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Peter Bella Michael Goldman∗
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Abstract

We are interested in the energetic cost of a martensitic inclusion of volume V in austenite
for the cubic-to-tetragonal phase transformation. In contrast with the work of [Knüpfer,
Kohn, Otto: Comm. Pure Appl. Math. 66 (2013), no. 6, 867–904], we consider domain with
a corner and obtain a better scaling law for the minimal energy (Emin ∼ min(V 2/3, V 7/9)).
Our predictions are in a good agreement with physical experiments where nucleation of
martensite is usually observed near the corners of the specimen.

1 Introduction

In this short note we study the energetic cost of a nucleation for the cubic-to-tetragonal phase
transformation in domains with a corner. We prove that in the geometrically linear setting, it
is energetically more favorable to start the nucleation at the corner of the domain compared
to the nucleation inside the specimen. This is in good agreement with experiments and with
related results for cubic-to-orthorhombic phase transitions [1].

We work in the framework of geometrically linear elasticity so that the elastic energy of
our material depends only on the symmetric part e(u) := 1

2(∇tu +∇u) of the gradient of the
displacement u : Ω → R

3 from a reference configuration (see [6]). We choose the reference
lattice to be the austenite phase so that the stress-free strains are given by e(0) = 0 in the
austenite and by e(1), e(2), and e(3) in the three variants of the martensite (see Section 2 for the
definition of e(i)). We introduce the characteristic functions of the martensitic variants

χi ∈ BV (Ω, {0, 1}), and χ1 + χ2 + χ3 ≤ 1. (1)

The volume of the martensitic inclusion is then given by

V :=

∫

Ω
χ1 + χ2 + χ3 dx. (2)

The normalized elastic energy is given by:

Eelast[χ] = inf
u∈H1(Ω,R3)

∫

Ω

∣

∣

∣

∣

∣

e(u)−
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

dx.
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We also include an interfacial energy which penalizes the creation of interfaces between austenite
and martensites or between two variants of martensites (see [2]):

Einterf [χ] :=

∫

Ω
(|∇χ1|+ |∇χ2|+ |∇χ3|) dx,

where for χ ∈ BV (Ω, {0, 1}),
∫

Ω |∇χ| denotes the total variation of χ. The total energy is then
given by

E[χ] := Einterf [χ] + Eelast[χ].

We are interested in the energetic cost of the formation of a nucleus of martensite of volume
V inside the austenite. This energetic cost determines the energy barrier which needs to be
overcome to start the nucleation of martensite in the austenite. In [6], it was proven that when
Ω = R

3,

inf
χ satisfies (1),(2)

E[χ] ∼
{

V 2/3 if V ≤ 1

V 9/11 if V ≥ 1,

which gives the cost of such a nucleus inside the domain. We are instead interested in the case
when Ω is a generic corner. Our main result reads as follows:

Theorem 1. If the domain Ω is a generic corner (see (3) for a precise definition), then the
minimum of the energy scales like

inf
χ satisfies (1),(2)

E[χ] ∼
{

V 2/3 if V ≤ 1

V 7/9 if V ≥ 1.

This results show that it is indeed energetically favored to start nucleation at corners. We
should however warn the reader that we do not say anything about the nucleation on faces or
edges of the specimen. We believe that in these cases, the scaling should be V 9/11 as for the
nucleation inside but since they do not seem accessible using the presently-available techniques1,
we do not investigate this question here. We would also like to point out that our result does
not hold for the corner (R3)+ since in this case there is no habit plane which is cutting the
corner. By adapting the construction of [6], we see that in this case, nucleation both at the
corner and at the edge can be achieved with an energy of order at most min(V 2/3, V 8/10). Since
this case is very degenerate and since again, a proof of the corresponding lower bound would
probably require completely new ideas, we do not push further this question here.

