in the polynomials. The most straightforward manner is to compute x̂j

from the estimate of its smallest nonzero odd power:

∀j ∈ supp(x̂), x̂j =
2p̂+1
√
φ̂j(2p̂+1), with p̂ = min

p∈{0,...,(d−1)/2}
p, s.t. φ̂j(2p+1) 6= 0. (17)

But for polynomial systems that involve only monomials with even degrees, the minimization
computing p̂ in (17) has no solution and the procedure is slightly more complex. For instance, with

12

purely quadratic equations, the absolute value of x̂j is given by |x̂j | =
√

φ̂j2 and the sign must be

determined by looking at the signs of the estimates of the bilinear terms x̂ixj , i 6= j. In addition,
note that for such cases, the solution of (1)–(2) is not unique for symmetry reasons and the method
cannot be analyzed as in Sect. 2.3 in terms of convergence towards the sparsest solution. Then, a
different notion of uniqueness is usually considered in the literature dedicated to purely quadratic
equations [Balan et al., 2006, Bandeira et al., 2013, Ohlsson and Eldar, 2013, Ranieri et al., 2013].

5 Polynomial denoising

In many applications, the equations yi = fi(x) need to be relaxed to an error-tolerant form for
various reasons, which can for instance be interpreted as having access to noisy measurements,
yi = fi(x)+ ei, with unknown noise terms ei. In this case, we reformulate the general problem (1)
as a denoising one:

min
x∈Rn,e∈RN

‖x‖0 (18)

s.t. yi = fi(x) + ei, i = 1, . . . , N,

‖e‖p ≤ ε,

where ε > 0 is a fixed threshold on the noise ℓp-norm, with typical choices for p being p = 1, p = 2
or p =∞.

With polynomial constraints,

yi = fi(x) + ei = pdi (x) + ei = bi +

M∑

k=1

aikx
αk + ei, i = 1, . . . , N, (19)

convex relaxations similar to the ones described in Sect. 2 can be derived to obtain polynomial BP
denoising methods. This leads to solving

φ̂ = arg min
φ∈RM

‖Wφ‖1 (20)

s.t. ‖Aφ+ b− y‖p ≤ ε,

for the ℓ1-minimization method and

φ̂ = arg min
φ∈RM

n∑

j=1

‖W jφ‖2 (21)

s.t. ‖Aφ+ b− y‖p ≤ ε

with ℓ1/ℓ2-minimization. For p ∈ {1,∞}, problem (20) remains a linear program, while p = 2 leads
to a SOCP. Problem (21) can still be written as a SOCP for all p ∈ {1, 2,∞} and be solved by the
generic solvers that apply to (9). Thus, the enhancements proposed in Sect. 2 for the formulations
(5) and (9) (such as reweighting schemes or the addition of structural constraints) can be easily
transposed to the noisy case.

Regarding the greedy algorithms of Sect. 3, they are already applicable to the noisy case, for
which it suffices to set an appropriate threshold ε on the noise ℓ2-norm. Adaptations of these
algorithms to p = 1 or p = ∞ are straightforward, but require solving a convex optimization
problem in sub-step (c) without a closed-form solution and thus without the same computational
benefit for the approximate greedy approach.

5.1 Stability analysis

In the noisy case, the solution to (18) is in general not unique and the analysis focuses on stability
rather than on exact recovery. The following theorem provides such a stability result for the
ℓ1-minimization.

13

Theorem 5. Let (x0, e0) denote a solution to (18)–(19). If the inequality

‖x0‖0 <
n

4M

(
1 +

1

µ(A)

)
(22)

holds, then x̂ = φ−1(φ̂) with φ̂ the solution to (20) must obey

‖x̂− x0‖22 ≤
4ε2

1− µ(A)(4M‖x0‖0/n− 1)
. (23)

Proof. Assume (18)–(19) has a solution (x0, e0). Then, Aφ0 = y − b − e0 with φ0 = φ(x0)
and ‖e0‖2 ≤ ε. By Proposition 1, we have ‖φ0‖0 ≤ M

n ‖x0‖0. But, according to Theorem 9 in

[Bruckstein et al., 2009], if ‖φ0‖0 < 1
4

(
1 + 1

µ(A)

)
then φ̂ must obey

‖φ̂− φ0‖22 ≤
4ε2

1− µ(A)(4‖φ0‖0 − 1)
. (24)

Thus, if (22) holds, so does (24) and ‖φ̂−φ0‖22 ≤ 4ε2/[1−µ(A)(4M‖x0‖0/n−1)]. Since ‖x̂−x0‖22 ≤
‖φ̂− φ0‖22, this completes the proof.

For the ℓ1/ℓ2-minimization, we have the following stability result.

Theorem 6. Let (x0, e0) denote a solution to (18)–(19). If the inequality

‖x0‖0 <
1

4nM

(
1 +

1

µ(A)

)
(25)

holds, then x̂ = φ−1(φ̂) with φ̂ the solution to (21) must obey

‖W x(x̂− x0)‖22 ≤
4nε2

1− µ(A)(4nM‖x0‖0 − 1)
, (26)

where W x = diag(‖A1‖2, . . . , ‖An‖2).

