
HAL Id: hal-00907940
https://hal.science/hal-00907940v1

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The time scale of evolutionary trajectories
Krishnendu Chatterjee, Andreas Pavlogiannis, Ben Adlam, Martin A. Nowak

To cite this version:
Krishnendu Chatterjee, Andreas Pavlogiannis, Ben Adlam, Martin A. Nowak. The time scale of
evolutionary trajectories. 2013. �hal-00907940�

https://hal.science/hal-00907940v1
https://hal.archives-ouvertes.fr


The time scale of evolutionary trajectories

Krishnendu Chatterjee† Andreas Pavlogiannis† Ben Adlam‡ Martin A. Nowak‡

†
IST Austria

‡
PED, Dept. of Organismic and Evolutionary Biology, Dept. of Math, Harvard University, USA

A fundamental question in biology is the following: what is the time scale that is needed for

evolutionary innovations? There are many results that characterize single steps in terms

of the fixation time of new mutants arising in populations of certain size and structure1−13.

But here we ask a different question, which is concerned with the much longer time scale

of evolutionary trajectories: how long does it take for a population exploring a fitness

landscape to find target sequences? Our key variable is the length, L, of the sequence that

undergoes adaptation. In computer science there is a crucial distinction between problems

that require algorithms which take polynomial or exponential time14−16. The latter are

considered to be intractable. Here we develop a theoretical approach that allows us to

estimate the time of evolution as function of L. We show that adaptation on many fitness

landscapes takes time that is exponential in L, even if there are broad selection gradients

and many targets uniformly distributed in sequence space. These negative results lead us

to search for specific mechanisms that allow evolution to work on efficient time scales. We

study a regeneration process and show that it enables evolution to work in polynomial

time.

Our planet came into existence 4.6 billion years ago. There is clear chemical evidence for life on earth
3.5 billion years ago17,18. The evolutionary process generated procaria, eucaria and complex multi-cellular
organisms. Throughout the history of life, evolution had to discover sequences of biological polymers that
perform specific, complicated functions. The average length of bacterial genes is about 1000 nucleotides,
that of human genes about 3000 nucleotides. The longest bacterial genes contain more than 105 nucleotides,
the longest human gene more than 106. Here we ask how the time scale of evolution depends on the length
of the sequence that needs to be adapted.

Evolutionary dynamics operates in sequence space, which can be imagined as a discrete multi-dimensional
lattice that arises when all sequences of a given length are arranged such that nearest neighbors differ by
one point mutation19. For constant selection, each point in sequence space is associated with a nonnegative
fitness value (reproductive rate). The resulting fitness landscape is a high dimensional mountain range.
Populations explore fitness landscapes searching for elevated regions, ridges, and peaks20−27.

We consider an alphabet of size four, as is the case for DNA and RNA, and a nucleotide sequence
of length L. We consider an asexual population of size N . The mutation rate, u, is small: individual
mutations are introduced and evaluated by natural selection and random drift one at a time. A sequence
of type i is i steps away from the target, where i is the Hamming distance between this sequence and the
target. The probability that a type i sequence mutates to a type i − 1 sequence is given by ui/(3L). The
fixation probability of the new mutant, ρi,i−1, depends on the fitness landscape and the population size.
For a Moran process we have ρi,i−1 = [1 − (fi/fi−1)]/[1 − (fi/fi−1)

N ] where fi denotes the fitness of type
i sequences. In order to maintain maximum symmetry we consider that all type i sequences have the same
fitness. The probability that the evolutionary process moves from a type i sequence to a type i− 1 sequence
is given by Pi,i−1 = [Nui/(3L)]ρi,i−1. Thus we have an evolutionary random walk, where each step is a
jump to a neighboring sequence of Hamming distance one. The stochastic process is a Markov chain on the
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one-dimensional grid 0, 1, ..., L.
We first consider a broad peak of targets. There is an ideal sequence, and any sequence within a certain

Hamming distance of that sequence belongs to the target set. Specifically, we consider that the evolutionary
process has succeeded, if the population discovers a sequence that differs from the ideal sequence in no more
than a fraction c of positions. For example, if L = 100 and c = 0.1, then the ideal sequence is surrounded
by a cloud of approximately 1018 sequences. For a broad peak the target set contains at least 2cL/(3L)
sequences, which is an exponential function of L.

At first we consider neutral drift. The fitness landscape outside the broad peak is flat. The population
needs to discover any one of the target sequences in the broad peak, starting from some sequence that is not in
the broad peak. Our result is as follows (see Corollary 2 in SI): (i) If c < 3/4, then the expected discovery time
is exponential in L; a lower bound for the expected discovery time, t, is given by t ≥ exp[(3−4c) L

16 log
6

4c+3 ].

(ii) If c ≥ 3/4, then the expected discovery time is at most O(L3/u), which is polynomial in L. Thus, we
have derived a strong dichotomy result which shows a sharp transition from polynomial to exponential time
depending on whether a specific condition on c does or does not hold.

For the four letter alphabet most random sequences have Hamming distance 3L/4 from the target
center. If the population is further away than this Hamming distance, then random drift will bring it closer.
If the population is closer than this Hamming distance, then random drift will push it further away. This
argument constitutes the intuitive reason that c = 3/4 is the critical threshold. If the peak has a width of
less than c = 3/4, then we prove that the expected discovery time by random drift is exponential in the
sequence length L (see Figure 1). This result holds for any population size, N , as long as 4L >> N , which
is certainly the case for realistic values of L and N .

Next we consider a multiplicative fitness landscape, fi−1 = rfi, where r > 1 is a constant factor
representing fitness gain. Sequences that are closer to the target set are fitter than those that are further away.
Each mutation that brings us one step closer to the target set has the same multiplicative fitness gain. These
are unrealistically favorable conditions for natural selection: the fitness landscape increases exponentially
and is completely symmetric around the target set. First we consider when the fitness slope extends to all
sequences. Again we derive a strong dichotomy result (see Corollary 2 in SI): (i) If c(1 + rN−1/3) ≥ 1, then
the expected discovery time is polynomial in L; and (ii) otherwise, for all fitness gains, r, and population
sizes, N , there exists a constant L0 such that if L > L0, then the discovery time is exponential in L. We
note, however, that L0 can be very large and, therefore, this particular result may only be of mathematical
interest.

The polynomial discovery time for a broad peak surrounded by a fitness slope, requires the slope to
extend to a Hamming distance greater than 3L/4. What happens then, if the slope only extends to a certain
maximum distance less than 3L/4? Suppose the fitness gain only arises, if the sequence differs from the ideal
sequence in not more than a fraction s of positions. Formally, we can consider any fitness function, f , that
assigns zero fitness to sequences that are at a Hamming distance of at least sL from the ideal sequence. Now
our previous result for neutral drift with broad peak applies. Since we must rely on neutral drift until the
fitness gain arises, the discovery time in this fitness landscape is at least as long as the discovery time for
neutral drift with a broad peak of size c = s. If s < 3/4, then the expected discovery time starting from any
sequence outside the fitness gain region is exponential in L (Figure 1). Figure 1 summarizes all the above
scenarios.

We highlight two important aspects of our results. First, when we establish exponential lower bounds
for the expected discovery time, then these lower bounds hold even if the starting sequence is only a few
steps away from the fitness slope of the target set. Second, we present strong dichotomy results, and derive
mathematically the most precise and strongest form of the boundary condition.

Let us now give a numerical example to demonstrate that exponential time is intractable. Bacterial life
on earth has been around for 3.5 billion years, which correspond to 3× 1013 hours. Assuming fast bacterial
cell division of 20-30 minutes on average we have at most 1014 generations. The expected discovery time for
a sequence of length L = 1000 with a very large broad peak of c = 1/2 is approximately 1065 generations;
see Table 1.

If individual evolutionary processes cannot find targets in efficient time, then perhaps the success of
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evolution is based on the fact that many populations are searching independently and in parallel for a
particular adaptation. We prove that multiple, independent parallel searches are not the solution of the
problem, if the starting sequence is far away from the targets. If an evolutionary process takes exponential
time, then polynomially many independent searches do not find the target in polynomial time with reasonable
probability (Theorem 4 in SI). In such a case, one could quickly exhaust the physical resources of an entire
planet. The estimated number of bacterial cells28 on earth is about 1030. To give a specific example let us
assume that there are 1024 independent searches, each with population size N = 106. The probability that
at least one of those independent searches succeeds within 1014 generations for sequence length L = 1000
and broad peak of c = 1/2 is less than 10−26.

In our basic model, individual mutants are evaluated one at a time. The situation of many mutant
lineages evolving in parallel is similar to the multiple searches described above. As we show that whenever a
single search takes exponential time, multiple independent searches do not lead to polynomial time solutions,
our results imply intractability for this case as well.

The broad peak constitutes a particular geometry, where all target sequences are arranged around a
center. Let us now explore another geometry where there are m target sequences, which are randomly
and uniformly distributed in sequence space. Around each target sequence there is a selection gradient
extending up to a distance sL. Formally we can consider any fitness function f that assigns zero fitness to a
sequence whose Hamming distance exceeds sL from all the target sequences. We derive the following result:
if m << 4L and s < 3/4 then the expected discovery time is at least t ≥ (1/m) exp[2L(3/4− s)2]. The lower
bound holds also in the case where there is a broad peak of width sL around each target sequence. Whether
or not the function (1/m) exp[2L(3/4 − s)2] is exponential in L depends on how m changes with L. But
even if we assume exponentially many target sequences, m, we need not obtain polynomial time (Figure 2
and Theorem 5 in SI).

It is known that recombination can accelerate evolution on certain fitness landscapes29−31. Recombina-
tion, however, reduces the discovery time only by a linear factor in sequence length29−31. A linear or even
polynomial factor improvement over an exponential function does not convert the exponential function into
a polynomial one. Hence, recombination can make a significant difference only if the underlying evolutionary
process (without recombination) already operates in polynomial time.

What are then adaptive problems that can be solved by evolution in polynomial time? We propose
a “regeneration process”. The basic idea is that evolution can solve a new problem efficiently, if it is
has solved a similar problem already. Suppose gene duplication or genome rearrangement can give rise to
starting sequences that are at most k point mutations away from the target set, where k is a number that
is independent of L. It is important that starting sequences can be regenerated again and again. We prove
that Lk+1 many searches are sufficient in order to find the target in polynomial time with high probability
(see Figure 3 and Section 10 in SI). The upper bound, Lk+1, holds for neutral drift (without selection). In
this case, the expected discovery time for any single search is still exponential. Therefore, many searches
do not succeed. The key is regeneration of the starting sequence. The upper bound, Lk+1, can possibly be
further reduced, selection and/or recombination are included.

The regeneration process formalizes the role of several existing ideas. First, it ties in with the proposal
that gene duplications and genome rearrangements are major events leading to the emergence of new genes32.
Second, evolution can be seen as a tinkerer playing around with small modifications of existing sequences
rather than creating entirely new ones33. Third, the process is related to Gillespie’s suggestion34 that the
starting sequence for an evolutionary search must have high fitness. In our theory, proximity in fitness value
is replaced by proximity in sequence space. Our process can also explain the emergence of orphan genes
arising from non-coding regions35. Section 12 of the SI discusses the connection of our approach to existing
results.