The main difference between nucleation at a corner and nucleation in the bulk is that in the
latter, the notion of self-accommodation plays a central role. In fact, in order to create a nucleus
in the bulk, one needs to be able to construct a three-dimensional macroscopically stress-free
configuration. As shown in [6, 7], this is possible only if the three variants of the martensite are
present (in similar volume fractions). Indeed, if only two variants of martensite are used, then
the energy must be larger – of order V 10/12) [7]. Moreover, to avoid large energetic costs the
martensitic inclusion prefers to have boundary parallel to one of the habit planes. This is not
completely possible for the inclusion in the whole space, and so one constructs a lens-shaped
inclusion [6] to (at least approximately) have the boundary parallel to the habit plane. The
energy scaling law V 9/11 is partly due to the macroscopic bending of the lens. On the contrary,
for a generic corner it is possible to construct a macroscopically stress-free configuration with a
boundary between martensitic inclusion and austenite exactly parallel to the habit plane. The

1The proof of the lower bound for the whole space in [6] is based on the Fourier transform, which for obvious
reasons can not be used here.
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optimal scaling of the energy V 7/9 is then obtained by the classical branching pattern using
only two variants of martensite (see [8, 3, 5]).

Our proof of the lower bound strongly relies on a result by Capella and Otto [4] which gives
a local lower bound on the energy of austenite-martensite interfaces. More precisely, we use the
fact that if in a ball the volume fraction of austenite is bounded away from 0 and 1 (i.e. both
austenite and martensites are present), then in a larger ball the energy cannot be small.

Let us emphasis that we are dealing only with the cubic-to-tetragonal phase transformation
where the possible microstructures are very rigid (see [3, 4] and references therein). Much less
is known in other situations such as cubic-to-orthorhombic or cubic-to-monoclinic phase trans-
formations (see [10, 9] for some available results).

Notation In the paper we will use the following notation. The symbols ∼, &, . indicate
estimates that hold up to a constant, which could depend on the domain Ω, but not on χ or u.
For instance, f . g denotes the existence of a constant C = C(Ω) > 0 such that f ≤ Cg. For
u, v in R

3, the tensor product u⊗v is the 3×3 matrix defined componentwise by (u⊗v)ij := uivj.
The symmetrized tensor product is defined by u⊙ v := 1

2 (u⊗ v + v ⊗ u). Finally, for a matrix

A, we denote e(A) := 1
2(A

t +A) its symmetric part and its norm by |A| :=
√

∑

ij A
2
ij .

2 The model

We adopt the notation from [6]. We assume that the atoms in the specimen are aligned with
the coordinate axes, i.e.

e(0) := 0, e(1) :=





−2 0 0
0 1 0
0 0 1



 , e(2) :=





1 0 0
0 −2 0
0 0 1



 , e(3) :=





1 0 0
0 1 0
0 0 −2



 .

Two strains A,B will be called compatible if there exists a plane and a continuous function
u with e(u) = A on one side of the plane and e(u) = B on the other side. Two such strains
are called twins, the corresponding plane is called the twinning plane and its normal is called
the twin direction. It can be proven that two strains A and B are compatible if and only if
A−B = a⊙b for some vectors a, b in R

3. In the case of cubic-to-tetragonal phase transformations
it can be computed that the martensitic variants are pairwise compatible in the sense that for
any permutation (ijk), letting εijk be the signature of the permutation, there holds

e(i) − e(j) = 6εijk(bij ⊙ bji),

where the six twinning planes have normals

b12 :=
1√
2





1
1
0



 , b31 :=
1√
2





1
0
1



 , b23 :=
1√
2





0
1
1



 ,

b21 :=
1√
2





−1
1
0



 , b13 :=
1√
2





1
0
−1



 , b32 :=
1√
2





0
−1
1



 .

