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Introduction

To see from where comes the standard model that rules today quantum physics,
we first return to its beginning. When the idea of a wave associated to the
move of a particle was found, Louis de Broglie was following consequences of
the restricted relativity [25]. The first wave equation found by Schrödinger [50]
was not relativistic, and could not be the true wave equation. In the same time
the spin of the electron was discovered. This remains the main change from
pre-quantum physics, since the spin 1/2 has none classical equivalent. Pauli
gave a wave equation for a non-relativistic equation with spin. This equation
was the starting point of the attempt made by Dirac [30] to get a relativistic
wave equation for the electron. This Dirac equation was a very great success.
Until now it is still considered as the wave equation for each particle with spin
1/2, electrons but also positrons, muons and anti-muons, neutrinos, quarks.

This wave equation was intensively studied by Louis de Broglie and his
students. He published a first book in 1934 [26] explaining how this equation
gives in the case of the hydrogen atom the quantification of energy levels, awaited
quantum numbers, the true number of quantum states, the true energy levels
and the Landé factors. The main novelty in physics coming with the Dirac
theory is the fact that the wave has not vector or tensor properties under a
Lorentz rotation, the wave is a spinor and transforms very differently. It results
from this transformation that the Dirac equation is form invariant under Lorentz
rotations. This form invariance is the departure of our study and is the central
thread of this book.

The Dirac equation was built from the Pauli equation and is based on 4× 4
complex matrices, which were constructed from the Pauli matrices. Many years
after this first construction, D. Hestenes [32] used the Clifford algebra of space-
time to get a different form of the same wave equation. Tensors which are
constructed from the Dirac spinors appear differently and the relations between
these tensors are more easily obtained.

One of the parameters of the Dirac wave, the Yvon-Takabayasi angle [51],
was completely different from all classical physics. G. Lochak understood that
this angle allows a second gauge invariance and he found a wave equation for a
magnetic monopole from this second gauge invariance [40]. He showed that
a wave equation with a nonlinear mass term was possible for his magnetic
monopole. When this mass term is null, the wave is made of two independent
Weyl spinors.
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This mass term is compatible with the electric gauge ruling the Dirac equa-
tion. So it can replace the linear term of the Dirac equation of the electron [7].
A nonlinear wave equation for the electron was awaited by de Broglie, because
it was necessary to link the particle to the wave. But this does not explain
how to choose the nonlinearity. And the nonlinearity is a formidable problem in
quantum physics: quantum theory is a linear theory, it is by solving the linear
wave equation that the quantification of energy levels and quantum numbers are
obtained in the hydrogen atom. If you start from a nonlinear wave equation,
usually you will not be even able to get quantification and quantum numbers.

Nevertheless the study of this nonlinear wave equation began in the case
where the Dirac equation is its linear approximation. In this case the wave
equation is homogeneous. It is obtained from a Lagrangian density which differs
from the Lagrangian of the linear theory only by the mass term. Therefore many
results are similar. For instance the dynamics of the electron are the same, and
the electron follows the Lorentz force.

Two formalisms were available, the Dirac formalism with 4× 4 complex ma-
trices, and the real Clifford algebra of space-time. A matrix representation links
these formalisms. Since the hydrogen case gave the main result, a first attempt
was made to solve the nonlinear equation in this case. Heinz Krüger gave a pre-
cious tool [37] by finding a way to separate the spherical coordinates. Moreover
the beginning of this resolution by separation of variables was the same in the
case of the linear Dirac equation and in the case of the nonlinear homogeneous
equation. But then there was a great difficulty: The Yvon-Takabayasi angle is
null in the x3 = 0 plane; This angle is a complicated function of an angular
variable and of the radial variable; Moreover for any solution with a not con-
stant radial polynomial, circles exist where the Yvon-Takabayasi angle is not
defined; In the vicinity of these circles this angle is not small and the solutions
of the Dirac equation have no reason to be linear approximations of solutions of
the nonlinear homogeneous equation. Finally it was possible to compute [8] an-
other orthonormal set of solutions of the Dirac equation, which have everywhere
a well defined and small Yvon-Takabayasi angle. These solutions are linear ap-
proximations of the solutions of the nonlinear equation. The existence of this
set of orthonormalized solutions is a powerful argument for our nonlinear wave
equation.

When you have two formalisms for the same theory the question necessar-
ily comes: which one is the best formalism? Comparing advantages of these
formalisms, the possibility of a third formalism which could be the true one
aroused. A third formalism is really available [10] to read the Dirac theory: it is
the Clifford algebra of the physical space used by W.E. Baylis [2]. This Clifford
algebra is isomorphic, as real algebra, to the matrix algebra generated by Pauli
matrices. Quantum physics knew very early this formalism, since these Pauli
matrices were invented to get the first wave equation with spin 1/2. Until now
this formalism is also used to get the form invariance of the Dirac equation.
Having then three formalisms for the same theory, the question was, once more:
which is the true one?

The criterion of the best choice was necessarily the Lorentz invariance of
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the wave equation. Therefore a complete study, from the start, of this form
invariance of the Dirac theory was made [12]. This problem was a classical one,
treated by many books, but always with mathematical flaws. The reason is that
two different Lie groups may have the same Lie algebra. The Lie algebra of a
Lie group is the algebra generated by infinitesimal operators of the Lie group.
Quantum mechanics uses only these infinitesimal operators and it is then very
difficult to avoid ambiguities. But it is possible to avoid any infinitesimal opera-
tor. And when you work without them you can easily see that the fundamental
invariance group is larger than expected.

The first consequence of this larger group is the possibility to define, from
the Dirac wave, Lorentz dilations from an intrinsic space-time manifold to the
usual relativistic space-time. So the space-time is double and the Dirac wave
is the link between these two manifolds. They are very different, the intrinsic
manifold is not isotropic and has a torsion.

In several articles and in two previous books [16][17], were presented several
consequences of this larger invariance group. This invariance group governs
not only the Dirac theory, but also all the electromagnetism, with or without
magnetic monopoles, with or without photons. But it is not all of the thing,
since this form invariance is also the rule for electro-weak and strong interactions
[18].

Because it is impossible to read this article without knowledge of the Cl3
algebra a first section presents Clifford algebras at an elementary level.

Section 2 reviews the Dirac equation, firstly with Dirac matrices, where we
get a mathematical correct form of the relativistic invariance of the theory. This
necessitates the use of the space algebra Cl3. Next we explain the form of the
Dirac equation in this simple frame, we review the relativistic form invariance
of the Dirac wave. We explain with the tensors without derivative how the
classical matrix formalism is deficient. We review plane waves. We present the
invariant form of the wave equation. Its scalar part is the Lagrangian density,
another true novelty allowed by Clifford algebra. Finally we present the charge
conjugation in this frame.

Section 3 introduces our homogeneous nonlinear equation and explains why
this equation is better than the Dirac equation which is its linear approxima-
tion. We review its two gauge invariances. We explain why plane waves have
only positive energy. The form of the spinorial wave and the form of its rela-
tivistic invariance introduce the dilation generated by the wave from an intrinsic
space-time manifold onto the usual relative space-time manifold, main geomet-
ric novelty of quantum physics. We explain the physical reason to normalize the
wave. The link between the wave of the particle and the wave of the antiparticle
coming from relativistic quantum mechanics gives a charge conjugation where
only the differential term of the wave equation changes sign. This makes the
CPT theorem trivial and it is also a powerful argument for this wave equation.
We get the quantification of the energy in the case of the hydrogen atom and
all results of the linear theory with this homogeneous nonlinear wave equation.

Section 4 presents the invariance of electromagnetism under Cl∗3, the group
of the invertible elements in Cl3, for the Maxwell-de Broglie electromagnetism
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with massive photons, for the electromagnetism with magnetic monopoles, for
the four photons of de Broglie-Lochak.

Section 5 presents some first consequences of these novelties. The anisotropy
of the intrinsic space-time explains why we see muons and tauons beside elec-
trons, their similarities and differences. The intrinsic manifold has a torsion
whose components were calculated for plane waves. The mass term is linked to
this torsion. Next we present the building of the de Broglie’s wave of a system of
electrons as a wave in the ordinary space-time, and not in a configuration space
where space and time do not have the same status, with value onto the space
algebra. We present also as a counter-example a wave equation [20] without
Lagrangian formalism, we solve this wave equation in the hydrogen case.

Section 6 is devoted to our main progress since [17]. We present the electro-
weak gauge theory in the frame of the space-time algebra, first for the lepton
case, secondly for the quark case. Next we use the Cl5,1 Clifford algebra to
extend the gauge to strong interactions. Even if our aim is the same as in [18], we
use here a different Clifford algebra, because we need the link between the wave
of the particle and the wave of the antiparticle that is used in the standard model
of electro-weak and strong interactions. We get a U(1)× SU(2)× SU(3) gauge
group in this frame. The addition from the standard model is the comprehension
of the insensitivity of leptons to strong interactions. We extend to the Cl5,1
frame the form invariance of the gauge interactions. This induces the use of
a complex 6-dimensional space-time into which the usual 4-dimensional space-
time is well separated from supplementary dimensions. Finally the nullity of
right waves of the neutrino and of quarks induces two remarkable identities.
They imply that waves of leptons and the full wave of the lepton and of three
colored quarks have an invertible value. These identities allow a wave equation
with a mass term. We propose a wave equation with a mass term for a pair
electron-neutrino. This wave equation gives both the homogeneous non-linear
equation studied in section 3 and the electro-weak gauge invariance studied
in section 6. It is well-known that the standard model has a great difficulty
with the mass of the electron: the mass term of the Dirac equation links left
wave to right wave. In the electro-weak interactions these left and right waves
act differently. Therefore the standard model firstly cancels the mass of the
electron, finally it must put back this mass from a very complicated mechanism
of spontaneously broken symmetry. We get here a wave equation with a mass
term, both form invariant (and consequently relativistic invariant) and gauge
invariant under the U(1)×SU(2) gauge group of electro-weak interactions. This
makes the standard model much stronger.

Section 7 is devoted to magnetic monopoles. We explain Russian experi-
ments and our french experiments. We precise their results, particularly the
wavelength. We use our study of electro-weak interactions in the case of the
magnetic monopole.

Section 8 presents our conclusions about the major change explained here
in our way to see the standard model of our physical universe.

For the works at E.C.N., thanks to Didier Priem, his efficiency, his inven-
tiveness, his kindness, thanks to Guillaume Racineux who constantly supported
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us.

1 Clifford algebras

This section presents what is a Clifford algebra, then we study the al-

gebra of an Euclidean plane and the algebra of the three-dimensional

physical space which is also the algebra of the Pauli matrices. We

put there the space-time and the relativistic invariance. Then we

present the space-time algebra and the Dirac matrices. We finally

present the Clifford algebra of a 6-dimensional space-time, needed by

electro-weak and strong interactions.

It is quite usual in a physics article to put into appendices mathematics
even if they are necessary to understand the main part of the article. As it is
impossible to expose the part containing physics without the Clifford algebras,
we make here again a complete presentation of this necessary tool. 1

We shall only speak here about Clifford algebras on the real field. Algebras
on the complex field also exist and it could be expected to complex algebras to
be key point for quantum physics. The main algebra used here is also an algebra
on the complex field, but it is its structure of real algebra which is useful in this
frame.2

Our aim is not to say everything about any Clifford algebra but simply to
give to our lecturer tools to understand the next sections of this article. Another
main book on this subject was written by Doran and Lasenby [39]. It is more
devoted to space-time algebra. It is probably less easy for physicists, because it
does not use complex matrices.

1.1 What is a Clifford algebra?

1 - It is an algebra [5][16], there are two operations, noted A+B and AB, such
as, for any A, B, C :

A+ (B + C) = (A+B) + C ; A+B = B +A

A+ 0 = A ; A+ (−A) = 0 (1.1)

A(B + C) = AB +AC ; (A+B)C = AC +BC

A(BC) = (AB)C.

2 - The algebra contains a set of vectors, noted with arrows, in which a scalar
product exists and the intern Clifford multiplication ~u~v is supposed to satisfy
for any vector ~u :

~u~u = ~u · ~u. (1.2)

1Readers being in the know may do a quick review. On the contrary a complete lecture
is strongly advised for each reader who really wants to understand physics contained in the
following sections.

2A Clifford algebra on the real field has components of vectors which are real numbers and
which cannot be multiplied by i. A Clifford algebra on the complex field has components of
vectors which are complex numbers and which can be multiplied by i.
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where ~u · ~v is the usual notation for the scalar product of two vectors. 3 This
implies, since ~u · ~u is a real number, that the algebra contains vectors but also
real numbers.

3 - Real numbers are commuting with any member of the algebra: if a is a
real number and if A is any element in the algebra :

aA = Aa (1.3)

1A = A. (1.4)

Such an algebra exists for any finite-dimensional linear space which are the
ones that we need in this article.

The smaller one is single, to within an isomorphism.
Remark 1: (1.1) and (1.4) imply that the algebra is itself a linear space, not

to be confused with the first one. If the initial linear space is n-dimensional, we
get a Clifford algebra which is 2n-dimensional. We shall see for instance in 1.3
that the Clifford algebra of the 3-dimensional physical space is a 8-dimensional
linear space on the real field. We do not need here to distinguish the left or
right linear space, since real numbers commute with each element of the algebra.
We also do not need to consider the multiplication by a real number as a third
operation, because it is a particular case of the multiplication.

Remark 2: If ~u and ~v are two orthogonal vectors, (~u · ~v = 0), the equality
(~u+~v) ·(~u+~v) = (~u+~v)(~u+~v) implies ~u ·~u+~u ·~v+~v ·~u+~v ·~v = ~u~u+~u~v+~v~u+~v~v,
so we get :

0 = ~u~v + ~v~u ; ~v~u = −~u~v (1.5)

It’s the change to usual rules on numbers, the multiplication is not commuta-
tive, we must be as careful as with matrix calculations.

Remark 3: The addition is defined in the whole algebra, which contains
numbers and vectors. So we shall get sums of numbers and vectors: 3 + 5~i is
authorized. It is perhaps strange or disturbing, but we shall see next it is not
different from 3+5i. And everyone using complex numbers finally gets used to.

Even sub-algebra: It’s the sub-algebra generated by the products of
an even number of vectors: ~u~v, ~e1~e2~e3~e4,...

Reversion: The reversion A 7→ Ã changes orders of products. Reversion
does not change numbers a nor vectors ã = a, ~̃u = ~u, and we get, for any ~u and
~v, A and B :

~̃u~v = ~v~u ; ÃB = B̃Ã ; Ã+B = Ã+ B̃. (1.6)

1.2 Clifford algebra of an Euclidean plan: Cl2

Cl2 contains the real numbers and the vectors of an Euclidean plan, which
read ~u = x~e1 + y~e2, where ~e1 and ~e2 form an orthonormal basis of the plan:
~e1

2 = ~e2
2 = 1, ~e1 · ~e2 = 0. Usually we set: ~e1~e2 = i. The general element of

the algebra is :
A = a+ x~e1 + y~e2 + ib (1.7)

3This equality seems strange, but gives nice properties. We need these properties in the
next sections.
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where a, x, y and b are real numbers. This is enough because :

~e1i = ~e1(~e1~e2) = (~e1~e1)~e2 = 1~e2 = ~e2

~e2i = −~e1 ; i~e2 = ~e1 ; i~e1 = −~e2
i2 = ii = i(~e1~e2) = (i~e1)~e2 = −~e2~e2 = −1 (1.8)

Two remarks must be made:
1- The even sub-algebra Cl+2 is the set formed by all a + ib, so it is the

complex field. We may say that complex numbers are underlying as soon as
the dimension of the linear space is greater than one. This even sub-algebra is
commutative.

2 - The reversion is here the usual conjugation: ĩ = ~̃e1~e2 = ~e2~e1 = −i
We get then, for any ~u and any ~v in the plane: ~u~v = ~u ·~v+ i det(~u,~v) where

det(~u,~v) is the determinant.
To establish that (~u · ~v)2 + [det(~u,~v)]2 = ~u 2~v 2, it is possible to use ~u~v~v~u

which can be calculated by two ways, and we can use ~v~v which is a real number
and commutes with anything in the algebra.

1.3 Clifford algebra of the physical space: Cl3

Cl3 contains [2] the real numbers and the vectors of the physical space which
read : ~u = x~e1 + y~e2 + z~e3, where x, y and z are real numbers, ~e1, ~e2 and ~e3
form an orthonormal basis:

~e1 · ~e2 = ~e2 · ~e3 = ~e3 · ~e1 = 0 ; ~e1
2 = ~e2

2 = ~e3
2 = 1. (1.9)

We let:
i1 = ~e2~e3 ; i2 = ~e3~e1 ; i3 = ~e1~e2 ; i = ~e1~e2~e3. (1.10)

Then we get:

i21 = i22 = i23 = i2 = −1 (1.11)

i~u = ~ui ; i~ej = ij , j = 1, 2, 3. (1.12)

To satisfy (1.11) we can use the same way we used to get (1.8). To satisfy
(1.12) we may firstly justify that i commutes with each ~ej .

The general element of Cl3 reads: A = a+~u+i~v+ib. This gives 1+3+3+1 =
8 = 23 dimensions for Cl3.

Several remarks:
1 - The center of Cl3 is the set of the a+ ib, only elements which commute

with every other ones in the algebra. It is isomorphic to the complex field.
2 - The even sub-algebra Cl+3 is the set of the a + i~v, isomorphic to the

quaternion field. Therefore quaternions are implicitly present into calculations
as soon as the dimension of the linear space is greater or equal to three. This
even sub-algebra is not commutative.

3 - Ã = a+~u−i~v−ib ; The reversion is the conjugation, for complex numbers
but also for the quaternions contained into Cl3.
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4 - i~v is what is usually called ”axial vector” or ”pseudo-vector”, whilst ~u is
usually called vector. It is well known that it is specific to dimension 3.

5 - There are now four different terms with square -1, four ways to get
complex numbers. Quantum theory is used to only one term with square -1.
When complex numbers are used in quantum mechanics, it is necessary to ask
the question of which i is used: i or i3 ?

1.3.1 Cross-product, orientation

~u×~v is the cross-product of ~u and ~v. Using coordinates in the basis (~e1, ~e2, ~e3),
we can easily establish for any ~u and ~v:

~u~v = ~u · ~v + i ~u× ~v (1.13)

(~u · ~v)2 + (~u× ~v)2 = ~u 2~v 2 (1.14)

det(~u,~v, ~w) is the determinant whose columns contain the components of
vectors ~u, ~v, ~w, in the basis (~e1, ~e2, ~e3). Again using coordinates, it is possible
to establish, for any ~u, ~v, ~w:

~u · (~v × ~w) = det(~u,~v, ~w) (1.15)

~u× (~v × ~w) = (~w · ~u)~v − (~u · ~v)~w (1.16)

~u~v ~w = i det(~u,~v, ~w) + (~v · ~w)~u− (~w · ~u)~v + (~u · ~v)~w (1.17)

From (1.15) comes that ~u × ~v is orthogonal to ~u and ~v. (1.14) allows to
calculate the length of ~u × ~v, and (1.15) gives its orientation. We recall that a
basis (~u,~v, ~w) is said to be direct, or to have the same orientation as (~e1, ~e2, ~e3) if
det(~u,~v, ~w) > 0 and to be inverse, or to have other orientation if det(~u,~v, ~w) < 0.
(1.17) allows to establish that, if B = (~u,~v, ~w) is any orthonormal basis, then
~u~v ~w = i if and only if B is direct, and ~u~v ~w = −i if and only if B is inverse. So
i is strictly linked to the orientation of the physical space. To change i to −i is
equivalent to change the space orientation (it is the same for a plan). The fact
that i rules the orientation of the physical space will play an important role in
the next sections.

1.3.2 Pauli algebra

The Pauli algebra, introduced in physics as soon as 1926 to account for the
spin of the electron, is the algebra of 2 × 2 complex matrices. It is identical
(isomorphic) to Cl3, but only as algebras on the real field. 4 Identifying complex
numbers to scalar matrices and the ej to the Pauli matrices σj is enough. 5 So,

4The dimension of the Pauli algebra is 8 on the real field, but only 4 on the complex field.
5This identifying process may be considered a lack of rigor, but in fact it is frequent in

mathematics. The same process allows to include integer numbers into relative numbers, or
real numbers into complex numbers. To go without implies very complicated notations. This
identifying process considers the three σj as forming a direct basis of the physical space.

11



z being any complex number, we have

z =

(
z 0
0 z

)
(1.18)

~e1 = σ1 =

(
0 1
1 0

)
; ~e2 = σ2 =

(
0 −i
i 0

)
; ~e3 = σ3 =

(
1 0
0 −1

)
(1.19)

This is fully compatible with all preceding calculations, because:

σ1σ2σ3 =

(
i 0
0 i

)
= i (1.20)

σ1σ2 = iσ3 ; σ2σ3 = iσ1 ; σ3σ1 = iσ2 (1.21)

And the reverse is then identical to the adjoint matrix:

Ã = A† = (A∗)t (1.22)

Consequently we shall say now equally Pauli algebra or space algebra. This is
not liked by pure Clifford algebraist. Most physicists are used to Pauli algebra
and its old and cumbersome notations. They do not often use conveniences of
the Clifford algebra Cl3 of the physical space.

1.3.3 Three conjugations are used:

A = a + ~u + i~v + ib is the sum of the even part A1 = a + i~v (quaternion)
and the odd part A2 = ~u+ ib. From this we define the conjugation (involutive

automorphism) A 7→ Â such as

Â = A1 −A2 = a− ~u+ i~v − ib (1.23)

This conjugation satisfies, for any element A and any B in Cl3:

Â+B = Â+ B̂ ; ÂB = ÂB̂. (1.24)

It is the main automorphism of this algebra, and each Clifford algebra owns
such an automorphism.

From this conjugation and from the reversion we may form the third conju-
gation:

A = Â† = a− ~u− i~v + ib : A+B = A+B ; AB = B A (1.25)

Composing, in any order, two of these three conjugations gives the third one.
Only A 7→ Â preserves the order of products, A 7→ A and A 7→ A† inverse the
order of products.

Now a, b, c, d are any complex numbers and a∗ is the complex conjugate of

a. We can satisfy that for any A =

(
a b
c d

)
we have:

Ã = A† =

(
a∗ c∗

b∗ d∗

)
; Â =

(
d∗ −c∗
−b∗ a∗

)
; A =

(
d −b
−c a

)
(1.26)

AA = AA = det(A) = ad− bc ; ÂA† = A†Â = [det(A)]∗ (1.27)
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1.3.4 Gradient, divergence and curl

In Cl3 there exists one important differential operator, because all may be made
with it:

~∂ = ~e1∂1 + ~e2∂2 + ~e3∂3 =

(
∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

)
(1.28)

with 6

~x = x1~e1 + x2~e2 + x3~e3 ; ∂j =
∂

∂xj
(1.29)

The Laplacian is simply the square of ~∂:

∆ = (∂1)
2 + (∂2)

2 + (∂3)
2 = ~∂~∂ (1.30)

Applied to a scalar a, ~∂ gives the gradient and applied to a vector ~u it gives
both the divergence and the curl:

~∂a = ~grad a (1.31)

~∂~u = ~∂ · ~u+ i ~∂ × ~u ; ~∂ · ~u = div~u ; ~∂ × ~u = curl ~u. (1.32)

1.3.5 Space-time in space algebra:

With

x0 = ct ; ~x = x1~e1 + x2~e2 + x3~e3 ; ∂µ =
∂

∂xµ
(1.33)

we let [2][47]

x = x0 + ~x =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (1.34)

Then the space-time is made of the auto-adjoint part of the Pauli algebra (x† =
x) and we get

x̂ = x = x0 − ~x (1.35)

det(x) = xx̂ = x · x = (x0)2 − ~x 2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 (1.36)

The square of the pseudo-norm of any space-time vector is then simply the
determinant. 7 Any element M of the Pauli algebra is the sum of a space-time
vector v and of the product by i of another space-time vector w :

M = v + iw (1.37)

v =
1

2
(M +M†) ; v† = v (1.38)

iw =
1

2
(M −M†) ; w† = w. (1.39)

6This operator ~∂ is usually notated, in quantum mechanics, as a scalar product, for instance
~σ · ~∇. From this come many convoluted complications. To use simple notations fully simplifies
calculations.

7We must notice that the pseudo-norm of the space-time metric comes not from a scalar
product, a symmetric bilinear form, but from a determinant, an antisymmetric bilinear form.
We are here very far from Riemannian spaces.
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Space-time vectors v and w are uniquely defined. We need two linked differential
operators:

∇ = ∂0 − ~∂ ; ∇̂ = ∂0 + ~∂ (1.40)

They allow to calculate the D’alembertian:

∇∇̂ = ∇̂∇ = (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2 = � (1.41)

1.3.6 Relativistic invariance:

If M is any not null element in Cl3 and if R is the transformation from the
space-time into itself, which to any x associates x′ such as

x′ = x′
0
+ ~x ′ = R(x) =MxM† (1.42)

we note, if det(M) 6= 0:

det(M) = reiθ , r = | det(M)|. (1.43)

We get then:

(x′
0
)2 − (x′

1
)2 − (x′

2
)2 − (x′

3
)2 = det(x′) = det(MxM†)

= reiθ det(x)re−iθ = r2[(x0)2 − (x1)2 − (x2)2 − (x3)2] (1.44)

R multiplies then by r any space-time distance and is called Lorentz dilation
with ratio r. If we let, with the usual convention summing the up and down
indices:

x′
µ
= Rµ

νx
ν (1.45)

we get for M =

(
a b
c d

)
6= 0:

2R0
0 = |a|2 + |b|2 + |c|2 + |d|2 > 0 (1.46)

x′
0
has then the same sign as x0 at the origin: R conserves the arrow of the

time. Even more we get (the calculation is in [14] A.2.4):

det(Rµ
ν ) = r4 (1.47)

R conserves therefore the orientation of space-time and as it conserves the time
orientation it conserves also the space orientation.