Proof. Assume (18)–(19) has a solution (x0, e0). Let define φ0 = φ(x0) and δ = φ̂−φ0. To prove
the theorem, we will first bound from above the norm ‖Wδ‖2, where W is the diagonal matrix of
precompensating weights. This part of the proof follows a path similar to that of Theorem 3.1 in
[Donoho et al., 2006], while adapting it to the group-sparse setting and mixed ℓp/ℓq norms.

Due to the definition of φ̂ as a minimizer of (21), δ must satisfy either

n∑

j=1

‖W j(φ0 + δ)‖2 <

n∑

j=1

‖W jφ0‖2

or δ = 0, in which case the statement is obvious. The inequality above can be rewritten as

∑

j∈I0

‖W jδ‖2 +
∑

j /∈I0

‖W j(φ0 + δ)‖2 − ‖W jφ0‖2 < 0,

where I0 = {j ∈ {1, . . . , n} : W jφ0 = 0}. By the triangle inequality, ‖u + v‖2 − ‖u‖2 ≥ −‖v‖2,
this implies ∑

j∈I0

‖W jδ‖2 −
∑

j /∈I0

‖W jδ‖2 < 0. (27)

In addition, δ must satisfy the constraints in (21) as

‖A(φ0 + δ) + b− y‖2 ≤ ε,

in which y can be replaced by Aφ0 + b+ e0, leading to

‖Aδ − e0‖2 ≤ ε.

14

Using ‖u‖2 ≤ ‖u− v‖2 + ‖v‖2, this implies ‖Aδ‖2 ≤ 2ε, which further gives

4ε2 ≥ ‖Aδ‖22 = ‖AW−1Wδ‖2 = (Wδ)TW−1ATAW−1(Wδ)

= ‖Wδ‖22 + (Wδ)T (W−1ATAW−1 − I)(Wδ)

≥ ‖Wδ‖22 −
∣∣∣(Wδ)T (W−1ATAW−1 − I)(Wδ)

∣∣∣
≥ ‖Wδ‖22 − |Wδ|T |W−1ATAW−1 − I||Wδ|
≥ ‖Wδ‖22 − µ(A)(‖Wδ‖21 − ‖Wδ‖22)
= (1 + µ(A))‖Wδ‖22 − µ(A)‖Wδ‖21 (28)

where we used W−1W = I and the fact that the diagonal entries of |W−1ATAW−1 − I| are
zeros while off-diagonal entries are bounded from above by µ(A).

Due to W jδ being a vector with a subset of entries from Wδ, we have ‖Wδ‖22 ≥ ‖W jδ‖22,
j = 1, . . . , n, and thus

‖Wδ‖22 ≥
1

n

n∑

j=1

‖W jδ‖22 =
1

n
‖{W jδ}nj=1‖22,2. (29)

Since the groups defined by the W j ’s overlap, ‖Wδ‖2 ≤
∑n

j=1 ‖W jδ‖2, and the squared ℓ1-norm
in (28) can be bounded by

‖Wδ‖21 ≤M‖Wδ‖22 ≤M




n∑

j=1

‖W jδ‖2




2

= M‖{W jδ}nj=1‖21,2. (30)

Introducing the bounds (29)–(30) in (28) yields

1 + µ(A)

n
‖{W jδ}nj=1‖22,2 − µ(A)M‖{W jδ}nj=1‖21,2 ≤ 4ε2. (31)

We will now use this inequality to derive an upper bound on ‖{W jδ}nj=1‖22,2, which will also apply

to ‖Wδ‖22 ≤ ‖{W jδ}nj=1‖22,2, since the groups overlap and the squared components of Wδ are

summed multiple times in ‖{W jδ}nj=1‖22,2. To derive the upper bound, we first introduce a few
notations:

a = ‖{W jδ}j∈I0‖1,2, b = ‖{W jδ}j /∈I0‖1,2,
and

c0 =

(‖{W jδ}j∈I0‖2,2
‖{W jδ}j∈I0‖1,2

)2

∈
[

1

|I0|
, 1

]
, c1 =

(‖{W jδ}j /∈I0‖2,2
‖{W jδ}j /∈I0‖1,2

)2

∈
[

1

n− |I0|
, 1

]
,

where the box bounds are obtained by classical relations between the ℓ1 and ℓ2 norms (∀u ∈ R
k,

‖u‖2 ≤ ‖u‖1 ≤
√
k‖u‖2). With these notations, the term to bound is rewritten as

‖{W jδ}nj=1‖22,2 = ‖{W jδ}j∈I0‖22,2 + ‖{W jδ}j /∈I0‖22,2 = c0a
2 + c1b

2,

while the inequality (31) becomes

1 + µ(A)

n
(c0a

2 + c1b
2)− µ(A)M(a+ b)2 ≤ 4ε2.