Moreover, though no single martensitic variant is compatible with the austenite, there is com-
patibility of austenite with some convex combinations of the martensite variants in the sense
that for i 6= j,

1

3
e(i) +

2

3
e(j) = 2εijk(bjk ⊙ bkj).
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The planes which are connecting austenite to twinned martensite are called habit planes and
their normals are called habit directions. Notice that for cubic-to-tetragonal phase transforma-
tion, habit planes and twinning planes coincide. We refer the interested reader to [2] for more
information on the subject.

To study the nucleation in the corner, we consider a domain Ω of the form

Ω := {αa+ βb+ γc : α ≥ 0, β ≥ 0, γ ≥ 0} , (3)

where a, b, c is some basis of R3 with |a| = |b| = |c| = 1. Moreover, we assume that (at least)
one of the habit planes can cut off a corner of our specimen, i.e. that at least one of the normals
to the habit planes (we denote that normal by n) satisfies either

a · n > 0, b · n > 0, c · n > 0, (4)

or
a · n < 0, b · n < 0, c · n < 0.

Without loss of generality we can assume that n = b23 and that condition (4) holds. Moreover,
we can also assume that the vectors a, b, and c are in positive order, i.e. that (a × b) · c > 0,
(b× c) · a > 0, and (c× a) · b > 0. Finally, we define

µ := min

{

(a× b)

|a× b| · c,
(b× c)

|b× c| · a,
(c× a)

|c× a| · b
}

∈ (0, 1].

3 Lower Bound

In this section we prove the lower bound, that is

inf
χ satisfies (1),(2)

E[χ] &

{

V 2/3 if V ≤ 1,

V 7/9 if V ≥ 1.
(5)

If V ≤ 1, the lower bound immediately follows from the isoperimetric inequality. Hence we
need to focus only on the case V ≥ 1. In the proof we will use the following lemma, which can
be obtained by simple scaling from [4, Theorem 1 - part i)]:

Lemma 1. There exists a small but universal κ ∈ (0, 1) with the following property: for every
R ≥ 1/κ, every u ∈ H1(BR(0),R

3) and every χ with the property

1

10
|BκR| ≤

∫

BκR

χ1 + χ2 + χ3 dx ≤ 9

10
|BκR|, (6)

we have
∫

BR

∣

∣

∣

∣

∣

e(u) −
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

+

3
∑

i=1

|∇χi|dx & R7/3. (7)

It is easy to see that for R < 1/κ, (7) (with possibly different universal constant) follows
from (6) by the isoperimetric inequality.

Let us introduce the following notation for the portion of the space occupied by the marten-
sites

M := {x ∈ Ω : χ1(x) + χ2(x) + χ3(x) = 1} , (8)

so that |M | = V . Let us now consider χ which satisfies (1), (2). To prove (5) it is enough to
construct a (at most countable) set of balls B(xi, ri) with the following properties:
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1. the balls B(xi, ri) are disjoint and are subset of Ω;

2.
∣

∣M \⋃i B(xi, 15µ
−1ri)

∣

∣ = 0;

3. 1
10 |B(xi, κri)| ≤

∫

B(xi,κri)
χ1 + χ2 + χ3 dx ≤ 9

10 |B(xi, κri)|.

Indeed, let us assume that we have such a covering. Then by Lemma 1 we have for every i

∫

B(xi,ri)

∣

∣

∣

∣

∣

e(u) −
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

+

3
∑

i=1

|∇χi|dx & r
7/3
i .

Since B(xi, ri) are disjoint and B(xi, ri) ⊂ Ω, summing the above relation in i implies

∫

Ω

∣

∣

∣

∣

∣

e(u)−
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

+

3
∑

i=1

|∇χi|dx &
∑

i

r
7/3
i .

Finally, because of the second property, we see that

∑

i

r3i &
∑

i

|B(xi, 15µ
−1ri)| ≥

∣

∣

∣

∣

∣

⋃

i

B(xi, 15µ
−1ri)

∣

∣

∣

∣

∣

≥ |M | = V,

and by Jensen’s inequality applied to the concave function t7/9, we see that

∫

Ω

∣

∣

∣

∣

∣

e(u)−
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

+

3
∑

i=1

|∇χi|dx &
∑

i

(r3i )
7/9 &

(

∑

i

r3i

)7/9

& V 7/9.