Let f be the application which toM associates R. LetM ′ be another matrix,
with:

det(M ′) = r′eiθ
′

; R′ = f(M ′) ; x′′ =M ′x′M ′†. (1.48)

We get

x′′ =M ′x′M ′† =M ′(MxM†)M ′† = (M ′M)x(M ′M)†

f(M ′) ◦ f(M) = f(M ′M) (1.49)
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f is then an homomorphism. If we restrict us to r 6= 0, f is a homomorphism
from the group (Cl∗3,×) into the group (D∗, ◦), where D∗ is the set of dilations
with not null ratio. These two groups are Lie groups. (Cl∗3,×) is a 8-dimensional
Lie group, because Cl3 is 8-dimensional. On the contrary (D∗, ◦) is only a 7-
dimensional Lie group, one dimension is lost because the kernel of f is not
reduced to the neutral element: let θ be any real number and let M be

M = ei
θ
2 =

(
ei

θ
2 0

0 ei
θ
2

)
; det(M) = eiθ (1.50)

we get then:

x′ =MxM† = ei
θ
2 xe−i θ

2 = x. (1.51)

f(M) is therefore the identity and M belongs to the kernel of f , which is a
group with only one parameter: θ, and we get only 7 parameters in D∗, 6
angles defining a Lorentz rotation, plus the ratio of the dilation. For instance,
if

M = ea+bσ1 = ea(cosh(b) + sinh(b)σ1) (1.52)

then the R transformation defined in (1.42) satisfies

x′ =MxM† = ea+bσ1(x0 + x1σ1 + x2σ2 + x3σ3)e
a+bσ1

=e2a[e2bσ1(x0 + x1σ1) + x2σ2 + x3σ3] (1.53)

We then get

x′
0
+ x′

1
σ1 = e2a

(
cosh(2b) + sinh(2b)σ1

)
(x0 + x1σ1)

x′
0
= e2a

(
cosh(2b)x0 + sinh(2b)x1

)
(1.54)

x′
1
= e2a

(
sinh(2b)x0 + cosh(2b)x1

)
(1.55)

x′
2
= e2ax2 (1.56)

x′
3
= e2ax3 (1.57)

We can recognize R as the product of a Lorentz boost mixing the temporal
component x0 and the spacial component x1 and of an homothety with ratio
e2a. Now if

M = ea+biσ1 = ea(cos(b) + sin(b)iσ1) (1.58)

then the R transformation defined in (1.42) satisfies

x′ =MxM† = ea+biσ1(x0 + x1σ1 + x2σ2 + x3σ3)e
a−biσ1

=e2a[x0 + x1σ1 + e2biσ1(x2σ2 + x3σ3)] (1.59)
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We then get

x′
2
σ2 + x′

3
σ3 = e2a

(
cos(2b) + sin(2b)iσ1

)
(x2σ2 + x3σ3)

x′
0
= e2ax0 (1.60)

x′
1
= e2ax1 (1.61)

x′
2
= e2a

(
cos(2b)x2 + sin(2b)x3

)
(1.62)

x′
3
= e2a

(
− sin(2b)x2 + cos(2b)x3

)
(1.63)

We can recognize R as the product of a rotation with axis Ox1 and angle 2b
and a homothety with ratio e2a.

1.3.7 Restricted Lorentz group:

If we impose now the condition det(M) = 1, the set of theM is called SL(2,C),
(1.44) becomes:

(x′
0
)2 − (x′

1
)2 − (x′

2
)2 − (x′

3
)2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 (1.64)

R is then a Lorentz rotation and the set of the R is the Lorentz restricted group
L↑
+ (conserving space and time orientation). With (1.50) we get:

1 = eiθ ; θ = k2π ;
θ

2
= kπ ; M = ±1 (1.65)

Remark 1: Quantum mechanics do not distinguish M from R, they confuse
SL(2,C) and L↑

+ and they name bi-valued representations of L↑
+ the represen-

tations of SL(2,C). This comes mainly from the use in quantum theory of in-
finitesimal rotations, so they work only in the vicinity of the origin of the group,
and they work then not in the group but in the Lie algebra of the group. And
it happens that the Lie algebras of SL(2,C) and of L↑

+ are identical. SL(2,C)

is the covering group of L↑
+. Globally SL(2,C) and L↑

+ are quite different, for

instance any element reads eA in L↑
+ and this is false in SL(2,C). It is therefore

perfectly intolerable to have so long neglected the fact that when an angle b is
present in M , it is an angle 2b which is present in R.

Remark 2: We are forced to distinguish the group of the M from the group
of the R, as soon as θ is not null, because these two groups do not have the
same dimension and are not similar even in the vicinity of the origin.

Remark 3: SL(2,C) contains as subgroup the SU(2) group of the unitary
2×2 complex matrices with determinant 1. The restriction of f to this subgroup
is an homomorphism from SU(2) into the SO(3) group of rotations. The kernel
of this homomorphism is also ±1.

Remark 4: There are two non-equivalent homomorphisms from (Cl∗3,×) into

the group (D∗, ◦). the second homomorphism f̂ is defined by

x′ = R̂(x) = M̂xM ; R̂ = f̂(M). (1.66)
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1.4 Clifford algebra of the space-time: Cl1,3

Cl1,3 contains real numbers and space-time vectors x such as

x = x0γ0 + x1γ1 + x2γ2 + x3γ3 = xµγµ. (1.67)

The four γµ form an orthonormal basis of space-time: 8

(γ0)
2 = 1 ; (γ1)

2 = (γ2)
2 = (γ3)

2 = −1 ; γµ · γν = 0 , µ 6= ν. (1.68)

The general term in Cl1,3 is a sum:

N = s+ v + b+ pv + ps (1.69)

where s is a real number, v is a space-time vector, b is a bivector, pv is a pseudo-
vector and ps is a pseudo-scalar. There are 1+4+6+4+1 = 16 = 24 dimensions
on the real field because: There are 6 independent bivectors: γ01 = γ0γ1, γ02,
γ03, γ12, γ23, γ31, and γji = −γij , j 6= i, 4 independent pseudo-vectors: γ012,
γ023, γ031, γ123 and one pseudoscalar:

ps = pγ0123 ; γ0123 = γ0γ1γ2γ3 (1.70)

where p is a real number.
The even part of N is s+ b+ ps, the odd part is v+ pv. The main automor-

phism is N 7→ N̂ = s− v + b− pv + ps
The reverse of N is

Ñ = s+ v − b− pv + ps (1.71)

Amongst the 16 generators of Cl1,3, 10 have for square -1 and 6 have for square
1:

12 = γ01
2 = γ02

2 = γ03
2 = γ0

2 = γ123
2 = 1

γ1
2 = γ2

2 = γ3
2 = γ12

2 = γ23
2 = γ31

2

= γ012
2 = γ023

2 = γ031
2 = γ0123

2 = −1 (1.72)

Remark 1: If we use the + sign for the space, then we get 10 generators with
square 1 and 6 with square -1. The two Clifford algebras are not identical. And
yet there is no known physical reason to prefer one to the other algebra.

Remark 2: The even sub-algebra Cl1,3
+, formed by all the even elements

N = s + b+ ps is 8-dimensional and is isomorphic to Cl3. We shall see this in
the next page, by using the Dirac matrices. The even sub-algebra of Cl3,1 is
also isomorphic to Cl3.

The privileged differential operator, in Cl1,3, is:

∂∂∂ = γµ∂µ ; γ0 = γ0 ; γj = −γj , j = 1, 2, 3. (1.73)

It satisfies:
∂∂∂∂∂∂ = � = (∂0)

2 − (∂1)
2 − (∂2)

2 − (∂3)
2 (1.74)

8Users of Clifford algebras are nearly equally parted between users of a + sign for the
time (Hestenes [32][34]), and users of a - sign for the time (Deheuvels [29]). It seems that no
physical property of the space-time can allow to prefer one to the other. We use here a +
sign for the time, which was the Hestenes’s choice. It is another main difference with general
relativity where the metric tensor has physical properties linked to gravitation.
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1.4.1 Dirac matrices:

Most physicists do not use directly the Clifford algebra of space-time but they
use a matrix algebra9, generated by the Dirac matrices. These matrices are not
uniquely defined. The easier way, to link Cl1,3 to Cl3, is to let10 :

γ0 = γ0 =

(
0 I
I 0

)
; I =

(
1 0
0 1

)
; γj = −γj =

(
0 −σj
σj 0

)
(1.75)

Then we get:

∂∂∂ = γµ∂µ =

(
0 ∇
∇̂ 0

)
(1.76)

It is easy to satisfy:

γ0j =

(
−σj 0
0 σj

)
; γ23 =

(
−iσ1 0
0 −iσ1

)
; γ0123 =

(
iI 0
0 −iI

)
(1.77)

Isomorphism between Cl1,3
+ and Cl3: Let N be any even element. With:

N = a+Bi+ ps ; Bi = u1γ10 + u2γ20 + u3γ30 + v1γ32 + v2γ13 + v3γ21

ps = bγ0123 (1.78)

M = a+ ~u+ i~v + ib ; ~u = u1σ1 + u2σ2 + u3σ3

~v = v1σ1 + v2σ2 + v3σ3 (1.79)

Bi is a bivector and ps a pseudo-vector in space-time. We get, with the choice
(1.75) made for the Dirac matrices:

N =

(
M 0

0 M̂

)
; Ñ =

(
M 0
0 M†

)
. (1.80)

Since the conjugation M 7→ M̂ is compatible with the addition and with the
multiplication, the algebra of the M is exactly isomorphic to the algebra of the
N . AsN contains bothM and M̂ , the Dirac matrices combine both inequivalent
representations of Cl∗3.

1.5 Clifford Algebra Cl5,1 = Cl1,5

We shall use also later in this article the Clifford algebra of a larger space-time
with a 5-dimensional space. The general element x of this larger space-time

9Generally the matrix algebra used isM4(C), an algebra on the complex field. This algebra
is 16-dimensional on the complex field and therefore it is also an algebra on the real field, 32-
dimensional on the real field. This is enough to prove that M4(C) 6= Cl1,3.

10This choice of the Dirac matrices is not the choice used in the Dirac theory to calculate the
solutions in the hydrogen atom case, but the choice used when high velocities and restricted
relativity are required. It is also the usual choice in the electro-weak theory. We shall see that
it is also a convenient choice to solve the wave equation for the hydrogen case.
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reads

x = xaΛa = xµΛµ + x4Λ4 + x5Λ5 (1.81)

xaΛa =

n=5∑

n=0

xnΛn ; xµΛµ =

n=3∑

n=0

xnΛn (1.82)

(x)2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2. (1.83)

We link the preceding Cl1,3 space-time algebra to this greater algebra by using
the following matrix representation, µ = 0, 1, 2, 3:

Λµ =

(
0 −γµ
γµ 0

)
; Λ4 =

(
0 I4
I4 0

)
; Λ5 =

(
0 −i

i 0

)
, (1.84)

where I4 is the unity for 4 × 4 matrices and i = γ0123 (See (1.77)). We always
use the matrix representation (1.75). We get

Λµν = ΛµΛν =

(
−γµν 0
0 −γµν

)
(1.85)

Λµνρ = ΛµνΛρ =

(
0 γµνρ

−γµνρ 0

)
(1.86)

Λ0123 = Λ01Λ23 =

(
γ0123 0
0 γ0123

)
=

(
i 0
0 i

)
(1.87)

Λ45 = Λ4Λ5 =

(
i 0
0 −i

)
(1.88)

Λ012345 = Λ0123Λ45 =

(
−I4 0
0 I4

)
(1.89)

The general term of this algebra reads

Ψ = Ψ0 +Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6 ; Ψ0 = sI8, s ∈ R, (1.90)

Ψ1 =

a=5∑

a=0

NaΛa, Ψ2 =
∑

06a<b65

NabΛab, Ψ3 =
∑

06a<b<c65

NabcΛabc

Ψ4 =
∑

06a<b<c<d65

NabcdΛabcd, Ψ5 =
∑

06a<b<c<d<e65

NabcdeΛabcde (1.91)

Ψ6 = pΛ012345, p ∈ R. (1.92)

where N ind are real numbers. We shall need in section 6:

P+ =
1

2
(I8 − Λ012345) =

(
I4 0
0 0

)

P− =
1

2
(I8 + Λ012345) =

(
0 0
0 I4

)
. (1.93)
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Now we consider six elements of this algebra:

La = Λ012345Λa ; a = 0, 1, 2, 3, 4, 5. (1.94)

We then get

Lµ =

(
0 γµ
γµ 0

)
; L4 =

(
0 −I4
I4 0

)
; L5 =

(
0 i

i 0

)
(1.95)

Lab = −Λab, 0 6 a 6 b 6 5 (1.96)

Labcd = Λabcd, 0 6 a < b < c < d 6 5 (1.97)

L012345 = −Λ012345 =

(
I4 0
0 −I4

)
(1.98)

Λa = LaL012345. (1.99)

These six La are the generators of the L1,5 algebra since (1.96) implies

(L0)
2 = 1; (La)

2 = −1, a = 1, 2, 3, 4, 5. (1.100)

And the algebra generated by the La is a sub-algebra of the algebra generated
by the Λa. Inversely (1.99) implies that we should may start with the La and
get the Λa from them. This explains how Cl5,1 = Cl1,5. Vectors in Cl1,5 are
pseudo-vectors of Cl5,1 and vice-versa. Then the sums of vectors and pseudo-
vectors that we shall need in section 6 are independent on the choice of the
signature.

2 Dirac equation

We present here in two different frames the Dirac wave equation for

the electron. We study it firstly with the Dirac matrices: second or-

der equation, conservative current, tensors without derivative, gauge

invariance. Relativistic invariance requires to use the space algebra,

into which we rewrite all the Dirac theory. We get new tensors. We

study the link between the invariant form of the Dirac equation and

the Lagrangian density. We review the charge conjugation.

An important part of the standard model of quantum physics is the Dirac
wave equation. This comes from the fact that electrons, neutrinos, quarks, are
quantum objects with spin 1/2. And the standard model explains the spin 1/2
as a relativistic consequence of the Dirac wave equation.

This equation is detailed in the present section, slightly changed in section
3, and the modified wave equation will be generalized in section 6 as a wave
equation for the electron-neutrino.

2.1 With the Dirac matrices

The starting point of the Dirac’s work was the Pauli wave equation for the elec-
tron, which used a wave with two complex components mixed by Pauli matrices.
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The Schrödinger and Pauli wave equations include a first order time derivative,
and second order derivatives for the space coordinates. This is inappropriate for
a relativistic wave equation. So Dirac sought a wave equation with only first or-
der derivatives, giving at the second order the equation for material waves. This
necessitated to use matrices as Pauli had done. Dirac [30] understood that more
components were necessary. His wave equation proves that four components are
enough. With the notations (1.75) this equation reads 11

0 = [γµ(∂µ + iqAµ) + im]ψ ; q =
e

~c
; m =

m0c

~
(2.1)

with the usual convention summing up and down indexes. The Aµ are compo-
nents of the space-time vector which is the exterior electromagnetic potential,
e is the charge of the electron, m0 is its proper mass. Even with a well defined
signature for the space-time, the matrices of the theory are not uniquely defined.
The choice we have made in (1.75) allows to use the Weyl spinors ξ and η which
play a fundamental role, firstly for the relativistic invariance of the theory, sec-
ondly for the Lochak’s theory for a magnetic monopole [42] or the electro-weak
interactions in section 6. With them the wave ψ is the matrix-column:

ψ =

(
ξ
η

)
; ξ =

(
ξ1
ξ2

)
; η =

(
η1
η2

)
(2.2)

The Dirac equation is, as the Schrödinger equation, a linear wave equation, it
contains only partial derivatives and products by matrices, so linear combina-
tions of solutions are also solutions of the wave equation.

2.1.1 Second order equation

Without exterior electromagnetic field and with (1.76) the Dirac equation reads

∂∂∂ψ = −imψ (2.3)

and gives at the second order:

�ψ = ∂∂∂∂∂∂ψ = ∂∂∂(−imψ) = −im∂∂∂ψ = (−im)(−im)ψ = −m2ψ (2.4)

we get then the awaited equation at the second order:

(�+m2)ψ = 0 (2.5)

11First works about Dirac equation [30] [26] use an imaginary temporal variable which allows
to use a ++++ signature for space-time and avoids to distinguish covariant and contravariant
indexes. This brings also difficulties, the tensor components are either real or pure imaginary.
It also hides that matrices of the relativistic theory cannot be all hermitian. The algebra on the
complex field generated by the Dirac matrices is the M4(C) algebra which is 16-dimensional
on the complex field and 32-dimensional on the real field. Therefore this algebra cannot be
isomorphic to the Clifford algebra of space-time, 16-dimensional on the real field, even if we
have used in 1.4.1 a sub-algebra of M4(C) to represent Cl1,3 and to link Cl1,3 to Cl3.
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2.1.2 Conservative current

Taking the adjoint matrices into the Dirac equation we get

0 = ψ†[(∂µ − iqAµ)γ
µ† − im] (2.6)

We multiply now on the right by γ0, we let12

ψ = ψ†γ0 (2.7)

and we get the wave equation on the equivalent form:

0 = ψ[(∂µ − iqAµ)γ
µ − im] (2.8)

Multiplying (2.1) on the left by ψ, (2.8) on the right by ψ and adding, we get:

0 = ∂µ(ψγ
µψ) (2.9)

A conservative current therefore exists: (∂µJ
µ = 0), the J current, whose con-

travariant components are defined as

Jµ = ψγµψ (2.10)

The temporal component of this space-time vector satisfies

J0 = |ξ1|2 + |ξ2|2 + |η1|2 + |η2|2 (2.11)

and so may be interpreted, as with the Schrödinger equation, as giving the
probability density of the electron’s presence.

2.1.3 Tensors

The J current is one of the tensors of the Dirac theory whose definition, from the
wave, is made without partial derivative. Other same quantities were remarked,
firstly a scalar

Ω1 = ψψ ; ψ = ψ†γ0 = (η† ξ†). (2.12)

Then the six
Sµν = iψγµγνψ (2.13)

are the components of an antisymmetric two-ranked tensor. The four Kµ

Kµ = ψγµγ5ψ ; γ5 = −iγ0γ1γ2γ3 =

(
I 0
0 −I

)
(2.14)

are components of a pseudo-vector in space-time, dual of a three-ranked anti-
symmetric tensor. Finally

Ω2 = −iψγ5ψ (2.15)

12The ψ in the Dirac formalism has nothing to do with the M in the Pauli algebra.
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is a pseudo-scalar and allows to define the invariant ρ and the angle β of Yvon-
Takabayasi :

Ω1 = ρ cosβ ; Ω2 = ρ sinβ ; Ω1 + iΩ2 = ρeiβ . (2.16)

We get with the Weyl spinors:

Ω1 = ξ†η + η†ξ ; Ω2 = i(ξ†η − η†ξ)

ρeiβ = Ω1 + iΩ2 = 2η†ξ = 2(η∗1ξ1 + η∗2ξ2) (2.17)

ρe−iβ = Ω1 − iΩ2 = 2ξ†η = 2(η1ξ
∗
1 + η2ξ

∗
2)

These tensors were so more intensively studied that physicists hoped to link the
theory to pre-quantum physics, with quantities which were vectors and tensors.
In fact these 16 tensorial densities that we have just encountered know nothing
about the phase of the wave because they are gauge invariant. We see this now.

2.1.4 Gauge invariances

The Dirac equation (2.1) is invariant under the gauge transformation:

ψ 7→ ψ′ = eiaψ ; Aµ 7→ Aµ
′ = Aµ − 1

q
∂µa (2.18)

because we get:

[γµ(∂µ + iqAµ
′) + im]ψ′

= γµ[i∂µae
iaψ + eia∂µψ + iq(Aµ − 1

q
∂µa)e

iaψ] + imeiaψ

= eia[γµ(∂µ + iqAµ) + im]ψ (2.19)

The first consequence of this gauge invariance is that the wave may be multiplied
by i and this is the reason to use complex linear spaces in the Dirac theory.
Next the Noether’s theorem allows to link this gauge invariance to the existence
of a conservative current (see [16] B.1.2). In the case of the Dirac equation
the variational calculus allows to get the linear wave equation (2.1) from a
Lagrangian density:

−L =
1

2
[(ψγµ(−i∂µ + qAµ)ψ) + (ψγµ(−i∂µ + qAµ)ψ)

†] +mψψ (2.20)

And the Noether’s theorem links the invariance of this Lagrangian density under
the gauge transformation (2.18) to the conservation of the J current. Tensorial
densities of the preceding page contains all a ψ factor and a ψ factor, the first
one is multiplied by eia and the second by e−ia, and so these tensorial densities
are invariant under gauge transformations.

The starting point of the G. Lochak’s monopole theory [42] is the existence
in the case of a null proper mass of another gauge invariance which is possible
because γ0123 anti-commutes with each of the four γµ matrices. He established
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that the Dirac equation could be invariant under this gauge invariance if the
mass term was replaced by a not linear mass term. And the gauge may be local
if an adequate potential term is added:

[γµ(∂µ − ig

~c
Bµγ5) +

1

2

m(ρ2)c

~
(Ω1 − iΩ2γ5)]ψ = 0 (2.21)

where g is the charge of the monopole, the Bµ are the pseudo-potentials of
Cabibbo and Ferrari. We will use later this mass term in a particular case.

2.1.5 Relativistic invariance

With the notations and results of paragraph 1.3.6 the transformation R defined
by (1.42) is a Lorentz dilation. With the N matrix in (1.80) the reverse is

Ñ =

(
M 0
0 M†

)
(2.22)

And we get with the R in (1.42) and (1.45), with the N in (1.80), for any M
and ν = 0, 1, 2, 3 (a proof is in [14] A.2.2 ):

Rν
µγ

µ = ÑγνN (2.23)

We get also

∂′ν =
∂

∂x′ν
; ∂µ = Rν

µ∂
′
ν ; Aµ = Rν

µA
′
ν (2.24)

and so we get:

0 = [γµ(∂µ + iqAµ) + im]ψ

= [γµRν
µ(∂

′
ν + iqA′

ν) + im]ψ

= [ÑγνN(∂′ν + iqA′
ν) + im]ψ.

And if we restrict M to SL(2,C), we get MM = det(M) = 1, so M = M−1

and Ñ = N−1 which allows to write

[ÑγνN(∂′ν + iqA′
ν) + im]ψ = N−1[γν(∂′ν + iqA′

ν) + im]Nψ (2.25)

So the Dirac theory supposes:
ψ′ = Nψ (2.26)

and it gets

0 = [γµ(∂µ + iqAµ) + im]ψ = N−1[γµ(∂′µ + iqA′
µ) + im]ψ′ (2.27)

This is why the Dirac equation is said form invariant under the Lorentz group.
We must remark:

1 - Only transformations of the restricted Lorentz group L↑
+ are obtained.

2 - Same γµ matrices appear in the two systems of coordinates, the xµ system
and the x′

µ
system. Dirac matrices are independent on the used system, they do

24



not depend on the moving observer seeing the wave. This is quite different from
the Hestenes’ study [34] where the γµ form a basis of space-time and change
from an observer to another one.

3 - ξ and η change differently:

ψ′ =

(
ξ′

η′

)
=

(
M 0

0 M̂

)(
ξ
η

)
; ξ′ =Mξ ; η′ = M̂η (2.28)

Left and right Weyl spinors are linked to one of two non-equivalent representa-
tions of SL(2,C).

4 - Only one factor M or M̂ appears into these last relations, whilst two M
factors are present in x′ =MxM†. In case of a rotation the wave turns only by
θ when we rotate by 2θ.

5 - It is somewhat incorrect to say that the Dirac equation is relativistic
invariant, while the equation is in fact form invariant under another group,
SL(2,C), which is not isomorphic to the Lorentz group.

Nevertheless for any relativistic object with a Dirac wave it is not possible
to avoid the SL(2,C) group, therefore it is impossible to avoid the algebra Cl3
which contains this group. Now we shall explain how we are able to write all
the Dirac theory in the Cl3 frame.