There is one other scenario that must be mentioned. It is possible that certain biological functions
are hyper-abundant in sequence space21 and that a process generating a large number of random sequences
will find the function with high probability. For example, Bartel & Szostak36 isolated a new ribozyme from
a pool of about 1015 random sequences of length L = 220. While such a process is conceivable for small
effective sequence length, it cannot represent a general solution for large L.
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Our theory has clear empirical implications. The regeneration process can be tested in systems of
in vitro evolution37. A starting sequence can be generated by introducing k point mutations in a known
protein encoding sequence of length L. If these point mutations destroy the function of the protein, then the
expected discovery time of any one attempt to find the original sequence should be exponential in L. But
only polynomially many searches in L are required to find the target with high probability in polynomially
many steps. The same setup can be used to explore whether the biological function can be found elsewhere
in sequence space: the evolutionary trajectory beginning with the starting sequence could discover new
solutions. Our theory also highlights how important it is to explore the distribution of biological functions
in sequence space both for RNA20,21,36,38 and in the protein universe39 .

In summary, we have developed a theory that allows us to estimate time scales of evolutionary tra-
jectories. We have shown that various natural processes of evolution take exponential time as function of
the sequence length, L. In some cases we have established strong dichotomy results for precise boundary
conditions. We have proposed a mechanism that allows efficient evolution. There are two key aspects to
this ‘regeneration process’: (a) the starting sequence is only a small number of steps away from the target;
and (b) the starting sequence can be generated repeatedly. This process enables evolution to overcome the
exponential barrier.

Acknowledgments. We thank Nick Barton and Daniel Weissman for helpful discussions and pointing us
to relevant literature.
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(a) (b) (c)

(d) (e)

Figure 1: Broad peak with different fitness landscapes. For the broad peak there is an ideal sequence, and
all sequences that are within Hamming distance cL are part of the target set. (a) If the fitness landscape
is flat outside the broad peak and if c < 3/4, then the discovery time is exponential in sequence length,
L. (b) If the broad peak is surrounded by a multiplicative fitness landscape whose slope extends over the
whole sequence space, then the discovery time is either polynomial or exponential in L depending on whether
c(1 + rN−1/3) ≥ 1 or not. (c) If the fitness slope extends to a Hamming distance less than 3L/4, then the
discovery time is exponential in L. (d) Numerical calculations for broad peaks surrounded by flat fitness
landscapes. We observe exponential discovery time for c = 1/3 and c = 1/2. (e) Numerical calculations for
broad peaks surrounded by multiplicative fitness landscapes. The broad peak extends to c = 1/6 and the
slope of the fitness landscape to s = 1/2. The discovery time is exponential, because s < 3/4. The fitness
gain is r = 1.01 and the population size is as indicated. As the population size, N , increases the discovery
time converges to that of a broad peak with c = 1/2 embedded in a flat fitness landscape.
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Start of search

(a)

(b) (c)

(d) (e)

Figure 2: The search for randomly, uniformly distributed targets in sequence space. (a) The target set
consists of m random sequences; each one of them is surrounded by a broad peak of width up to sL. The
figure shows a pictorial illustration where the L-dimensional sequence space is projected onto two dimensions.
From a randomly chosen starting sequence outside the target set, the expected discovery time is at least
(1/m) exp[2L(3/4 − s)2], which can be exponential in L. (b) Computer simulations showing the average
discovery time of m = 100, 150, and 200 targets, with c = 1/3. We observe exponential dependency on L.
The discovery time is averaged over 200 runs. (c) Success probability estimated as the fraction of the 200
searches that succeed in finding one of the target sequences within 104 generations. The success probability
drops exponentially with L. (d) Success probability as a function of time for L = 42, 45, and 48. (e)
Discovery time for a large number of randomly generated target sequences. Either m = 2L/3+2 or m = 4L/3

sequences were generated. For b = 0 and b = 3 the target set consists of balls of Hamming distance 0 and 3
(respectively) around each sequence. The figure shows the average discovery time of 100 runs. As expected
we observe that the discovery time grows exponentially with sequence length, L.
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Process re-generating starting sequence

at Hamming distance k from target

k0 L

Target

Hamming distance

Figure 3: Regeneration process. Gene duplication (or possibly some other process) generates a steady
stream of starting sequences that are a constant number k of mutations away from the target. Many
searches drift away from the target, but some will succeed in polynomially many steps. We prove that Lk+1

searches ensure that with high probability some search succeed in polynomially many steps.
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Table 1: Numerical data for the discovery time of broad peaks with width c = 1/3, 1/2, and 3/4 embedded
in flat fitness landscapes. First the discovery time is computed for small values of L as shown in Figure 1d.
Then the exponential growth is extrapolated to L = 100 and L = 1000, respectively. We show the discovery
times for c = 1/2, and 1/3. For c = 3/4 the values are polynomial in L

r = 1 c = 1
3 c = 1

2 c = 3
4

n = 102 1.02 · 1018 7.36 · 107 182.71

n = 103 5.89 · 10170 1.28 · 1065 2666.2
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Table 2: Numerical data for the discovery time of broad peaks embedded in multiplicative fitness landscapes.
The width of the broad peak is either c = 1/12 or c = 1/6 and L = 1000. The fitness slope extends to s = 1/3
and s = 1/2. The data are extrapolated from numbers obtained for small values of L. For population sizes
N = 1000 and greater, there is no difference in the discovery time of c = 1/6 and c = 1/12. For N →∞ the
discovery time for a particular s converges to the discovery time for a broad peak with c = s embedded in a
flat fitness landscape

r = 1.01 N = 102 N = 103 N =∞

s = 1
3

c = 1
12 1.87 · 10337 5.89 · 10170 5.89 · 10170

c = 1
6 5.96 · 10260 5.89 · 10170 5.89 · 10170

s = 1
2

c = 1
12 3.28 · 10264 1.28 · 1065 1.28 · 1065

c = 1
6 1.39 · 10188 1.28 · 1065 1.28 · 1065
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Supplementary Information: Detailed
proofs for “The time scale of
evolutionary trajectories”

1. Overview and Organization

We will present detailed proofs of all our results. In this section we present an overview of the proof structure
and the organization of our results.

1. In Section 2 we present relevant lower and upper bounds on hitting time for Markov chains on an one-
dimensional grid. The results of this section are technical and the basis for the results of the following
sections. However, a reader does not need to understand the technical proofs of this section for the
following sections. We will only use the results of Lemma 3 and Lemma 4 (and their consequence
Corollary 1); and Lemma 5 (and its implication) in the following subsections. We present the results
in the most general form for Markov chains, and they might possibly be used in other contexts as well;
and then present simple applications of the general results of Markov chains for the discovery time of
evolutionary processes.

2. In Section 3 we introduce evolutionary processes and for simplicity we introduce them for evolution-
ary adaptation of bit strings. Also for mathematically elegant proofs we first introduce the Fermi
evolutionary process in this section, and later consider the Moran process.

3. In Section 4 we present our results for the Fermi evolutionary process with neutral fitness landscapes
and a broad peak of targets.

4. In Section 5 we present our results for constant selection in the Fermi evolutionary process with a
broad peak of targets.

5. In Section 6 we show how the results of Section 4 and Section 5 imply all the desired results for the
Moran evolutionary process.

6. In Section 7 we show how the results of Section 4, Section 5, and Section 6, extend from bit strings to
strings over alphabet of any size (and obtain the results for four letter alphabet as a special case).

7. In Section 8 we present the results for multiple independent searches; and in Section 9 we discuss some
cases of distributed targets.

8. In Section 10 we discuss the results for a mechanism to enable evolution to work in polynomial time.
Finally, in Section 11 we present details of some numerical calculations used in the main article.

9. In Section 12 we discuss and compare our results with relevant related work, and end with additional
simulation results in Section 13.

2. Bounds on hitting times of Markov chains on a line

In this section we will present our basic lower and upper bounds on hitting times of Markov chains on a line.
The results of this section will be used repeatedly in the later sections to provide lower and upper bounds
on the discovery time for several evolutionary processes. We start with the definition of Markov chains, and
then define the special case of Markov chains on a line.
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Definition 1 (Markov chains). A finite-state Markov chain MCL = (S, δ) consists of a finite set S of states,
with S = {0, 1, . . . L} (i.e., the set of states is a finite subset of the natural numbers starting from 0), and
a stochastic transition matrix δ that specifies the transition probabilities, i.e., δ(i, j) denotes the probability
of transition from state i to state j (in other words, for all 0 ≤ i, j ≤ L we have 0 ≤ δ(i, j) ≤ 1 and for all

0 ≤ i ≤ L we have
∑L

j=0 δ(i, j) = 1).

We now introduce Markov chains on a line. Intuitively a Markov chain on a line is defined as a special
case of Markov chains, for which in every state, the allowed transitions are either self-loops, or to the left,
or to the right. The formal definition is as follows.

Definition 2 (Markov chains on a line). A Markov chain on a line, denoted as ML, is a finite-state Markov
chain (S, δ) where S = {0, 1, . . . L} and for all 0 ≤ i, j ≤ L, if δ(i, j) > 0, then |i−j| ≤ 1, i.e., the transitions
allowed are only self-loops, to the left, and to the right (see Supplementary Figure 4).

0

δ(0, 0)

L

δ(L,L)

. . . . . .i − 1

δ(i − 1, i − 2)

δ(i − 1, i − 1)

i + 1

δ(i + 1, i + 2)

δ(i + 1, i + 1)

i

δ(i, i − 1)

δ(i, i + 1)δ(i − 1, i)

δ(i + 1, i)

δ(i, i)

Figure 4: Markov chain on a line. Pictorial illustration of Markov chain on a line.

We now define the notion of hitting times for Markov chains on a line.

Definition 3 (Hitting time). Given a Markov chain on a line ML, and two states n1 and n2 (i.e., 0 ≤
n1, n2 ≤ L), we denote by H(n1, n2) the expected hitting time from the starting state n2 to the target state
n1, i.e., the expected number of transitions required to reach the target state n1 starting from the state n2.

The recurrence relation for hitting time. Given a Markov chain on a line ML = (S, δ), and a state n1 (i.e.,
0 ≤ n1 ≤ L), the following recurrence relation holds:

1. H(n1, n1) = 0,

2. H(n1, i) = 1 + δ(i, i+ 1) ·H(n1, i+ 1) + δ(i, i− 1) ·H(n1, i− 1) + δ(i, i) ·H(n1, i), for all n1 < i < L,
and

3. H(n1, L) = 1 + δ(L,L− 1) ·H(n1, L− 1) + δ(L,L) ·H(L,L).

The argument is as follows: (a) Case 1 is trivial. (b) For case 2, since i 6= n1, at least one transition needs to
be taken to a neighbor state j of i, from which the hitting time is H(n1, j). With probability δ(i, i+ 1) the
neighbor j is state i+ 1, while with probability δ(i, i− 1) the neighbor j is state i− 1. On the other hand,
with probability δ(i, i) the self-loop transition is taken, and the expected hitting time remains the same.
(c) Case 3 is a degenerate version of case 2, where the only possible transitions from the state L are either to
the state L− 1, which is taken with probability δ(L,L− 1), or the self-loop, which is taken with probability
δ(L,L). Also note that in Case 3 we have δ(L,L − 1) = 1 − δ(L,L). In the following lemma we show that
using the recurrence relation, the hitting time can be expressed as the sum of a sequence of numbers.

Lemma 1. Consider a Markov chain on a line ML, with a target state n1, such that for all n1 < i ≤ L
we have δ(i, i − 1) > 0. For all n1 < i ≤ L we have that H(n1, i) =

∑L−n1−1
j=L−i bj, where bj is the sequence

defined as:

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
for j > 0.
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Proof. We consider the recurrence relation for the hitting time and first show that for all 0 ≤ i < L− n1 we
can write H(n1, L− i) as

H(n1, L− i) = bi +H(n1, L− i− 1)

for the desired sequence bi.