We further reformulate this constraint by letting a = ρb:

1 + µ(A)

n
(c0ρ

2 + c1)b
2 − µ(A)M(1 + ρ)2b2 ≤ 4ε2. (32)

Let γ = (1 + ρ)2/(c0ρ
2 + c1). Due to (27), we have a < b and thus ρ ∈ [0, 1), which, together with

the bounds on c0 and c1, gives the constraints 1 ≤ γ ≤ 4(n− |I0|). By setting V = (c0ρ
2 + c1)b

2,
(31) is rewritten as

1 + µ(A)

n
V − µ(A)MγV ≤ 4ε2,

15

Table 1: Results on the example from [Ohlsson et al., 2013b] with quadratic equations.

Method IHT QBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Success rate 54% 79% 0% 0% 97% 97% 91% 100%
Mean time (s) 1.92 1.76 0.26 0.07 0.46 0.15 0.03 0.14

Table 2: Results on the example from [Ohlsson et al., 2013a] with polynomials of degree d = 4.

Method IHT NLBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Success rate 66% 100% 85% 16% 100% 100% 100% 100%
Mean time (s) 0.43 13.1 0.22 0.06 0.42 0.08 0.006 0.006

where
1 + µ(A)

n
− µ(A)Mγ ≥ 1 + µ(A)

n
− 4(n− |I0|)µ(A)M > 0,

since γ ≤ 4(n− |I0|) and the positivity is ensured by the condition (25) and the fact that ‖x0‖0 =
n− |I0|. Thus,

‖Wδ‖22 ≤ ‖{W jδ}nj=1‖22,2 = V ≤ 4nε2

1 + µ(A)− 4µ(A)nM‖x0‖0

and, since ‖W x(x̂− x0)‖22 ≤ ‖W (φ̂− φ0)‖22 = ‖Wδ‖22, (26) is proved.

6 Experiments

This section evaluates the efficiency of the BP and greedy methods in terms of accuracy and
computing time for the noiseless case in Sect. 6.1 and the noisy case in Sect. 6.2. Here, the
definition of accuracy depends on the presence of noise in the equations, while the computing time
refers to Matlab implementations4 using MOSEK and CVX for the convex programs and running
on a standard laptop (except for times reported in Fig. 3).

The following methods are compared: the iterative hard thresholding (IHT) algorithm
[Blumensath, 2013] as implemented by [Beck and Eldar, 2013], the quadratic (QBP) and nonlinear
(NLBP) BP methods of [Ohlsson et al., 2013b, Ohlsson et al., 2013a], the simple ℓ1-minimization
(ℓ1M) solving (5)5, the ℓ1/ℓ2-minimization (ℓ1ℓ2M) solving (10) with its iteratively reweighted
counterpart (IRℓ1ℓ2M) using 10 iterations as defined in Sect. 2.4.1 for ǫ = 0.001, the selective
ℓ1/ℓ2-minimization (Sℓ1ℓ2M) of Sect. 2.4.2, and the exact (EGA) and approximate (AGA) greedy
algorithms of Sect. 3. For the noisy cases, error tolerant formulations of these methods as described
in Sect. 5 are used.

6.1 Exact recovery with noiseless equations

In the noiseless setting considered in the following experiments, accuracy is defined as the ability of
a method to recover the sparsest solution x0 of a polynomial system and is measured as a success
rate, i.e., the percentage of systems for which it recovers x0 (meaning ‖x̂ − x0‖2 ≤ 10−6) in a
Monte Carlo experiment involving 100 trials with random polynomial coefficients but same x0.

Sparse solutions of quadratic equations. Consider example A in [Ohlsson et al., 2013b] with
N = 25 quadratic equations (d = 2) in n = 20 variables. The true x0 that we aim at recovering has
three components at 1 and the rest at 0. The results reported in Table 1 show that all reweighted
BP and greedy methods recover the solution in almost all trials in less than 1 second, whereas

4The code for the proposed methods is available at http://www.loria.fr/~lauer/software/ .
5The results reported here are obtained with 10 iterations of the reweighting procedure of [Candès et al., 2008]

applied to (5).

16

Table 3: Results with purely quadratic equations.

Method QBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Success rate 0% 0% 3% 100% 99% 91% 100%
Mean time (s) 1.42 0.27 0.03 0.77 0.19 0.05 0.36

Table 4: Results with purely nonlinear equations of degree d = 4.

Method NLBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Success rate 100% 0% 15% 100% 100% 100% 100%
Mean time (s) 13.1 0.21 0.07 0.70 0.12 0.01 0.012

Table 5: Results with purely quadratic equations generated as in phase retrieval.

Method GSS QBP IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Success rate 32% 0% 79% 72% 71% 100%
Mean time (s) 0.10 1.45 0.71 0.25 0.05 0.38

the IHT and QBP methods lead to more failures despite longer computing times. However, the
ℓ1M method, which does not enforce the polynomial structure on φ̂, cannot recover the correct
solution. The straightforward optimization of the ℓ1/ℓ2-norm (ℓ1ℓ2M) also fails, which shows the
importance of reweighting for obtaining truly sparse solutions.