2.2 The wave with the space algebra

To read the Dirac equation, using only the Clifford algebra of the physical space
which is the Pauli algebra, we start again from (2.1) using the Weyl spinors ξ
and η. With:

~A = A1σ1 +A2σ2 +A3σ3 ; A = A0 + ~A (2.29)

and with (1.75) the Dirac equation reads

(
0 ∇+ iqA

∇̂+ iqÂ 0

)(
ξ
η

)
+ im

(
ξ
η

)
= 0. (2.30)

This gives the following system, equivalent to the Dirac equation:

(∇+ iqA)η + imξ = 0 (2.31)

(∇̂+ iqÂ)ξ + imη = 0. (2.32)

We use the complex conjugation on (2.32), then we multiply on the left by
−iσ2:13

(−iσ2)(∇̂∗ − iqÂ∗)ξ∗ − im(−iσ2)η∗ = 0. (2.33)

But we have:
(−iσ2)(∇̂∗ − iqÂ∗) = (∇− iqA)(−iσ2). (2.34)

13Whichever formalism is used to read the Dirac wave equation we can see that the third
direction is privileged, and we shall explain this farther. The 12 or 21 planes are also privileged,
but indexes 1 and 2 play the same role. When a i is added, this is the case with the electric
interaction and the electric gauge invariance, then indexes 1 and 2 do not play the same role
because σ1 is real while σ2 is pure imaginary. Therefore the use here of σ2 is necessary.
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So (2.32) is equivalent to:

∇(−iσ2ξ∗) + iqA(iσ2ξ
∗) + im(iσ2η

∗) = 0. (2.35)

The system composed of (2.31)-(2.32) is consequently equivalent to one matrix
equation 14:

∇(η − iσ2ξ
∗) + iqA(η iσ2ξ

∗) + im(ξ iσ2η
∗) = 0 (2.36)

Now we let

φ =
√
2(ξ − iσ2η

∗) =
√
2

(
ξ1 −η∗2
ξ2 η∗1

)
. (2.37)

This gives

φ̂ =
√
2(η − iσ2ξ

∗) =
√
2

(
η1 −ξ∗2
η2 ξ∗1

)
(2.38)

and also
φσ3 =

√
2(ξ iσ2η

∗) ; φ̂σ3 =
√
2(η iσ2ξ

∗). (2.39)

So (2.36) which is equivalent to the Dirac equation (2.1) reads

∇φ̂+ iqAφ̂σ3 + imφσ3 = 0 (2.40)

which we shall write with

σ12 = σ1σ2 = iσ3 ; σ21 = σ2σ1 = −iσ3 (2.41)

0 = ∇φ̂+ qAφ̂σ12 +mφσ12

0 = ∇φ̂σ21 + qAφ̂+mφ. (2.42)

Even if this equation seems very different from the well known form (2.1), it
is necessary to insist on the fact that this wave equation is strictly the Dirac
equation.15

2.2.1 Relativistic invariance

Under a dilation R defined by any M matrix satisfying (1.39) and (1.40), we

got in (2.28) ξ′ = Mξ, η′ = M̂η, and these relations are not reserved to the

14This is possible because when we compute the product of two matrices we multiply each
column of the right matrix by the left matrix. Terms between brackets in (2.36) are the
column-matrices that we got separately in (2.31) and (2.35)

15The indistinct i in quantum theory also generator of the gauge invariance (2.18) is changed
here into the multiplication on the right by σ12 = i3. This is so more interesting than i3 is
not the alone element with square −1. In space algebra there are four independent terms
with square −1. These terms generate a Lie algebra which is exactly the Lie algebra of the
SU(2)×U(1) Lie group. Hestenes [33] was the first to remark this Lie algebra and to compare
with the Lie group of the electro-weak theory.
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particular case r = 1 and θ = 0. More, we get

−iσ2η′∗ = −iσ2M̂∗η∗ =

(
0 −1
1 0

)(
d −c
−b a

)
η∗ =

(
b −a
d −c

)
η∗

=

(
a b
c d

)(
0 −1
1 0

)
η∗ =M(−iσ2η∗). (2.43)

So with

φ′ =
√
2(ξ′ − iσ2η

′∗) =
√
2

(
ξ1

′ −η′2
∗

ξ′2 η′1
∗

)
(2.44)

formulas (2.28) are equivalent to

φ′ =Mφ (2.45)

This signifies that the link between the Weyl spinors ξ, η and φ is not only
relativistic invariant, it is also invariant under the greater group Cl∗3 of the
invertible elements in Cl3. In addition, with

∇′ = σµ∂′µ ; ∂′µ =
∂

∂x′µ
; σ0 = σ0 = 1 ; σj = −σj , j = 1, 2, 3. (2.46)

we get (see [14] A.2.1), for any M :

∇ =M∇′M̂ (2.47)

and the electric gauge invariance impose then

qA =Mq′A′M̂ (2.48)

which gives

0 = ∇φ̂σ21 + qAφ̂+mφ

=M∇′M̂φ̂σ21 + q′MA′M̂φ̂+mφ

=M(∇′φ̂′σ21 + q′A′φ̂′) +mφ (2.49)

Form invariance under Cl∗3 of the Dirac equation signifies that we have

0 = ∇′φ̂′σ21 + q′A′φ̂′ +m′φ′ ; ∇′φ̂′σ21 + q′A′φ̂′ = −m′φ′

0 =M(−m′φ′) +mφ = −m′MMφ+mφ

= (−m′reiθ +m)φ (2.50)

We get then the invariance of the wave equation under the Cl∗3 group if and
only if

m = m′reiθ. (2.51)

Evidently in the case where we restrict to r = 1 and θ = 0 we get m′ = m.
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2.2.2 More tensors

Tensorial densities of the Dirac theory appear very different when the Pauli
algebra is used. We shall see this here only for tensors without derivative. The
16 tensorial densities of 2.1.3 are usually presented as the only possible ones,
as a result of the 16 dimensions of the algebra generated by the Dirac matrices
16. But it is completely false ! (Detailed calculations are in [16] appendix A).
Invariants Ω1 and Ω2 satisfy

det(φ) = Ω1 + iΩ2 = ρeiβ . (2.52)

So ρ is the modulus and the Yvon-Takabayasi angle β is the argument of the
determinant of φ.17 And φ is invertible if and only if ρ 6= 0. The calculation of
components, using ξ and η, gives:

J = Jµσµ = φσ0φ
† ; K = Kµσµ = φσ3φ

†. (2.53)

But now we may see immediately that these two space-time vectors which were
known orthogonal and with opposite squares are part of a list (D0, D1, D2, D3)
containing four space-time vectors:

D0 = J ; D1 = φσ1φ
† ; D2 = φσ2φ

† ; D3 = K. (2.54)

The components of D1 and D2 are not combinations of the 16 quantities known
by the complex formalism. For a Lorentz dilation R defined by aM matrix, the
four Dµ vectors transform in the same way:

D′
µ = φ′σµφ

′† = (Mφ)σµ(Mφ)† =Mφσµφ
†M† =MDµM

† (2.55)

The Dµ behave then as the space-time vectors x. We shall say that they are
contravariant. They are also vectors with the same length. More, they are
orthogonal and form a mobile basis of space-time:

2Dµ ·Dν = DµD̂ν +DνD̂µ

= φσµφ
†φ̂σ̂νφ+ φσνφ

†φ̂σ̂µφ

= φσµρe
−iβ σ̂νφ+ φσνρe

−iβ σ̂µφ

= ρe−iβφ(σµσ̂ν + σν σ̂µ)φ = ρe−iβφ2δµνφ

= 2δµνρe
−iβφφ = 2δµνρe

−iβρeiβ

Dµ ·Dν = δµνρ
2. (2.56)

Of course, as we use the space-time of the restricted relativity, with the choice
of a + sign for the time, we get

δ00 = 1 ; δ11 = δ22 = δ33 = −1 ; δµν = 0 , µ 6= ν. (2.57)

16This false idea is one of many consequences of the confusion between real algebras and
complex algebras. The tensorial densities are real quantities, not complex quantities, the
dimension of the algebra on the real field is 32, not 16.

17This explains the
√
2 factor that we put in (2.37) and (2.38).
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Among these ten relations (2.56), only three were known and computed with
difficulty by the formalism of Dirac matrices:

J2 = ρ2 ; K2 = −ρ2 ; J ·K = 0 (2.58)

For the Sµν tensor, we let:

S3 = S23σ1 + S31σ2 + S12σ3 + S10iσ1 + S20iσ2 + S30iσ3. (2.59)

And we get:
S3 = φσ3φ (2.60)

We see immediately that S3 is one of four analog terms

Sµ = φσµφ. (2.61)

We have already encountered S0, because:

S0 = φσ0φ = φφ = ρeiβ = det(φ). (2.62)

With the 4 Dµ that have each 4 components, S0 which has 2 components
and the 3 Sj that have each 6 components, we get 36 components of tensors
without derivative, instead of only 16 from the complex formalism.18

Under a dilation R defined by a M matrix, the Sµ are transformed into

S′
µ = φ′σµφ

′
=MφσµMφ =Mφσµφ M =MSµM. (2.63)

We get as a particular case:

ρ′eiβ
′

= S′
0 =MS0M =MρeiβM = ρeiβMM = ρeiβreiθ

ρ′ = rρ ; β′ = β + θ. (2.64)

Between these 36 components of tensors without derivative, which depend only
on the 8 real parameters of the φ wave, exist many relations, rather difficult to
get with the formalism of Dirac matrices, but straightforward (see [14] A.2.5)
with Cl3, for instance, with j = 1, 2, 3:

S2
j = (Ω1 + iΩ2)

2 ; D0Ŝj = (−Ω1 + iΩ2)Dj

DjŜj = (−Ω1 + iΩ2)D0. (2.65)

18Using the linear space of the linear applications from Cl3 into Cl3, which is 64-dimensional,
we can establish [11] that 64 terms of a particular basis can be split into

28 =
8× 7

2

terms forming a basis of the Lie algebra of the O(8) Lie group, and

36 =
9× 8

2

terms which gives the 36 components of tensors without derivative. The number 36 is not at
random. And the 16 tensorial components previously known are the invariant ones under the
electric gauge (2.18).
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Formulas (2.63) are completely different from formulas giving the transfor-
mation of two-ranked anti-symmetric tensors: S′ρσ = Rρ

µR
σ
νS

µν . As Rν
µ is

quadratic in M and multiplies each space-time length by r, the presence of two
R factors signifies a multiplication by r2 while (2.63) is quadratic in M and
multiplies the length only by r. We can consider the two formalism as equiv-
alent only if we restrict the invariance to the L↑

+ and SL(2,C) groups, where
r2 = r = 1. To consider truly the invariance under the greater, consequently
more restrictive, Cl∗3 group implies to abandon the formalism of Dirac matrices.
The Pauli algebra is not only simpler than the algebra of Dirac matrices, it is
the only formalism allowing to think the larger invariance group.

2.2.3 Plane waves

We study the simpler case, where the interaction with exterior fields is negligible,
we can then take A = 0. The Dirac equation, in the Pauli algebra, is reduced
to

∇φ̂σ21 +mφ = 0 (2.66)

We consider a plane wave with a phasis ϕ such as:

φ = φ0e
−ϕσ12 ; ϕ = mvµx

µ. (2.67)

We shall use the reduced speed space-time vector:

v = σµvµ (2.68)

and φ0 is a fixed term, which gives

∇φ̂σ21 = σµ∂µ(φ̂0e
−ϕσ12)σ21 = −mvφ̂. (2.69)

Consequently the wave equation (2.66) is equivalent to

φ = vφ̂. (2.70)

Conjugating, this is equivalent to

φ̂ = v̂φ. (2.71)

Combining now the two preceding equalities, we get

φ = v(v̂φ) = (vv̂)φ = (v · v)φ. (2.72)

So we must have

1 = v · v = v20 − ~v 2 (2.73)

v20 = 1 + ~v 2 ; v0 = ±
√
1 + ~v 2 (2.74)

a priori with two possibilities for the sign. The minus sign implies a negative
energy for the particle, this has been at the beginning a disappointment for
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Dirac. It is impossible to suppress these troublesome negative energies. For
instance they are necessary if we want to write any wave as a sum of plane
waves by using the Fourier’s transformation. After the discovery of the positron,
a particle with the same mass and a charge opposite to the charge of the electron,
these plane waves with negative energy were associated to the positron, even
though positrons seem to have a proper energy equal to, not opposite to the
energy of the electron.

2.3 The Dirac equation in space-time algebra

(2.42) and its conjugation give:

∇φ̂ = qAφ̂σ21 +mφσ21 ; ∇̂φ = qÂφσ21 +mφ̂σ21 (2.75)

We let now

Ψ =

(
φ 0

0 φ̂

)
; A =

(
0 A

Â 0

)
(2.76)

and we get

∂Ψ =

(
0 ∇
∇̂ 0

)(
φ 0

0 φ̂

)
=

(
0 ∇φ̂
∇̂φ 0

)

=

(
0 qAφ̂σ21 +mφσ21

qÂφσ21 +mφ̂σ21 0

)

= q

(
0 A

Â 0

)(
φ 0

0 φ̂

)(
σ21 0
0 σ21

)
+m

(
0 φ

φ̂ 0

)(
σ21 0
0 σ21

)
(2.77)

And (1.75) gives:

γ12 = γ1γ2 =

(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)
=

(
−σ1σ2 0

0 −σ1σ2

)
=

(
σ21 0
0 σ21

)

Ψγ0 =

(
φ 0

0 φ̂

)(
0 I
I 0

)
=

(
0 φ

φ̂ 0

)
(2.78)

then (2.77) reads
∂Ψ = qAΨγ12 +mΨγ012 (2.79)

which is the Hestenes’ form of the Dirac equation [34]. But the interpretation of
Hestenes considers the four γµ as a basis of space-time, while the Dirac theory
considers them as fixed matrices. Since the relativistic form invariance of the
Dirac wave comes from the implicit use of the Cl3 algebra, we get with (1.76),
(2.45) and (2.76)

Ψ′ =

(
φ′ 0

0 φ̂′

)
=

(
Mφ 0

0 M̂φ̂

)
=

(
M 0

0 M̂

)(
φ 0

0 φ̂

)
= NΨ. (2.80)
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2.4 Invariant Dirac equation

The form invariance of the Dirac theory uses ∇ = M∇′M̂ . Since φ′ = Mφ

implies φ
′
= φ M the factor M on the left induces to consider a multiplication

by φ on the left side of the wave equation. When and where ρ 6= 0, φ is invertible
and if we multiply by φ the Dirac equation is equivalent to

φ(∇φ̂)σ21 + φqAφ̂+mφφ = 0. (2.81)

Under the Lorentz dilation R defined by an element M in Cl3 by (1.42) we get
(2.45), (2.47) and (2.48) which imply

φ(∇φ̂)σ21 = φ(M∇′M̂φ̂)σ21 = φ
′
(∇′φ̂′)σ21 (2.82)

φqAφ̂ = φ Mq′A′M̂φ̂ = φ
′
q′A′φ̂′ (2.83)

The two first terms of (2.81) are then form invariant and the mass term is also
form invariant if we have

mφφ = m′φ
′
φ′ = m′φ MMφ = reiθm′φφ (2.84)

which is equivalent to (2.51). This mass term reads

mφφ = mΩ1 + imΩ2 (2.85)

it is then the sum of a scalar and a pseudo-scalar term. The second term of
the invariant Dirac equation (2.81) has another peculiarity: it is a space-time
vector because it is self-adjoint:

(φqAφ̂)† = φ̂†qA†φ
†
= φqAφ̂. (2.86)

We can then let with (1.38)

φqAφ̂ = V 0 + ~V = V µσµ. (2.87)

where V is a space-time vector. Only the first term of (2.81) is general, but we
can also find its peculiarities with

φ(∇φ̂) = 1

2
[φ(∇φ̂) + (φ∇)φ̂] +

1

2
[φ(∇φ̂)− (φ∇)φ̂] (2.88)

1

2
[φ(∇φ̂) + (φ∇)φ̂] =

1

2
∂µ(φσ

µφ̂) = v = vµσµ (2.89)

1

2
[φ(∇φ̂)− (φ∇)φ̂] = iw = iwµσµ (2.90)

where v and w are two space-time vectors, because v† = v and (iw)† = −iw.
This gives

φ(∇φ̂)σ21 = (v + iw)σ21

= (v0 + v1σ1 + v2σ2 + v3σ3 + iw0 + w1iσ1 + w2iσ2 + w3iσ3)(−iσ3)
= w3 + v2σ1 − v1σ2 + w0σ3 + i(−v3 + w2σ1 − w1σ2 − v0σ3). (2.91)
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Therefore the Dirac equation is equivalent to the system

0 = w3 + V 0 +mΩ1 (2.92)

0 = v2 + V 1 (2.93)

0 = −v1 + V 2 (2.94)

0 = w0 + V 3 (2.95)

0 = −v3 +mΩ2 (2.96)

0 = w2 (2.97)

0 = −w1 (2.98)

0 = −v0 (2.99)

First evidence, the gauge invariance concerns only four of the eight equations,
these containing the V µ. This is a consequence of the fact that classical electro-
magnetism is based on the absence of magnetic monopoles, as we will explain
farther. Less evident and of great importance in the Dirac theory, the first
equation is exactly L = 0 because (a detailed calculation is in appendix A.1):

−L =
1

2
[(ψγµ(−i∂µ + qAµ)ψ) + (ψγµ(−i∂µ + qAµ)ψ)

†] +mψψ

= w3 + V 0 +mΩ1 (2.100)

It is well known that varying the L Lagrangian density we get the Dirac wave
equation. Moreover the fact that the Dirac equation is homogeneous implies that
L = 0 when the Dirac equation is verified. Here we get the inverse situation,
the equation L = 0 is one of the wave equations and the Lagrangian formalism
is a consequence of the wave equation. 19 And the four equations containing
the symmetric part v of φ(∇φ̂) are respectively, for indexes 0, 3, 2, 1 and the
Dµ of (2.54) (see A.1):

0 = ∇ ·D0 (2.101)

0 = ∇ ·D3 + 2mΩ2 (2.102)

0 = ∇ ·D1 − 2qA ·D2 (2.103)

0 = ∇ ·D2 + 2qA ·D1 (2.104)

Equation (2.101) which is also (2.99) or (2.9) and which is known as the equation
of the conservation of the probability, is now exactly one of the eight equations
equivalent to the Dirac wave equation. (2.102) is known as the relation of
Uhlenbeck and Laporte. (2.103) and (2.104) indicate that the D1 and D2 space-
time vectors are not gauge invariant, the electric gauge transformation induces

19Each law of movement, in classical mechanics and in electromagnetism, may be obtained
from a Lagrangian mechanism. We know nowadays this comes from the Lagrangian form and
from the universality of quantum mechanics. But from where comes the Lagrangian form of
quantum mechanics ? Here we see this as totally determined since the Lagrangian density
is the scalar part of the wave equation and since the Lagrangian formalism implies the wave
equation.
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a rotation in the D1 −D2 plane. In spite of the peculiar aspect of (2.81), this
invariant equation appears as the true wave equation since it is form invariant
and it has so many interesting aspects.

2.4.1 Charge conjugation

Many years after the discovery of electrons the positrons were also discovered.
The only difference between these particles is the sign of the charge, negative for
the electron, positive for the positron. This charge is linked to the fundamental

quantities ~, c and α, fine structure constant, by α = e2

~c This must then be seen
as

e2 = α~c ; e = ±
√
α~c (2.105)

q =
e

~c
= ±

√
α

~c
(2.106)

The minus sign is the sign for the electron:

q = −
√
α

~c
(2.107)

The other sign is the sign for the positron. This gives

0 = ∇φ̂σ21 − qAφ̂+mφ (2.108)

0 = φ(∇φ̂)σ21 − φqAφ̂+mφφ (2.109)

Other properties of the positron are similar to properties of the electron. Instead
of the system (2.92)...(2.99) we get

0 = w3 − V 0 +mΩ1 (2.110)

0 = v2 − V 1 (2.111)

0 = −v1 − V 2 (2.112)

0 = w0 − V 3 (2.113)

0 = −v3 +mΩ2 (2.114)

0 = w2 (2.115)

0 = −w1 (2.116)

0 = −v0 (2.117)

There is also a Lagrangian formalism, whose density is the scalar part of the
wave equation. There is also a conservation of the probability, which is the
pseudo-scalar part of the wave equation and so on.

2.4.2 Link between the wave of the particle and the wave of the

antiparticle

From the Dirac equation of a particle (2.1), quantum theory gets the wave
equation of the antiparticle as follows. The wave of the electron is noted as ψe
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and the wave of the positron is noted as ψp. We take the complex conjugate of
(2.1):

0 = [γµ∗(∂µ − iqAµ)− im]ψ∗
e . (2.118)

Since (1.75) gives γ2γ
µ∗ = −γµγ2, µ = 0, 1, 2, 3, multiplying (2.118) by iγ2 on

the left we get
0 = −[γµ(∂µ − iqAµ) + im]iγ2ψ

∗
e . (2.119)

Therefore, up to an arbitrary phase, quantum theory supposes 20

ψp = iγ2ψ
∗
e . (2.120)

which gives (2.1) with the change of q into −q:

0 = [γµ(∂µ − iqAµ) + im]ψp. (2.121)

Using (2.2) and indexes e for the electron and p for the positron (2.120) reads




ξ1p
ξ2p
η1p
η2p


 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0







ξ∗1e
ξ∗2e
η∗1e
η∗2e


 (2.122)

which gives

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e (2.123)

Now with (2.38) and indexes e for the electron and p for the positron we get

φ̂e =
√
2

(
η1e −ξ∗2e
η2e ξ∗1e

)
; φ̂p =

√
2

(
η1p −ξ∗2p
η2p ξ∗1p

)
. (2.124)

Then (2.120), which is equivalent to (2.123), is also equivalent to

φ̂p = φ̂eσ1 (2.125)

or to
φp = −φeσ1. (2.126)

We shall use this equality in section 6.

2.5 About the Pauli algebra

It is in fact very strange that the Pauli algebra is fully able to read the Dirac
theory. As it is a relativistic wave equation, space-time algebra should be better.
But the Dirac wave has value not in the space-time algebra, only in its even
sub-algebra, isomorphic to the Pauli algebra. This signifies that in space-time
algebra there is too much symmetry between space and time. In the Pauli

20Quantum theory uses γ2 because only this matrix contains imaginary terms, other γµ
matrices with the choice (1.75) are real.
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algebra, even if space and time may be added inside this algebra, space and time
are always distinct, do not have the same geometrical status, and each keeps its
own orientation. Physically there is no way to change the orientation of the
time, no way to change the orientation of the space. P and T transformations
are purely theoretical.

There is another reason, a mathematical one, to prefer the space algebra to
the space-time algebra. All the well known results about limits, continuous or
differentiable functions, were obtained for separated topological spaces, that
is to say topological spaces where two distinct points have separated vicinities.
Metric spaces are separated, because two distinct points are at finite and not
null distance, therefore are center of separated balls.21 The Cl3 algebra is a
8-dimensional linear space, so it is a separated metric space. All the usual the-
orems about limits and continuous functions apply here without any difficulty.
The space-time of the restricted relativity is not equipped of an Euclidean scalar
product, but of a pseudo-Euclidean scalar product, as a result of the signature
of space-time. Two distinct points may be at a null distance in space-time, with
its pseudo-metric the space-time is not a separated topological space.
On the mathematical point of view, we get the separation only by distinguish-
ing truly the time and the space, and this is equivalent to work with Cl3. This
separation is a necessary underground to define continuity or partial derivatives
of functions which are used by wave equations.

On the physical point of view, if you consider two photons with a null mass
produced at the same point E of the space-time, and absorbed at points A1 and
A2, A1 and A2 are separated points, but E and A1 are not separated, E and A2

are not separated points in space-time. Therefore you cannot define properly
wave equations in space-time algebra.

The space algebra is not only the necessary frame to describe particles with
spin 1/2, we shall see that it is the basic frame allowing to construct a greater
space-time able to describe all relativistic quantum waves.

3 The homogeneous nonlinear wave equation.

We discuss the question of negative energies. We prove that with

our wave equation all usual plane waves have a positive energy. We

study the relativistic invariance, which introduces a greater invari-

ance group, and a second space-time manifold. We discuss the wave

normalization and the charge conjugation. We explain how this non-

linear wave equation gets the quantification and the true results in

the case of the H atom.

When Dirac was searching his wave equation he was hoping to get a wave
equation without the negative energies which came from the relativistic Klein-
Gordon equation. But his wave equation also had solutions with negative en-
ergies since two signs are possible in (2.74). When positrons were discovered

21If two points P1 and P2 are separated by a distance d then the ball B1 centered in P1

with radius d/3 and the ball B2 centered in P2 with radius d/3 have none common point.
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six years later, solutions with negative energy were associated to positrons and
considered as a success of the new wave equation. But the creation of a pair
electron-positron necessitates an amount of energy: + 2 × 511 keV. The link
of the positron to negative energy implies an interpretation in another theo-
retical frame and is now understood only with the second quantification and a
complicated reasoning.

But it is possible to solve the problem of negative energy with a simple
modification of the Dirac equation. With a plane wave defined by (2.67), (2.68)
we get (2.70) which gives

det(φ) = det(v) det(φ̂) (3.1)

And we have with (2.72) and (2.73)

1 = v · v = vv̂ = vv = det(v) (3.2)

Therefore (3.1) reads

ρeiβ = 1× ρe−iβ ; eiβ = ±1 (3.3)

Now (2.70) gives also

φ† = (vφ̂)† = φv (3.4)

D0 = φφ† = φφv = ρeiβv = ±ρv (3.5)

D0
0 = ±ρv0 (3.6)

Since D0
0 > 0 and since ρ > 0 we have only two possibilities:

v0 =
√
1 + ~v2 ; eiβ = 1 ; φφ = ρeiβ = ρ (3.7)

v0 = −
√
1 + ~v2 ; eiβ = −1 ; φφ = ρeiβ = −ρ (3.8)

The φφ term is equal to its modulus ρ in the case (3.7) of a positive energy, and
this is false in the case (3.8) of a negative energy.

Now we generalize and we get a new wave equation, by replacing the φφ = φφ
term in the invariant Dirac equation (2.81) by the modulus ρ of this term:

φ(∇φ̂)σ21 + φqAφ̂+mρ = 0. (3.9)

Multiplying by the left by φ
−1

we get with ρ = e−iβφφ the equivalent equation

∇φ̂σ21 + qAφ̂+me−iβφ = 0. (3.10)

Equations (3.9) and (3.10) are the two main forms of the wave equation that
we study in this section. We firstly obtained this wave equation from a different
way. We started from the wave equation for a magnetic monopole of G. Lochak
(2.21), suppressing the potential term:

[γµ∂µ +
1

2

m(ρ2)c

~
(Ω1 − iΩ2γ5)]ψ = 0. (3.11)

37



When we choose
1

2

m(ρ2)c

~
=
im

ρ

this equation becomes:

[γµ∂µ + ime−iβγ5 ]ψ = 0. (3.12)

Since the Yvon-Takabayasi β angle is electric gauge invariant, it is perfectly
possible to add an electric potential term, this gives [7]:

[γµ(∂µ + iqAµ) + ime−iβγ5 ]ψ = 0. (3.13)

This wave equation is nonlinear, because β depends on the value of ψ. It is
homogeneous, because if we multiply a solution ψ by a fixed real number k, β
does not change, so kψ is also a solution of the equation. Our equation has
many common properties with the Dirac equation. We must immediately say
that, if β is null or negligible ime−iβγ5 ≈ im and (3.13) has the Dirac equation
as linear approximation.