(Base case). For i = 0 we have

H(n1, L) = 1 + δ(L,L− 1) ·H(n1, L− 1) + δ(L,L) ·H(n1, L)

= 1 + δ(L,L− 1) ·H(n1, L− 1) + (1− δ(L,L− 1)) ·H(n1, L)

=
1

δ(L,L− 1)
+H(n1, L− 1),

thus the statement holds with b0 = 1
δ(L,L−1) .

(Inductive case). Assume that the statement holds for some i − 1 (inductive hypothesis) and we will show
that it also holds for i. Let y = δ(L − i, L − i + 1) and x = δ(L − i, L − i − 1). We establish the following
equality:

H(n1, L− i) = 1 + y ·H(n1, L− i+ 1) + x ·H(n1, L− i− 1) + (1− x− y) ·H(n1, L− i)

= 1 + y ·
(

bi−1 +H(n1, L− i)
)

+ x ·H(n1, L− i− 1) + (1− x− y) ·H(n1, L− i)

=
1 + y · bi−1

x
+H(n1, L− i− 1).

The first equality follows from the recurrence relation (case 2) by substituting i with L − i; the second
equality follows by substitution and the inductive hypothesis; the third equality is simple re-writing, since
x 6= 0. Thus we have H(n1, L− i) = bi +H(n1, L− i− 1), where

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
for j > 0.

Hence we have H(n1, L − i) =
∑L−n1−1

j=i bj and by substituting back i ← L − i we obtain H(n1, i) =
∑L−n1−1

j=L−i bj . The desired result follows.

Definition 4. For positive real-valued constants A and B, we define the sequence ai(A,B) as follows:

(1) a0(A,B) =
1

B
(2) ai(A,B) =

1 +A · ai−1(A,B)

B
for i > 0.

Lemma 2. For positive real-valued constants A and B, the following assertions hold for the sequence
ai(A,B):

• If A > B and B ≤ 1, then ai(A,B) ≥
(

A
B

)i
, with A

B > 1.

• If A ≤ B, then ai(A,B) = O( i
B ).

Proof. The result is as follows:

• Case A > B: Then we have

ai(A,B) =
1 +A · ai−1(A,B)

B
>

A

B
· ai−1(A,B) ≥

(

A

B

)i

· a0(A,B) =

(

A

B

)i

· 1
B
≥

(

A

B

)i

(by just ignoring the term 1 in the numerator and since B ≤ 1).
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• Case A ≤ B: Then A
B ≤ 1 and ai(A,B) = 1+A·ai−1(A,B)

B ≤ 1
B + ai−1(A,B) ≤ i

B + 1
B = O( i

B ).

The desired result follows.

Exponential lower bound. We will use the following standard convention in this paper: a function t(L) is
lower bounded by an exponential function, if there exist constants c > 1, ℓ > 0 and L0 ∈ N such that for all
L ≥ L0 we have t(L) ≥ cℓ·L = 2c

∗·ℓ·L, where c∗ = log c > 0, i.e., it is lower bounded by a linear function in
the exponent.

Exponential lower bound on hitting times for Markov chains on a line. In the following lemma we will show
an exponential lower bound on the hitting time. We consider a Markov chain on a line ML, such that there
exist two states x and y = x+ k, for k > 0, such that in the whole contiguous segment between x and y the
ratio of the probability to drift towards the right as compared to the left is at least 1 + A, for a constant
A > 0 (strictly bounded away from 1). Then the expected hitting time from any starting point right of x to
a target to the left of x is at least (1 +A)k−1.

Lemma 3 (Lower bound). Consider a Markov chain on a line ML. If there exist two states x, y ≤ L with

y = x+ k, for k > 0, and a constant A > 0 such that for all x < i < y we have δ(i,i+1)
δ(i,i−1) ≥ 1 +A, then for all

n1, n2 ≤ L such that n1 ≤ x < n2 we have H(n1, n2) ≥ (1 +A)k−1.

Proof. From Lemma 1 we have that H(n1, n2) =
∑L−n1−1

j=L−n2
bj :

H(n1, n2) =

L−n1−1
∑

j=L−n2

bj ≥
L−(x+1)
∑

j=L−(x+1)

bj = bL−x−1.

We have δ(i,i+1)
δ(i,i−1) ≥ 1 +A by the given condition of the lemma. We show by induction that for all j between

L− y and L− x− 1 (i.e., L− y ≤ j ≤ L− x− 1) we have bj ≥ aj−L+y(1 +A, 1).

1. (Base case). We have bL−y ≥ 1 = a0(1 +A, 1), since bj is non-decreasing and b0 = 1
δ(L,L−1) ≥ 1.

2. (Inductive case). By inductive hypothesis on j − 1 we have bj−1 ≥ aj−1−L+y(1 + A, 1), and then we
have

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
≥ 1 + (1 +A) · aj−1−L+y(1 +A, 1) = aj−L+y(1 +A, 1)

since δ(L−j,L−j+1)
δ(L−j,L−j−1) ≥ 1 +A and δ(L− j, L− j − 1) ≤ 1. Thus we have bj ≥ aj−L+y(1 +A, 1).

Thus for all L − y ≤ j ≤ L − x − 1 we have bj ≥ aj−L+y(1 + A, 1). Hence H(n1, n2) ≥ bL−x−1 ≥
ay−x−1(1 +A, 1) = ak−1(1 +A, 1) ≥ (1 +A)k−1 (from Lemma 2, since 1 +A > 1).

Lemma 4 (Upper bound). Given a Markov chain on a line ML and 0 ≤ n1 < n2 ≤ L, if for all n1 < i < L

we have δ(i, i− 1) ≥ δ(i, i+ 1), then H(n1, n2) = O( L2

B∗
), where B∗ = minn1<i≤L(1− δ(i, i)).

Proof. From Lemma 1 we have that H(n1, n2) =
∑L−n1−1

j=L−n2
bj . Let B = minn1<i≤L δ(i, i − 1). We show by

induction that for all 0 ≤ j ≤ L− n1 − 1 we have bj ≤ aj(1, B).

1. (Base case). We have b0 = 1
δ(L,L−1) ≤ 1

B = a0(A,B) (because of our choice of B we have B ≤
δ(L,L− 1)).

2. (Inductive case). By inductive hypothesis on j − 1 we have bj−1 ≤ aj−1(1, B). Then

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
≤ 1

δ(L− j, L− j − 1)
+

δ(L− j, L− j + 1) · aj−1(1, B)

δ(L− j, L− j − 1)

≤ 1

B
+ aj−1(1, B) ≤ 1 + aj−1(1, B)

B
= aj(1, B).

since 1
δ(L−j,L−j−1) ≤ 1

B , δ(L−j,L−j+1)
δ(L−j,L−j−1) ≤ 1, and 1

B ≥ 1. Thus bj ≤ aj(1, B).
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It follows that for all L−n2 ≤ j ≤ L−n1−1 we have bj ≤ aj(1, B) and thus bj = O( j
B ) from Lemma 2.

ThenH(n1, n2) =
∑L−n1−1

j=L−n2
bj = O

(

(n2 − n1) · (L− n1 − 1) · 1
B

)

= O(L
2

B ). Let j = argminn1<i≤L δ(i, i−1).
We have

B = δ(j, j − 1) ≥ 1

2
· (δ(j, j − 1) + δ(j, j + 1)) =

1

2
· (1− δ(j, j)) ≥ 1

2
·B∗

because δ(j, j − 1) ≥ δ(j, j + 1) and 1− δ(j, j) ≥ B∗. We conclude that H(n1, n2) = O( L2

B∗
).

Markov chains on a line without self-loops. A special case of the above lemma is obtained for Markov
chains on a line with no self-loops in states other than state 0, i.e., for all 0 < i ≤ L we have 1 − δ(i, i) =
1 = B∗. We consider a Markov chain on a line without self-loops ML, such that there exist two states x and
y = x + k, for k > 0, such that in the whole contiguous segment between x and y the probability to drift
towards the right is at least a constant A > 1

2 (strictly bounded away from 1
2 ). We also assume A < 1, since

otherwise transitions to the left are never taken. Then the expected hitting time from any starting point
right of x to a target to the left of x is at least ck−1

A , where cA = A
1−A > 1 (see Supplementary Figure 5).

Corollary 1. Given a Markov chain on a line ML such that for all 0 < i ≤ L we have δ(i, i) = 0, the
following assertions hold:

1. Lower bound: If there exist two states x, y ≤ L with y = x+ k, for k > 0, and a constant A > 1
2 such

that for all x ≤ i < y we have δ(i, i + 1) ≥ A > 1
2 , then for all n1, n2 ≤ L such that n1 ≤ x < n2 we

have H(n1, n2) ≥ ck−1
A for cA = A

1−A > 1.

2. Upper bound: For 0 ≤ n1 < n2 ≤ L, if for all n1 < i < L we have δ(i, i − 1) ≥ 1
2 , then H(n1, n2) =

O(L2).

Proof. Since δ(i, i) = 0, we have that δ(i, i + 1) ≥ A implies that δ(i,i+1)
δ(i,i−1) ≥ A

1−A , and then the first item is

an easy consequence of Lemma 3. For item (2), we have δ(i, i − 1) ≥ 1
2 implies δ(i, i − 1) ≥ δ(i, i + 1) and

hence the result follows from Lemma 4 with B∗ = 1 since δ(j, j) = 0 for all n1 < j < L.

Unloop variant of Markov chains on a line. We will now show how given a Markov chain on a line
with self-loops we can create a variant without self-loops and establish a relation on the hitting time of the
original Markov chain and its variant without self-loops.

Definition 5 (Unloop variant of Markov chain on a line). Given a Markov chain on a line ML = (S, δ), we
call its unloop variant a Markov chain on a line ML = (S, δ), with the following properties:

• δ(0, 1) = 1;

• For all 0 < i < L, we have δ(i, i − 1) = δ(i,i−1)
δ(i,i−1)+δ(i,i+1) and δ(i, i + 1) = δ(i,i+1)

δ(i,i−1)+δ(i,i+1) , i.e., the

probabilities of transitions to right and left are normalized so that they sum to 1; and

• δ(L,L− 1) = 1.

We now show the following: (1) the hitting time of the original Markov chain on a line ML is always at
least the hitting time of the unloop variant; and (2) the hitting time of the original Markov chain is at most
z∗ times the hitting time of the unloop variant, where z∗ is the maximum of the inverse of the 1 minus the
self-loop transition probabilities.

Lemma 5. Consider a Markov chain on a line ML = (S, δ) and its unloop variant ML = (S, δ). Let
0 < n1, n2 ≤ L and n1 < n2, and let H(n1, n2) denote the hitting time to state n1 from state n2 in ML, and
H(n1, n2) denote the corresponding hitting time in ML. The following assertions hold:

(i) H(n1, n2) ≤ H(n1, n2).