Higher-degree polynomial equations. Consider now example A in [Ohlsson et al., 2013a]
with N = 50 polynomial equations of degree d = 4 in n = 5 variables. The true x0 has two
components at 1 and the rest at 0. Though using higher degree polynomials, according to the
results shown in Table 2, this problem setting seems easier than the quadratic example above.
Indeed, the simple ℓ1M method already obtains a success rate of 85% while all reweighted BP and
greedy methods achieve a 100% success rate. This is due to the increase of the number of equations,
N , and the decrease of the number of variables, n, as will be emphasized by additional experiments
below. Here, Sℓ1ℓ2M can be much faster than IRℓ1ℓ2M based on the iterative reweighting of
[Candès et al., 2008] (Sect. 2.4.1) because the number of nonzero groups is very small: 2 < n <
typical number of iterations for the reweighting of [Candès et al., 2008]. However, the AGA obtains
the same success rate, while being one order of magnitude faster.

The NLBP method also recovered the correct solution in all trials, but with a much longer
computing time. This time is roughly divided in halves for the construction of quadratic constraints
that can be handled by QBP on the one hand and the semi-definite optimization of QBP on the
other hand. Here again, the IHT method offers a low success rate, though it uses additional
information on ‖x0‖0 to compute x̂ with the optimal sparsity level (which is unknown to the other
methods). This is due in part to the difficulty of tuning the gradient step-size to obtain convergence
with an objective function whose gradient is not Lipschitz continuous. For this reason, we exclude
the IHT method from the remaining experiments.

Purely nonlinear equations. Consider now the particular case of purely nonlinear equations
discussed in Sect. 4. Given N = 25 purely quadratic polynomials p2i (x) = xTQix in n = 20
variables, we compute the values yi = p2i (x0) with an x0 with three components at 1 and the rest
at 0. Results are shown in Table 3, where the definition of the success rate is slightly modified:
since the sparsest solution is not unique in this case, a successful trial is defined as one for which
the estimate x̂ belongs to the set of solutions (meaning that min{‖x̂− x0‖2, ‖x̂+ x0‖2} ≤ 10−6).
Table 4 reports results of similar experiments with a higher degree d = 4 and N = 50, n = 5,
‖x0‖0 = 2. In this case, the estimates of base variables x̂j are directly given as cube roots of the
estimates of x3

j . In both cases (d = 2 or 4), the success rates are similar to the ones reported in

17

Tables 1 and 2, which provides evidence that the alternative proposed in Sect. 4 yields satisfactory
results when Assumption 1 does not hold.

In order to compare with the greedy sparse-simplex (GSS) method of [Beck and Eldar, 2013]
using the implementation provided with that paper, we consider a typical application for purely
quadratic equations, namely, phase retrieval. In such applications, the measurements obey ci =
|cTi x|, which can be reformulated as yi = c2i = xT cic

T
i x to be handled by the proposed methods.

Results in Table 5 obtained for N = 25, n = 20 and ‖x0‖0 = 3 show that the proposed methods
perform much better than the GSS method with data generated in this manner, despite the fact
that GSS works with the additional knowledge of ‖x0‖0. Note that many other methods have been
proposed for sparse phase retrieval. The comparison is here limited to a sample of generic sparse
recovery methods that apply to phase retrieval as a special case.

Remark: All examples above consider a moderate dimensional setting (n ≤ 20) with low sparsity
levels ‖x0‖0 ≤ 3. In such cases, the exact greedy algorithm (EGA) can be applied without complexity
issues and yields a perfect recovery in all trials, even faster than the BP methods based on convex
relaxations. However, despite its name and the observed success rates, the EGA is not an exact
algorithm for solving polynomial systems but only for solving group-sparsity optimization problems
in the form of (8). While Theorem 2 states that this is sufficient to solve (1)–(2) if the polynomial
constraints are satisfied, there is no guarantee that this is the case in general.

Estimating the probability of successful recovery. Figures 1 (for n = 10) and 2 (for n = 20)
show the probability of successful recovery of an x0 estimated via the success rate versus the
sparsity level ‖x0‖0 for various values of δ = N/n. Contrary to the linear case where the system
is overdetermined for values of δ > 1, here δ can grow as large as M/n before the system becomes
overdetermined. Thus, classical studies on the linear case focus on small values of δ < 1, whereas
we only analyze the probability of successful recovery for δ ≥ 1 (δ < 1 is a very difficult setting
with polynomial equations).

These results show that all the proposed methods can recover the sparsest solution for suffi-
ciently sparse cases with high probability and that the sparsity level at which this occurs depends
on the particular method on the one hand and on the ratio δ on the other hand. Larger values of
δ correspond to larger systems with more equations and thus with more information on the sought
solution. Another expected observation is that the probability of success decreases when the degree
d increases. For n = 20, this leads to constant failure for the ℓ1M and IRℓ1ℓ2M methods at d = 5,
though the Sℓ1ℓ2M and AGA methods can still recover sufficiently sparse solutions. Except for
this particular setting (n = 20, d = 5), the results for IRℓ1ℓ2M and Sℓ1ℓ2M are comparable, while
the AGA yields slightly lower probabilities. The simple ℓ1M method is much less effective than
the others, but nonetheless obtains a high probability of recovery for not too difficult cases with
d = 2 and a sufficiently large N .