To write this equation in the Pauli algebra, we process as with the Dirac
equation, and in the place of (2.30) we get

(
0 ∇+ iqA

∇̂+ iqÂ 0

)(
ξ
η

)
+ im

(
e−iβI 0
0 eiβI

)(
ξ
η

)
= 0 (3.14)

this gives the following system, equivalent to (3.13):

(∇+ iqA)η + ime−iβξ = 0 (3.15)

(∇̂+ iqÂ)ξ + imeiβη = 0 (3.16)

Using complex conjugation on the last equation, next multiplying on the left by
−iσ2 we get:

(−iσ2)(∇̂∗ − iqÂ∗)ξ∗ − ime−iβ(−iσ2)η∗ = 0. (3.17)

Using again (2.34), we get

∇(−iσ2ξ∗) + iqA(iσ2ξ
∗) + ime−iβ(iσ2η

∗) = 0. (3.18)

The system made of (3.15) and (3.16) is then equivalent to the matrix equation :

∇(η − iσ2ξ
∗) + iqA(η iσ2ξ

∗) + ime−iβ(ξ iσ2η
∗) = 0. (3.19)

With (2.37), with (2.38) and (2.39), the homogeneous nonlinear equation (3.13)
becomes [9]

∇φ̂+ qAφ̂σ12 +me−iβφσ12 = 0. (3.20)

which is equivalent to (3.10) or to the invariant equation (3.9). The differential

term φ(∇φ̂)σ21 and the gauge term φqAφ̂ are those of the linear Dirac equation
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and the only change is in the mass term where φφ = Ω1 + iΩ2 is replaced by
ρ =

√
Ω2

1 +Ω2
2. We therefore get instead of (2.92) to (2.99) and with notations

of section 2 the system:

0 = w3 + V 0 +mρ (3.21)

0 = v2 + V 1 (3.22)

0 = −v1 + V 2 (3.23)

0 = w0 + V 3 (3.24)

0 = −v3 (3.25)

0 = w2 (3.26)

0 = −w1 (3.27)

0 = −v0. (3.28)

3.1 Gauge invariances

Since the differential term and the gauge term are the same and since the mass
term is gauge invariant, the homogeneous nonlinear wave equation is also in-
variant under the electric gauge which reads in the Pauli algebra

φ 7→ φ′ = φeiaσ3 ; Aµ 7→ Aµ
′ = Aµ − 1

q
∂µa (3.29)

As with the Dirac equation, the scalar equation (3.21) gives the Lagrangian
density:

−L =
1

2
[(ψγµ(−i∂µ + qAµ)ψ) + (ψγµ(−i∂µ + qAµ)ψ)

†] +mρ

= w3 + V 0 +mρ (3.30)

The conservative current linked to the gauge invariance (3.29) by Noether’s
theorem is here also the probability current J = D0 and (2.99), which is (3.28)
is exactly the conservation law (2.101).

But the homogeneous nonlinear equation allows a second gauge invariance,
only a global one:

φ 7→ φ′ = eiaφ ; φ 7→ φ
′
= eiaφ ; ∂µa = 0, (3.31)

which gives

ρeiβ = φφ 7→ ρ′eiβ
′

= φ′φ
′
= e2iaφφ = ρei(β+2a)

ρ 7→ ρ′ = ρ ; β 7→ β′ = β + 2a. (3.32)

We shall see in section 6 that this second gauge is part of the electro-weak
gauge group. Since (3.31) is also the chiral gauge 22 of G. Lochak [40] we get his

22The electric gauge multiply ξ and η by the same factor eia while the chiral gauge multiply
ξ by eia and η by e−ia. This gauge is a local one in the Lochak’s theory or in the electro-weak
theory.
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result on the current: the Noether’s theorem implies the existence of another
conservative current, K = D3 (see [16] B.1.3), and this replaces the Uhlenbeck
and Laporte relation (2.102) by the conservative law:

0 = ∇ ·D3. (3.33)

This is with the change in the Lagrangian density and the scalar equation, the
only changes, the 6 other equations are unchanged, for instance we have again
(2.103) and (2.104). Since the chiral gauge multiplies φ by eia, φ̂ is multiplied
by e−ia, the Weyl spinor ξ is multiplied by eia and η is multiplied by e−ia [42].
The generator i of the chiral gauge is exactly the i of the Pauli algebra which
rules the orientation of the physical space (see 1.3.1).

Since we have lost linearity the sum φ1 + φ2 of two solutions of (3.20) is
not necessarily a solution of (3.20). But since the equation is homogeneous and
invariant under the chiral gauge, if φ is a solution and z is any complex number
then zφ is also a solution of (3.20). This property, usual with the Schrödinger
equation, is not true with the Dirac equation in Cl3.

3.2 Plane waves

We repeat what has been made in 2.2.3 for the linear equation. Our equation
is now reduced, for A = 0, to:

∇φ̂+me−iβφσ12 = 0. (3.34)

If we consider a plane wave with a phase ϕ satisfying

φ = φ0e
−ϕσ12 ; ϕ = mvµx

µ ; v = σµvµ. (3.35)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ̂ = σµ∂µ(φ̂0e
−ϕσ12) = −mvφ̂σ12. (3.36)

(3.15) is then equivalent to

φ = eiβvφ̂ (3.37)

or to
φ̂ = e−iβ v̂φ (3.38)

which implies
φ = eiβv(e−iβ v̂φ) = vv̂φ = (v · v)φ. (3.39)

So, if φ0 is invertible, we must take

1 = v · v = v20 − ~v 2 (3.40)

v20 = 1 + ~v 2 ; v0 = ±
√
1 + ~v 2. (3.41)

which is the expected relation for the reduced speed of the particle. More, with
the nonlinear equation, we have:

D0 = φφ† = (eiβvφ̂)φ† = eiβv(φ̂φ†) = eiβvρe−iβ = vρ. (3.42)
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So we get
D0

0 = ρv0 (3.43)

and since D0
0 and ρ are always positive, (3.40) is obtained only if

v0 =
√

1 + ~v 2 (3.44)

This proves that the replacement of φφ by ρ in the mass term of the invariant
equation is enough to rid the Dirac theory of unphysical negative energies in
the electron case.

3.3 Relativistic invariance

We start from the invariant form (3.9). With a Lorentz dilation R with ratio
r = | det(M)| satisfying

x′ = R(x) =MxM† , det(M) = reiθ , φ′ =Mφ

∇ =M∇′M̂ ; qA =Mq′A′M̂ (3.45)

we have also

ρ′eiβ
′

= det(φ′) = φ′φ′ =Mφφ M =MρeiβM

=MMρeiβ = reiθρeiβ = rρei(β+θ) (3.46)

ρ′ = rρ (3.47)

β′ = β + θ. (3.48)

And so we get:

0 = φ(∇φ̂)σ21 + φqAφ̂+mρ

= φ M∇′M̂φ̂σ21 + φ Mq′A′M̂φ̂+mρ

= φ
′
(∇′φ̂′)σ21 + φ

′
q′A′φ̂′ +mρ (3.49)

The homogeneous nonlinear equation is form invariant under Cl∗3, group of
invertible elements in Cl3, if and only if

mρ = m′ρ′ (3.50)

mρ = m′rρ (3.51)

We get then the form invariance of the wave equation under Cl∗3 = GL(2,C) if
and only if 23

m = m′r (3.52)

23The simplification that we see here, from (2.51), is a powerful argument for the homoge-
neous nonlinear equation. A factor eiθ in the mass term is not annoying because mm̂ = |m|2.
But it indicates a lack of symmetry, and it explains by itself why the greater group of invari-
ance Cl∗

3
was not previously seen. The form invariance of the electromagnetism, that we shall

study in the next section, and the form invariance of the Dirac theory, are fully compatible
only with the homogeneous nonlinear equation and this transformation of masses.

41



What is the signification of this equality for physics ? If the true invariance
group for the electromagnetism is not only the Lorentz group, and not even its
covering group, but the greater group Cl∗3, it must happen things similar to
what comes when we go from Galilean physics to relativistic physics: there are
less invariant quantities. The proper mass m0 and ρ are both invariant under
Lorentz rotations. Under Lorentz dilations induced by all M matrices, m and ρ
are no more separately invariant, it is the product mρ alone which is invariant

mρ = m′rρ = m′ρ′. (3.53)

What says to us the invariance of mρ ? It is the product of a reduced mass and
a dilation ratio which is invariant. A reduced mass m = m0c

~
is proportional to

the inverse of a space-time length, which is a frequency. This is exactly what
says E = hν. Otherwise, the existence of the Planck’s constant is linked to the
fact thatm and ρ are not separately invariant, but only their product. Or again,
the existence of the Planck’s constant is linked to the invariance under the Cl∗3
group, greater than the invariance group of the restricted relativity. Somewhere
we can say: the existence of the Planck’s constant was not fully understood
on the physical point of view. To consider this greater invariance group will
enable us to see things otherwise and to understand why there is a Planck

constant.
The invariance of themρ product has also another consequence. If we restrict

the invariance to the subgroup of Lorentz rotations, m is there invariant. Since
the mρ product is a constant, this implies that ρ has a physically determined
value. But if we multiply ψ or φ by a real constant k, ρ is multiplied by k2. To
say that ρ has a physically determined value is equivalent to say that the wave
is normalized, or that, in a way or another, there is a physical condition which
fixes the amplitude of the wave. We shall see this at the next page.

With the wave equation (3.10) we get the invariance of the wave equation
under Cl∗3 with the condition

m = m′r. (3.54)

We have implicitly considered before r and ρ on the same foot, this is natural
since ρ′ = rρ. More generally: There is no difference of structure be-

tween the M matrix defining the dilation R and the φ wave, which

are both complex 2 × 2 matrices, elements of the space algebra Cl3.
More precisely φ is a function from space-time with value into Cl3.
Consequently φ, as M , can define a Lorentz dilation D, with ratio ρ,
by:

D : y 7→ x = φyφ†. (3.55)

And the components Dν
µ of the four Dµ are justly the 16 terms of the matrix of

the dilation because

x = xµσµ = φyνσνφ
† = yνφσνφ

† = yνDν = yνDµ
νσµ; x

µ = Dµ
ν y

ν . (3.56)

There is no difference between the matrix product M ′M which gives

the composition of dilations R′◦R and the product Mφ which gives the
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transformation of the wave under a dilation, and this induces then a

composition of dilations R ◦D:

x′ =MxM† =Mφyφ†M† = (Mφ)y(Mφ)† = φ′yφ′
†
. (3.57)

This signifies that the y introduced into (3.55) does not change, either seen by
the observer of x or by the observer of x′. It is independent on the observer,
intrinsic to the wave.

And since φ is function of x, the D dilation is also a function of x, and varies
from a point to another in space-time: y is not an element of the global space-
time, only of the local space-time. So we must see y as the general element of
the tangent space-time, at x, to a space-time manifold which depends only on
the wave, not on the observer, and that we will name intrinsic manifold. On
the contrary the dilation depends on the observer, the observer of x sees D, the
one of x′ sees D′ = R ◦D.

At each point of the space-time we have then, not only one space-time mani-
fold, but two space-time manifolds, and two different affine connections :
the manifold of the x and x′, for which each relativistic observer is associated to
a Lorentzian tangent space-time, and another manifold, this of the y on which
we will study farther a few properties. Moreover each tangent space-time is
doted of an orthonormal basis allowing to construct a Clifford algebra. The
fiber of these manifolds is then a Clifford algebra.24 We shall generalize this
result in section 6.

3.4 Wave normalization

The invariance of the Lagrangian under all translations, as with the linear
Dirac theory, induces the existence of a conservative impulse-energy tensor,
the Tetrode’s tensor:

Tµ
ν = i

~

2
c(ψγµ∂νψ − ∂νψγ

µψ)− δµνL. (3.58)

Since the wave equation is homogeneous, the Lagrangian is null and we get:

Tµ
ν = i

~

2
c(ψγµ∂νψ − ∂νψγ

µψ). (3.59)

For a stationary state with energy E we have:

ψ = e−iEt
~ ψ(x) ; ψ = ei

Et
~ ψ(x)

∂0ψ = −i E
~c
ψ ; ∂0ψ = i

E

~c
ψ. (3.60)

So we get:

T 0
0 = i

~

2
c(ψγ0(−i E

~c
)ψ − i

E

~c
ψγ0ψ) = EJ0. (3.61)

24This was firstly pointed by W. Rodrigues, but with only one manifold. Our work is then
completely different.
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The condition normalizing the wave functions

∫∫∫
J0dv = 1 (3.62)

is then equivalent, for a bound state, to

∫∫∫
T 0
0 dv = E. (3.63)

The left term of this equality is the total energy of the wave, whilst the right
term is the global energy of the electron. So it is not because we must get a
probability density that the wave must be normalized. The wave is physically
normalized because the energy has a determined value, not an arbitrary one, and
because the energy of the electron is the energy of its wave. And it is the
same, for the Dirac equation as for the homogeneous nonlinear equation which
has the Dirac equation as linear approximation. This normalization applies
evidently to solutions in the case of the H atom that we study in appendix C.
25

3.5 Charge conjugation

We start now again from the link between the wave of the particle and the
wave of the antiparticle, which reads (2.120) in the frame of Dirac matrices and
(2.125) in the space algebra. The homogeneous nonlinear equation (3.10) is

∇φ̂eσ21 + qAφ̂e +me−iβeφe = 0. (3.64)

We also have
ρee

iβe = φeφe. (3.65)

This gives with (2.125) and (2.126)

ρee
iβe = φeφe = φp(−σ1)(φ̂pσ1)† = −φpφp = −ρpeiβp (3.66)

Therefore (3.64) reads

∇φ̂pσ1σ21 + qAφ̂pσ1 +m(−e−iβp)(−φpσ1) = 0. (3.67)

Multiplying by σ1 on the right this is equivalent to

−∇φ̂pσ21 + qAφ̂p +me−iβpφp = 0. (3.68)

Now multiplying by φp on the left we get the invariant form of the wave equation
for the positron:

−φp∇φ̂pσ21 + qφpAφ̂p +mρp = 0. (3.69)

25We must recall that J0 is not equal to the relativistic invariant ρ. It is the temporal
component of a space-time vector. T 0

0
is a component of a non-symmetric tensor, this is

totally out of the frame of general relativity, based on the symmetric Ricci’s tensor.
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This means that only the differential part of the wave equation is changed.
Instead of the system (3.21) to (3.28) we get now

0 = −w3 + V 0 +mρ (3.70)

0 = −v2 + V 1 (3.71)

0 = v1 + V 2 (3.72)

0 = −w0 + V 3 (3.73)

0 = v3 (3.74)

0 = −w2 (3.75)

0 = w1 (3.76)

0 = v0 (3.77)

So the charge conjugation does not really change the sign of the charge nor the
sign of the mass, only the sign of the differential term of the wave equation26.
Only vµ and wµ change sign. Therefore the Lagrangian density which is the
scalar part of the wave equation becomes

−L = −1

2
[(ψγµ(−i∂µ − qAµ)ψ) + (ψγµ(−i∂µ − qAµ)ψ)

†] +mρ

= −w3 + V 0 +mρ (3.78)

And the normalization of the wave is now equivalent, in the case of a stationary
state, to ∫∫∫

T 0
0 dv = −E. (3.79)

The positive mass-energy of the positron is exactly opposite to the negative
energy-coefficient of the stationary state27. The homogeneous nonlinear wave
equation solves then the puzzle of the sign of the energy in a much more under-
standable way than quantum field theory: we have the negative coefficient E
necessary to obtain the Fourier transformation, but the true density of energy
is T 0

0 which remains positive.
Since (3.69) may be gotten from (3.9) simply by changing xµ into −xµ which

is the PT transformation, the CPT theorem of quantum field theory is trivial.
Since the Dirac equation is the linear approximation of the homogeneous

nonlinear wave equation, we get the Dirac equation of the positron from the
nonlinear equation by changing the mass term. But we must account for the
fact that βp ≈ π and ρp ≈ −Ω1p. The linear approximation of the homogeneous

26The electric gauge invariance is gotten, in the place of (3.29), as φp 7→ φ′p = φpeiaσ3 and

Aµ 7→ A′

µ = Aµ − 1

q
(−∂µa) = Aµ − 1

−q
∂µa. Therefore the positron appears as having a

charge opposite to the charge of the electron. In fact it is not q but ∂µa which changes sign.
27The study of plane waves (3.35) in the case of (3.68) gives in the place of (3.37): φp =

−eiβpvφ̂p, φ̂p = −e−iβp v̂φp, φp = vv̂φp. In the place of (3.42) we get D0 = −vρp and then

D0

0
= −ρpv0. Therefore we get v0 = −

√
1 + ~v2: v0 and E are then negative.

45



nonlinear wave equation is then:

0 = −φp∇φ̂pσ21 + qφpAφ̂p −mΩ1p (3.80)

0 = −∇φ̂pσ21 + qAφ̂p −mφp (3.81)

which is (2.108). We have, for the sign of E and T 0
0 , the same results as for the

nonlinear equation: E is negative but T 0
0 is positive.

3.6 The Hydrogen atom

Quantum mechanics got quantized energy levels by solving Schrödinger equation
in the case of the hydrogen atom, an electron “turning” around a proton. The
quantification was a brilliant result, but the other results were not so good.
The energy levels were not accurate, and the number of states for a principal
quantum number n was n2 when 2n2 states were awaited.

We put the detailed calculation in Appendix C, it is very beautiful but also
very difficult. We resume here conclusions. Our study of the solutions for
the homogeneous nonlinear equation proves that a family of solutions exists,
labeled by the same quantum numbers appearing into the Dirac theory, and
that these solutions are very close to the solutions of the linear equation such
that the Yvon-Takabayasi angle is everywhere defined and small. Now if φ1
and φ2 are two solutions of this family, a1φ1 and a2φ2 are also solutions of the
nonlinear wave equation, since it is both homogeneous and invariant under the
chiral gauge. But the sum a1φ1 + a2φ2 has no good luck to be a solution of the
nonlinear wave equation, because the determinant giving the Yvon-Takabayasi
angle is quadratic. The solutions labeled by the quantum numbers j, κ, λ, n,
are plausibly the alone bound states of the hydrogen atom. And this explains
why an electron in the H atom is in one of this labeled states, never in a linear
combination of these states. This is an experimental fact that only this nonlinear
wave equation can explain simply.

The homogeneous nonlinear equation is the only nonlinear wave equation
such that quantized energy levels exist with exactly the true energy levels. We
encountered another thing that pleads for the homogeneous nonlinear equation.
The solutions of the linear equation, for each value of the j, κ, λ and n > 1
quantum numbers, depend on two arbitrary complex constants, there are two
many solutions. We don’t see this when we solve the Dirac equation with
the method of operators, because imposing to the wave to be proper value
of an ad hoc operator inevitably rules out one constant. With the method
separating variables which postulates nothing about the wave, there are too
many solutions. But these two complex constants are reduced to only one
by (C.114) and (C.118), sufficient conditions allowing to get a Yvon-Takabayasi
(C.123) angle everywhere defined and small. We can say we get the true number
of solutions by imposing to the solutions to be the linear approximations of the
solutions of the homogeneous nonlinear equation.
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4 Invariance of electromagnetic laws

The group of Lorentz dilations induced by the Cl∗3 group is also the

invariance group of electromagnetic laws. This is established for the

electromagnetism of Maxwell-de Broglie, with massive photon, as for

the electromagnetism with magnetic monopole.

The laws of Maxwell’s electromagnetism are not invariant under the invari-
ance group of mechanics. Putting at the center of his thought the invariance of
the light speed, Einstein replaced, for all physics, the invariance group of me-
chanics by a greater group, containing translations and rotations, but also the
Lorentz transformations including space and time. When an invariance group
is replaced by another greater group, there are less invariants, for instance the
mass and the impulse are no more invariant, only the proper mass remains in-
variant. And there is a grouping of quantities, for instance the electric field and
the magnetic field become parts of a same object, the electromagnetic tensor
field. Energy and impulse become parts of a same impulse-energy vector.

The existence of particles with spin 1/2 makes us to know that the group of
Lorentz transformations is too small, and we must use another greater group,
SL(2,C), itself a subgroup of the group GL(2,C) = Cl∗3 made of the invertible
elements of the space algebra. This induces to think Cl∗3 as the true invariance
group, not only of the Dirac equation, but more, of all the electromagnetism,
and this is what we will look at now.

4.1 Maxwell-de Broglie electromagnetism

Louis de Broglie worked out a quantum theory for the light [27] [28] where the
wave of the photon is built by fusion of two Dirac spinors. The electric field
~E, the magnetic field ~H, the electric potential V , the potential vector ~A follow
Maxwell’s laws in the void, supplemented by mass terms:

−1

c

∂ ~H

∂t
= curl ~E ; div ~H = 0 ; ~H = curl ~A

1

c

∂ ~E

∂t
= curl ~H + k20 ~A ; div ~E = −k20V ; ~E = −1

c

∂ ~A

∂t
− gradV (4.1)

1

c

∂V

∂t
+ div ~A = 0

The k0 = m0c
~

term contains the proper mass m0 of the photon. That term is
certainly very small, since there is very few time dispersion for the light emitted
since millions of years. But Louis de Broglie answered to those who think the
photon mass as exactly null that no physical experiment can prove a quantity
to be exactly, with an infinite accuracy, equal to another one. To write these
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Maxwell-de Broglie equations into space algebra, we let 28:

x0 = ct ; A0 = V ; A = A0 + ~A ; F = ~E + i ~H (4.2)

The seven equations (4.1) group together into only two equations:

F = ∇Â (4.3)

∇̂F = −k20Â (4.4)

Because (4.3) reads:

~E + i ~H = (∂0 − ~∂)(A0 − ~A)

0 + ~E + i ~H + 0i = (∂0A
0 + ~∂ · ~A) + (−∂0 ~A− ~∂A0) + i~∂ × ~A+ 0i (4.5)

This equation is equivalent to the system obtained by separating the scalar,
vector, pseudo-vector and pseudo-scalar parts:

0 =
1

c

∂V

∂t
+ div ~A (4.6)

~E = −1

c

∂ ~A

∂t
− gradV (4.7)

~H = curl ~A (4.8)

As for (4.4), it gives:

(∂0 + ~∂)( ~E + i ~H) = −k20(A0 − ~A)

∂0 ~E + i∂0 ~H + ~∂ · ~E + i~∂ × ~E + i(~∂ · ~H + i~∂ × ~H) = −k20(A0 − ~A) (4.9)

~∂ · ~E + ∂0 ~E − ~∂ × ~H + i(∂0 ~H + ~∂ × ~E) + i~∂ · ~H = −k20A0 + k20 ~A+ i~0 + 0i

Separating, as previously, the scalar, vector, pseudo-vector and pseudo-scalar
parts, this is equivalent to:

div ~E = −k20V (4.10)

1

c

∂ ~E

∂t
− curl ~H = k20 ~A (4.11)

1

c

∂ ~H

∂t
+ curl ~E = ~0 (4.12)

div ~H = 0 (4.13)

These equations reduce to Maxwell equations in the void, plus the Lorentz’s
gauge condition, if the proper mass of the photon is null. We get then, in the
place of (4.4): ∇̂F = 0.

28To read the electromagnetic field as ~E + i ~H is a very old way. We will remark that the i
here is the generator of the chiral gauge, it is not the i of quantum mechanics, generator of
the electric gauge.
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4.1.1 Invariance under Cl∗3

With the Maxwell-de Broglie electromagnetism the potential terms V and ~A
are not simple tools for calculations, but are parts of physical quantities of the
wave of the photon, as much as ~E and ~H. How vary these quantities under a
rotation, under a Lorentz dilation with ratio not equal to 1 ?

Since Maxwell’s laws of electromagnetism in the void are invariant, not only
under the group of Lorentz transformations, but under the conformal group,
which contains in addition inversions and dilations, we will suppose that, under
a Lorentz dilation R with ratio r, generated by a M matrix satisfying (3.49),
the electromagnetic field transforms as29 :

F ′ =MFM−1 (4.14)

If we write then M as M =
√
rei

θ
2P , where P is an element of SL(2,C), we

have P−1 = P and we get:

F ′ =
√
rei

θ
2PF

1√
r
e−i θ

2P = PFP (4.15)

which is the same transformation as if the dilation was induced only by P , that is
to say was a Lorentz transformation. So (4.14) is such that the electromagnetic
field does depend neither on r, nor on θ : the presence of the Cl∗3 group is as
discreet as possible.

The equation (4.4) is form invariant if we have

∇̂′F ′ = −k′0
2
Â′. (4.16)

But we have:

∇ =M∇′M̂ ; ∇̂ =M†∇̂′M ; ∇̂′ = (M†)−1∇̂M−1 (4.17)

We get then:

−k′0
2
Â′ = ∇̂′F ′ = (M†)−1∇̂M−1MFM−1

= (M†)−1∇̂FM−1 = (M†)−1(−k20Â)M−1 (4.18)

But k0 = rk′0 since m = rm′ is required by the invariance of the homogeneous

29We have not found this relation immediately, and we used in [13] another relation between
F and F ′, which gave complications to get a full invariance both for electromagnetism and
Dirac theory.
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nonlinear equation30. We get then:

−k′0
2
Â′ = (M†)−1(−r2k′0

2
Â)M−1

Â′ = (M†)−1re−iθÂreiθM−1

Â′ = (M†)−1M†M̂ÂMMM−1

Â′ = M̂ÂM (4.19)

A′ =MAM† (4.20)

which signifies that, contrarily to qA which transforms as ∇, A transforms as
x, is contravariant. Physically this means that potential terms are linked to
and move with sources. How A may be contravariant and qA covariant ? This
signifies :

qA =Mq′A′M̂ = q′MMAM†M̂ = q′reiθAre−iθ = q′r2A (4.21)

that is to say31:
q = q′r2 (4.22)

The electric charge, as the proper mass, is a relativistic invariant. The electric
charge, as the mass, is not invariant under the complete group Cl∗3, and varies
when the ratio of the dilation is not equal to 1.

The transformation (4.14), and the contra-variance (4.20) of A which comes
from, are compatible with the law (4.3) linking the field to the potentials, be-
cause this gives:

F ′ = ∇′Â′ (4.23)

MFM−1 =M(∇Â)M−1 =M(M∇′M̂Â)M−1 (4.24)

But we have, with (4.20):

Â′ = M̂ÂM ; M̂Â = Â′M
−1

(4.25)

and (4.24) gives

MFM−1 =MM∇′Â′M
−1
M−1

= (MM)F ′(MM)−1 = det(M)F ′(det(M))−1 = F ′. (4.26)

30This is the best indication that the true wave equation for the electron is not the Dirac
linear equation, but the homogeneous nonlinear equation. Theory of electromagnetism and
wave equation of the electron are Cl∗

3
form invariant only with this wave equation.