(ii) H(n1, n2) ≤ z∗ ·H(n1, n2), where z∗ = max0<i≤L
1

1−δ(i,i) .
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A > 1
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· · ·

A > 1
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0 n1 n2 L· · · · · ·

≥ 1
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· · ·
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2 ≥ 1

2

(b)

(c)

Figure 5: Lower and upper bound on hitting times for Markov chain on a line. Figure (a) shows
a Markov chain on a line without self-loops, where for a length k between x and y the transition probabilities
to the right are at least a constant A > 1

2 , and then the hitting time from any starting point n2 to the right
of x to a target n1 to the left of x is at least exponential in the length k; figure (b) shows a Markov chain
on a line without self-loops where all the transition probabilities to the left upto the target n1 are at least
1
2 , and then the hitting time for any start point to the right of the target n1 to the target is at most O(L2);
the graph (c) shows the exponential lower bound (red) and polynomial upper bound (green) on the hitting
times H(n1, n2) in the log-scale.
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Proof. From Lemma 1 we have that for all 0 < i ≤ L, we can write H(n1, i) =
∑L−n1−1

j=L−i bj and H(n1, i) =
∑L−n1−1

j=L−i bj where bj and bj are the sequences defined as:

(1) b0 =
1

δ(L,L− 1)
; (2) bj =

1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
for j > 0.

and

(1) b0 = 1; (2) bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
for j > 0.

(i) We prove inductively that for all 0 < j < L− 1, we have bj ≤ bj .

1. (Base case). b0 = 1 ≤ 1
δ(L,L−1) = b0.

2. (Inductive Step). The inductive hypothesis guarantees that bj−1 ≤ bj−1. Observe that δ(L−j,L−j+1)

δ(L−j,L−j−1)
=

δ(L−j,L−j+1)
δ(L−j,L−j−1) = R. Then

bj =
1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
=

1

δ(L− j, L− j − 1)
+R · bj−1

≤ 1

δ(L− j, L− j − 1)
+R · bj−1 =

1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
= bj

because of the inductive hypothesis and δ(L− j, L− j − 1) ≥ δ(L− j, L− j − 1).

Thus for all such j, we have bj ≤ bj , and H(n1, n2) =
∑L−n1−1

j=L−n2
bj ≤

∑L−n1−1
j=L−n2

bj = H(n1, n2).

(ii) We prove inductively that for all 0 < j < L− 1, we have bj ≤ z∗ · bj .

1. (Base case). b0 = 1
δ(L,L−1) =

1
1−δ(L,L) ≤ z∗ = z∗ · b0.

2. (Inductive Step). The inductive hypothesis guarantees that bj−1 ≤ z∗ · bj−1. Observe that
δ(L−j,L−j+1)

δ(L−j,L−j−1)
= δ(L−j,L−j+1)

δ(L−j,L−j−1) = R. Moreover, let x = δ(L−j, L−j−1) and y = δ(L−j, L−j+1),

and then we have:

z∗ ≥ 1

1− δ(L− j, L− j)
=⇒ z∗ ≥ 1

x+ y
=⇒ z∗ · (x+ y) ≥ 1 =⇒ z∗ · x+ y

x
≥ 1

x
.

Thus

bj =
1 + y · bj−1

x
=

1

x
+R·bj−1 ≤ z∗·x+ y

x
+R·z∗·bj−1 = z∗·1 + δ(L− j, L− j + 1) · bj−1

δ(L− j, L− j − 1)
= z∗·bj

since x+y
x = 1

δ(L−j,L−j−1)
.

Thus for all 0 < j < L−1, we have bj ≤ z∗ ·bj , and hence H(n1, n2) =
∑L−n1−1

j=L−n2
bj ≤

∑L−n1−1
j=L−n2

z∗ ·bj =
z∗ ·H(n1, n2).

This completes the proof.

Implication of Lemma 5. The main implication of Lemma 5 is as follows: any lower bound on the hitting
time on the unloop variant is a lower bound on the hitting time of the original Markov chain; and an upper
bound on the hitting time on the unloop variant multiplied by z∗ gives an upper bound on the hitting time
of the original Markov chain.
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3. Evolutionary Process

In this section we consider a simple model of evolutionary process, where organisms/genotypes are repre-
sented as strings of length L, and view evolution as a discrete time process. For simplicity, we will first
consider the case of bit strings and present all our results with bit strings because all the key proof ideas are
illustrated there. We will then generalize our results to strings for any alphabet size in Section 7. For a bit
string s, at any time point a random mutation can appear with probability u, which will invert a single bit
of the string s. Such mutations can be viewed as transitions between genotypes which form a random walk
in the L-dimensional genotypic space of all 2L strings.

Notations. For L ∈ N, we denote by B(L) the set of all L-bit strings. Given a string s ∈ B(L), the
neighborhood Nh(s) of s is the set of strings that differ from s by only one bit, i.e., Nh(s) = {s′ ∈ B(L) : s, s′

differ in exactly one position}. In order to model natural selection, we will consider a constant selection
intensity β ∈ R and each string s will be associated with a fitness according to a fitness function f(s) ∈ R.
The selection intensity and the fitness function will determine the transition probabilities between s and its
neighbors.

Transition probability between strings. Given a string s and s′ ∈ Nh(s), the transition probability
∆(s, s′) from s to s′ depends (i) on the fitness of s and the fitness of the neighbors in Nh(s), and (ii) the
selection intensity. For all s′′ ∈ Nh(s), let df (s, s′′) = (f (s′′)− f (s)) denote the difference in fitness of s and
s′′, and let g(s, s′′) = 1

1+e−β·df (s,s′′) . Then the transition probability is defined as follows:

∆(s, s′) = u · g(s, s′)
∑

s′′∈Nh(s) g(s, s
′′)

(1)

The intuitive description of the transition probability (which is refered as Fermi process) is as follows: the
term u represents the probability of a mutation occurring in s, while the choice of the neighbor s′ is based on
a normalized weighted sum, with each sigmoid term 1

1+e−β·df (s,s′) being determined by the fitness difference

between s, s′ and the selection intensity. The selection intensity acts like the temperature function. The
high values of the selection intensity will favor those transitions to neighbors that have higher fitness, while
setting β = 0 turns all the possible transitions of equal probability and independent of the fitness landscape
(we refer to this case as neutral selection).

Discovery time. Given a string space B(L), a fitness function f and a selection intensity β, for two
strings s1, s2 ∈ B(L), we denote by T (s1, s2, f, β) the expected discovery time of the target string s1 from
the starting string s2, i.e., the average number of steps necessary to transform s2 to s1 under the fitness
landscape f and selection intensity β. Given a start string s2 and a target set U of strings we denote by
T (U, s2, f, β) the expected discovery time of the target set U starting from the string s2, i.e., the average
number of steps necessary to transform s2 to some string in U . In the following section we will present several
lower and upper bounds on the discovery times depending on the fitness function and selection intensity.

Moran evolutionary process. The evolutionary process we described is the Fermi process where the
transition probabilities are chosen according to the Fermi function and the fitness difference. We will first
present lower and upper bounds for the Fermi evolutionary process for mathematically elegant proofs, and
then argue how the bounds are easily transferred to the Moran evolutionary process.

4. Neutral Selection

In this section we consider the case of neutral selection, and hence the transition probabilities are independent
of the fitness function. Since β = 0 for all strings s, the transition probability equation (Eqn 1) simplifies to
∆(s, s′) = u

L for all s′ ∈ Nh(s). We will present an exponential lower bound on the discovery time of a set

of targets concentrated around the sequence ~0, and we will refer to this case as broad peak. For a constant
0 < c < 1, let UL

c denote the set of all strings such that at most cL bits are ones (i.e., at least (1 − c) · L
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bits are zeros). In other words, UL
c is the set of strings that have Hamming distance at most cL to ~0. We

consider the set UL
c as the target set. Because there is neutral selection the fitness landscape is immaterial,

and for the sequel of this section we will drop the last two arguments of T (·, ·, f, β) since β = 0 and the
discovery time is independent of f .

We model the evolutionary process as a Markov chain on a line, ML,0 = (S, δ0) (0 for neutral), which is
obtained as follows: by symmetry, all strings that have exactly i-ones and (L− i)-zeros form an equivalence
class, which is represented as state i of the Markov chain. The transition probabilities from state i are

as follows: (i) for 0 < i < L we have δ0(i, i − 1) = u·i
L and δ0(i, i + 1) = u·(L−i)

L ; (ii) δ0(0, 1) = u; and
(iii) δ0(L,L−1) = u. Then we have the following equivalence: for a string s in B(L)\UL

c the discovery time
T (UL

c , s) from s to the set UL
c under neutral selection is same as the hitting time H(cL, i) in the Markov

chain on a line ML,0, where s has exactly i-ones.
Each state has a self-loop with probability (1 − u), and we ignore the self-loop probabilities (i.e., set

u = 1) because by Lemma 5 all lower bounds on the hitting time for the unloop variant are valid for
the original Markov chain; and all upper bounds on the hitting time for the unloop variant need to be
multiplied by 1

u to obtain the upper bounds on the hitting time for the original Markov chain. In other

words, we will consider the following transition probabilities: (i) for 0 < i < L we have δ0(i, i− 1) = i
L and

δ0(i, i+ 1) = (L−i)
L ; (ii) δ0(0, 1) = 1; and (iii) δ0(L,L− 1) = 1.

Theorem 1. For all constants c < 1
2 , for all string spaces B(L) with L ≥ 4

1−2·c , and for all s ∈ B(L) \UL
c ,

we have T (UL
c , s) ≥ cℓ·L−1

A , where A = 3−2·c
4 = 1

2 + 1−2·c
4 > 1

2 , cA = A
1−A > 1 and ℓ = 1−2·c

4 > 0.

Proof. We consider the Markov chain ML,0 for L ≥ 4
1−2·c and let us consider the midpoint i between cL and

1
2 ·L, i.e., i = 1+2·c

4 ·L. Such a midpoint exists since L ≥ 4
1−2·c . Then for all j such that cL ≤ j ≤ i we have

δ0(j, j + 1) =
L− j

L
≥ L− i

L
=

3− 2 · c
4

= A >
1

2
.

The first inequality holds since j ≤ i, while the second inequality is due to c < 1
2 . We now use Corollary 1

(item 1) for ML,0 with n1 = x = cL, y = i, and k = ( 1+2·c
4 − c) · L = ℓ · L and vary n2 from x + 1 to L to

obtain that H(n1, n2) ≥ cℓ·L−1
A , and hence for all s ∈ B(L) \ UL

c we have T (UL
c , s) ≥ cℓ·L−1

A .
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Figure 6: Neutral selection with broad peaks. The figure shows that when the target set is UL
c of

strings that have at most c · n ones (blue in (a)), for c < 1
2 , for a region of length ℓ · L − 1, which is from

c ·n to the mid-point between cL and L
2 , the transition probability to the right is at least a constant A > 1

2 ,
and this contributes to the exponential hitting time to the target set. Figure (b) shows the comparison of
the exponential time for multiple targets and single target under neutral selection.
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Figure 7: Constant selection with broad peaks. The figure shows the illustration of the dichotomy
theorem. The blue region represents the states that correspond to targets, while the green region depicts the
states where the transition probability to the left is greater than 1

2 . Intuitively given a selection intensity
β, the selection intensity allows to reach the region 1

1+eβ
· L in polynomial time. In figure (a), there exists

a region between the blue and green, of length ℓ · L, where the probability of transitioning to the right is a
constant, greater than 1

2 . In other words, when the blue and green region do not overlap, in the mid-region
between the blue and green region the transition probability to the right is at least A > 1

2 , and hence the
hitting time is exponential. When β and c are large enough so that the two regions overlap (figure (b)), then
all transitions to the left till the target set is at least 1

2 , and hence the hitting time is polynomial.
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5. Constant Fitness Difference Function

In this section we consider the case where the selection intensity β > 0 is positive, and the fitness function
is linear. For a string s, let h(s) denote the number of ones in s, i.e., the hamming distance from the
string ~0. We consider a linear fitness function f such that for two strings s and s′ ∈ Nh(s) we have
df (s, s′) = (f(s′)− f(s)) = −(h(s′)− h(s)), the difference in the fitness is constant and depends negatively
on the hamming distance. In other words, strings closer to ~0 have greater fitness and the fitness change is
linear with coefficient −1. We call the fitness function with constant difference as the linear fitness function.
Again we consider a broad peak of targets UL

c , for some constant 0 < c < 1
2 . Since we consider all strings

in UL
c as the target set, it follows that for all strings s ∈ B(L) \ UL

c the difference in the hamming distance
between s and s′ ∈ Nh(s) from 0 and the target set UL

c is the same. Similarly as in the neutral casel, due
to symmetry of the linear fitness function f , we construct an equivalent Markov chain on a line, denoted
ML,β = (S, δβ), as follows: state i of the Markov chain represents strings with exactly i-ones, and we have
the following transition function: (i) δβ(0, 1) = 1; (ii) δβ(L,L− 1) = 1; and (iii) for 0 < i < L we have

δβ(i, i+ 1) =
1

1 + eβ · i
L−i

; δβ(i, i− 1) =
1

1 + e−β · L−i
i

;

(also see the technical appendix for the derivation of the above probabilities).
Again the discovery time corresponds to the hitting time in the Markov chain ML,β . Note that again

we have ignored the self-loops of probability (1− u), and by Lemma 5 all lower bounds for hitting time for
the unloop variant are valid for the original Markov chain; and all upper bounds on the hitting time for
the unloop variant need to be multiplied by 1

u to obtain upper bounds on the hitting time for the original
Markov chain.