Computational complexity. The next experiments evaluate the computational complexity of
the methods with respect to the number of variables n, the degree d and the sparsity level ‖x0‖0.
Focusing only on the computing time, we consider favorable settings with these parameters and
the number of equations N set such that x0 should be recovered in most cases. The left plot of
Fig. 3 shows the mean time of the methods for a range of n ∈ [5, 20]. They all have a complexity
exponential in n due to the dimension M of φ. In addition, they have similar rates of increase,
except the EGA for which the computing time grows faster with n due to the combinatorial nature
of the algorithm. Similar results, shown in the middle plot, are obtained with respect to the
degree d, except that the greedy algorithms benefit from a much lower rate of increase. In these
experiments, the reweighting scheme of the Sℓ1ℓ2M is faster than the one used by the IRℓ1ℓ2M, but
its computing time highly depends on ‖x0‖0 whereas the number of iterations is fixed for IRℓ1ℓ2M.
This is clearly seen from the right plot of Fig. 3, where the computing time of the Sℓ1ℓ2M reaches
the one of the IRℓ1ℓ2M when ‖x0‖0 equals the number of iterations of IRℓ1ℓ2M. The exact greedy
algorithm (EGA) suffers from a similar complexity issue with respect to ‖x0‖0, but much more
pronounced. On the contrary, its approximate variant (AGA) remained very efficient in all of our
tests.

18

d = 2

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 3

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 4

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

Figure 1: Estimated probability of successful recovery versus ‖x0‖0 for various δ = N/n in the
case n = 10. Each row considers a different degree d, while each column contains the results of a
different algorithm (from left to right: ℓ1M, IRℓ1ℓ2M, Sℓ1ℓ2M and AGA).

19

d = 2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 4

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

d = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

IRL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

SL1/L2M

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

AGA

δ = 1

δ = 2

δ = 3

δ = 4

δ = 5

Figure 2: Estimated probability of successful recovery versus ‖x0‖0 for various δ = N/n in the
case n = 20. Each row considers a different degree d, while each column contains the results of a
different algorithm (from left to right: ℓ1M, IRℓ1ℓ2M, Sℓ1ℓ2M and AGA).

10 15 20 25 30 35 40

10
−2

10
−1

10
0

10
1

10
2

10
3

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

2 3 4 5 6 7

10
−2

10
−1

10
0

10
1

10
2

10
3

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

2 4 6 8 10

10
−2

10
−1

10
0

10
1

10
2

10
3

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

Figure 3: Mean computing time of the methods in seconds versus the number of variables n (left),
the degree d (middle) and the sparsity level ‖x0‖0 (right). These times are obtained on a Linux
server equipped with 2 Xeon X5690 at 3.47 GHz.

20

Table 6: Results with noisy quadratic equations.

Method QBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Mean relative error 16.1% 11.7% 22.2% 7.72% 6.52% 6.20% 6.19%
Success rate 14% 96% 0% 100% 100% 99% 100%
Mean time (s) 2.02 0.57 0.13 0.89 0.32 0.02 0.15

Table 7: Results with noisy equations of degree d = 4.

Method NLBP ℓ1M ℓ1ℓ2M IRℓ1ℓ2M Sℓ1ℓ2M AGA EGA

Mean relative error 16.5% 22.3% 29.8% 7.65% 5.83% 6.74% 5.84%
Success rate 55% 87% 0% 100% 100% 99% 100%
Mean time (s) 13.6 0.31 0.12 0.75 0.19 0.006 0.007

6.2 Stable recovery in the presence of noise

We now turn to the noisy case as discussed in Sect. 5. In this setting, accuracy is measured by two
performance indexes: the mean relative error, ‖x̂− x0‖2/‖x0‖2, and the success rate with respect
to the estimation of the support of x0 (where values |x̂j | < 10−6 are considered as zeros). Indeed,
in many applications, the recovery of the correct support is more important that the precise values
of the estimates.

First results. The data are generated as in Sect. 6.1 except that yi = pdi (x0) + ei, with noise
terms ei forming a zero-mean Gaussian random vector e satisfying ‖e‖2 = ε = 3. This corresponds
to a signal-to-noise ratio, ‖y‖22/‖e‖22, of about 18 dB. Results with N = 50 polynomials of degree
d = 2 in n = 20 variables are shown in Table 6 and in Table 7 for d = 4 and n = 5. The reweighted
BP methods based on group-sparsity and the greedy methods lead to a rather small approximation
error and they all recover the correct support in almost all trials despite the presence of noise.