31We get used to go down up indexes and to go up down indexes of tensors. To do that
we use the metric, and so we implicitly consider it as invariant. But if the space-time metric
is invariant under the Lorentz group, it is not invariant under the greater group of dilations,
so we have no more the right to raise or lower indexes of tensors. A covariant vector does
not become as a contravariant vector under a dilation. Therefore we are not allowed to treat
∇, covariant, as x, contravariant and to compute T (∇) instead of T (x), a usual way [38] in
space-time algebra which we must also avoid.
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Dilations are composed of Lorentz rotations and pure homothety with ratio
r > 0. We know c is invariant under Lorentz rotations. Since a speed is a ratio
distance on time, since these two terms are multiplied by the same ratio r of a
pure homothety, the ratio distance on time is invariant. So we may suppose that
the invariance of the light speed is true not only under the Lorentz rotations,
but also under all dilations induced by an element of Cl∗3. The other essential
invariant of the Dirac theory is the fine structure constant α, which is a pure
number, and so cannot vary under a dilation, no more than under a Lorentz
rotation. But we have:

q =
e

~c
; qe =

e2

~c
= α = q′e′ ; qe = q′r2e = q′e′. (4.27)

We get then
e′ = r2e. (4.28)

We have now:

α =
e2

~c
=
e′

2

~′c
=
r4e2

~′c
; e2~′c = ~cr4e2 (4.29)

which gives:32

~′ = r4~. (4.30)

We have finally:

m0c

~
= m = rm′ = r

m′
0c

~′
= r

m′
0c

r4~
=
m′

0c

r3~
(4.31)

which gives:
m′

0 = r3m0. (4.32)

Then a proper mass does not vary as an electric charge under a Lorentz dilation.
An electric charge varies as a surface, a proper mass varies as a volume. There
is a geometrical difference between a mass and a charge, which explains very
well the difficulties to unify electromagnetism and gravitation.

Since a speed is multiplied by r0, an acceleration is multiplied by r−1 and
a force is multiplied by r2. This is coherent with the Lorentz force since the
electromagnetic field is multiplied by r0 and the charge by r2.

4.2 Electromagnetism with monopoles

When Maxwell wrote his laws for magnetism, he supposed that magnetic fields
come from magnetic charges, we name them now magnetic monopoles. Later
this was forgotten, because during decades nobody was able to prove the ex-
istence of such monopoles. Finally teachers have presented the laws to their
students as if magnetic monopoles could not exist. Nevertheless the laws of
electromagnetism can easily be completed, if magnetic monopoles exist. On top

32We must then see ~ as a variable term under a dilation with ratio r 6= 1. To let ~ = 1 is
then a very bad habit that we must get rid of as soon as possible.
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of the electric charge density ρe and the current density ~j, a density of magnetic
charge ρm and a density of magnetic current ~k exist. On top of the electric po-
tential V and of the potential vector ~A, a magnetic potential W and a magnetic
potential vector ~B exist. The laws of electromagnetism with monopoles read:

~E = −gradV − 1

c

∂ ~A

∂t
+ curl ~B ; ~H = curl ~A+ gradW +

1

c

∂ ~B

∂t

0 = ∂µA
µ =

1

c

∂V

∂t
+ div ~A ; 0 = ∂µB

µ =
1

c

∂W

∂t
+ div ~B

curl ~H − 1

c

∂ ~E

∂t
=

4π

c
~j ; div ~E = 4πρe

curl ~E +
1

c

∂ ~H

∂t
=

4π

c
~k ; div ~H = −4πρm. (4.33)

We can see, the calculation is identical to that made to establish (4.3) and (4.4),
that these equations are equivalent to:

F = ∇(Â+ iB) (4.34)

∇̂F =
4π

c
(ĵ + ik) (4.35)

where we have let:
B =W + ~B ; k = ρm + ~k. (4.36)

So it is very simple to go from the electromagnetism without monopole to the
electromagnetism with monopoles: it is enough to add to the space-time vector
made of the electric potential and the potential vector, a pseudo-vector, made
of the magnetic potential and the magnetic potential vector, and to add to the
space-time vector made of the density of charge and density of current, a space-
time pseudo-vector made of the density of magnetic charge and the density of
magnetic current. The laws are exactly the same, and we cannot see why such
potentials and current should be prohibited.

The form invariance of the law (4.34) under the Cl∗3 group has evidently the
same consequence for the two potentials, so B must be, as A, a contravariant
vector:

B′ =MBM†. (4.37)

To look at what is implied by (4.35), we remark that we have:

∇̂ =M†∇̂′M ; F ′M =MF (4.38)

so we have:

4π

c
(ĵ + ik) = ∇̂F =M†∇̂′MF =M†∇̂′F ′M

4π

c
(ĵ + ik) =M† 4π

c
( ̂j′ + ik′)M

j + ik =M(j′ + ik′)M̂ (4.39)

j =Mj′M̂ ; k =Mk′M̂ (4.40)
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which signifies that the j and k vectors are covariant, transform as ∇. And this
is consistent with the electrostatic, because a charge density is the quotient of
a charge e on a volume dv, and because we have, under a dilation with ratio r:

ρe =
e

dv
; ρ′e =

e′

dv′
=

r2e

r3dv
=
ρe
r

; ρe = rρ′e. (4.41)

We may say consequently that the choice made for the transformation of the
electromagnetic field under a dilation, even if it gives surprising results, with
the variation of the charge, the proper mass and the Planck term, is consistent
with the elementary laws of electricity and magnetism.

4.3 Back to space-time

Until now we mainly used the space algebra, because the relativistic invariance
of the Dirac theory leads inevitably to this algebra and because the even sub-
algebra of the space-time algebra is isomorphic to the space algebra. Neverthe-
less the natural mathematical frame of any relativistic theory is the space-time
algebra. It is underlying in sections 2, 3 and 4. Several reasons lead back to
space-time algebra:

1 - The variance in r4 of the action is the variance of a volume of space-time.
2 - The two manifolds relied by the Dirac wave, with (3.55), are space-time

manifolds, not space manifolds.
3 - We shall see farther that electro-weak interactions need the space-time

algebra.

4.3.1 From Cl3 to Cl1,3

To go from the space-time algebra to the space algebra, all you need is to use
only even terms. 33 To go from the space algebra to the space-time algebra the
most easy way is to use the matrix representation (1.75). The wave, noted φ
in space algebra, is noted Ψ in space-time algebra. We have gotten in (2.76)

Ψ =

(
φ 0

0 φ̂

)
. N of (1.80) is similarly an even element of the space-time algebra

and also the electromagnetic field that we note F:

F =

(
F 0

0 F̂

)
=

(
~E + i ~H 0

0 ~E − i ~H

)

=

(
~E 0

0 ~E

)
+

(
iI 0
0 −iI

)(
~H 0

0 ~H

)
= E+ γ0123H (4.42)

33In a Clifford algebra on a n-dimensional linear space, the linear space of even elements
and the linear space of odd elements are linear spaces with dimension 2n−1. Since the product
of two odd elements is even the linear space of odd elements is not a sub-algebra. Since the
product of two even elements is even, the linear space of even elements is a sub-algebra. In
the case of Cl1,3 the even sub-algebra is isomorphic to Cl3.
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We can shorten the notations with:

i = γ0123 ; F = E+ iH (4.43)

Odd elements of the space-time algebra are the product by γ0 of an even element,
then read (

P 0

0 P̂

)(
0 I
I 0

)
=

(
0 P

P̂ 0

)
(4.44)

We have also used, in (1.76) and (2.76):

∂∂∂ = γµ∂µ =

(
0 ∇
∇̂ 0

)
; A =

(
0 A

Â 0

)

Similarly the magnetic potential reads:

B =

(
0 B

B̂ 0

)
(4.45)

The reverse of an even element is:

Ñ =

(
M 0
0 M†

)
; Ψ̃ =

(
φ 0
0 φ†

)
(4.46)

The reverse of an odd element is:

B̃ =

(
0 B†

B 0

)
(4.47)

With tensorial densities without derivative of 2.2.2 we have:

ΨΨ̃ =

(
φ 0

0 φ̂

)(
φ 0
0 φ†

)
=

(
φφ 0

0 φ̂φ†

)
=

(
ρeiβ 0
0 ρe−iβ

)

=

(
Ω1 + iΩ2 0

0 Ω1 − iΩ2

)
= Ω1 + iΩ2 = ρeiβ (4.48)

Dµ =

(
0 Dµ

D̂µ 0

)
=

(
0 φσµφ

†

φ̂σµφ† 0

)

=

(
φ 0

0 φ̂

)(
0 σµ
σ̂µ 0

)(
φ 0
0 φ†

)
= ΨγµΨ̃ (4.49)

Sk =

(
φσkφ 0

0 −φ̂σkφ†
)

= Ψγk0Ψ̃ (4.50)

We must also notice
Ψ̃Ψ = ΨΨ̃ = Ω1 + iΩ2 (4.51)

We saw in (2.79) how Hestenes reads the Dirac equation. Since we have:

Ψγ0e
βi =

(
0 e−βiφ

eβiφ̂ 0

)
(4.52)
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the homogeneous nonlinear wave equation reads in space-time algebra:

∂Ψγ21 = mΨγ0e
βi + qAΨ (4.53)

For a space-time dilation, with:

x =

(
0 x
x̂ 0

)
; x′ =

(
0 x′

x̂′ 0

)
(4.54)

and with (1.80) and (2.45), we get equalities

x′ = NxÑ ; Ψ′ = NΨ. (4.55)

4.3.2 Electromagnetism

Laws of the electromagnetism of Maxwell-de Broglie become:

F = ∂A (4.56)

∂F = −k20A (4.57)

because

∂A =

(
0 ∇
∇̂ 0

)(
0 A

Â 0

)
=

(
∇Â 0

0 ∇̂A

)
=

(
F 0

0 F̂

)
= F (4.58)

∂F =

(
0 ∇
∇̂ 0

)(
F 0

0 F̂

)
=

(
0 ∇F̂

∇̂F 0

)
= −k20A (4.59)

Laws of electromagnetism with magnetic monopoles become:

F = ∂(A+ iB) (4.60)

∂F =
4π

c
(j+ ik) (4.61)

Since space-time algebra was well known and gave simpler results, what was
the purpose of developing calculations in space algebra ? We may think that
space-time algebra is too simple, there is too much symmetry between space and
time. We can use services of space-time algebra as long as it is not necessary
to distinguish space and time, as long as there are none zero space-time length.
But it is also necessary to never forget that time is not space. Time flows only
from past to future while we can go away and go back in space. Under dilations
generated by elements of the Cl∗3 group the orientation of the time and the
orientation of the space cannot change. There is no physical way to change the
time orientation, there is no physical way to change the space orientation. P
and T transformations of quantum fields are purely theoretical.
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4.4 Four photons

The beginning of quantum physics was the invention by Einstein in 1905 of a
theory of the light with quanta of impulse-energy. After the Newton’s corpus-
cular theory, the Huyghens’ undulatory theory was imposed by Fresnel with his
transversal waves. This undulatory theory allowed a synthesis including elec-
tromagnetism and optics. The next page of this story was the discovery of the
wave associated to any particle move by Louis de Broglie. When he had the
Dirac equation, he returned to the initial problem of the wave of a corpuscular
photon. A photon with a proper mass m0 < 10−52kg gives, for all observable
radiations, a non-observable dispersion of the light. The corpuscular nature of
the light explains the Compton diffusion and it is compatible with the absorp-
tion and emission of the light by electrons of atoms. It allows to understand the
pressure of radiation and to calculate completely all kinds of Doppler effects. In
the same time the light has also the undulatory aspects of the Fresnel’s waves
and we know since Einstein that density of photons and intensity of the elec-
tromagnetic wave are proportional. Louis de Broglie firstly tried to associate a
Dirac wave to the photon, but it was impossible to associate an electromagnetic
wave. From this first attempt he understood that the electromagnetic field of
the photon must be associated to the change of state of the electron interacting
with the photon. And the only processes of interaction between photons and
matter are absorption and photoelectric effect.

For his construction of the wave of a photon Louis de Broglie started from
two Dirac spinors, one of a particle and one of an anti-particle, able to anni-
hilate, giving then all impulse-energy to the exterior. He established also that
electromagnetic quantities must be linear combinations of the wave components.
In the frame of the initial formalism used by de Broglie his two spinors read

ψ =




ψ1

ψ2

ψ3

ψ4


 ; ϕ =




ϕ1

ϕ2

ϕ3

ϕ4


 . (4.62)

They are solutions of the Dirac wave equation for a particle without charge, like
a neutrino

∂0ψ = (α1∂1 + α2∂2 + α3∂3 + i
m

2
α4)ψ (4.63)

and of the wave equation for its antiparticle, similar to an antineutrino

∂0ϕ = (α1∂1 − α2∂2 + α3∂3 − i
m

2
α4)ϕ (4.64)

where

x0 = ct ; ∂µ =
∂

∂xµ
; m =

m0c

~
(4.65)

αjαk + αkαj = 2δjk. (4.66)
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It is well known that these matrix relations are not enough to define uniquely
αµ. We can choose different sets of αµ matrices. We choose here a set working
with the Weyl spinors and the relativistic invariance:

αj =

(
−σj 0
0 σj

)
, j = 1, 2, 3 ; α4 =

(
0 −I
−I 0

)
; I =

(
1 0
0 1

)
(4.67)

where σj are the Pauli matrices and we let

ξ =

(
ψ1

ψ2

)
=

(
ξ1
ξ2

)
; η =

(
ψ3

ψ4

)
=

(
η1
η2

)

ζ∗ =

(
ϕ1

ϕ2

)
=

(
ζ∗1
ζ∗2

)
; λ∗ =

(
ϕ3

ϕ4

)
=

(
λ∗1
λ∗2

)
(4.68)

where a∗ is the complex conjugate of a. With

~∂ = σ1∂1 + σ2∂2 + σ3∂3

~∂∗ = σ1∂1 − σ2∂2 + σ3∂3 (4.69)

the wave equation (4.63) is equivalent to the system

(∂0 + ~∂)ξ + i
m

2
η = 0 (4.70)

(∂0 − ~∂)η + i
m

2
ξ = 0. (4.71)

ξ and η are the Weyl spinors of the wave ψ and the wave equation of the anti-
particle (4.64) is equivalent to the system

(∂0 + ~∂∗)ζ∗ − i
m

2
λ∗ = 0

(∂0 − ~∂∗)λ∗ − i
m

2
ζ∗ = 0. (4.72)

By complex conjugation we get

(∂0 + ~∂)ζ + i
m

2
λ = 0 (4.73)

(∂0 − ~∂)λ+ i
m

2
ζ = 0. (4.74)

This system is identical to (4.70)-(4.71) if we replace ζ by ξ and λ by η. We let

φ1 =
√
2

(
ξ1 −η∗2
ξ2 η∗1

)
; φ2 =

√
2

(
ζ1 −λ∗2
ζ2 λ∗1

)
(4.75)

which have their value in the Pauli algebra. Comparing the system (4.70)-(4.71)
to the system (2.31)-(2.32) we see from (2.42) that this system is equivalent to
the equation

∇φ̂1 +
m

2
φ1σ12 = 0. (4.76)
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Similarly the system (4.73)-(4.74) is equivalent to

∇φ̂2 +
m

2
φ2σ12 = 0. (4.77)

The two spinors follow the same wave equation. This is coherent with the Dirac
theory where the charge conjugation changes the sign of the charge and do not
change the sign of the mass.

De Broglie had no theory for the wave of a relativistic system of particles nor
for the interaction between its two spinors. So he simply supposed that his two
half-photons ψ and ϕ are linked, have the same energy and the same impulse
[27]. They satisfy

ϕk∂µψi = (∂µϕk)ψi =
1

2
∂µ(ϕkψi) , k, j = 1, 2, 3, 4 ; µ = 0, 1, 2, 3. (4.78)

This is equivalent, with (4.62) and (4.68), to

ξk(∂µζ
∗
i ) = (∂µξk)ζ

∗
i =

1

2
∂µ(ξkζ

∗
i )

ξk(∂µλ
∗
i ) = (∂µξk)λ

∗
i =

1

2
∂µ(ξkλ

∗
i )

ηk(∂µζ
∗
i ) = (∂µηk)ζ

∗
i =

1

2
∂µ(ηkζ

∗
i ) (4.79)

ηk(∂µλ
∗
i ) = (∂µηk)λ

∗
i =

1

2
∂µ(ηkλ

∗
i ).

Wave equations (4.76) and (4.77) are form invariant under the Lorentz dilation
D defined by (1.42) and satisfy

φ′1 =Mφ1 ; φ′2 =Mφ2 (4.80)

4.4.1 The electromagnetism of the photon

We start here from the fact seen in (4.20) that the electromagnetic potential A
is a contravariant space-time vector, that is a vector transforming as x:

A′ =MAM†. (4.81)

We know in addition that the Pauli’s principle rules that products must be
antisymmetric. We also know that the σ3 term is privileged with the Dirac
equation34. We then must consider a space-time vector A and an electromag-
netic field Fe so defined :

A = φ1iσ3φ
†
2 − φ2iσ3φ

†
1 (4.82)

Fe = ∇Â (4.83)

34We shall develop in section 5.
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The variance of A and the variance of the electromagnetic field Fe under Cl∗3
are expected variances because

A′ = φ′1iσ3φ
′
2
† − φ′2iσ3φ

′
1
†

= (Mφ1)iσ3(Mφ2)
† − (Mφ2)iσ3(Mφ1)

†

=M(φ1iσ3φ
†
2 − φ2iσ3φ

†
1)M

† =MAM† (4.84)

Fe = ∇Â =M∇′M̂Â =M∇′M̂AM†(M̂†)−1

=M(∇′Â′)M
−1

=M−1MMF ′
eM

−1
M−1M

=M−1 det(M)F ′
e det(M

−1)M =M−1F ′
eM

F ′
e =MFeM

−1. (4.85)

A is actually a space-time vector because

A† = (φ1iσ3φ
†
2 − φ2iσ3φ

†
1)

†

= φ2(−iσ3)φ†1 − φ1(−iσ3)φ†2 = A. (4.86)

The calculation of A with (4.75) and the Pauli matrices (1.19) gives

Â = 2i

(
η1λ

∗
1 − ξ∗2ζ2 − λ1η

∗
1 + ζ∗2 ξ2 η1λ

∗
2 + ξ∗2ζ1 − λ1η

∗
2 − ζ∗2 ξ1

η2λ
∗
1 + ξ∗1ζ2 − λ2η

∗
1 − ζ∗1 ξ2 η2λ

∗
2 − ξ∗1ζ1 − λ2η

∗
2 + ζ∗1 ξ1

)
. (4.87)

We then remark that each product is one of the products in (4.79) and this gives

∂µÂ = ∂µ(φ̂1iσ3φ2 − φ̂2iσ3φ1) = 2(∂µφ̂1)iσ3φ2 − 2(∂µφ̂2)iσ3φ1

∇Â = 2[(∇φ̂1)iσ3φ2 − (∇φ̂2)iσ3φ1]. (4.88)

The Dirac equations (4.76) and (4.77) give then

Fe = mφ1(−iσ3)iσ3φ2 −mφ2(−iσ3)iσ3φ1
= m(φ1φ2 − φ2φ1). (4.89)

Any element in the Cl3 algebra as Fe is a sum

Fe = s+ ~E + i ~H + ip (4.90)

where s is a scalar, ~E is a vector, i ~H is a pseudo-vector and ip is a pseudo-scalar.
But we get

F e = s− ~E − i ~H + ip = m(φ1φ2 − φ2φ1) = m(φ2φ1 − φ1φ2)

= −m(φ1φ2 − φ2φ1) = −Fe = −s− ~E − i ~H − ip. (4.91)
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Fe is therefore a pure bivector35:

s = 0 ; p = 0 ; Fe = ~E + i ~H. (4.92)

This agrees with all we know about electromagnetism and optics. Now (4.83)
reads

~E + i ~H = (∂0 − ~∂)(A0 − ~A) = ∂0A
0 − ~∂A0 − ∂0 ~A+ ~∂ ~A (4.93)

and since
~∂ ~A = ~∂ · ~A+ i~∂ × ~A ; ∂0A

0 + ~∂ · ~A = ∂µA
µ (4.94)

(4.93) is equivalent to the system

0 = ∂µA
µ (4.95)

~E = −~∂A0 − ∂0 ~A (4.96)

~H = ~∂ × ~A. (4.97)

(4.96) and (4.97) are the well known relations (4.7) and (4.8) between electric
and magnetic fields and the potential terms. (4.95) is the relation (4.6) known
as the Lorentz gauge which is in the frame of the theory of light a necessary
condition. With (4.89) we get

∇̂Fe = m∇̂(φ1φ2 − φ2φ1). (4.98)

A detailed calculation of the matrices shows as in (4.87) only products present
in (4.79) and this gives, similarly to (4.88)

∇̂Fe = 2m[(∇̂φ1)φ2 − (∇̂φ2)φ1] (4.99)

And we get with wave equations (4.76) and (4.77)

∇̂φ1 =
m

2
φ̂1σ21 ; ∇̂φ2 =

m

2
φ̂2σ21 (4.100)

�Â = ∇̂∇Â = ∇̂Fe = m2[φ̂1(−iσ3)φ2 − φ̂2(−iσ3)φ1]
∇̂Fe = −m2Â (4.101)

This is the expected law (4.4) and gives (4.10) to (4.12). So we get the seven
laws of the electromagnetism of Maxwell in the void, completed by the terms
found by Louis de Broglie containing the very small proper mass m0 = m~

c of
the photon. The seven laws are exactly the same, but the quantities are here
only real or with real components, Fe is therefore exactly the electromagnetic
field of the classical electromagnetism and optics. The definition (4.82)-(4.83)

35We have previously supposed that the electromagnetic field F is a pure bivector, without
scalar or pseudo-scalar part, for instance in (4.2). It is necessary to get the Maxwell laws
without supplementary non-physical terms. Here we have nothing to suppose, the pure bivec-
tor nature of the electromagnetic field is a consequence of the antisymmetric building from
two spinors and of Dirac wave equations.
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allows to get a theory of a massive photon with a wave which includes real com-
ponents of an electromagnetic space-time potential vector A, contravariant, and
an electromagnetic bivector field Fe. This is an improvement in the theory of
light, coming from the use of Cl3 allowing an antisymmetric building, instead of
Dirac matrices. Moreover the potential term is directly linked to the two spinors
as much as the field bivector. It is an important difference with classical elec-
tromagnetism where potential terms are often considered as non-physical. This
difference comes with quantum physics, potential terms are the electromagnetic
terms present in the Dirac or Schrödinger wave equations.

The differential laws (4.83) and (4.101) are form invariant under the dilations
defined by (1.42). This invariance under Cl∗3 induces that they are invariant
under the restricted Lorentz group. But this larger group induces constraints
which restrict the possibilities of building from two spinors.

4.4.2 Three other photons of Lochak

Following the example of (4.82) seven other space-time vectors should be possi-

ble on the model φ1Xφ
†
2 − φ2Xφ

†
1 since the Cl3 algebra is 8-dimensional. Only

three of these seven choices: X = −σ3, X = i, X = 1 are compatible with
(4.59)36 and we have established [16] that this gives the three other photons of
G. Lochak [44][46]. Firstly if X = −σ3

iB = φ1σ̂3φ
†
2 − φ2σ̂3φ

†
1 ; Fm = ∇îB (4.102)

gives the magnetic photon. As with the electric photon each quantity is real
or with real components. It is possible to consider a total field F = Fe + Fm

satisfying

F = ∇(Â+ iB) (4.103)

∇̂F = −m2(Â+ iB) (4.104)

which are laws of the electromagnetism with electric charges and magnetic
monopoles and densities of electric current j and magnetic current k satisfy-
ing

j = − c

4π
m2A ; k = − c

4π
m2B (4.105)

very small since m0 is very small. Even if A and B are contra-variant vectors,
the variance of m allows j and k to be covariant vectors under Cl∗3, varying as
∇, not as x.

A(i) = φ1iφ
†
2 − φ2iφ

†
1 ; s = ∇Â(i) (4.106)

defines an invariant scalar field s while

iB(1) = φ1φ
†
2 − φ2φ

†
1 ; ip = ∇îB(1) (4.107)

36This comes from the non-commutative product in Cl3. Since σ12 is present in the Dirac
equation, only terms commuting with σ12 work here.
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defines an invariant pseudo-scalar field ip. We can put together cases X = i
and X = 1. We let

P = A(i) + iB(1) ; F0 = ∇P̂ = s+ ip (4.108)

and we get
∇̂F0 = −m2P̂ (4.109)

So it is possible to get in the frame of Cl3 all four photons of the theory of
de Broglie enlarged by Lochak and the whole thing is form invariant under Cl∗3.
There are differences in comparison with the construction based on the Dirac
matrices : Physical quantities are real or have real components and they are
obtained by antisymmetric products of spinors. This is very easy to get with the
internal multiplication of the Cl3 algebra and was very difficult to make from the
complex uni-column matrices. These two differences are advantageous because
vectors and tensors of the classical electromagnetism and optics have only real
components. And de Broglie had understood very early that antisymmetric
products are enough to get the Bose-Einstein statistics for bosons made of an
even number of fermions. The scalar field of G. Lochak and the pseudo-scalar
field for which de Broglie was cautious are perhaps to bring together with the
scalar Higgs boson that physicists think they have identified today. Since s and
p fields are obtained here independently from the field of the electric photon
and the magnetic photon, their mass is not necessarily very small and may be
huge. Curiously it was the first idea of de Broglie about the non-Maxwellian
part of his theory. Were the Higgs bosons seen as soon as 1934 ?