Since this holds for any u and χ which satisfies (1) and (2), (5) immediately follows.
It remains to show the existence of the balls B(xi, ri). Let x̄ be any point of density of M .2

Then there exists a radius r0 > 0 such that B(x̄, r0) ⊂ Ω and |B(x̄, κr0) ∩M | ≥ 1
10 |B(x̄, κr0)|.

Consider the function f defined by

f(t) :=
|B(x̄+ t(a+ b+ c), κ(r0 + µt)) ∩M |

|B(x̄+ t(a+ b+ c), κ(r0 + µt))| ,

which measures the volume fraction of balls obtained from B(x̄, r0) by dilation in such a way
that all these balls belong to Ω.

We claim that for some tx̄ ≥ 0 we have 1
10 ≤ f(tx̄) ≤ 9

10 . Indeed, we know that f(0) ≥ 1
10 and

that f is a continuous function on [0,∞). Since the volume ofM is finite, we have limt→∞ f(t) =
0, and the claim follows. In this way, to each x̄ we assign a ball B(x̄+ tx̄(a+ b+ c), r0 + µtx̄).
Before proceeding we point out that B(x̄+ tx̄(a+ b+ c), r0 + µtx̄) ⊂ Ω.

Now let B denotes set of the constructed balls enlarged by a factor 3µ−1, i.e. we define
B :=

{

B(x̄+ tx̄(a+ b+ c), 3µ−1(r0 + µtx̄)) : x̄ point of density of M
}

. We note that x̄ ∈ B(x̄+
tx̄(a+ b+ c), 3µ−1(r0 + µtx̄)), in particular M is covered (up to a negligible set) by the balls in
B.

Now we apply Vitali’s covering lemma to B. We observe that for every x̄ and corresponding tx̄
we have |M | ≥ |B(x̄+ tx̄(a+ b+ c), κ(r0 + µtx̄)) ∩M | ≥ 1

10 |B(x̄+tx̄(a+b+c), κ(r0+µtx̄))|, and
so r0+µtx̄ . |M |1/3. Therefore the supremum of radii of balls in B is bounded, and so by Vitali’s
covering lemma there exists a set of balls Bi = B(xi, ri) = B(xi + txi

(a+ b+ c), r0 + µtxi
) ⊂ Ω

such that B(xi, 3µ
−1ri) ∈ B, B(xi, 15µ

−1ri) cover M (up to a negligible set), and B(xi, 3µ
−1ri)

(hence also B(xi, ri)) are disjoint. This completes the proof of the lower bound.

2That is a Lebesgue point of χM . Notice that by definition, x̄ has to belong to the interior of Ω.
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4 Upper bound

In this section we prove the upper bound, i.e.

inf
χ satisfies (1),(2)

E[χ] .

{

V 2/3 if V ≤ 1,

V 7/9 if V ≥ 1.
(9)

If V ≤ 1, it is enough considering χ1 = χBR(x) with |BR(x)| = V and BR(x) ⊂ Ω, χ2 = χ3 = 0
and u = 0 to get

E(χ) ≤ CV 2/3 +

∫

BR(x)
|e(1)|2 . V 2/3 + V . V 2/3.

For V ≥ 1, we use a classical branching construction which dates back to Kohn and Müller [8]
(see also [3, 5]). Our construction will be essentially two-dimensional and will use branching
close to the martensite-austenite interface. We will use a simplified version of the construction
used in [6] and will follow their notations.