We will present a dichotomy result: the first result shows that if c · (1 + eβ) < 1, for selection intensity
β > 0, then the discovery time is exponential, while the second result shows that if c · (1 + eβ) ≥ 1, then the
discovery time is polynomial. We first present the two lemmas.

Lemma 6. For the linear fitness function f , for all selection intensities β > 0 and all constants c ≤ 1
2 such

that c · v < 1, where v = 1 + eβ, there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for

all s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) ≥ cℓ·L−1
A where A = 1

2 + v·(2−c·v)
2·(v·(c·v+2−2·c)−2) >

1
2 , cA = A

1−A > 1 and

ℓ = 1−c·v
2·v > 0.

Proof. We consider the Markov chain ML,β for L ≥ L0 = 2·v
1−c·v . Consider the midpoint i between cL and L

v ,

i.e., i = 1+c·v
2·v · L (such a midpoint exists because L ≥ L0 and the choice of c). For all cL < j ≤ i we have:

δβ(j, j + 1) =
1

1 + eβ · j
L−j

≥ 1

1 + eβ · i
L−i

=
1

1 + (v − 1) ·
1+c·v
2·v ·L

L− 1+c·v
2·v ·L

=
2 · v − 1− c · v

c · v2 + 2 · v · (1− c)− 2

=
1

2
+

v · (2− c · v)
2 · (v · (c · v + 2− 2 · c)− 2)

= A >
1

2
.

The first inequality holds as j
L−j ≤ i

L−i since j ≤ i; the second equality is obtained since (v − 1) = eβ

and substituting i with its value 1+c·v
2·v · L; and the result of the equalities are simple calculation; and the

description of the final inequality is as follows: (i) since c ·v < 1, we have 2− c ·v > 0, (ii) the fact that c ≤ 1
2

and c · v ≥ 0 implies that c · v+ 2− 2 · c ≥ 1 and since we have v > 2, it follows that v · (c · v+ 2− 2 · c) > 2;
establishing that the term along with 1

2 in A is strictly positive. We now use Corollary 1 (item 1) for
ML,β with n1 = x = cL, y = i, and k = 1−c·v

2·v · L = ℓ · L and vary n2 from x + 1 to L to obtain that

H(n1, n2) ≥ cℓ·L−1
A , and hence for all s ∈ B(L) \ UL

c we have T (UL
c , s, f, β) ≥ cℓ·L−1

A .
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Lemma 7. For all string spaces B(L), for all c < 1
2 and the linear fitness function, for all selection intensities

β > 0 with c · (1 + eβ) ≥ 1, for all s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) = O(L2).

Proof. We consider the Markov chain ML,β , where β is such that we have c ≥ 1
1+eβ

. For every cL < j < L
we have:

δβ(j, j − 1) =
1

1 + e−β · L−j
j

≥ 1

1 + e−β · L−cL
cL

=
1

1 + e−β · 1−c
c

≥ 1

2
.

The first inequality holds because L−j
j ≤ L−cL

cL since cL < j; the second inequality holds since c · (1+eβ) ≥ 1

which implies that 1 ≥ 1
eβ
· ( 1c − 1), and hence 1 + e−β · ( 1c − 1) ≤ 2. Thus for all cL < j < L we have

δβ(j, j − 1) ≥ 1
2 , and by Corollary 1 (item 2) we have that H(cL, n2) = O(L2) for all n2 > cL. Thus we

conclude that T (UL
c , s, f, β) = O(L2) for all s ∈ B(s) \ UL

c . The desired result follows.

Theorem 2. For the linear fitness function f , selection intensity β > 0, and constant c ≤ 1
2 , the following

assertions hold:

1. If c · (1 + eβ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for all

s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) ≥ cℓ·L−1
A where A = 1

2 + v·(2−c·v)
2·(v·(c·v+2−2·c)−2) > 1

2 , cA = A
1−A > 1

and ℓ = 1−c·v
2·v > 0.

2. If c ·(1+eβ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L)\UL
c we have T (UL

c , s, f, β) = O(L2).

6. Moran Process Model

In the previous section we considered the constant selection intensity with Fermi process. We now discuss
how from the results of the previous section we can obtain similar results if we consider the Moran process
for evolution.

Basic Moran process description. A population of N individuals mutates with probability u in each
round, at N ·u rate. Consider that the population is currently in state i (which represents all bit strings with
exactly i ones): the probability that the next state is i− 1 is the rate of an i− 1 mutant to be introduced,
times the fixation probability of the mutant in the population. Formally, the transition probability matrix
δM (M for Moran process) for the Markov chain on a line under the Moran process is as follows:

(1) δM (i, i−1) = N ·u· i
L
·ρi,i−1; (2) δM (i, i+1) = N ·u·L− i

L
·ρi,i+1; (3) δM (i, i) = 1−δM (i, i−1)−δM (i, i+1).

We assume that N ·u < 1 and ρi,j is the fixation probability of a j mutant in a population of N−1 individuals
of type i. In particular,

ρi,j =
1− fi

fj

1−
(

fi
fj

)N

and ρi,j ∈ (0, 1) for positive fitness fi and fj , where fi (resp. fj) denotes the fitness of strings with exactly i
(resp. j) ones. We first show a bound for the self-loop probabilities δM (i, i): since strings closer to the target
have a greater fitness value we have fi−1 ≥ fi; and hence the probability of fixation of an (i− 1)-mutant in
a population of type i is at least 1

N . Thus we have

δM (i, i− 1) = N · u · i
L
· ρi,i−1 ≥ N · u · i

L
· 1
N
≥ u

L

Then, 1 − δM (i, i) ≥ δM (i, i − 1) ≥ u
L , and

1
1−δM (i,i) ≤ L

u . Hence we will consider the unloop variant of

the Markov chain and by Lemma 5 all lower bounds on discovery time for the unloop variant hold for the
original Markov chain; and the upper bounds for the unloop variant need to by multiplied by L

u to obtain
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the upper bounds for the original Markov chain. Hence if we consider the unloop variant of the Markov
chain on a line obtained from the Moran process we have:

δM (i, i− 1) =
δM (i, i− 1)

δM (i, i− 1) + δM (i, i+ 1)
=

i

i+ (L− i) · ρi,i+1

ρi,i−i

=
1

1 + L−i
i ·

ρi,i+1

ρi,i−i

and δM (i, i+ 1) = 1− δM (i, i− 1). We now consider the case of multiplicative fitness function.

Multiplicative fitness rates. We consider the case where we have multiplicative fitness function where
fi−1

fi
= ri ≥ 1, as the fitness function increases as we move closer to the target. Then

ρi,i+1

ρi,i−1
=

1−ri+1

1−rN
i+1

1−r−1
i

1−r−N
i

= r
−(N−1)
i · rNi − 1

rNi+1 − 1
· ri+1 − 1

ri − 1

and

δM (i, i− 1) =
1

1 + L−i
i ·

ρi,i+1

ρi,i−1

=
1

1 + L−i
i · r

−(N−1)
i · rN

i
−1

rN
i+1−1

· ri+1−1
ri−1

.

For constant factor ri = r for all i, we obtain

δM (i, i− 1) =
1

1 + L−i
i · r−(N−1)

.

Let us denote by δM,r(i, i − 1) = 1
1+L−i

i
·r−(N−1)

the transition probabilities of the unloop variant of the

Markov chain on a line for the Moran process with multiplicative constant r. Then we have the following
cases:

1. (Neutral case). In the neutral case we have r = 1, and then the Markov chain with transition proba-
bilities δM,1 is the same as the transition probabilities δ0 of the Markov chain ML,0 in Section 4 for
neutral selection.

2. (Constant r multiplicative fitness). The transition probabilities δM,r(i, i− 1) has the same form as the
transition probabilities of the Markov chain ML,β under positive selection intensity and linear fitness
function, in Section 5. In particular, for eβ = rN−1, we have δβ of ML,β is the same as δM,r, and thus
from the results of Section 5 we obtain similar results for the Moran process.

Summary of results for Moran process with multiplicative fitness landscape. From the results of
Section 4 and Section 5, and the equivalence of the transition probabilities of the Markov chains in Section 4
and Section 5 with those in the Moran process, we obtain the following results for Moran process of evolution
under constant multiplicative fitness landscape r:

1. (Single target). For a single target, for all constants r and population size N , the discovery time from
any non-target string to the target is exponential in the length of the bit strings.

2. (Broad peaks). For broad peaks with constant c fraction of clustered targets with c ≤ 1
2 , if c·(1+rN−1) <

1, then the discovery time from any non-target string to the target set is at least exponential in the
length L of the bit strings; and if c · (1+ rN−1) ≥ 1, then the discovery time from any non-target string

to the target set is at most O(L
3

u ) (i.e., polynomial).

7. General Alphabet

In previous sections we presented our results for L-bit strings. In this section, we consider the case of general
alphabet, where every sequence consists of letters from a finite alphabet Σ. Thus, B(L) is the space of all
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L-tuple strings in ΣL. We fix a letter σ ∈ Σ, and consider a target set UL
c , consisting of all the L-tuple

strings, such that every s ∈ UL
c differs from the target string t = σL (of all σ’s) in at most cL positions (i.e.,

Hamming distance at most c ·L from the target string t). We will prove a dichotomy result that generalizes
Theorem 2.

We can again consider a Markov chain on a line ML,β , where its i-th position encodes all the strings in
B(L) which differ from t in exactly i positions. We consider a string s that corresponds to the i-th state of
ML,β , for 0 < i < L. Then we have the following cases:

• There are exactly i neighbors of s in state i − 1, since in each position among the i positions that s
does not agree with t, there is exactly one mutation that will make s and t match in that position.

• There are exactly (L− i) · (|Σ| − 1) neighbors of s in state i+1, since in each position among the L− i
positions in which s agrees with t, there are |Σ|−1 mutations that will make s not agree with t in that
position.

• There are exactly i · (|Σ| − 2) neighbors of s in state i, since in each position j among the i positions
that s does not agree with t, there are |Σ| − 2 mutations that will preserve this disagreement.