4.5 Uniqueness of the electromagnetic field

The Dirac equation contains a privileged σ3 which can be generalized as σj ,
j = 1, 2, 3. We generalize then (3.62)-(3.63) if we let

A(j) = φ1iσjφ
†
2 − φ2iσjφ

†
1 (4.110)

Fe = ∇Â(j) (4.111)

with the φ1 and φ2 waves following

∇φ̂1 =
m

2
φ1(−iσj) (4.112)

∇φ̂2 =
m

2
φ2(−iσj) (4.113)

We can also start from fields and get from them potentials. The electromagnetic
field is then defined by (3.69)

Fe = m(φ1φ2 − φ2φ1) (4.114)

Potentials terms are linked to this field by Dirac equations (3.92) and (3.93),
they satisfy

Fe = ∇Â(j) ; ∇̂Fe = −m2Â(j) (4.115)

It is interesting to note that Fe is independent of the index j, then the electro-
magnetic field is unique, a fact that will be very useful in section 5.
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4.6 Remarks

The quantum wave of a photon is actually an electromagnetic wave, with field
and potential term with real components.

All objects were defined from antisymmetric products of spinors. They can
disappear as soon as the two spinors are equal. They can appear as soon as the
two spinors are not equal.

The main difference in comparison with classical electromagnetism is about
the potentials. They are not convenient vectors coming from adequate calcu-
lation. They are essential quantities. Fields are computed from them. It is
a reinforcement of the position of the potentials in quantum theory. We must
recall that the wave equations of quantum mechanics contain the potentials.
Fields are second.

The result of the conditions (4.78) of Louis de Broglie is a linearization of
the derivation of products which gives linear equations for the bosons built from
the fermions. This is how the linear operator ∇ acts both in the Dirac equation
and in the Maxwell equations. This linearization gives the Maxwell laws.

The form invariance of physical laws under Cl∗3 is general and rules the
building of bosons from fermions. The gauge symmetries are partial, because
the proper mass of the photon limits this symmetry.

5 Consequences

We study a first consequence of the two space-time manifolds and of

the dilations between these two manifolds: the non isotropy of the

intrinsic manifold. We link this with the existence of three kinds

of leptons. We present new possibilities for the wave of systems of

identical particles. We study a wave equation without possibility of

Lagrangian mechanism.

The wave of the electron induces, in each space-time point, a geometric
transformation from the tangent space-time to an intrinsic manifold linked to
the wave, onto the usual space-time of the restricted relativity. The intrinsic
space-time, contrarily to the usual space-time, is not isotropic, and we study
now this anisotropy.

5.1 Anisotropy

The fact that there exists, in the Dirac theory, a privileged direction was re-
marked by par Louis de Broglie as soon as his first work on the Dirac equation
[26] p.138 37: ”Les fonctions ψi solutions de ces équations sont donc intimement

liées au choix des axes comme dans la théorie de Pauli; elles doivent servir à

calculer des probabilités pour lesquelles l’axe des z joue un rôle particulier”.

37Translation:”The ψi functions solutions of these equations are then completely linked to

the choice of axis as into the Pauli theory ; They must serve to calculate probabilities for

which the z axis plays a particular role”.
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The solution to this difficulty is that with a rotation it is always possible to
bring the z axis onto any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3, which generates
a spatial rotation and rotates the third axis onto the chosen direction. There
is always two solutions, and then the final space-time, the relative space-time,
is isotropic, has no privileged direction. But the initial space-time, the intrinsic
space-time, on the contrary, remains perfectly non-isotropic: before as after
the rotation, it is always σ3 which is privileged. We have remarked previously
that with the Lorentz rotations of the complex formalism the γµ matrices are
invariant. They are identical before or after the rotation. Whatever formalism
is used it is always the third component of the spin that is measured and the
square of the spin vector, never the first or the second component of the spin.
The reason is evident if we regard the wave equation or the Lagrangian in the
Clifford algebra of space. This third direction is present into the wave equation
and into the Lagrangian which both contain a iσ3.

Now, and this is the first concrete consequence of calculations with the Pauli
algebra, it is perfectly possible to write two other Lagrangian densities, two other
wave equations similar to the Dirac equation:

∇φ̂+ qAφ̂σ23 +me−iβφσ23 = 0 (5.1)

∇φ̂+ qAφ̂σ31 +me−iβφσ31 = 0 (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ̂)σ32 + φqAφ̂+mρ = 0 (5.3)

φ(∇φ̂)σ13 + φqAφ̂+mρ = 0 (5.4)

With the wave equation (5.1)(5.3), it is the first axis which is privileged.
The conservative space-time vectors are D0 and D1. To solve the wave equation
(5.1) for the hydrogen atom, we shall take again the method of separation of
variables of Appendix C, making a circular permutation p on indexes 1, 2, 3 of
matrices σ: 1 7→ 2, 2 7→ 3, 3 7→ 1, and on indexes of formula (C.1). Since it is
the only thing that changes, results will be similar.

With the wave equation (5.2), it is the second axis which is privileged. The
conservative space-time vectors are D0 and D2. To solve the wave equation
(5.2) for the hydrogen atom, we shall take again the method of separation of
variables of Appendix C, making a circular permutation p2 = p−1 on indexes 1,
2, 3 of matrices σ, and on indexes of formula (C.1). Since it is the only thing
that changes, results will be similar.

In all what we know today about experimental physics there is something
very similar. Beside electrons exist also muons and tauons. Three kinds of
objects are similar and nevertheless different. Muons are known since more
than 70 years, and until now without a simple explanation saying why they
exist, nor what distinguishes them from electrons. We shall associate here to
each category, that is said to each of the three generations, one of the three wave
equations (3.9), (5.3) and (5.4). The similarity between the wave equations
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allows to explain why electrons, muons and tauons have the same properties,
behave in the same way into an electromagnetic field, and have the same energy
levels in a Coulombian potential. In fact, to see a difference between these three
equations, it is necessary to go past the wave equation of a single particle and
to enter the question of a system made of different kinds of particles. 38

We cannot be objected that the third direction or the first direction may
be put after a rotation in any direction: a rotation cannot turn both the third
direction and the first direction into a given direction. So in this direction it is
impossible to measure both the spin of an electron following (3.9) and the spin
of a muon following (5.3).

In addition we know that a muon, even if it is a particle with spin 1
2 as the

electron, cannot spontaneously disintegrate into an alone electron. Its disinte-
gration gives an electron plus a muonic neutrino and an electronic antineutrino.
This may be understood in the following way: The wave of the muonic neutrino,
as the wave of the muon, has the property to have a measurable spin in the first
direction and takes away the muon’s spin. The spin of the electron which is
measurable in the third direction is brought by the antineutrino with a spin
opposed to the spin of the electron.

Just before we supposed arbitrarily that the electron follows (3.9) and that
the muon follows (5.3). One or the other could evidently follow (5.4), nothing
allows us to choose. On the other hand, the choice made by the Nature of one or
another equation justifies the fact that the physical space is oriented: Consider
in the intrinsic space three space vectors having respectively the third direction
and the wavelength of the electron, the first direction and the wavelength of the
muon, the second direction and the wavelength of a tauon. Those three vectors
form a basis of the intrinsic space. If we exchange now the second and the third
vectors, we get another basis, with another orientation.

These three equations (3.9), (5.3) and 5.4) are equivalent only if the mass
terms are equal into the different equations. But the experiment shows that
these masses are completely different from a generation to another. This dif-
ference, of unknown origin, contributes to differentiate the three generations of
leptons.

5.1.1 Torsion

We have calculated the affine connection of the intrinsic manifold [16]. In the
case of plane waves studied in sections 2 and 3 only two terms are not zero
and give a torsion. This terms of torsion are linked to the proper mass of the
particle.

38We know for instance that a muon within the electronic cloud of an atom, does not respect
the Pauli principle of exclusion. This is rather easy to justify if that exclusion principle is
linked to the spin of the different particles, because the spin of an electron following the
equation (3.10) is always measured in the third direction and cannot be added or subtracted
to the spin of a muon following the wave equation (5.1) which is always measured in the first
direction.
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5.2 Systems of electrons

The non-relativistic theory for a particle system gives to a system of two particles
without spin a wave ψ = ψ1ψ2 which is the product of the two waves of each
particle, when it is possible to neglect the interaction between these particles.
We cannot transpose ψ1ψ2 into φ1φ2 which should transform into Mφ1Mφ2
under the dilation R defined in (1.42), because M does not commute with φ.
Another product is suggested by (4.14) because if φ12 = φ1φ

−1
2 we get

φ′12 = φ′1φ
′−1
2 =Mφ1φ

−1
2 M−1 =Mφ12M

−1. (5.5)

And φ12 transforms under a dilation as the electromagnetic field. But the
factor e−iE

~
t of the non-relativistic quantum mechanics becomes in the case of

the electron e−
E
~c

x0σ12 with the Cl3 algebra, and with φ1φ
−1
2 the energies are

not added but subtracted. To get the addition of energies we can consider terms
as φ1σ1φ

−1
2 or φ1σ2φ

−1
2 because σ1 and σ2 anti-commute with σ12 and

σ1e
− E

~c
x0σ12 = e

E
~c

x0σ12σ1. (5.6)

Since we have
σ2 = σ1σ12 = σ1e

π
2
σ12 (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1. Since
we know that two electrons are identical we can consider only terms such as
φ1σ1φ

−1
2 ± φ2σ1φ

−1
1 . The Pauli principle invites us to consider for the wave of

a system of two electrons

φ12 = φ1σ1φ
−1
2 − φ2σ1φ

−1
1 (5.8)

which is antisymmetric:
φ21 = −φ12 (5.9)

and transforms under a dilation R of dilator M as F [15]

φ′12 =Mφ12M
−1. (5.10)

For a system of three electrons whose respective waves are φ1, φ2, φ3 we consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2 (5.11)

which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 =Mφ123. (5.13)

The Pauli principle is satisfied and φ123 transforms as a unique electronic wave
39. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24 (5.14)

39If a similar construction is possible for quarks, this could explain why a proton or a
neutron containing three quarks is seen also as a unique spinor, transforming under a Lorentz
rotation as the wave of a unique electron.
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which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 =Mφ1234M
−1. (5.15)

We can easily generalize to n electrons. We get n + 1 wave equations, one for
each electronic wave

∇φ̂k + qAkφ̂kσ12 +me−iβkφkσ12 = 0 (5.16)

where Ak is the sum of the exterior potential A and the potential created by
the n− 1 other electrons, βk is the Yvon-Takabayasi angle of the kth electron.
And the wave of the system is antisymmetric. The wave equation of this wave
is determined by the n wave equations of each particle. If n is even φ12...n
transforms under a dilation as the electromagnetic field F . The wave of an
even system appears as a boson wave. Even systems compose greater systems
symmetrically as in (5.14). This is the source of the Bose-Einstein statistics. If
n is odd φ12...n transforms under a dilation as a spinor φ. The wave of an odd
system of electrons transforms under a dilation as the wave of a unique electron.

The wave of a system propagates, as the waves of each electron, in the usual
space-time. It is not necessary to use configuration spaces. Difficulties coming
from the difference between a unique time and several spaces disappear. Space
is, as the time, unique in this model. The wave of a system is not very different
from the waves of its individual parts, they continue to exist and to propagate.

This model can also explain why a muon in an electronic cloud does not
follow the Pauli’s principle of exclusion: with a wave equation (5.1) for instance
the phase contains not a σ12 factor, but instead a σ23 factor, and the muon
cannot add its impulse-energy and so cannot enter the process of construction
of a wave of system described here.

5.3 Equation without Lagrangian formalism

We have seen in 2.4 that the Lagrangian density of the Dirac wave is exactly
the scalar part of the invariant wave equation. The Lagrangian formalism is a
consequence, not the cause of the Dirac equation. Therefore, if we modify the
wave equation without changing its scalar part, we shall get a wave equation
which cannot result from a Lagrangian mechanism, since the scalar part gives
the Dirac equation without change [20].

Such a wave may be non-physical, since the Lagrangian formalism works
very well for each physical situation. We shall nevertheless study a case, as
failures and accidents are scrutinized in the industry or as counter-examples are
used in mathematics. We consider the invariant wave equation

φ(∇φ̂)σ21 + φqAφ̂+mφφ(1 + ǫσ3) = 0. (5.17)

where ǫ is a very small real constant. Only the mass term is changed from the
invariant equation (2.81) equivalent to the Dirac equation. Computation of first
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terms is unchanged, the mass term is

mφφ(1 + ǫσ3) = m(Ω1 + iΩ2)(1 + ǫσ3)

= mΩ1 +mǫΩ1σ3 +mǫΩ2iσ3 + imΩ2. (5.18)

and the system (2.118) to (2.125) becomes

0 = w3 + V 0 +mΩ1 (5.19)

0 = v2 + V 1 (5.20)

0 = −v1 + V 2 (5.21)

0 = w0 + V 3 +mǫΩ1 (5.22)

0 = −v3 +mΩ2 (5.23)

0 = w2 (5.24)

0 = −w1 (5.25)

0 = −v0 +mǫΩ2 (5.26)

This last equation signifies that the current of probability is no more conserva-
tive, so this wave equation is certainly unusual. Now it is easy to escape the
problem of the conservation of probabilities: we start from the homogeneous
non-linear equation (3.9) and we add the same mass term

φ(∇φ̂)σ21 + φqAφ̂+mρ(1 + ǫσ3) = 0. (5.27)

The system (3.21) to (3.28) becomes

0 = w3 + V 0 +mρ (5.28)

0 = v2 + V 1 (5.29)

0 = −v1 + V 2 (5.30)

0 = w0 + V 3 +mǫρ (5.31)

0 = −v3 (5.32)

0 = w2 (5.33)

0 = −w1 (5.34)

0 = −v0 (5.35)

And as previously we have two conservative currents, J = D0 and K = D3.
It is easy to see that (5.27) is invariant under Cl∗3, there are two gauge invari-
ances (see 3.1). The angular momentum operators of the Dirac theory are still
available, but there is no Hamiltonian to commute with them. This wave equa-
tion cannot come from a Lagrangian density since such a density should modify
(5.28), which gives (3.9), not (5.27).
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5.3.1 Plane waves

We consider a plane wave with a phase ϕ satisfying (3.35) with the vector v
defined in (3.35). Without exterior electromagnetic field we get in the place of
(3.39)

−mvφ̂+me−iβφ(1 + ǫσ3) = 0. (5.36)

This gives
φ(1 + ǫσ3) = eiβvφ̂ (5.37)

Conjugating, we then get

φ̂(1− ǫσ3) = e−iβ v̂φ (5.38)

Together we have

φ(1 + ǫσ3)(1− ǫσ3) = eiβvφ̂(1− ǫσ3)

φ(1− ǫ2) = eiβve−iβ v̂φ

(1− ǫ2)φ = vv̂φ (5.39)

and we get

v · v = vv̂ = 1− ǫ2 (5.40)

||v|| =
√

1− ǫ2 (5.41)

We let then
c′ = c

√
1− ǫ2 ; v = v′

√
1− ǫ2. (5.42)

And we get
||v′|| = 1. (5.43)

First consequence: c′, not c is the velocity limit of this unusual quantum object.
The present study has no known physical application, but this wave equation
indicates that the limit speed c is not so general [20] than we thought. 40

6 Electro-weak and strong interactions

We firstly use the Clifford algebra of space-time to study electro-weak

interactions. We begin with weak interactions of the electron with

its neutrino and their charge conjugate waves. Next we study invari-

ances of these interactions. We extend the gauge group to the quark

sector, using Cl5,1. We present in this frame the SU(3) group of chro-

modynamics. We study the geometric transformation generated by

the complete wave in the frame of the 6-dimensional space-time. We

get two remarkable identities which make the wave often invertible.

We get wave equations with mass term, that are form invariant and

gauge invariant.

40More, if ǫ tends to 1 the limit speed tends to 0 and may be very small.
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6.1 The Weinberg-Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [54] was tried
by D. Hestenes [33] and by R. Boudet [3] [4] in the frame of the Clifford algebra
Cl1,3 of the space-time. We used in [18] another start which implies the use
of the greater frame Cl2,3. A greater frame was necessary because we wanted
to use no supplementary condition. Now, the study that we shall make in this
section necessitates to use the condition (2.120) or (2.125) which is used in the
standard model to link the wave of the antiparticle to the wave of the particle.
Therefore the mathematical frame remains the space-time algebra which has
16 dimensions, enough to accommodate 8 real parameters of the wave of the
electron and 8 parameters of its neutrino.41 We saw in 3.5 that the condition
(2.125) is compatible with the nonlinear equation and that it solves the puzzle
of negative energies.

We begin with the electron case and we follow [31]. We change nothing to
the Dirac wave of the electron, noted as ψe in the Dirac formalism and as φe
with space algebra. We use the same notations as previously for Weyl spinors.
The electron wave is noted as ψe, the wave of the electronic neutrino as ψn, the
wave of the positron as ψp and the wave of the electronic anti-neutrino as ψa.
As previously right spinors are ξ Weyl spinors and left ones are η spinors.

ψe =

(
ξe
ηe

)
; ψn =

(
ξn
ηn

)
; ψp =

(
ξp
ηp

)
; ψa =

(
ξa
ηa

)
. (6.1)

We have

φe =
√
2
(
ξe −iσ2η∗e

)
; φ̂e =

√
2
(
ηe −iσ2ξ∗e

)
(6.2)

φn =
√
2
(
ξn −iσ2η∗n

)
; φ̂n =

√
2
(
ηn −iσ2ξ∗n

)
(6.3)

φ̂p = φ̂eσ1 ; φ̂a = φ̂nσ1 (6.4)

which gives

φ̂p =
√
2
(
ηp −iσ2ξ∗p

)
; φp =

√
2
(
ξp −iσ2η∗p

)
(6.5)

φ̂a =
√
2
(
ηa −iσ2ξ∗a

)
; φa =

√
2
(
ξa −iσ2η∗a

)
(6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e

ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [18] a wave Ψ function of the space-time with value into the Cl2,3 =
M4(C) algebra. We disposed waves of particle on the above line and waves of
antiparticle on the second line to get correct transformations of left and right
waves under Lorentz dilations, as we will see in 6.5. We used a σ1 factor which
was a necessary factor exchanging ξ and η terms. This allows to get a wave for
these four particles of the electronic sector42 and with the link (2.125) between

41We shall see in 6.6 that only four of them are non zero.
42We could exchange the places of φe and φn. With (6.8) the wave of the electron has value

in the even sub-algebra and the neutrino has value in the odd part of the algebra. The other
choice is possible if we adapt the definition of projectors in (6.12) to (6.16)
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the wave of the particle and the wave of the antiparticle we have

Ψ =

(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
φe φn
φ̂n φ̂e

)
(6.8)

Now with (6.4) and (6.8) the wave is a function of space-time with value in the
Clifford algebra of space-time. The Weinberg-Salam model uses ξe, ηe, ηn and
supposes ξn = 0. This hypothesis will be used further in 6.6. To separate ξe, ηe
and ηn the Weinberg-Salam model uses projectors 1

2 (1 ± γ5), which read with
our choice (1.75) of Dirac matrices:

1

2
(1− γ5)ψ = ψL =

(
0 0
0 I

)(
ξ
η

)
=

(
0
η

)
(6.9)

1

2
(1 + γ5)ψ = ψR =

(
I 0
0 0

)(
ξ
η

)
=

(
ξ
0

)
. (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This is
Cl∗3 invariant, consequently relativistic invariant, since under a Lorentz dilation

D defined by D : x 7→ x′ = MxM† we have (1.30) : ξ′ = Mξ, η′ = M̂η. The
γ5 matrix is not included in the space-time algebra43, but this is not a problem
here, because the projectors separating ξ and η are in space algebra 1

2 (1± σ3):

φR =
√
2
(
ξ 0

)
= φ

(
1 0
0 0

)
= φ

1

2
(1 + σ3)

φL =
√
2
(
0 −iσ2η∗

)
= φ

(
0 0
0 1

)
= φ

1

2
(1− σ3) (6.11)

φ̂L =
√
2
(
η 0

)
= φ̂

1

2
(1 + σ3) ; φ̂R = φ̂

1

2
(1− σ3).

We define now two projectors P± and four operators P0, P1, P2, P3 acting in
the space-time algebra as follows

P±(Ψ) =
1

2
(Ψ± iΨγ21) ; i = γ0123 (6.12)

P0(Ψ) = Ψγ21 +
1

2
Ψi+

1

2
iΨγ30 = Ψγ21 + P−(Ψ)i (6.13)

P1(Ψ) =
1

2
(iΨγ0 +Ψγ012) = P+(Ψ)γ3i (6.14)

P2(Ψ) =
1

2
(Ψγ3 − iΨγ123) = P+(Ψ)γ3 (6.15)

P3(Ψ) =
1

2
(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

43This was wrongly considered as a reason to forbid the use of space-time algebra.

71



Noting PµPν(Ψ) = Pµ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1

P2P3 = P1 = −P3P2

P3P1 = P2 = −P1P3 (6.17)

P 2
1 = P 2

2 = P 2
3 = −P+

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg-Salam model replaces partial derivatives ∂µ by covariant deriva-
tives

Dµ = ∂µ − ig1
Y

2
Bµ − ig2TjW

j
µ (6.18)

with Tj =
τj
2 for a doublet of left-handed particles and Tj = 0 for a singlet of

right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2 for the
electron. To transpose into space-time algebra, we let

D = σµDµ ; D = γµDµ =

(
0 D

D̂ 0

)
(6.19)

B = σµBµ ; B = γµBµ =

(
0 B

B̂ 0

)
(6.20)

W j = σµW j
µ ; Wj = γµW j

µ =

(
0 W j

Ŵ j 0

)
(6.21)

We will prove now that (6.18) comes from

D = ∂∂∂ +
g1
2
BP0 +

g2
2
(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see 1.4.1)

∂∂∂Ψ =

(
0 ∇
∇̂ 0

)(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
∇φ̂aσ1 ∇φ̂pσ1
∇̂φe ∇̂φn

)
(6.23)

while we get with (6.19)

DΨ =

(
0 D

D̂ 0

)(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
Dφ̂aσ1 Dφ̂pσ1
D̂φe D̂φn

)
. (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(
p0(φe) p0(φn)

p0(φ̂a)σ1 p0(φ̂p)σ1

)
. (6.25)
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And we get

Ψγ21 = i

(
φeσ3 φnσ3

−φ̂aσ3σ1 −φ̂pσ3σ1

)
(6.26)

1

2
Ψi =

i

2

(
φe −φn
φ̂aσ1 −φ̂pσ1

)
(6.27)

1

2
iΨγ30 =

i

2

(
φeσ3 −φnσ3
φ̂aσ3σ1 −φ̂pσ3σ1

)
. (6.28)

Then we get

P0(Ψ) = i

(
φe

1+3σ3

2 φn
−1+σ3

2

φ̂a
1−σ3

2 σ1 φ̂p
−1−3σ3

2 σ1

)
(6.29)

p0(φe) = iφe
1 + 3σ3

2
= i(2φeR − φeL) (6.30)

p0(φn) = iφn
−1 + σ3

2
= −iφnL (6.31)

p0(φ̂p) = iφ̂p
−1− 3σ3

2
= −i(2φ̂pL − φ̂pR) (6.32)

p0(φ̂a) = iφ̂a
1− σ3

2
= iφ̂aR (6.33)

with

φeL = φe
1− σ3

2
; φeR = φe

1 + σ3
2

(6.34)

φnL = φn
1− σ3

2
; φnR = φn

1 + σ3
2

(6.35)

φ̂pL = φ̂p
1 + σ3

2
; φ̂pR = φ̂p

1− σ3
2

(6.36)

φ̂aL = φ̂a
1 + σ3

2
; φ̂aR = φ̂a

1− σ3
2

(6.37)

which gives

BP0(Ψ) =

(
0 B

B̂ 0

)(
p0(φe) p0(φn)

p0(φ̂a)σ1 p0(φ̂p)σ1

)

= i

(
Bφ̂aRσ1 −B(2φ̂pL − φ̂pR)σ1

B̂(2φeR − φeL) −B̂φnL

)
. (6.38)

Next we let

Pj(Ψ) =

(
pj(φe) pj(φn)

pj(φ̂a)σ1 pj(φ̂p)σ1

)
, j = 1, 2, 3. (6.39)
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We get for j = 1

iΨγ0 = i

(
φn φe

−φ̂pσ1 −φ̂aσ1

)
; Ψγ012 = i

(−φnσ3 −φeσ3
φ̂pσ3σ1 φ̂aσ3σ1

)

P1(Ψ) = i

(
φn

1−σ3

2 φe
1−σ3

2

φ̂p
−1+σ3

2 σ1 φ̂a
−1+σ3

2 σ1

)
= i

(
φnL φeL

−φ̂pRσ1 −φ̂aRσ1

)
(6.40)

p1(φe) = iφnL ; p1(φn) = iφeL

p1(φ̂a) = −iφ̂pR ; p1(φ̂p) = −iφ̂aR. (6.41)

We get for j = 2

Ψγ3 =

(−φnσ3 φeσ3
φ̂pσ3σ1 −φ̂aσ3σ1

)
; − iΨγ123 =

(
φn −φe

−φ̂pσ1 φ̂aσ1

)

P2(Ψ) =

(
φn

1−σ3

2 φe
−1+σ3

2

φ̂p
−1+σ3

2 σ1 φ̂a
1−σ3

2 σ1

)
=

(
φnL −φeL

−φ̂pRσ1 φ̂aRσ1

)
(6.42)

p2(φe) = φnL ; p2(φn) = −φeL
p2(φ̂a) = −φ̂pR ; p2(φ̂p) = φ̂aR. (6.43)

We get for j = 3

−Ψi = i

( −φe φn
−φ̂aσ1 φ̂pσ1

)
; iΨγ30 = i

(
φeσ3 −φnσ3
φ̂aσ3σ1 −φ̂pσ3σ1

)

P3(Ψ) = i

(
φe

−1+σ3

2 φn
1−σ3

2

φ̂a
−1+σ3

2 σ1 φ̂p
1−σ3

2 σ1

)
= i

( −φeL φnL
−φ̂aRσ1 φ̂pRσ1

)
(6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL

p3(φ̂a) = −iφ̂aR ; p3(φ̂p) = iφ̂pR. (6.45)