Let n := b32 be the normal to the habit plane cutting off the corner and let us denote

b3 :=
b21 × n

|b21 × n| , b2 :=
n× b3
|n× b3|

, b1 :=
b3 × b21
|b3 × b21|

,

which is a basis of R
3 and let yi := x · bi be the associated coordinates. For R > 1, let

CR := {−R ≤ y1 ≤ R, 0 ≤ y2 ≤ R, 0 ≤ y3 ≤ R}. We are going to construct a pair (u, χ) such
that χ1 +χ2+χ3 = 1 in C−

R := CR ∩{y1 ≤ 0}, χ1 +χ2+χ3 = 0 in C+
R := CR ∩{y1 > 0}, u = 0

in C+
R and

∫

CR

(|∇χ1|+ |∇χ2|+ |∇χ3|) dx+

∫

CR

∣

∣

∣

∣

∣

e(u)−
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

dx . R7/3. (10)

Let us first see how this would give the proof of (9). By the non-degeneracy condition (4),
we see that for every V > 1 we can find R ∼ V 1/3 and a translation zR ∈ R

3 such that
|Ω ∩ (zR + C−

R )| = V and {x ∈ Ω : x · n < 0} ⊂ zR + C−
R . Then by extending the previously

constructed pair (u, χ) to the whole Ω by zero we find that

E(χ) ≤
∫

CR

(|∇χ1|+ |∇χ2|+ |∇χ3|) dx+

∫

CR

∣

∣

∣

∣

∣

e(u)−
3
∑

i=1

χie
(i)

∣

∣

∣

∣

∣

2

dx . R7/3 . V 7/9

and the upper bound is proven. Let us now turn to the construction of the pair (u, χ) satisfying
(10). In our construction we are going to use only variants 1 and 2 of the martensite, i.e. χ3 ≡ 0.
In the martensitic phase C−

R , we will have fine-scale oscillations of the martensite variants in
the direction b2 and branching in the direction b1. The whole construction will be invariant in
the direction b3. As in [6] first we need to choose the gradients that will be involved and which
allow for twinning between martensites and compatibility with the austenite. For this we let

D(1) :=





−2 2 0
−2 1 1
0 −1 1



 D(2) :=





1 −1 0
1 −2 1
0 −1 1



 DM :=





0 0 0
0 −1 1
0 −1 1



 ,

so that e(D(1)) = e(1), e(D(2)) = e(2), D(1) −D(2) = 6(b12 ⊗ b21), and

DM =
1

3
D(1) +

2

3
D(2) = 2(b23 ⊗ n).
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In C−
R we are going to let u = um + DM , where um will be the microscopic displacement

accounting for the twinning of the martensites and for the branching process, and where DM

is the macroscopic displacement, which ensures compatibility with the austenite phase.
Since the construction consists of self-similar cells, let us now define the basic cell Z. For

1 < h ∼ w3/2 (which would then imply w . h), let

Z := {0 ≤ y1 ≤ h, 0 ≤ y2 ≤ w, 0 ≤ y3 ≤ w}.

We let χ1 := 1 on the sets

{∣

∣

∣

∣

y2
w

− 1

6

∣

∣

∣

∣

≤ y1
18h

}

∩ Z,

{∣

∣

∣

∣

y2
w

− 5

6

∣

∣

∣

∣

≤ y1
18h

}

∩ Z,

{∣

∣

∣

∣

y2
w

− 1

2

∣

∣

∣

∣

≤ 1

6
− y1

9h

}

∩ Z,

and χ1 := 0 on the rest of Z. We then let χ2 = 1−χ1. Notice that on each slice {y1 = c}, there
holds

∫

{y1=c}∩Z
χ1 =

w2

3
and

∫

{y1=c}∩Z
χ2 =

2w2

3
.

We define the microscopic displacement um by imposing that

um = 0 on {y2 ∈ {0, w} or y3 ∈ {0, w}} ∩ Z (11)

and so that the derivatives of um in the b2 and b3 directions are given by

∂b2u
m := [(D(1) −DM )χ1 + (D(2) −DM )χ2]b2,

∂b3u
m := [(D(1) −DM )χ1 + (D(2) −DM )χ2]b3 = 0.