Influence of the noise level ε. The influence of the noise level ε = ‖e‖2 on the performance
of the proposed methods is evaluated by letting the value of ε vary between 1 and 10, which
corresponds to a signal-to-noise ratio decreased from 28 dB to 9 dB. For all methods except
the ℓ1M, the results plotted in Fig. 4 indicate that, as expected, e.g., from the bound (26), the
approximation error directly depends on the noise level. In fact, the mean relative error is almost
linear with respect to ε, which shows that the dependence on ε in the bound (26) of Theorem 6 is of
the correct nature. But even more interestingly, the noise level does not influence the success rate
corresponding to the estimation of the support of x0, thus providing evidence that the methods
are robust to noise. Here again, the ℓ1M method, which does not include structural knowledge in
its formulation, does not benefit from such satisfactory features.

Influence of ε as a tuning parameter. In practical applications, the noise level might be
unknown and ε becomes a tuning parameter. Figure 5 shows the influence of this parameter on the
performance of the methods for a fixed noise level ‖e‖2 = 3. All methods except the ℓ1M perform
very well with a slightly overestimated ε ∈ [3, 4] and, for ε within a reasonable range around ‖e‖2
(ε ∈ [2, 6]), the methods still yield rather accurate estimates of x0. Significantly larger values of
ε lead to an increase of the error for all methods except the greedy algorithms which maintain a
mean relative error below 7% for all values of ε ≥ ‖e‖2. On the other hand, the IRℓ1ℓ2M method
is the only one that is not badly affected by the underestimation of ε in terms of approximation
error.

Regarding the estimation of the support of x0, all methods fail with ε < ‖e‖2, while overesti-
mating ε ≥ ‖e‖2 leads to perfect recovery even for much larger values of ε. This is in line with
results on linear BP denoising, such as Theorem 4.1 in [Donoho et al., 2006] which guarantees that
the estimated support is a subset of the sought one for sufficiently sparse cases when using an
overestimated ε.

21

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

Figure 4: Mean relative error (left) and success rate (right) versus ε = ‖e‖2. Except for the ℓ1M,
the curves are hardly distinguishable and close to 100% for the success rate.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

L1M

IRL1/L2M

SL1/L2M

AGA

EGA

Figure 5: Mean relative error (left) and success rate (right) versus ε with data perturbed by a noise
of ℓ2-norm equal to 3. Except for ℓ1M, the curves of the success rate are hardly distinguishable
and close to 100% for ε ≥ 3.

22

7 Conclusions

The paper proposed several methods for finding the sparsest solution of a system of polynomial
equations. Two generic approaches were considered, one based on convex relaxations and one on a
greedy strategy. For the convex relaxations, sufficient conditions of exact recovery of the sparsest
solution were derived. The methods were also extended to deal with noisy equations, in which
case stable recovery bounds for the convex relaxations were obtained. Both the computational
efficiency and the accuracy of the proposed methods were shown in numerical experiments, which
also emphasized the relationship between the probability of success and the sparsity of the solution
for each method. In addition, these results indicate that the proposed methods accurately recover
the sought solution in many cases where the sufficient conditions do not hold. As in classical BP
theory, these conditions suffer from an “excessive pessimism” and are too restrictive due to their
worst-case nature.

Remaining open issues include the convergence analysis of the greedy approximation towards
the sparsest solution and the derivation of sufficient conditions for the solution of the group-
sparsity optimization problem (8) to satisfy the polynomial constraints. Future work will also
consider applying the proposed methods to more general nonlinear constraints, e.g., via their
Taylor expansions as in [Ohlsson et al., 2013a].

References

[Andersen and Andersen, 2000] Andersen, E. D. and Andersen, K. D. (2000). The MOSEK interior
point optimizer for linear programming: an implementation of the homogeneous algorithm. High
Performance Optimization, 33:197–232.

[Balan et al., 2006] Balan, R., Casazza, P., and Edidin, D. (2006). On signal reconstruction with-
out phase. Applied and Computational Harmonic Analysis, 20:345–356.

[Bandeira et al., 2013] Bandeira, A. S., Cahill, J., Mixon, D. G., and Nelson, A. A. (2013). Saving
phase: Injectivity and stability for phase retrieval. arXiv preprint arXiv:1302.4618.

[Beck and Eldar, 2013] Beck, A. and Eldar, Y. C. (2013). Sparsity constrained nonlinear optimiza-
tion: Optimality conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509.

[Blumensath, 2013] Blumensath, T. (2013). Compressed sensing with nonlinear observations and
related nonlinear optimisation problems. IEEE Transactions on Information Theory, 59(6):3466–
3474.

[Blumensath and Davies, 2008] Blumensath, T. and Davies, M. E. (2008). Gradient pursuit for
non-linear sparse signal modelling. In European Signal Processing Conference (EUSIPCO), pages
25–29.

[Bruckstein et al., 2009] Bruckstein, A. M., Donoho, D. L., and Elad, M. (2009). From sparse
solutions of systems of equations to sparse modeling of signals and images. SIAM Review,
51(1):34–81.

[Candès, 2006] Candès, E. J. (2006). Compressive sampling. In Proceedings oh the International
Congress of Mathematicians: invited lectures, pages 1433–1452.