We also have

WjPj(Ψ) =

(
0 W j

Ŵ j 0

)(
pj(φe) pj(φn)

pj(φ̂a)σ1 pj(φ̂p)σ1

)

=

(
W jpj(φ̂a)σ1 W jpj(φ̂p)σ1
Ŵ jpj(φe) Ŵ jpj(φn)

)
. (6.46)

Therefore (6.22) gives the system

Dφ̂a = ∇φ̂a +
g1
2
Bp0(φ̂a) +

g2
2
W jpj(φ̂a) (6.47)

Dφ̂p = ∇φ̂p +
g1
2
Bp0(φ̂p) +

g2
2
W jpj(φ̂p) (6.48)

D̂φe = ∇̂φe +
g1
2
B̂p0(φe) +

g2
2
Ŵ jpj(φe) (6.49)

D̂φn = ∇̂φn +
g1
2
B̂p0(φn) +

g2
2
Ŵ jpj(φn). (6.50)
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With (6.30) to (6.33), (6.41), (6.43) and (6.45) this gives

Dφ̂a = ∇φ̂a + i
g1
2
Bφ̂aR +

g2
2
[(−iW 1 −W 2)φ̂pR − iW 3φ̂aR] (6.51)

Dφ̂p = ∇φ̂p + i
g1
2
B(−2φ̂pL + φ̂pR) +

g2
2
[(−iW 1 +W 2)φ̂aR + iW 3φ̂pR] (6.52)

D̂φe = ∇̂φe + i
g1
2
B̂(2φeR − φeL) +

g2
2
[(iŴ 1 + Ŵ 2)φnL − iŴ 3φeL] (6.53)

D̂φn = ∇̂φn − i
g1
2
B̂φnL +

g2
2
[(iŴ 1 − Ŵ 2)φeL + iŴ 3φnL]. (6.54)

Using the conjugation M 7→ M̂ in (6.53) and (6.54) this gives

Dφ̂a = ∇φ̂a + i
g1
2
Bφ̂aR + i

g2
2
[(−W 1 + iW 2)φ̂pR −W 3φ̂aR] (6.55)

Dφ̂p = ∇φ̂p + i
g1
2
B(−2φ̂pL + φ̂pR) + i

g2
2
[−(W 1 + iW 2)φ̂aR +W 3φ̂pR] (6.56)

Dφ̂e = ∇φ̂e + i
g1
2
B(−2φ̂eR + φ̂eL) + i

g2
2
[−(W 1 + iW 2)φ̂nL +W 3φ̂eL] (6.57)

Dφ̂n = ∇φ̂n + i
g1
2
Bφ̂nL + i

g2
2
[(−W 1 + iW 2)φ̂eL −W 3φ̂nL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with (6.34)

φ̂eL = φ̂e
1 + σ3

2
; φ̂eLσ3 = φ̂eL (6.59)

φ̂eR = φ̂e
1− σ3

2
; φ̂eRσ3 = −φ̂eR (6.60)

−2φ̂eR + 2φ̂eL = 2(φ̂eR + φ̂eL)σ3 = 2φ̂eσ3 (6.61)

and we get for (6.57) and (6.58)

Dφ̂e = ∇φ̂e + g1Bφ̂eiσ3 +
i

2
(−g1B + g2W

3)φ̂eL − i
g2
2
(W 1 + iW 2)φ̂nL (6.62)

Dφ̂n = ∇φ̂n − i

2
(−g1B + g2W

3)φ̂nL + i
g2
2
(−W 1 + iW 2)φ̂eL. (6.63)

We separate left and right parts of the wave:

Dφ̂nR = ∇φ̂nR ; D̂φnR = ∇̂φnR (6.64)

Dφ̂nL = ∇φ̂nL +
i

2
(g1B − g2W

3)φ̂nL + i
g2
2
(−W 1 + iW 2)φ̂eL (6.65)

Dφ̂eR = ∇φ̂eR − ig1Bφ̂eR ; D̂φeR = ∇̂φeR + ig1B̂φeR (6.66)

Dφ̂eL = ∇φ̂eL +
i

2
(g1B + g2W

3)φ̂eL − i
g2
2
(W 1 + iW 2)φ̂nL. (6.67)

75



which is equivalent to44

Dµξn = ∂µξn (6.68)

Dµηn = ∂µηn + i
g1
2
Bµηn − i

g2
2
[(W 1

µ − iW 2
µ)ηe +W 3

µηn] (6.69)

Dµξe = ∂µξe + ig1Bµξe (6.70)

Dµηe = ∂µηe + i
g1
2
Bµηe − i

g2
2
[(W 1

µ + iW 2
µ)ηn −W 3

µηe]. (6.71)

(6.69) and (6.71) give for the “lepton doublet” ψL =

(
ηn
ηe

)
with weak isospin

Y = −1 :

DµψL = ∂µψL − ig1
Y

2
BµψL − i

g2
2
W j

µτjψL

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5 (6.72)

With (6.68) we see that the right part of the wave of the neutrino does not
interact. (6.70) is interpreted as a SU(2) singlet ψR = ξ with weak isospin
Y = −2 :

DµψR = ∂µψR − ig1
Y

2
BµψR (6.73)

Finally we see here that all features of weak interactions, with a doublet of
left waves, a singlet of right wave, a non-interacting right neutrino, a charge
conjugation exchanging right and left waves are obtained here from simple hy-
pothesis :

1 - The wave of all components of the lepton sector, electron, positron,
electronic neutrino and anti-neutrino, is the function (6.8) of space-time with
value into the Clifford algebra of the space-time.

2 - Four operators P0, P1, P2, P3 are defined by (6.13) to (6.16).
3 - A covariant derivative is defined by (6.22).
It is now easy to use the system (6.55) to (6.58) to get all other features of

the Weinberg-Salam model. It considers the “charged currents” W+ and W−

defined by

W+
µ =W 1

µ + iW 2
µ ; W−

µ = −W 1
µ + iW 2

µ

W+ =W 1 + iW 2 ; W− = −W 1 + iW 2 (6.74)

where i = σ123 is the generator of the chiral gauge45, not the i3 of the electric
gauge. We will use (6.61) and similarly

φ̂pR = φ̂p
1− σ3

2
; φ̂pRσ3 = −φ̂pR (6.75)

φ̂pL = φ̂p
1 + σ3

2
; φ̂pLσ3 = φ̂pL (6.76)

φ̂pL − φ̂pR = φ̂pLσ3 + φ̂pRσ3 = (φ̂pL + φ̂pR)σ3 = φ̂pσ3. (6.77)

44Since φeR =
√
2(ξe 0) we must use the second equality (6.66) to get (6.70).

45This is another sufficient reason to abandon the formalism of Dirac matrices, which uses
a unique i. It is therefore unable to discriminate the different gauges at work.
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Then (6.55) to (6.58) reads

Dφ̂a = ∇φ̂a +
i

2
(g1B − g2W

3)φ̂aR + i
g2
2
W−φ̂pR (6.78)

Dφ̂p = ∇φ̂p + ig1B(φ̂pR − φ̂pL) +
i

2
(−g1B + g2W

3)φ̂pR − i
g2
2
W+φ̂aR (6.79)

Dφ̂n = ∇φ̂n +
i

2
(g1B − g2W

3)φ̂nL +
i

2
g2W

−φ̂eL (6.80)

Dφ̂e = ∇φ̂e + ig1B(φ̂eL − φ̂eR) +
i

2
(−g1B + g2W

3)φ̂eL − i

2
g2W

+φ̂nL. (6.81)

The Weinberg-Salam model uses the electromagnetic potential A, a θW angle
and a Z0 term satisfying46

g1 =
q

cos(θW )
; g2 =

q

sin(θW )
; q =

e

~c
(6.82)

−g1B + g2W
3 =

√
g21 + g22Z

0 =
2q

sin(2θW )
Z0 (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0 (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

Using (6.77) this gives for the system (6.78) to (6.81)

Dφ̂a =∇φ̂a −
iq

sin(2θW )
Z0φ̂aR + i

g2
2
W−φ̂pR (6.86)

Dφ̂p =∇φ̂p − qAφ̂pσ12

+ q tan(θW )Z0φ̂pσ12 + i
q

sin(2θW )
Z0φ̂pR − i

g2
2
W+φ̂aR (6.87)

Dφ̂e =∇φ̂e + qAφ̂eσ12

− q tan(θW )Z0φ̂eσ12 + i
q

sin(2θW )
Z0φ̂eL − i

g2
2
W+φ̂nL (6.88)

Dφ̂n =∇φ̂n − iq

sin(2θW )
Z0φ̂nL + i

g2
2
W−φ̂eL. (6.89)

Equation (6.88) contains first and second terms ∇φ̂ + qAφ̂σ12 of the Dirac
equation, giving the electromagnetic interaction of the electron. Equation (6.87)

contains first and second terms −∇φ̂ + qAφ̂σ12 of the Dirac equation for a
positron. There is no potential A term in (6.86) nor (6.89), since anti-neutrino
and neutrino have no electromagnetic interaction. As we have

φ̂eσ12 = i(−φ̂eR + φ̂eL) (6.90)

46(6.85) indicates that Z0 is similar to Cabibbo-Ferrari’s B of (4.36).
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we can read (6.89) and (6.88) as

Dφ̂nR = ∇φ̂nR (6.91)

Dφ̂nL = ∇φ̂nL − i
q

sin(2θW )
Z0φ̂nL + i

q

2 sin(θW )
W−φ̂eL (6.92)

Dφ̂eR = ∇φ̂eR + qAφ̂eRσ12 + iq tan(θW )Z0φ̂eR (6.93)

Dφ̂eL = ∇φ̂eL + qAφ̂eLσ12

+ iq[− tan(θW ) +
1

sin(2θW )
]Z0φ̂eL − i

q

2 sin(θW )
W+φ̂nL (6.94)

Terms containingW+ andW− which couple left electron to left neutrino gener-
ate “charged currents”, terms containing Z0 generate “neutral currents”. The
Z0 boson is linked to φL, φnL and φR, not to φnR. Similarly we can read (6.86)
and (6.87) as

Dφ̂aL = ∇φ̂aL (6.95)

Dφ̂aR = ∇φ̂aR − i
q

sin(2θW )
Z0φ̂aR + i

q

2 sin(θW )
W−φ̂pR (6.96)

Dφ̂pL = ∇φ̂pL − qAφ̂pL
σ12 + iq tan(θW )Z0φ̂pL

(6.97)

Dφ̂pR = ∇φ̂pR − qAφ̂pRσ12

+ iq[− tan(θW ) +
1

sin(2θW )
]Z0φ̂pR − i

q

2 sin(θW )
W+φ̂aR. (6.98)

(6.95) signifies that the left anti-neutrino does not interact by electro-weak
forces. The electric charge of the positron is opposite to the charge of the
electron. But the comparison with the same relation for the electron shows
that, contrarily to what is said about charge conjugation, thought as chang-
ing the sign of any quantum number, only the exchange between left and right
waves, plus the multiplication on the right by σ3 give a change of sign. Other
coefficients are conserved when passing from electron to positron or from neu-
trino to anti-neutrino. Charge conjugation must be seen as a pure quantum
transformation acting only on the wave, as described in 3.5. 47 A similar result
was obtained by G. Lochak [42] for the magnetic monopole: charge conjugation
does not change the sign of magnetic charges, and there is no polarization of the
void resulting from spontaneous creation of pairs. It is the same for neutrinos,
there is no creation of pairs of neutrino-anti-neutrino similar to the creation of
pairs particle-antiparticle with opposite electric charges.48

6.2 Invariances

As with the electromagnetism, we can enlarge the relativistic invariance to the
greater group Cl∗3. With the Lorentz dilation R defined by a M element in Cl∗3

47More, if we try to build a charge conjugation changing other signs, we get instead of (6.17)
relations which do not give a U(1)× SU(2) gauge invariance.

48This is also consistent with (4.76)-(4.77) where charge conjugation in the neutrino case
gives the same wave equation.
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satisfying x 7→ x′ =MxM† we have

φ′e =Mφe ; φ′n =Mφn ; φ̂′p = M̂φ̂p ; φ̂′a = M̂φ̂a ; Ψ′ = NΨ

N =

(
M 0

0 M̂

)
; Ñ =

(
M 0
0 M†

)
(6.99)

We may consider g1B and g2W
j , linked to qA, as covariants vectors:

g1B =Mg′1B
′M̂ ; g2W

j =Mg′2W
j ′M̂

g1B = Ñg′1B
′N ; g2W

j = Ñg′2W
j ′N. (6.100)

This allows D to be a covariant vector, varying as ∇ ;

D =MD′M̂ ; ∇ =M∇′M̂

D = ÑD′N. (6.101)

That also gives for the Weinberg-Salam angle:

B′ + iW ′3 = eiθW (A′ + iZ ′0) (6.102)

which means that the θW angle is Cl∗3 invariant, then is a relativistic invariant.
We get

Dφ̂e =MD′φ̂′e ; Dφ̂n =MD′φ̂′n (6.103)

Dφ̂p =MD′φ̂′p ; Dφ̂a =MD′φ̂′a (6.104)

DΨ = ÑD′Ψ′ (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to the
invariance of the electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no inverse.
They are not directly elements of a gauge group. Nevertheless we can build
a Yang-Mills gauge group by using the exponential function. With four real
numbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑

n=0

(a0P0)
n

n!
(6.106)

exp(ajPj) =
∞∑

n=0

(a1P1 + a2P2 + a3P3)
n

n!
(6.107)
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We get with (6.25), (6.30) to (6.33)

exp(a0P0)(Ψ) =

(
exp(a0p0)(φe) exp(a0p0)(φn)

exp(a0p0)(φ̂a)σ1 exp(a0p0)(φ̂p)σ1

)
(6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia
0

φeR (6.110)

exp(a0p0)(φaR) = eia
0

φaR ; exp(a0p0)(φaL) = φaL (6.111)

exp(a0p0)(φpR) = eia
0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL (6.112)

exp(−a0P0) = [exp(a0P0)]
−1 (6.113)

Next we let
a =

√
(a1)2 + (a2)2 + (a3)2 ; S = ajPj (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +
sin(a)

a
S(Ψ) (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

a
S(Ψ) (6.116)

which gives
exp(−S) = [exp(S)]−1. (6.117)

Since P0 commutes with S (see (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0) (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The local
gauge invariance under this group comes from the derivation of products. If we
use

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γµDµ (6.119)

then DµΨ is replaced by D′
µΨ

′ where

D′
µΨ

′ = exp(a0P0 + S)DµΨ (6.120)

B′
µ = Bµ − 2

g1
∂µa

0 (6.121)

W ′j
µPj =

[
exp(S)W j

µPj −
2

g2
∂µ[exp(S)]

]
exp(−S). (6.122)

6.3 The quark sector

For the first generation of fundamental fermions the standard model includes
16 fermions, 8 particles and their antiparticles. We studied previously the case
of the electron, its neutrino, its antiparticle the positron and its anti-neutrino.
We put these waves into a unique wave (6.8) that will be named now as Ψl.
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Each generation includes also two quarks with three states, so we get six waves
similar to φe or φn. Quarks of the first generation are named u and d and the
couple d-u is similar to n-e for electro-weak interactions but with differences
since the electric charge of u is 2

3 |e|, the charge of d is − 1
3 |e|. Similarly to the

lepton sector, electric charges of antiparticles are opposite to charges of particles.
Three states of “color” are named r, g, b (red, green, blue). So we build a wave
with all fermions of the first generation as

Ψ =

(
Ψl Ψr

Ψg Ψb

)
(6.123)

where Ψl is defined by (6.8) and Ψr, Ψg, Ψb are defined on the same model:

Ψr =

(
φdr φur
φ̂urσ1 φ̂drσ1

)
=

(
φdr φur
φ̂ur φ̂dr

)
(6.124)

Ψg =

(
φdg φug
φ̂ugσ1 φ̂dgσ1

)
=

(
φdg φug
φ̂ug φ̂dg

)
(6.125)

Ψb =

(
φdb φub
φ̂ubσ1 φ̂dbσ1

)
=

(
φdb φub
φ̂ub φ̂db

)
. (6.126)

The wave is a function of space-time with value into Cl5,1 which is a sub-algebra
of Cl5,2 =M8(C) (see 1.5). As previously, electro-weak interactions are obtained
by replacing partial derivatives by covariant derivatives. Now we use notations
of 1.5 and we let

W j = ΛµW j
µ, j = 1, 2, 3 ; D = ΛµDµ ; Λ0 = −Λ0 ; Λj = Λj (6.127)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ). (6.128)

We use two projectors P± satisfying

P±(Ψ) =
1

2
(Ψ∓ iΨΛ21) ; i = Λ0123 (6.129)

Three operators act on the quark sector as on the lepton sector :

P 1 = P+(Ψ)Λ53 (6.130)

P 2 = P+(Ψ)Λ0125 (6.131)

P 3 = P+(Ψ)Λ0132. (6.132)
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The fourth operator acts differently on the lepton wave and on the quark sec-
tor49 :

P 0 =

(
P0(Ψl) P ′

0(Ψr)
P ′

0(Ψg) P ′
0(Ψb)

)
(6.133)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +
1

2
(Ψli+ iΨlγ30) (6.134)

P ′
0(Ψr) = −1

3
Ψrγ21 + P−(Ψr)i = −1

3
Ψrγ21 +

1

2
(Ψri+ iΨrγ30) (6.135)

And we get two identical formulas by replacing r index by g and b. Now we can
abbreviate and we remove indexes r, g, b to study the electro-weak covariant
derivative. We let

P ′
0(Ψ) =

(
p′0(φd) p′0(φu)

p′0(φ̂u)σ1 p′0(φ̂d)σ1

)
(6.136)

which gives with (6.135):

P ′
0(Ψ) =− i

3

(
φdσ3 φuσ3

−φ̂uσ3σ1 −φ̂dσ3σ1

)

+
i

2

(
φd −φu
φ̂uσ1 −φ̂dσ1

)
+
i

2

(
φdσ3 −φuσ3
φ̂uσ3σ1 −φ̂dσ3σ1

)
(6.137)

We then get the system :

p′0(φd) =− i

3
φdσ3 +

i

2
φd +

i

2
φdσ3 =

i

3
(2φdR + φdL)

p′0(φu) =− i

3
φuσ3 −

i

2
φu − i

2
φuσ3 =

i

3
(−4φuR + φuL)

p′0(φ̂u) =
i

3
φ̂uσ3 +

i

2
φ̂u +

i

2
φ̂uσ3 =

i

3
(4φ̂uL − φ̂uR) (6.138)

p′0(φ̂d) =
i

3
φ̂dσ3 −

i

2
φ̂d −

i

2
φ̂dσ3 =

i

3
(−2φ̂dL − φ̂dR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from (6.41),
(6.43) and (6.45)

p1(φd) = iφuL ; p1(φu) = iφdL ; p1(φ̂u) = −iφ̂dR ; p1(φ̂d) = −iφ̂uR (6.139)

p2(φd) = φuL ; p2(φu) = −φdL ; p2(φ̂u) = −φ̂dR ; p2(φ̂d) = φ̂uR (6.140)

p3(φd) = −iφdL ; p3(φu) = iφuL ; p3(φ̂u) = −iφ̂uR ; p3(φ̂d) = iφ̂dR. (6.141)

Now (6.129) gives

DΨr = ∂∂∂Ψr +
g1
2
BP ′

0(Ψr) +
g2
2
WjPj(Ψr) (6.142)

49This is very important, since it is the reason explaining how a lepton is not a quark. If all
four operators were identical, we should get four states and a SU(4) group for chromodynamics
and the electron should be sensitive to strong interactions. Since only three parts of the wave
are similar, we will get in 6.4 a SU(3) group for chromodynamics.
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and we get, similarly to (6.47) to (6.50)

Dφ̂u = ∇φ̂u +
g1
2
Bp′0(φ̂u) +

g2
2
W jpj(φ̂u) (6.143)

Dφ̂d = ∇φ̂d +
g1
2
Bp′0(φ̂d) +

g2
2
W jpj(φ̂d) (6.144)

D̂φd = ∇̂φd +
g1
2
B̂p′0(φd) +

g2
2
Ŵ jpj(φd) (6.145)

D̂φu = ∇̂φu +
g1
2
B̂p′0(φu) +

g2
2
Ŵ jpj(φu). (6.146)

With (6.138) to (6.141) this gives

Dφ̂u = ∇φ̂u +
g1
2
B
i

3
(4φ̂uL − φ̂uR)

+
g2
2
[W 1(−iφ̂dR) +W 2(−φ̂dR) +W 3(−iφ̂uR)] (6.147)

Dφ̂d = ∇φ̂d +
g1
2
B
i

3
(−2φ̂dL − φ̂dR)

+
g2
2
[W 1(−iφ̂uR) +W 2φ̂uR) +W 3iφ̂dR] (6.148)

D̂φd = ∇̂φd +
g1
2
B̂
i

3
(2φdR + φdL)

+
g2
2
[Ŵ 1(iφuL) + Ŵ 2(φuL) + Ŵ 3(−iφdL)] (6.149)

D̂φu = ∇̂φu +
g1
2
B̂
i

3
(−4φuR + φuL)

+
g2
2
[Ŵ 1(iφdL) + Ŵ 2(−φdL) + Ŵ 3(iφuL)] (6.150)

We separate right and left waves, this gives

Dφ̂uL = ∇φ̂uL − i(−2

3
)g1Bφ̂uL ; Dµηu = ∂µηu − i(−2

3
)g1Bµηu (6.151)

Dφ̂dL = ∇φ̂dL − i(+
1

3
)g1Bφ̂dL ; Dµηd = ∂µηd − i(+

1

3
)g1Bµηd (6.152)

D̂φdR = ∇̂φdR − i(−1

3
)g1B̂φdR ; Dµξd = ∂µξd − i(−1

3
)g1Bµξd (6.153)

D̂φuR = ∇̂φuR − i(+
2

3
)g1B̂φuR ; Dµξu = ∂µξu − i(+

2

3
)g1Bµξu. (6.154)

Comparison with 6.1 shows that quarks and anti-quarks have awaited electric
charges : − 2

3 |e| for anti-quark u, + 1
3 |e| for anti-quark d, + 2

3 |e| for the u quark
and − 1

3 |e| for the d quark.50 Separation of right and left waves from (6.147) to

50Another mechanism giving the ± e
3
and ± 2e

3
charges of quarks was proposed in 5.3 of [16].
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(6.150) gives also

Dφ̂uR = ∇φ̂uR − i
g1
6
Bφ̂uR +

g2
2
[−iW 1φ̂dR)−W 2φ̂dR − iW 3φ̂uR] (6.155)

Dφ̂dR = ∇φ̂dR − i
g1
6
Bφ̂dR +

g2
2
[−iW 1φ̂uR) +W 2φ̂uR) + iW 3φ̂dR] (6.156)

D̂φdL = ∇̂φdL + i
g1
6
B̂φdL +

g2
2
[iŴ 1φuL) + Ŵ 2φuL − iŴ 3φdL] (6.157)

D̂φuL = ∇̂φuL + i
g1
6
B̂φuL +

g2
2
[iŴ 1φdL)− Ŵ 2φdL + iŴ 3φuL]. (6.158)

Using the conjugation φ 7→ φ̂ we get

D̂φuR = ∇̂φuR + i
g1
6
B̂φuR +

g2
2
[+iŴ 1φdR)− Ŵ 2φdR + iŴ 3φuR] (6.159)

D̂φdR = ∇̂φdR + i
g1
6
B̂φdR +

g2
2
[+iŴ 1φuR) + Ŵ 2φuR)− iŴ 3φdR] (6.160)

Dφ̂dL = ∇φ̂dL − i
g1
6
Bφ̂dL +

g2
2
[−iW 1φ̂uL) +W 2φ̂uL + iW 3φ̂dL] (6.161)

Dφ̂uL = ∇φ̂uL − i
g1
6
Bφ̂uL +

g2
2
[−iW 1φ̂dL)−W 2φ̂dL − iW 3φ̂uL]. (6.162)

This gives a left doublet of particles and a right doublet of antiparticle. With
(6.72) and

ψL =

(
ηu
ηd

)
; ψR =

(
ξu
ξd

)
(6.163)

we get

DµψL = ∂µψL − i
g1
6
BµψL − i

g2
2
(W 1

µτ1 +W 2
µτ2 +W 3

µτ3)ψL (6.164)

DµψR = ∂µψR + i
g1
6
BµψR − i

g2
2
(W 1

µτ1 −W 2
µτ2 +W 3

µτ3)ψR. (6.165)

We can then say that charge conjugation is not only a changing of signs of
electric charges, but it exchanges the right and the left waves. It also changes
the orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replaced
by an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in the
wave of antiparticle (3.44) used by de Broglie.
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6.4 Chromodynamics

We start from generators λk of the SU(3) gauge group of chromodynamics

λ1 =



0 1 0
1 0 0
0 0 0


 , λ2 =



0 −i 0
i 0 0
0 0 0


 , λ3 =



1 0 0
0 −1 0
0 0 0




λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 , λ6 =



0 0 0
0 0 1
0 1 0




λ7 =



0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3



1 0 0
0 1 0
0 0 −2


 . (6.166)

To simplify notations we use now l, r, g, b instead Ψl, Ψr, Ψg, Ψb. So we have

Ψ =

(
l r
g b

)
. Then (6.166) gives

λ1



r
g
b


 =



g
r
0


 , λ2



r
g
b


 =



−ig
ir
0


 , λ3



r
g
b


 =



r
−g
0




λ4



r
g
b


 =



b
0
r


 , λ5



r
g
b


 =



−ib
0
ir


 , λ6



r
g
b


 =



0
b
g


 (6.167)

λ7



r
g
b


 =




0
−ib
ig


 , λ8



r
g
b


 =

1√
3




r
g

−2b


 .