Let us denote |Σ| = 1 + κ, where κ ≥ 1. Based on the above analysis and Equation 1, the following
holds for the transition probabilities of ML,β :

δβ(i, i+ 1)

δβ(i, i− 1)
=

(L− i) · κ · 1
1+eβ

i
1+e−β

=
L− i

i
· κ · e−β

while for δβ(i, i) we have:

• (κ = 1): Then δβ(i, i) = 0, since every mutation changes the distance from t.

• (κ > 1): Then by Equation 1, for 0 < i ≤ L:

δβ(i, i) =
1

1 + 2
κ·(1+e−β)

+ 2·(L−i)·(κ+1)
i·κ·(1+eβ)

which is maximized when i = L to δβ(L,L) =
1

1+ 2

κ·(1+e−β)

, constant for a fixed alphabet Σ.

Lemma 8. For the linear fitness function f , for all selection intensities β ≥ 0 and all constants c ≤ κ
κ+1

such that c · v < 1 for v = 1 + eβ

κ , there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for

all s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) ≥ Aℓ·L−1, where A = v·(2−c)−1
1+c·v · κ · e−β > 1 and ℓ = 1−c·v

2·v .

Proof. We consider the Markov chain ML,β for L ≥ L0 = ⌈ 2·v
1−c·v ⌉. Consider the midpoint i between cL

and L
v , i.e., i = L · 1+c·v

2·v (such a midpoint exists because L ≥ L0 and the choice of c, as i > cL). For all
cL < j ≤ i we have:

δβ(j, j + 1)

δβ(j, j − 1)
=

L− j

j
· κ · e−β ≥ L− i

i
· κ · e−β =

L− L · 1+c·v
2·v

L · 1+c·v
2·v

· κ · e−β =
2 · v − 1− c · v

1 + c · v · κ · e−β = A > 1

The first inequality holds because j ≤ i and thus L−j
j ≥ L−i

i . The equalities follow as simple rewriting, while

A > 2·v−2
2 · κ · e−β = (v − 1) · κ · e−β = 1, since c · v < 1. We now use Lemma 3 for ML,β with n1 = x = cL,

y = i, and k = L · 1−c·v
2·v = ℓ · L and vary n2 from x+ 1 to L to obtain that H(n1, n2) ≥ Aℓ·L−1, and hence

for all s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) ≥ Aℓ·L−1.

Lemma 9. For all string spaces B(L), for all c ≤ κ
κ+1 and the linear fitness function f , for all selection

intensities β ≥ 0 with c · v ≥ 1 for v = 1+ eβ

κ , for all s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) = O(L
2

M ), where
M = min0<i≤L 1− δβ(i, i) = 1− 1

1+ 2

κ·(1+e−β)

.
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Proof. We consider the Markov chain ML,β , where β is such that we have c · v ≥ 1. For every cL < j < L
we have:

δβ(j, j − 1)

δβ(j, j + 1)
=

j

L− j
· e

β

κ
≥ cL

L · κ · (1− c)
· eβ =

c · eβ
κ− c · κ ≥ 1

The first inequality holds because cL < j; the second inequality holds because c · (1 + eβ

κ ) ≥ 1 and thus
c·eβ

κ−c·κ ≥ 1. Thus for all cL < j < L we have δβ(j, j − 1) ≥ δβ(j, j + 1), while M = min0<i≤L 1− δβ(i, i) =

1 − 1
1+ 2

κ·(1+e−β)

. Then, by Lemma 4 we have that H(cL, n2) = O(L
2

M ) for all n2 > cL. We conclude that

T (UL
c , s, f, β) = O(L

2

M ) for all s ∈ B(s) \ UL
c . The desired result follows.

Lemmas 8 and 9 yield the following dichotomy (recall that |Σ| = 1 + κ):

Theorem 3. For alphabet size |Σ|, for the linear fitness function f , selection intensity β ≥ 0, and constant
c ≤ κ

κ+1 , where |Σ| = 1 + κ; the following assertions hold :

1. if c · (1 + eβ

κ ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0, for all

s ∈ B(L) \ UL
c we have T (UL

c , s, f, β) ≥ Aℓ·L−1 where A = v·(2−c)−1
1+c·v · κ · e−β > 1 and ℓ = 1−c·v

2·v , with

v = eβ+κ
κ ; and

2. if c ·(1+ eβ

κ ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L)\UL
c we have T (UL

c , s, f, β) = O(L
2

M ),
where M = 1− 1

1+ 2

κ·(1+e−β)

.

Note that Theorem 3 with the special case of |Σ| = 2 and κ = 1 gives us Theorem 2.

Corollary 2. For alphabet size |Σ| = 1+κ, consider the Moran process with multiplicative fitness landscape
with constant r, population size N , and mutation rate u. Let c ≤ κ

κ+1 . The following assertions hold :

1. if c · (1 + rN−1

κ ) < 1, then there exists L0 ∈ N such that for all string spaces B(L) with L ≥ L0,
for all s ∈ B(L) \ UL

c the discovery time from s to some string in UL
c is at least Aℓ·L−1 where A =

v·(2−c)−1
1+c·v · κ · r1−N > 1 and ℓ = 1−c·v

2·v , with v = 1 + rN−1

κ ; and

2. if c · (1 + rN−1

κ ) ≥ 1, then for all string spaces B(L), for all s ∈ B(L) \ UL
c the discovery time from s

to some string in UL
c is at most O( L3

M ·u ), where M = 1− 1
1+ 2

κ·(1+r−(N−1))

is constant.

Explicit bounds for four letter alphabet. We now present the explicit calculation for L0 and ℓ of
Corollary 2 for four letter alphabet. For the four letter alphabet we have κ = 3, and for the exponential
lower bound we have cv < 1. In this case we have

v =
3 + rN−1

3
and ℓ =

1− 3c− crN−1

6 + 2rN−1
=

3(1− c)− crN−1

6 + 2rN−1
.

Since cv < 1 we have

A = 3r1−N 2v − cv − 1

1 + cv
≥ 2(v − 1)

1 + cv
= 3r1−N 2 rN−1

3
3+3c+crN−1

3

=
6

3(1 + c) + crN−1

By changing the exponential lower bound to base 2, we have that the discovery time is at least 2(ℓL−1) log2 A.
Thus we have the following two cases:

• Selection: With selection (i.e., r > 1) the exponential lower bound on the discovery time when cv < 1
is at least:

2

(

3(1−c)−crN−1

6+2rN−1 L−1

)

log2
6

3(c+1)+crN−1
;

for all L ≥ L0 = 6+2rN−1

3(1−c)−crN−1 .
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• Neutral case: Specializing the above result for the neutral case (i.e., r = 1) we obtain the exponential
lower bound on the discovery time when cv < 1 is at least:

2(
3−4c

8 L−1) log2
6

4c+3 ;

for all L ≥ L0 = 8
3−4c . We ignore the factor 1 as compared to L and have that 2(

3−4c
8 L−1) log2

6
4c+3 ≥

exp
(

(

3−4c
16 L

)

log2
6

4c+3

)

.

Discussion about implications of results. We now discuss the implications of Corollary 2.
1. First the corollary implies that for a single target (which intuitively corresponds to c = 0) even with

multiplicative fitness landscape (which is an exponentially increasing fitness landscape) the discovery
time is exponential.

2. The discovery time is polynomial if c · (1+ rN−1

κ ) ≥ 1, however this requires that the slope of the fitness
gain extends over the whole sequence space (at least till Hamming distance (κ/(κ+ 1)) · L).

3. Consider the case where the fitness gain arises only when the sequence differs from the target in not
more than a fraction of s positions, i.e., the slope of the fitness function only extends upto a Hamming
distance of s·L. Now our result for neutral drift with broad peak applies. Since we must rely on neutral
drift until the fitness gain arises, the discovery time of this process is at least as long as the discovery
time for neutral drift with a broad peak of size c = s. If r = 1 (neutral drift), then we have that
the discovery time is polynomial if c(1 + 1

κ ) ≥ 1, and otherwise it is exponential. Hence if the fitness
gain arises from Hamming distance s · L and s < κ/(κ+ 1), then the expected discovery time starting
from any sequence outside the fitness gain region is exponential in L. Moreover, there are two further
implications of this exponential lower bound. First, note that if r = 1, then rN−1 is 1 independent of
N , and thus the exponential lower bound is independent of N . Second, note that if the fitness gain
arises from Hamming distance s · L, and it is neutral till the fitness gain region is reached, then the
exponential lower bound for s < κ/(κ + 1), is also independent of the shape of the fitness landscape
after the fitness gain arises. Formally, if we consider any fitness function f that assigns zero fitness
to strings that are at Hamming distance at least s · L from the ideal sequence, and any nonnegative
fitness value to other strings, then the process is neutral till the fitness gain arises, and the exponential
lower bound holds for the fitness landscape, and is independent of the population size. For a four letter
alphabet (as in the case of RNA and DNA) the critical threshold is thus s = 3/4.

Remark 1. Note that we have shown that all results for bit strings easily extend to any finite alphabet
by appropriately changing the constant. For simplicity, in the following sections we present our results for
strings over 4-letter alphabet, and they also extend easily to any finite alphabet by appropriately changing
the constants.

Remark 2. We have established several lower bounds on the expected discovery time. All the lower bounds
are obtained from hitting times on Markov chains, and in Markov chains the hitting times are closely
concentrated around the expectation. In other words, whenever we establish that the expected discovery
time is exponential, it follows that the discovery time is exponential with high probability.

8. Multiple Independent Searches

In this section we consider multiple independent searches. For simplicity we will consider strings over 4-letter
alphabet, and as shown in Section 7 the results easily extend to strings over alphabets of any size.

8.1. Polynomially many independent searches. We will show that if there are polynomially many
multiple searches starting from a Hamming distance of at least 3L

4 , then the probability to reach the target
in polynomially many steps is negligibly small (smaller than a inverse of any polynomial function). We will
present our results for Markov chain on a line, and it implies the results for the evolutionary processes. We
start with two simple lemma. In all the following lemmas we consider the Markov chain on a line for a four
letter alphabet.
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Lemma 10. From any point n2 ≥ 3L
4 the probability that 3L

4 is not reached within L5 steps is exponentially
small in L (i.e., at most e−L).

Proof. We have already established that the expected hitting time from n2 to
3L
4 is L2. Hence the probability

to reach 3L
4 within L3 steps must be at least 1

L (otherwise the expectation would have been greater than

L2). Since from all states n2 ≥ 3L
4 the probability to reach 3L

4 is at least 1
L within L3 steps, the probability

that 3L
4 is not reached within k ·L3 steps is at most

(

1− 1
L

)k
. Hence the probability that 3L

4 is not reached
within L5 steps is at most

(

1− 1

L

)L·L
≤ e−L.

The desired result follows.

Lemma 11. The contribution of the expectation to reach after L2 · 2L·logL steps to the expected hitting time
is at most a constant (i.e., O(1)).

Proof. From any starting point, the probability to reach the target within L steps is at least 1
LL . Hence

the probability not reaching the target within k · LL steps is e−k. Hence the probability to reach after
ℓ · L2 · 2L·logL steps at most e−ℓ·L2

. Thus expectation contribution from L2 · 2L·logL steps is at most

∞
∑

ℓ=1

(ℓ+ 1) · L2 · 2L·logL

eℓ·L2 ≤ L2 · 2L·logL

eL2 ·
∞
∑

ℓ=1

(ℓ+ 1)

eℓ
≤ 22·logL+L·logL

2L2 ·
∞
∑

ℓ=1

(

ℓ

eℓ
+

1

eℓ

)

≤ e

(e− 1)2
+

1

(e− 1)
= O(1).