[Candès et al., 2013a] Candès, E. J., Eldar, Y. C., Strohmer, T., and Voroninski, V. (2013a). Phase
retrieval via matrix completion. SIAM Journal on Imaging Sciences, 6(1):199–225.

[Candès et al., 2013b] Candès, E. J., Strohmer, T., and Voroninski, V. (2013b). Phaselift: Exact
and stable signal recovery from magnitude measurements via convex programming. Communi-
cations on Pure and Applied Mathematics, 66(8):1241–1274.

[Candès et al., 2008] Candès, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by
reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications, 14(5):877–905.

23

[Deng et al., 2011] Deng, W., Yin, W., and Zhang, Y. (2011). Group sparse optimization by
alternating direction method. Technical Report TR11-06, Department of Computational and
Applied Mathematics, Rice University.

[Donoho, 2006] Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306.

[Donoho et al., 2006] Donoho, D. L., Elad, M., and Temlyakov, V. N. (2006). Stable recovery of
sparse overcomplete representations in the presence of noise. IEEE Transactions on Information
Theory, 52(1):6–18.

[Donoho and Huo, 2001] Donoho, D. L. and Huo, X. (2001). Uncertainty principles and ideal
atomic decomposition. IEEE Transactions on Information Theory, 47(7):2845–2862.

[Ehler et al., 2013] Ehler, M., Fornasier, M., and Sigl, J. (2013).
Quasi-linear compressed sensing. Technical report. http://www-
m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/greedy 21.pdf.

[Eldar and Kutyniok, 2012] Eldar, Y. C. and Kutyniok, G., editors (2012). Compressed Sensing:
Theory and Applications. Cambridge University Press.

[Fienup, 1982] Fienup, J. (1982). Phase retrieval algorithms: a comparison. Applied Optics,
21(15):2758–2769.

[Gerchberg and Saxton, 1972] Gerchberg, R. and Saxton, W. (1972). A practical algorithm for the
determination of phase from image and diffraction plane pictures. Optik, 35:237–246.

[Gonsalves, 1976] Gonsalves, R. (1976). Phase retrieval from modulus data. Journal of Optical
Society of America, 66(9):961–964.

[Grant and Boyd, 2008] Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth
convex programs. In Blondel, V., Boyd, S., and Kimura, H., editors, Recent Advances in Learning
and Control, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag
Limited. http://stanford.edu/~boyd/graph_dcp.html.

[Grant and Boyd, 2013] Grant, M. and Boyd, S. (2013). CVX: Matlab software for disciplined
convex programming, version 2.0 beta. http://cvxr.com/cvx.

[Kohler and Mandel, 1973] Kohler, D. and Mandel, L. (1973). Source reconstruction from the mod-
ulus of the correlation function: a practical approach to the phase problem of optical coherence
theory. Journal of the Optical Society of America, 63(2):126–134.

[Le et al., 2013] Le, V. L., Lauer, F., and Bloch, G. (2013). Selective ℓ1 minimization for sparse
recovery. IEEE Transactions on Automatic Control. (to appear).

[Marchesini, 2007] Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal
of the Optical Society of America A, 24(10):3289–3296.

[Ohlsson and Eldar, 2013] Ohlsson, H. and Eldar, Y. C. (2013). On conditions for uniqueness in
sparse phase retrieval. CoRR, abs/1308.5447.

[Ohlsson et al., 2013a] Ohlsson, H., Yang, A. Y., Dong, R., and Sastry, S. (2013a). Nonlinear basis
pursuit. arXiv preprint arXiv:1304.5802.

[Ohlsson et al., 2013b] Ohlsson, H., Yang, A. Y., Dong, R., Verhaegen, M., and Sastry, S. (2013b).
Quadratic basis pursuit. arXiv preprint arXiv:1301.7002.

[Ranieri et al., 2013] Ranieri, J., Chebira, A., Lu, Y. M., and Vetterli, M. (2013). Phase retrieval
for sparse signals: Uniqueness conditions. CoRR, abs/1308.3058.

[Vidal et al., 2005] Vidal, R., Ma, Y., and Sastry, S. (2005). Generalized principal component anal-
ysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1945–
1959.

24

A Bound on the sparsity level of φ

Lemma 3. For all (a, b, d) ∈ (N∗)3 such that a ≥ d(b+ d), the inequality

1

a

d∑

q=2

(
a+ q − 1

q

)
≥ d

b

d∑

q=2

(
b+ q − 1

q

)

holds.

Proof. For q ≤ d, we can bound the terms in the sum as

1

a

(
a+ q − 1

q

)
=

(a+ q − 1)!

a q!(a− 1)!
=

1

a q!

q−1∏

i=0

(a+ i) =
1

q!

q−1∏

i=1

(a+ i)

≥ 1

q!
aq−1

≥ 1

q!
dq−1(b+ d)q−1

≥ 1

q!
dq−1

q−1∏

i=1

(b+ i)

≥ dq−1

b

(
b+ q − 1

q

)

where we used a ≥ d(b+ d) in the second inequality. Then

1

a

d∑

q=2

(
a+ q − 1

q

)
≥ 1

b

d∑

q=2

dq−1

(
b+ q − 1

q

)

≥ d

b

d∑

q=2

dq−2

(
b+ q − 1

q

)

≥ d

b

d∑

q=2

(
b+ q − 1

q

)

Proposition 2. Let the mapping φ : R
n → R

M be defined as above. Then, with d ≥ 3 and
n ≥ d(‖x‖0 + d), the vector φ(x) is sparser than the vector x in the sense that the inequality

‖φ(x)‖0
M

≤ 2‖x‖0
dn

holds for all x ∈ R
n.