This together with (11) implies that ∂b1u
m is constant on each connected component of the

support of χ1 and χ2, and has a jump of order w
h at the interfaces. Let us now estimate the

energy of such a configuration. Since (D(1) − DM )b1 = (D(2) − DM )b1 = 0, the definition of
∂b2u and ∂b3u imply

∫

Z
|e(um)−

2
∑

i=1

χi(e
(i) − e(DM )|2 ≤

∫

Z
|∇um −

2
∑

i=1

χi(D
(i) −DM |2 =

∫

Z
|∂b1u|2 .

w4

h
.

Since w . h, the interfacial energy can be estimated by wh and thus

∫

Z

2
∑

i=1

|∇χi|+
∫

Z
|e(um)−

2
∑

i=1

χi(e
(i) − e(DM )|2 . hw +

w4

h
∼ w5/2. (12)

We now decompose C−
R into cells. Let us first denote by Cbl

R := C−
R ∩ {−1 ≤ y1 ≤ 0} the

boundary layer of thickness 1 and by Cint
R := C−

R ∩ {−R ≤ y1 ≤ −1} the interior domain. We
then decompose the square {0 ≤ y2 ≤ R, 0 ≤ y3 ≤ R} into cubes Qk, k = 1, ..,K of sidelength
w ∼ R2/3 (so that K ∼ R2/3) and consider the corresponding cylinder

Σk := {q + αb1 : q ∈ Qk,−R ≤ α ≤ −1} ⊂ C−
R .

Next, we decompose any such cylinder in refining cells which are going to be rescaled versions
of Z. The first cell is of width w and height h0 := C1w

3/2 (with C1 to be fixed later) and the
i-th generation of cells is defined by

wi :=
wi−1

3
and hi := C1w

3/2
i
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so that above each cell of the generation i − 1 there are nine cells of the generation i. The
construction stops after M iterations when

hM ≤ wM . (13)

The constant C1 is finally chosen so that
∑M

i=0 hi = R − 1. Notice that since hi is geometric
and since w ∼ R2/3, we have C1 ∼ 1. The functions χ1, χ2 and um are then defined on the
constructed cells by rescaling of those defined in Z. In the boundary layer, we set χ1 = 1 and
extend continuously um so that u = 0 on {y1 = 0} and

‖∇um‖L∞(Cbl

R
) . ‖um‖L∞(∂Cbl

R
) + ‖∇um‖L∞(∂Cbl

R
).

We can now compute the energy of such a configuration. The energy can be split into two parts,
one coming from the contribution in Cint

R and the other coming from the contribution in Cbl
R .

Let us start by estimating the energy coming from Cint
R . For this, consider first one cylinder

Σk. Recalling (12) and the definitions of wi and hi, we find

∫

Σk

2
∑

i=1

|∇χi|+
∫

Σk

|e(um)−
2
∑

i=1

χi(e
(i) − e(DM ))|2 . w5/2

+∞
∑

i=0

32i
(

1

3

)5i/2

. R5/3

which, summing for k = 1, ..,K (and recalling that K ∼ R2/3) gives

∫

Cint

R

2
∑

i=1

|∇χi|+
∫

Cint

R

|e(um)−
2
∑

i=1

χi(e
(i) − e(DM ))|2 . R7/3.

We finally estimate the contribution of the energy coming from the boundary layer. Notice
that since its thickness is one, |Cbl

R | ∼ R2 and H2(∂Cbl
R ) ∼ R2. Moreover, since in the last

generation of cells wM ∼ 1, ‖um‖L∞(∂Cbl

R
) + ‖∇um‖L∞(∂Cbl

R
) . 1 and therefore

∫

Cint

R

2
∑

i=1

|∇χi|+
∫

Cint

R

|e(um)−
2
∑

i=1

χi(e
(i) − e(DM ))|2 . R2 . R7/3,

from which (10) follows.
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