The desired result follows.

Lemma 12. In all cases, where the lower bound on the expected hitting time is exponential, for all polyno-
mials p1(·) and p2(·), the probability to reach the target set from any state n2 such that n2 ≥ 3L

4 within the
first p1(L) steps is at most 1

p2(L) .

Proof. We first observe that from any start point n′
2 ≥ 3L

4 the expected time to reach 3L
4 is L2, and the

probability that 3L
4 is not reached within L5 steps is exponentially small (Lemma 10). Hence if the probability

to reach the target set from 3L
4 within p1(L) steps is at least 1

p2(L) , then from all states the probability to

reach within L5 ·p1(L) steps is at least 1
L·p2(L) . In other words, from any state the probability that the target

set is not reached within L5 · p1(L) steps is at most (1− 1
L·p2(L) ). Hence from any state the probability that

the target set is not reached within k · L5 · p1(L) steps is at most (1 − 1
L·p2(L) )

k. Thus from any state the

probability that the target set is not reached within L3 · p2(L) · L5 · p1(L) steps is at most

(

1− 1

L · p2(L)

)L·p2(L)·L2

= e−L2

.

Hence the probability to reach the target within L8 · p1(L) · p2(L) steps is at least 1 − 1
eL2 . By Lemma 11

the expectation contribution from steps at least L2 · 2L·logL is constant (O(1)).
Hence we would obtain an upper bound on the expected hitting time as

L8 · p1(L) · p2(L) ·
(

1− 1

eL2

)

+
L2 · 2L·logL

eL2 +O(1) ≤ L9 · p1(L) · p2(L).

Note that the above bound is obtained without assuming that p1(·) and p2(·) are polynomial functions.
However, if p1(·) and p2(·) are polynomial, then we will obtain a polynomial upper bound on the hitting
time, which contradicts the exponential lower bound. The desired result follows.

Corollary 3. In all cases, where the lower bound on the expected hitting time is exponential, let us denote
by h denote the expected hitting time. Given numbers t1 and t2, the probability to reach the target set from
any state n2 such that n2 ≥ 3L

4 within the first t1 = h
L9·t2 steps is at most 1

t2
.
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Proof. In the proof of Lemma 12 first we established that the hitting time is at most L9 ·p1(L)·p2(L) (without
assuming they are polynomial). By interpreting t1 as p1(L) and t2 = p2(L) we obtain that h ≤ L9 · t1 · t2.
The desired result follows.

Theorem 4. In all cases, where the lower bound on the expected hitting time is exponential, for all polyno-
mials p1(·), p2(·) and p3(·), for p3(L) independent multiple searches, the probability to reach the target set
from any state n2 such that n2 ≥ 3L

4 within first p1(L) steps for any of the searches is at most 1
p2(L) .

Proof. Consider the polynomial p2(L) = p3(L) ·p2(L). Then by Lemma 12 for a single search the probability
to reach the target within p1(L) steps is at most 1

p2(L) . Hence the probability that none of the search reaches

the target in p1(L) steps is

(

1− 1

p2(L)

)p3(L)

=

(

1− 1

p2(L)

)p3(L)· p2(L)

p2(L)

=

(

1− 1

p2(L)

)p2(L)· 1
p2(L)

= e
− 1

p2(L) ≤ 1− 1

2 · p2(L)
;

since e−2·x ≤ 1− x, for 0 ≤ x ≤ 1
2 . The desired result follows.

Remark 3. Observe that in Theorem 4 the independent searches could start at different starting points, and
the result still holds, because in all cases we established an exponential lower bound, the lower bound holds
for all starting points outside the target region.

8.2. Probability of hitting in a given number of steps.We now present a simple approximation of the
probability that none of M independent searches succeed to discover the target in a given number of b steps,
where the expected discovery time for a single search is d, for b << d. First we observe that the expected
discovery time is the hitting time in a Markov chain, and the probability distribution of the hitting time is
largely concentrated around the mean d. Hence the probability that a single search succeeds in b steps is at
most b

d , for b << d. The probability that none of the searches succeed is at least

(

1− b

d

)M

= e−
M·b
d

9. Distributed Targets

We now discuss several cases of distributed targets for which the exponential lower bounds can be obtained
from our results. We discuss the results for four letter alphabet.

1. Consider the example of distributed targets where the letters in a given L0 number of positions are
immaterial (e.g., the first four positions, the tenth position and the last four positions are immaterial,
and hence L0 = 9 in this case). Then we can simply apply our results ignoring the positions which are
immaterial, i.e., the string space of size L− L0, and apply all results with effective length L− L0.

2. Consider the example where the target set is as follows: instead of the target of all σ’s (i.e., t = σL),
the target set has all sequences that have at least an α · L length segment of σ’s, for α > 1/2. Then
all the targets have an overlapping segment of (2 · α − 1) · L number of σ’s from position (1 − α) · L
to α · L. We can then obtain a lower bound on the discovery time of these targets by considering as
target set the superset containing all sequences with σ’s in that region. In other words, we can apply
our results with single target but the effective length is (2 · α − 1) · L. A pictorial illustration of the
above two cases is shown in Supplementary Figure 8.

3. We now consider the case of distributed targets that are chosen uniformly at random and independently,
and let m << 4L be the number of distributed targets. Let the selection gradient extend up to a
distance of sL from a target, for s < 3/4. Formally we consider any fitness landscape f that assigns
zero fitness to a string whose Hamming distance exceeds sL from every target. We consider a starting
sequence for the search and argue about the estimate on the expected discovery time.
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(a)

(b)

Figure 8: Distributed target examples. Figure (a) shows that if there are positions of the string that
are immaterial, then the effective length decreases. Figure (b) considers the case when the evolutionary
process searches for a string of length α ·L, and it shows that it searches for a single string of length at least
(2 · α− 1) · L.
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• First we consider the Markov chain M defined on B(L) where every string s in B(L) is a state
of the Markov chain. The transition probability from a string s to a neighboring string in Nh(s)
of Hamming distance 1 is 1

|Nh(s)| . The Markov chain M has the following two properties: it is

(i) irreducible, i.e., the whole Markov chain M is a recurrent class; and (ii) reversible, i.e., if there
is a transition probability from s to s′, there is also a transition probability from s′ to s.
• Since M is irreducible and reversible, and due to its symmetric nature, it has a very fast mixing
time (the number of steps required to converge to the stationary distribution). In particular,
the stationary distribution, which is the uniform distribution over B(L), is converged to with in
O(L · logL) steps [1].
• Since s < 3/4, the expected time to reach a string from where the selection gradient to a specific
target is felt is exponential (by Corollary 2). Thus given m << 4L and s < 3/4, a string from
where the selection gradient to any target is felt is reached with in the first O(L · logL) steps with
low probability.
• Since any string from where the selection gradient is felt to a target is reached with in the first
O(L · logL) steps with low probability, and after O(L · logL) steps M converges to the uniform
distribution, a lower bound on the expected discovery time can be obtained as follows: consider
the probabilistic process that in every step chooses a string in B(L) uniformly at random and the
process succeeds if the chosen string has a Hamming distance at most sL from any of the target
sequence. The expected number of steps required for the success of the probabilistic process is a
lower bound on the expected discovery time. Hence we first estimate the success probability of
every step for the probabilistic process. Consider a target string and a string chosen uniformly
at random. Since the string is chosen uniformly at random, we can equivalently think that
the process is generating uniform distribution over the alphabet for every position of the string
sequence. The probability that the i-th position of the sequence of a target differs from the
chosen sequence has probability 3/4 (since we have a four letter alphabet). In other words, the
generation of the positions of the string are Bernoulli random variables with mean 3/4. Let X
denote the random variable for the number of positions of a target that differ from the chosen
sequence (in other words, X denotes the Hamming distance), and henceX is distributed according
to Bionomial(L, 3/4). We now apply Hoeffding’s inequality and obtain that the probability that
chosen string lies within the selection gradient from a specific target is at most

P[X ≤ sL] ≤ exp
(

−2 · (3/4− s)2 · L
)

By union bound, the probability of success in every step is at most m · exp
(

−2 · (3/4− s)2 · L
)

,

and thus the expected discovery time is at least
exp(2·(3/4−s)2·L)

m . Note that in proof of the lower
bound above any sequence with positive fitness is considered as a target, and hence the lower
bound on the expected discovery time holds even if there is a broad peak of width sL around each
of the m target sequences.

Theorem 5. Consider the four letter alphabet, and a starting sequence in B(L). Let the target set of
m << 4L sequences be chosen uniformly at random, with selection extending up to a distance of sL
from each target sequence, with s < 3/4. Then with high probability the expected discovery time of the

target set is at least
exp(2·(3/4−s)2·L)

m .
Hence, if m is polynomial, or even an exponential smaller than exp

(

2 · (3/4− s)2 · L
)

, then the ex-
pected discovery time is exponential with high probability.

10. A Mechanism for Polynomial Time

In the previous sections we have shown the scenarios where the discovery time is not polynomial. We now
discuss a way that can ensure polynomial bounds. In the regeneration process, the process of evolution keeps
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on generating strings close to the target (say of distance k from the target). If the initial distance is k and
constant, then we show with very high probability in polynomially many regenerations the target is reached.

Polynomially many regenerations. First note that from every string s, if there is a transition from
the string s to a neighbor Nh(s), then there is at least a probability of 1

4·L to move closer to the target (in

expectation a transition to a neighbor occurs in every 1
u steps). Then with probability at least α =

(

1
4·L

)k

the target is reached for a single trial in O( ku ) steps, and thus the probability to not reach in Lk+1 = L · 1
α

trials is at most
(1− α)

1
α
·L = e−L;

i.e., exponentially small in L. In other words, with L · (4 · L)k = L · 1
α trials (regenerations) the target is

discovered in time at most O( ku ·L· 1α ) with very high probability; i.e., if k is constant, then with regenerations
the target is discovered in polynomial time with very high probability.

11. Calculations and Details of Data of Article

We first present a calculation of the number of targets in a broad peak.

Calculation 1. For a four letter alphabet, the number of sequences that differ in at most cL positions form
~0 is

cL
∑

i=0

3i
(

L

i

)

≥ 3cL
(

L

cL

)

= 3cL
L!

(cL)!((1− c)L)!

By Stirling’s approximation we have n! ≥ (n
e )

n

√
2πn

and thus we have

L!

(cL)!((1− c)L)!
≃

(

L
e

)L√
2πL

(

cL
e

)cL√
2πcL

(

(1−c)L
e

)(1−c)L
√

2π(1− c)L

=
1

ccL+0.5(1− c)(1−c)L+0.5
√
2πL

≥ (1− c)(c−1)L

√
2πL

where we first apply Stirling’s approximation, and for the inequality use that since c < 3
4 we have 1

ccL+0.5 ≥ 1.
By converting the exponential to base 2 we obtain

(1− c)(c−1)L

√
2πL

=
2(c−1)L log2(1−c)

√
2πL

≥ 2c(1−c)L

√
2πL

since − log2(1− c) ≥ c for 0 ≤ c < 3
4 . Hence the number of sequences at hamming distance at most cL from

~0 grows exponentially, as
3cL2c(1−c)L

√
2πL

≥ 2cL√
2πL

≥ 2cL

3L

as 3cL ≥ 2c
2L since c < 1, and

√
2πL < 3L.