Proof. By construction, the number of nonzeros in φ(x) is equal to the sum over q, 1 ≤ q ≤ d, of
the number of monomials of degree q in ‖x‖0 variables:

‖φ(x)‖0
M

=

∑d
q=1

(
‖x‖0 + q − 1

q

)

∑d
q=1

(
n+ q − 1

q

) =
‖x‖0
n

1
‖x‖0

∑d
q=1

(
‖x‖0 + q − 1

q

)

1
n

∑d
q=1

(
n+ q − 1

q

)

=
‖x‖0
n

1 + 1
‖x‖0

∑d
q=2

(
‖x‖0 + q − 1

q

)

1 + 1
n

∑d
q=2

(
n+ q − 1

q

)

=
‖x‖0
n




1

1 + 1
n

∑d
q=2

(
n+ q − 1

q

) +

1
‖x‖0

∑d
q=2

(
‖x‖0 + q − 1

q

)

1 + 1
n

∑d
q=2

(
n+ q − 1

q

)




25

The assumption n ≥ d(‖x‖0 + d) implies that6 d ≤ n. With d ≤ n, we have

1

n

(
n+ q − 1

q

)
≥ 1

q!
nq−1 ≥ 1

q!
dq−1

which yields

1

n

d∑

q=2

(
n+ q − 1

q

)
≥ 1

n

d∑

q=2

(
n+ 2− 1

2

)
≥ (d− 1)

d

2

Now, on the one hand we have

d ≥ 3⇒ 1

2
d2 − 3

2
d+ 1 ≥ 0

⇒ 1 +
1

n

d∑

q=2

(
n+ q − 1

q

)
≥ d

⇒ 1

1 + 1
n

∑d
q=2

(
n+ q − 1

q

) ≤ 1

d

and on the other hand, Lemma 3 yields

1
‖x‖0

∑d
q=2

(
‖x‖0 + q − 1

q

)

1 + 1
n

∑d
q=2

(
n+ q − 1

q

) ≤
1

‖x‖0

∑d
q=2

(
‖x‖0 + q − 1

q

)

1
n

∑d
q=2

(
n+ q − 1

q

) ≤ 1

d

Thus,
‖φ(x)‖0

M
≤ 2‖x‖0

dn

B Other conditions for sparse recovery

The following uses the exact value of ‖φ0‖0.
Theorem 7. Let x0 denote the unique solution to (1)–(2). If the inequality

d∑

q=1

(
‖x0‖0 + q − 1

q

)
≤ 1

2

(
1 +

1

µ(A)

)
(33)

holds, then the solution φ̂ to (5) is unique and equal to φ(x0), thus providing x̂ = x0.

Another more compact but slightly less tight result is as follows.

Theorem 8. Let x0 denote the unique solution to (1)–(2). If the inequality
(
‖x0‖0 + d− 1

d

)
≤ 1

2d

(
1 +

1

µ(A)

)
(34)

holds, then the solution φ̂ to (5) is unique and equal to φ(x0), thus providing x̂ = x0.

Proof. Since the terms in the sum of Theorem 7 form an increasing sequence, we have

d∑

q=1

(
‖x0‖0 + q − 1

q

)
≤ d

(
‖x0‖0 + d− 1

d

)

which yields the sought statement by application of Theorem 7.

6Assume d > n, then, the assumption of the Proposition leads to n > n(‖x‖0 + n) and ‖x‖0 + n < 1 which is
impossible since n ≥ 1.

26

C Value of m

Let define m as the number of monomials involving a variable x with a degree ≥ 1. It can
be computed as the sum over q, 0 ≤ q ≤ d − 1 of the number of monomials of degree q in n − 1
variables times the remaining degree d−q (since each monomial in n−1 variables can be multiplied
by x or x2... or xd−q to produce a monomial of degree at most d in n variables):

m =

d−1∑

q=0

(d− q)

(
(n− 1) + q − 1

q

)
=

d−1∑

q=0

(d− q)

(
n+ q − 2

q

)
.

Another technique computes m as the total number of all monomials minus the number of mono-
mials not involving x which is the number of monomials in n− 1 variables:

m = M−
d∑

q=1

(
n+ q − 2

q

)
=

d∑

q=1

(
n+ q − 1

q

)
−
(
n+ q − 2

q

)
=

d∑

q=1

[
(n+ q − 1)

n− 1
− 1

](
n+ q − 2

q

)

m =

d∑

q=1

q

n− 1

(
n+ q − 2

q

)

27