Calculation 2. For L = 100 and c = 0.10, the number of strings in the cloud around the target is as follows:

10
∑

i=1

(

100

i

)

· 3i ≈ 1.06 · 1018

Calculation 3. We now apply the approximation results of Section 8.2 for calculation of success probability
for multiple searches to discover the target in bounded number of steps. Let us consider b = 1014 steps
(upper bound for 4 billion years), and M = 1024 independent searches, and let L = 1000 and c = 1/2. Then
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the expected discovery time for a single search is at least 1065. Thus applying the formula (1 − b/d)M for
the probability that none of the searches succeed we have the probability of failure for all searches is:

(

1− 1014

1065

)1024

=

(

1− 1

1051

)1024

=

(

1− 1

1051

)1051·10−27

≃
(

1

e

)10−27

=
1

1027
√
e
≥ 1− 10−26.

Thus the probability of at least one search succeeding within 1014 generations is at most 10−26 ≃ 0.

More precise version of Table 1 of article. A more elaborate and precise version of Table 1 of article is given
below.

r = 1 c = 1
3 c = 1

2 c = 3
4

L = 102 1.027309 · 1018 7.366173 · 107 182.71

L = 103 5.891566 · 10170 1.285790 · 1065 2666.2

(a) Neutral drift with broad peaks

r = 1.01 N = 102 N = 5 · 102 N = 103 N = 104 N =∞

s = 1
3

c = 1
12 1.872592 · 10337 6.149382 · 10170 5.893335 · 10170 5.891566 · 10170 5.891566 · 10170

c = 1
6 5.962263 · 10260 6.149382 · 10170 5.893335 · 10170 5.891566 · 10170 5.891566 · 10170

s = 1
2

c = 1
12 3.285017 · 10264 1.307607 · 1065 1.285938 · 1065 1.285790 · 1065 1.285790 · 1065

c = 1
6 1.396805 · 10188 1.307607 · 1065 1.285938 · 1065 1.285790 · 1065 1.285790 · 1065

(b) Multiplicative fitness with broad peaks for L = 1000.

Table 3: Table 1 and Table 2 with higher precision. Table of numerical data for discovery time

12. Related Work

In this section we discuss and compare our results with relevant related works from population genetics.

Genetic adaptation on continuous and sequence space. The subject of genetic adaptation has been an active
research area for several decades, and has been nicely summarized by Orr [2]. In a seminal work [3], Fisher
introduced the geometric model of adaptation in order to capture the statistical properties of beneficial
mutations and their effect in a continuous phenotypic space. He concluded that evolution proceeds via
mutations of small effect, a view that was first reconsidered later by Kimura [4]. Orr [5] extended this work
of Kimura by studying the distribution of sizes of mutations for the whole evolutionary walk, and showed that
it is an exponential distribution which retains its shape (but gradually shrinking) for the whole of the walk
(also see [6] for a review and summary of this work). Kimura is also known for having introduced the neutral
theory of molecular evolution [7]. To quote from Orr [2] “Throughout the 1960s and 1970s, evolutionary
geneticists grew increasingly convinced that much, if not most, molecular evolution reflects the substitution of
neutral [7,8] or nearly neutral [4,9–11] mutations, not beneficial ones.” In [12,13], Maynard Smith conceived
the idea that organisms evolve in the discrete, high-dimensional space of DNA and protein sequences, and
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the adaptive walk proceeds via unit mutational steps to fitter sequences. The idea of exploring sequence
space was expanded in [14], where evolution in rugged fitness landscapes was captured by the NK model.
Gillespie [15] described a simple stochastic substitution model under strong selection and weak mutation,
and by means of extreme value theory concluded that the mean number of gene substitutions until fixation
is small. This view was further developed in [16,17], where the assumption that the starting sequence must
be highly fit was necessary for efficient evolution. In a similar setting, Orr [18] showed that finding local
optima in sequence spaces takes at least e− 1 steps where e = 2.71.

Other works, such as [19, 20] studied the rate at which populations cross fitness valleys between peaks,
and characterize the rate by means of the population size, the barrier width, the rate of emergence of
beneficial mutants, but not as a function of L. The work in [21] also studied the rate at which populations
acquire mutations sequentially to cross a fitness valley and concluded that fixation is slower when mutations
have to be acquired in a particular order.

The speed of adaptation has also frequently been characterized in terms of fixation rates of beneficial
mutations. Orr [22] studied the rate of adaptive substitutions in asexuals as a function of the mutation rate
under the assumption that selection against the deleterious mutations is stronger than selection in favor of
the beneficial one. It was shown that the mutation rate which maximizes the adaptation rate depends only
the strength of selection against deleterious mutations. This work was later extended in [23] where it was
shown that beneficial alleles with relatively small beneficial advantage also have relatively small probability
of fixation.

Other works have studied the rate of adaptation by means of fitness change and fitness variation. In [24],
a setting of large asexual populations was studied where the effect of beneficial mutations is smaller than the
effect of deleterious ones, and was found that the speed of adaptation, defined as the change of log fitness
over time, changes logarithmically in the population size. The authors in [25,26] studied the fitness variation
maintained by the mutation/selection balance, and its implications in the rate that beneficial mutations are
accumulated. This was further developed in [27] where the results were extended from moderate speeds of
adaptation to high speeds.

Role of recombination. A key research question is what phenomenon contributes to speed-up of the evolu-
tionary search process. The classical work of Crow and Kimura shows that recombination leads to a speed
in evolution. Crow and Kimura [28, 29] studied the advantage that recombination confers to an adapting
sexual population over its asexual counterpart, by eliminating the clonal interference between simultaneously
emerging beneficial mutants. In [28] the length L of the genome sequence is not a parameter, and the results
show that the speed-up due to recombination is proportional to the population size. The speed-up of recom-
bination in various models with L also as a parameter was considered by Maynard Smith, and Table 1 in [30]
summarizes the relative speed-up under various models. In the best case, the speed-up due to recombination
is proportional to the product of the population size and the length L of the genome. Charlesworth in [31]
also examined the advantage in the population mean fitness that sexual populations have over asexuals,
for various dynamic selection functions, and showed that this advantage is substantial for various breeding
systems.

As in asexual populations, the rate of adaptation in sexual populations has been studied in analogous
settings. In [32] the authors considered the case of fitness-valley crossing assisted by recombination, and
identified a transient behavior in the benefit of recombination depending on the ratio between the rate of
recombination and the selective advantage of adaptation, with low recombination rates contributing more
than high rates. The work in [33] also addressed the question of the fixation probability of a beneficial allele
in a sexual population, which in turn limits the rate of adaptation, and derived a formula in which the rate
of adaptation depends on the population size, the chromosome length, the beneficial mutation rate and the
selective advantage of beneficial mutations. In [34] a similar question was asked, and concluded that for
sufficiently small populations, the rate of adaptation is linear in the product of the population size and the
rate of beneficial mutations, while for larger populations the rate of adaptation grows logarithmically on this
product.

Our results. In this work our contributions are as follows:
1. We present the mathematical foundations to estimate the expected number of steps for evolutionary
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processes as a function of L;
2. we characterize scenarios when the expected time is exponential in L;
3. we present strong dichotomy results between exponential vs polynomial time;
4. we suggest a mechanism that enables to break the infeasible exponential barrier and allows evolution

to work in polynomial time.
Our results nicely combine and explain several existing results. The regeneration process that breaks the
exponential barrier requires that (i) the starting sequence starts only a constant number of steps away from
the target and (ii) the starting sequence can be repeatedly generated. The first aspect is related to the
results of Gillespie [16, 17] that using extreme value theory suggests that the starting sequence must be a
highly fit sequence for efficient evolution (i.e., in our setting close to the target). The second aspect ties
in with the long-standing ideas that gene (and genome) duplications are the major events leading to the
emergence of new genes [35] and that evolution is a ‘tinkerer’ playing around with small modifications of
existing sequences rather than creating entirely new sequences [36]. Our work shows that the combination
of these two ideas break the exponential barrier. Our results also nicely combine with the existing results
on recombination. Recombination that leads to a linear factor speed-up does not change an exponential
function to a polynomial one, but can contribute greatly to the efficiency of a polynomial process. The
polynomial upper bound of Lk+1 for regeneration process holds without selection and recombination. But
the polynomial bound of Lk+1 can still be inefficient, and then selection and recombination plays the role to
make the feasible polynomial bound much more efficient.

13. Additional Simulation Results

In this section we describe some additional computer simulation results. Our first simulation result is for the
Moran process and per-bit mutation rate. The second simulation result is for another classical evolutionary
process, namely, the Wright-Fisher process. The details are described in Supplementary Figure 9 and
Supplementary Figure 10, respectively.

A. Technical Appendix: Linear Fitness Transition Probabilities

We derive the transition probabilities of the corresponding Markov chain on a line ML,β for the case of the
linear fitness landscape and any selection intensity. That is, given s and s′ ∈ Nh(s), we have df (s, s′) =
(f(s′)− f(s)) = −(h(s′)− h(s)). Our goal is to show that for 0 < i < L we have:

(i) δβ(i, i+ 1) =
1

1 + eβ · i
L−i

(ii) δβ(i, i− 1) =
1

1 + e−β · L−i
i

For s in equivalence class 0 < i < L, i.e. h(s) = i, there exist exactly i neighbors s′ ∈ Nh(s) with
h(s′) = i− 1 and df (s, s′) = 1, and L− i neighbors s′′ ∈ Nh(s) with h(s′′) = i+1 and df (s, s′′) = −1. Then
from the normalized sum of Eqn 1 we obtain:

(i)

δβ(i, i+ 1) =
L−i
1+eβ

L−i
1+eβ

+ i
1+e−β

=
1

1 + i
L−i · 1+eβ

1+e−β

=
1

1 + i
L−i · eβ · e

−β+1
1+e−β

=
1

1 + eβ · i
L−i

(ii) Let x = eβ · i
L−i

δβ(i, i− 1) = 1− δβ(i, i+ 1) = 1− 1

1 + x
=

x

1 + x
=

1
1
x + 1

=
1

1 + e−β · L−i
i

because 1
x = e−β · L−i

i .
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Figure 9: Moran process with per-bit mutation rate. The figure shows the results of the average
discovery time obtained from computer simulation of a Moran process with per-bit mutation rate. We
consider the case of neutral drift with broad peak of c = 1/2. We consider a population of size N , and in
each round an individual A is chosen at random to reproduce, and the off-spring A′ of A is produced from
the string of A with per-bit mutation rate of 1%. Then an individual is chosen at random to die and the
off-spring A′ replaces the dead individual (thus population size remains constant). The process stops as soon
as one individual reaches a string with Hamming distance at most cL from the target (one individual hits
the broad peak). The discovery time is the number of generations (reproductions) required by the individual
who reaches the peak the first time. We ran the computer simulation for 1000 samples for each experiment
and then plot the average discovery time, and the figure shows the result for N = 100, 500, and 1000, and
shows the average discovery time as a function of the gene length L. We again observe that the discovery
times grow exponentially in n in all cases.
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Figure 10: Wright-Fisher Process. The figure shows the evolution of populations in the Wright-Fisher
model, for population size N = 104, for various values of L. We consider the multiplicative fitness landscape
with r = 1.01, and the selection is felt from L/2 away from the ideal sequence ~0. At every generation a
new population replaces the old one, such that the expected number of off-springs of an individual of the
old population to the new one is proportional to its fitness. These off-springs are mutated with a uniform
mutation rate per bit (u = 10−4)). The first two figures depict the evolution of the mean fitness and
normalized mean fitness of the population, while the last figure depicts the normalized average distance of
the population from the target sequence ~0. The results are obtained from a computer simulation where for
each value of L the simulation was ran for 50 cases, and the averages are shown.
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