We name Γk operators corresponding to λk acting on Ψ. We get with (1.93)

Γ1(Ψ) =
1

2
(Λ4ΨΛ4 + Λ01235ΨΛ01235) =

(
0 g
r 0

)
(6.168)

Γ2(Ψ) =
1

2
(Λ5ΨΛ4 − Λ01234ΨΛ01235) =

(
0 −ig
ir 0

)
(6.169)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(
0 r
−g 0

)
(6.170)

Γ4(Ψ) = Λ4ΨP
− =

(
0 b
0 r

)
; Γ5(Ψ) = Λ5ΨP

− =

(
0 −ib
0 ir

)
(6.171)

Γ6(Ψ) = P−ΨΛ4 =

(
0 0
b g

)
; Γ7(Ψ) = iP−ΨΛ01235 =

(
0 0

−ib ig

)
(6.172)

Γ8(Ψ) = − 1√
3
(P−ΨΛ012345 + Λ012345ΨP

−) =
1√
3

(
0 r
g −2b

)
. (6.173)

Everywhere the left up term is 0, so all Γk project the wave Ψ on its quark
sector.
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We can extend the covariant derivative of electro-weak interactions (6.127):

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ) +

g3
2
GkiΓk(Ψ). (6.174)

where g3 is another constant and Gk are eight terms called “gluons”. Since
I4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind) for
j = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all operators
P j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3, bk, k = 1, 2, ..., 8, we let

S1 =

j=3∑

j=1

ajP j ; S2 =

k=8∑

k=1

bkiΓk (6.175)

and we get, using exponentiation (see 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (6.176)

The set of these operators is a U(1)×SU(2)×SU(3) Lie group. Only difference
with the standard model the structure of this group is not postulated but calcu-
lated. The invariance under Cl∗3 (and particularly the relativistic invariance) of
this covariant derivative is similar to (6.105) with underlined terms. The gauge
invariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′
µ (6.177)

D′
µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ (6.178)

B′
µ = Bµ − 2

g1
∂µa

0 (6.179)

W ′j
µP j =

[
exp(S1)W

j
µP j −

2

g2
∂µ[exp(S1)]

]
exp(−S1) (6.180)

G′k
µiΓk =

[
exp(S2)G

k
µiΓk − 2

g3
∂µ[exp(S2)]

]
exp(−S2). (6.181)

The SU(3) group generated by projectors on the quark sector acts only on this
sector of the wave :

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(
Ψl 0
0 0

)
(6.182)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including all
fermions of the first generation. This group acts on the lepton sector only by its
U(1)×SU(2) part. The physical translation is: leptons do not strongly interact,
they have only electromagnetic and weak interactions. This is fully satisfied in
experiments. The novelty here is that this comes from the structure itself of the
quantum wave. Since it is independent on the energy scale, we understand why
great unified theories do not work.
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6.4.1 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. Today we
have to understand both why we get only three kinds of leptons and quarks
and a fourth neutrino, without electro-weak interactions. Actual experiments
show both the limitation to three kinds of light leptons from the study of the
Z0 and the possible existence of a fourth neutrino without electro-weak inter-
actions. We explained the existence of three kinds of leptons in section 5. This
is easily generalized to the three generations of the standard model. Two other
generations are gotten by replacing the privileged third direction σ3 by σ1 or
σ2, everywhere this direction is used. The passage from one to another gen-
eration must be seen as a circular permutation of indexes 1 7→ 2 7→ 3 7→ 1 or
1 7→ 3 7→ 2 7→ 1 for the other. For instance the σ3 in (6.11) which defines left
and right projectors must be replaced by σ1 or σ2. The σ1 in (6.8) which links
the wave of the particle to the wave of the antiparticle must be replaced by
σ2 or σ3. These changes imply to treat separately each generation, and it is
the reason of this separate treatment in the standard model. Now for a fourth
generation we have no other similar possibility since the Cl3 algebra is based
on the 3-dimensional physical space. We cannot get a fourth set of operators
similar to the Pµ.

But the existence of a fourth neutrino [20] is possible because Cl3 has four
generators with square −1. The wave equation of the electron includes one of
these four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31 explain why two
other kinds of leptons exist. We can also build an invariant wave equation with
the fourth generator, i = σ123:

φ(∇φ̂)σ123 +mρ = 0. (6.183)

Multiplying by the left by φ
−1

we get with ρ = e−iβφφ the equivalent equation

∇φ̂i+me−iβφ = 0 ; ∇φ̂ = ime−iβφ. (6.184)

Contrarily to our homogeneous non-linear wave equation (3.9) which has the
Dirac equation as linear approximation, this wave equation cannot come from
the linear quantum theory, it has no linear approximation because the β angle
is not small, it is now the angle of the phase of the wave51. We can nevertheless
get plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvµx
µ ; v = σµvµ. (6.185)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ̂ = σµ∂µ(e
iϕφ̂0) = imveiϕφ̂0. (6.186)

And we have
φφ = e−iϕφ0e

−iϕφ0 = e−2iϕφ0φ0. (6.187)

51This is another reason to think that the homogeneous non-linear equation is better than
its linear approximation.
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Then if we let
φ0φ0 = ρ0e

iβ0 (6.188)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0 (6.189)

Then (6.184) is equivalent to

imveiϕφ̂0 = ime−i(β0−ϕ)φ0 (6.190)

vφ̂0 = e−iβ0φ0

eiβ0vφ̂0 = φ0. (6.191)

Conjugating we get
e−iβ0 v̂φ0 = φ̂0. (6.192)

So we get
φ0 = eiβ0vφ̂0 = eiβ0v[e−iβ0 v̂φ0] = vv̂φ0. (6.193)

Then if φ0 6= 0 we get
1 = vv̂ (6.194)

which gives (2.73) or (3.40) and since (6.191) implies (3.43) we get the same
results as with our non-linear wave equation: existence of plane waves with only
positive energy. Developing (6.183) we get a system of eight equations similar to
the system (2.92) to (2.99) and four of these equations are the conservation of the
Dµ currents (∂νD

ν
µ = 0) [20]. Then the density of probability is conservative and

there is no possible disintegration of such a particle. Without a set of operators
Pµ there are no electro-weak forces. Therefore only gravitational interactions
remain possible. Such an object could be necessary part of the black matter,
since it is unable to emit photons.

6.5 Geometric transformation linked to the wave

We saw in 3.3 that the wave of the electron defines in each point of space-time
a geometric transformation (3.55) from the tangent space-time of an intrinsic
manifold into the tangent space-time to our space-time manifold. What becomes
this transformation when we consider the wave Ψl of a couple electron-neutrino,
or the complete wave Ψ of the first generation?

6.5.1 In space-time algebra

Any element M in Cl3 is sum of a scalar s, a vector ~v, a bivector i ~w and a
pseudo-scalar ip. We have

M = s+ ~v + i ~w + ip; M̂ = s− ~v + i ~w − ip

M† = s+ ~v − i ~w − ip; M = s− ~v − i ~w + ip. (6.195)
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With the matrix representation of the space-time algebra studied in 1.4.1 and
the N in (1.68) we associate to x = xµσµ in Cl3 the space-time vector

x = xµγµ =

(
0 x
x̂ 0

)
(6.196)

Then the dilation R defined by (1.42) associates to the space-time vector x the
space-time vector x′ satisfying

x′ = NxÑ (6.197)

while the differential operator ∂∂∂ = γµ∂µ satisfies

∂∂∂ = Ñ∂∂∂′N. (6.198)

And the dilation D defined by (3.55) associates to the space-time vector y,
element of the tangent space-time to the intrinsic manifold linked to the wave,
a space-time vector x in the usual space-time, satisfying

x = ΨyΨ̃; Ψ =

(
φ 0

0 φ̂

)
; Ψ̃ =

(
φ 0
0 φ†

)
; y = yµγµ =

(
0 y
ŷ 0

)
. (6.199)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(
φe φn
φ̂n φ̂e

)
; Ψ̃l =

(
φe φ†n
φn φ†e

)
. (6.200)

The generalization of (6.199) is

x = ΨlyΨ̃l. (6.201)

But, since
x̃ = ΨlyΨ̃l = x (6.202)

then x is the sum of a scalar, a vector and a pseudo-scalar. 52 To get only a
vector, we must separate the vector part. Noting < M >1 the vector part of
the multivector M , we then let instead of (6.201)

x =< ΨlyΨ̃l >1 (6.203)

We have

ΨlyΨ̃l =

(
φe φn
φ̂n φ̂e

)(
0 y
ŷ 0

)(
φe φ†n
φn φ†e

)

=

(
φnŷφe + φeyφn φeyφ

†
e + φnŷφ

†
n

φ̂eŷφe + φ̂nyφn φ̂nyφ
†
e + φ̂eŷφ

†
n

)
(6.204)

52The same property in Cl3 proves that x is the sum of a scalar and a vector and this is
exact for a space-time vector.
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which gives

x =< ΨlyΨ̃l >1=

(
0 x
x̂ 0

)
; x = φeyφ

†
e + φnŷφ

†
n. (6.205)

We let
D = De +Dn ; De(y) = φeyφ

†
e ; Dn(y) = φnŷφ

†
n (6.206)

De is a direct dilation, conserving the orientation of the time and the space. Dn

is an inverse dilation, conserving the orientation of the time and changing the
orientation of the space. The geometric transformation D : y 7→ x is the sum of
these two dilations.

The element y is independent on the relative observer: if M is any element
of Cl∗3 and N is given by (1.68), the dilation R defined in (1.42) satisfies

x′ =MxM† ; φ′e =Mφe ; φ′n =Mφn (6.207)

Ψ′
l =

(
φ′e φ′n
φ̂′n φ̂′e

)
=

(
Mφe Mφn
M̂φ̂n M̂φ̂e

)
= NΨl (6.208)

x′ =

(
0 x′

x̂′ 0

)
= NxÑ = N < ΨlyΨ̃l >1 Ñ =< NΨlyΨ̃lÑ >1

=< Ψ′
lyΨ̃

′
l >1 . (6.209)

We then have
x =< ΨlyΨ̃l >1 ; x′ =< Ψ′

lyΨ̃
′
l >1 (6.210)

with the same y for the observer of x and for the observer of x′.

6.5.2 Extension to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the first
generation defined in (6.123) satisfies (the proof is in Appendix A)

Ψ̃ =

(
Ψ̃b Ψ̃r

Ψ̃g Ψ̃l

)
(6.211)

The wave has value in the Clifford algebra Cl5,1. Each element reads

Ψ =

n=6∑

n=0

< Ψ >n (6.212)

where < Ψ >n is named a n-vector. The reverse satisfies

Ψ̃ =< Ψ >0 + < Ψ >1 − < Ψ >2 − < Ψ >3 + < Ψ >4 + < Ψ >5 − < Ψ >6 .
(6.213)

We define the v-part Av of any multivector A as the sum of the vectorial part
and of the pseudo-vectorial part in the complete space-time:

Av =< A >v=< A >1 + < A >5 (6.214)
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because it is this vectorial part which replaces in Cl5,1 the vectorial part < M >1

of the space-time algebra. It is linked to the fact that vectors of Cl1,5 are 5-
vectors of Cl5,1 and vice-versa. We should then get the same definition of the
vectorial part by using Cl1,5. We use

y =

µ=3∑

µ=0

yµγµ ; y5 =

µ=3∑

µ=0

yµ5 γµ (6.215)

< y >1 =
a=5∑

a=0

yaΛa =

µ=3∑

µ=0

yµΛµ + y4Λ4 + y5Λ5 (6.216)

< y >5 =
a=5∑

a=0

ya5ΛaΛ0123 = (

µ=3∑

µ=0

yµ5Λµ + y45Λ4 + y55Λ5)Λ0123. (6.217)

This gives with (1.72) and (1.75)

< y >1 =

(
0 −y+ y4 − y5i

y+ y4 + y5i 0

)
(6.218)

< y >5 =

(
0 −y5 + y45 − y55i

y5 + y45 + y55i 0

)(
i 0
0 i

)
(6.219)

yv =< y >v =

(
0 −yv + y4v − y5v

yv + y4v + y5v 0

)
(6.220)

with
yv = y+ y5i ; y4v = y4 + y45i ; y5v = −y55 + y5i (6.221)

The generalization of (6.203) is the transformation:

f : yv 7→ xv =< ΨyvΨ̃ >v (6.222)

We use for x similar notations as in (6.215), (6.216), (6.217), (6.221), with x in
the place of y and we get

ΨyvΨ̃ =

(
A B
C D

)
; xv =< ΨyvΨ̃ >v=

(
0 B
C 0

)

xv + x4v + x5v = C = Ψb(yv + y4v + y5v)Ψ̃b +Ψg(−yv + y4v − y5v)Ψ̃g (6.223)

−xv + x4v − x5v = B = Ψr(yv + y4v + y5v)Ψ̃r +Ψl(−yv + y4v − y5v)Ψ̃l. (6.224)

This equation contains the term ΨlyvΨ̃l and similar terms coming from the
wave of quarks. We remark that the supplementary dimensions are mixed with
the ordinary ones. We remark also that xv or yv are now sum of a vector and a
5-vector, which is in Cl5,1 a pseudo-vector. Components of these sums may be
expressed as

xav = xa + xa5i (6.225)

The complete space-time has then a natural structure of complex linear space
with dimension 6, with the i of the chiral gauge.
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6.5.3 Invariance

The dilation R induced by any element M of Cl3 satisfying (1.42) reads in
space-time algebra, with the N of (1.68):

x′ = NxÑ ; x =

µ=3∑

µ=0

xµγµ ; x′ =

µ=3∑

µ=0

x′
µ
γµ ; Ψ′

l = NΨl (6.226)

and we await the same transformation for the waves of quarks:

Ψ′
r = NΨr ; Ψ′

g = NΨg ; Ψ′
b = NΨb (6.227)

We let

N =

(
N 0
0 N

)
=




M 0 0 0

0 M̂ 0 0
0 0 M 0

0 0 0 M̂


 . (6.228)

We then get

Ñ =

(
Ñ 0

0 Ñ

)
=




M 0 0 0
0 M† 0 0
0 0 M 0
0 0 0 M†


 (6.229)

With

x5 =

µ=3∑

µ=0

xµ5γµ ; x′
5 =

µ=3∑

µ=0

x′
µ
5γµ (6.230)

xv = x+ x5i ; x′
v = x′ + x′

5i (6.231)

x4v = x4 + x45i ; x
5
v = −x55 + x5i ; x′

4
v = x′

4
+ x′

4
5i ; x

′5
v = −x′55 + x′

5
i

(6.232)

xv =

(
0 −xv + x4v − x5v

xv + x4v + x5v 0

)

x′v =

(
0 −x′

v + x′
4
v − x′

5
v

x′
v + x′

4
v + x′

5
v 0

)
(6.233)

the generalization of (6.209) in Cl5,1 reads

x′v = NxvÑ ; Ψ′ = NΨ (6.234)

which gives

Ψ̃′ = ÑΨ = Ψ̃Ñ. (6.235)

Then the first equality (6.234) is equivalent to the system:

x′
v + x′

5
v = N(xv + x5v)Ñ (6.236)

x′
4
v = x4vNÑ. (6.237)
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And since we can separate, in (6.236), the different multivector parts, it is
equivalent to the system:

x′ = NxÑ (6.238)

x′
5 = Nx5Ñ (6.239)

x′
4
v = x4vNÑ

x′
5
v = x5vNÑ. (6.240)

With (1.43) (6.237) and (6.240) read

x′
4
+ ix′

4
5 = reiθ(x4 + ix45) (6.241)

−x′55 + ix′
5
= reiθ(−x55 + ix5) (6.242)

This separation between the different components of the global space-time ex-
plains why we usually see only the real components of the 4-dimensional space-
time vector x. Only the usual space-time has real components. (6.241) and
(6.242) indicates both that these two supplementary dimensions are complex
dimensions and that they separate completely the usual space-time in the global
space-time. A space-time with one or two supplementary conditions has been
used early [52]. The problem was always to explain why classical physics do not
see these supplementary dimensions. Here this problem is automatically solved
by the difference coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from (6.231)
and (6.232) which give

f : yv 7→ xv =< ΨyvΨ̃ >v (6.243)

f : yv 7→ x′v =< Ψ′yvΨ̃
′ >v=< NΨyvΨ̃Ñ >v

= N < ΨyvΨ̃ >v Ñ = NxvÑ. (6.244)

Similarly to what we said in 3.3, yv is independent on the observer, intrinsic to
the wave.

6.6 Existence of the inverse

Our study in 5.2 of systems of electrons has introduced the inverse φ−1 which
is defined only where detφ 6= 0. We can see that this condition is satisfied
everywhere for each bound state of the H atom (see Appendix C). We saw
previously that the wave of the electron is a part of the wave Ψl with value in
Cl1,3 which must be also invertible. We must then get det(Ψl) 6= 0.

We have not yet used one of the features of the standard model, because it
was not useful until now: the right part of the neutrino wave does not interact,
and the standard model can do anything without ξn. We can then suppose

ξ1n = ξ2n = 0 (6.245)
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We then have with (6.2), (6.3) and (6.8):

Ψl =
√
2




ξ1e −η∗2e 0 −η∗2n
ξ2e η∗1e 0 η∗1n
η1n 0 η1e −ξ∗2e
η2n 0 η2e ξ∗1e


 (6.246)

We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη
∗
2e| (6.247)

ρL = | det(φL)| ; φL =
√
2

(
η1n η1e
η2n η2e

)
(6.248)

ρl = [det(Ψl)]
1/2 (6.249)

The calculation of the determinant of the matrix (6.246) gives the remarkable
result:

ρl =
√
ρ2e + ρ2L. (6.250)

It is then very easy to get an invertible Ψl, it happens as soon as φe is invertible
(for instance for each bound state of the H atom), or as soon as ηe and ηn are
linearly independent. This is a very interesting use of the condition ξn = 0, and
means that all features of the standard model are important. It also means that
the true mathematical frame is the Clifford algebras and that the existence of
an inverse wave in each point is physically useful. Moreover we can extend this
to the complete wave of all fermions of the first generation. The standard model
uses only left waves for the quarks, we get then for the color r:

Ψr =
√
2




0 −η∗2dr 0 −η∗2ur
0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0
η2ur 0 η2dr 0


 (6.251)

and two similar equalities for colors g and b. Now we consider two matrices:

L =
√
2




η1e η1n η1dr η1ur
η2e η2n η2dr η2ur
η1dg η1ug η1db η1ub
η2dg η2ug η2db η2ub


 ;M =

√
2




−ξ∗2e η1e η1dr η1ur
ξ∗1e η2e η2dr η2ur
0 η1dg η1db η1ub
0 η2dg η2db η2ub




(6.252)
And we get with (6.123) the identity

det(Ψ) = | det(L)|2 + | det(M)|2 (6.253)

We can then see the waves of the standard model as having the maximum
number of degrees of freedom compatible with the existence of an inverse wave
Ψ−1.

In the M matrix of (6.252) the green color is less present than red and blue
colors, which seems a priori abnormal. Technically the reason is simple: since
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the only right term, ξ, is on the same column as the ug wave, when we suppress
all terms of a column and of a line in the calculation of a determinant, the ug
term necessarily disappears.

More important, the fundamental mathematical tool is Clifford algebra, not
complex matrix algebra. This comes from the fact that space-time algebra is
not identical to the algebra of 4 × 4 complex matrices, or the Cl5,1 Clifford
algebra of the 6-dimensional space-time is not identical to the algebra of 8 × 8
complex matrices. These Clifford algebras are only sub-algebras of the complex
matrix algebras. Moreover they are sub-algebras only as real algebras. The use
of complex linear spaces is then a kind of accident, a fortuitous coincidence: the
possible identification between the Clifford algebra of the 3-dimensional space
and the algebra of 2× 2 complex matrices, as algebras on the real field.

Consequently, for instance, Ψ matrices are not at all symmetric. Null terms
are on same columns, not in lines. Lines 1, 2 and 5, 6 of Ψ are multiplied by
a M factor while lines 3, 4 and 7, 8 are multiplied by a M̂ factor of the form
invariance group. We may also remark that all terms of L and M matrices in
(6.252) are left terms, multiplied by a M̂ factor in the form invariance group.
When we look at operators of the electro-weak gauge group we can also see that
they act on columns of matrices, not on lines.

Other consequence, the change of a matrix into its adjoint matrix is not
the most important transformation. This should be the case if the theory of
hermitian spaces and unitary matrices was fundamental. The most important
transformation is the reversion, (A becoming Ã), as we can see throughout this
text. This reversion makes sense in any Clifford algebra, and it is this alone
reversion that appears in calculations. It happens that the reverse is identical
to the adjoint matrix when we identify space algebra and Pauli algebra. But
this happens only in the Clifford algebra of the physical space. With the space-
time algebra, or with the algebra of the 6-dimensional space-time the reverse
is not the adjoint matrix. Reversion exchanges the left-up matrix-bloc and the
right-down matrix-bloc, while the right-up and the left-down matrix-blocs stay
in the same place, being exchanged two times. If the SU(3) group exchanging
r, g, b states was fundamental, it should be effectively necessary that the green
color should play the same role as red and blue colors.

Since this is not true, we see that the U(1) × SU(2) × SU(3) structure is
widely “accidental” on the mathematical point of view. This means that the
necessity of unitary gauge groups is not justified. The important structure is in
fact the Cl5,1 algebra and its left and right multiplicative automorphisms.

6.7 Wave equation

The mass term of the Dirac equation links the right wave to the left wave, we
can read this in (2.31) and (2.32). Terms containing W 1 and W 2 in the electro-
weak theory link left waves of the electron and of its neutrino. Terms containing
B and W 3 act differently on left and right waves. The Weinberg-Salam model
took advantage of the very small mass of the electron to neglect and cancel this
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mass term53. The proper mass is consequently missing in 6.1 to 6.6.
When we consider the three spinors, a right one and two left ones, necessary

to get the electro-weak gauge group, we have much more tensorial densities than
with the two spinors of the Dirac theory: we change the 36 tensorial densities
of 2.2.2 into 78 = 12× 13/2 tensorial densities. We get three complex densities
a, b, c (see B.1) in the place of the alone density a = Ω1+ iΩ2. The remarkable
identity (6.250) uses two of the three terms that replace, in the case of the
electron-neutrino pair, the unique ρ density in (2.16):

a = det(φe) ; b = det(φL). (6.254)

The third term c allows to construct the density

ρρρ =
√
aa∗ + bb∗ + cc∗. (6.255)

This allows a mass term for a wave equation which is both form invariant and
gauge invariant in the case of the Ψl wave of the electron and its neutrino [21]:

Ψ̃l(DΨl)γ012 +mρρρΨ̃lχ = 0 (6.256)

where χ is a term depending on Ψl, defined by (B.89). To get the form invari-
ance (consequently to get the relativistic invariance) we establish in (B.41) the
invariance of mρρρ and in (B.106) the invariance of the mass term. The wave
equation (6.256) is then form invariant under the transformation R defined by
M in (1.42) and N in (1.80), the equation becomes [21]:

Ψ̃′
l(D

′Ψ′
l)γ012 +m′ρρρ′Ψ̃′

lχ
′ = 0 ; mρρρ = m′ρρρ′ ; Ψ̃′

lχ
′ = Ψ̃lχ. (6.257)

This wave equation could not come from the linear Dirac equation because
relation (B.41) that links χ to Ψl makes the wave equation non linear. The
homogeneous non linear wave equation studied in chapter 3 acts as go-between:
the wave equation (3.9) is what remains in (6.256) when we cancel the wave of
the neutrino and the Dirac equation is the linear approximation of (3.9).

In any domain of space-time where the wave of the electron is null or neg-
ligible we get ρρρ = 0 therefore the wave equation of the neutrino is reduced to
∇ηn = 0 that is the usual wave equation of the neutrino traveling at the veloc-
ity of light. This wave is then without interaction, since the neutrino does not
interact with the electron and its φe wave.

Under the gauge transformation defined by (6.119) to (6.122) we get (the
detailed calculation is in B.3) :

Ψ̃′
l(D

′Ψ′
l)γ012 +mρρρΨ̃′

lχ
′ = 0. (6.258)

Therefore it is not necessary to use a complicated mechanism of spontaneously
broken symmetry to reconcile the electro-weak gauge invariance and the mass
term of the electron.

53This approximation is a posteriori satisfied by the huge mass of the Z0 which is 180,000
times the mass of the electron. This approximation was inevitable because the mass term of
the linear Dirac equation cannot be compatible with the electro-weak gauge.
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The generalization of (6.256) to the complete wave including the quarks of
the first generation will need to account for the 36 = 9× 8/2 densities general-
izing the three a, b, c densities in (6.255).

7 Magnetic monopoles

We present here the recent experimental works on magnetic monopoles.

Next we apply to the magnetic monopole our study of electro-weak

interactions.

7.1 Russian experimental works

Recent experimental works about magnetic monopoles began with V.F. Mikhailov
[53]. He was taking up works made fifty years ago by F. Ehrenhaft. An electric
arc produces ferromagnetic dusts that are conducted by a Ar gas into a chamber
where a laser lights them up. Into the chamber the ferromagnetic particles are
moved by a magnetic field and an electric field orthogonal to the magnetic field.
The direction of the fields may be reversed. Movements are observed, under the
light of the laser, with an optic microscope.

The measure of the magnetic charge of these particles took advantage of the
fact that some of them have also an electric charge and the move of an electric
charge into an electric field is well known. Mikhailov observed an elementary

magnetic charge g = nα
e

6
. The fine structure constant α is small (α ≈ 1

137 ).

But the expected value is completely different [31]. A calculation made by
Dirac, obtained again in a very smart way by G. Lochak from his theory of the
monopole [42] gives, for the elementary magnetic charge

eg

~c
=
n

2
(7.1)

where n is an integer. The elementary magnetic charge observed by Mikhailov
was much smaller than the theoretical charge. We may ask if there is a reason
to refute the theoretical calculation, or if there exists an experimental reason to
this divergence. The two things are possible: each process allowing to get (7.1)
includes a calculation of the potentials created by charges, and we can doubt its
validity. Magnetic charges observed by Mikhailov were visible only during the
illumination by the strong light of a laser, and may have been second order effects
coming from this illumination. Mikhailov realized also an experiment where
the ferromagnetic particles were included into water droplets, with spherical
symmetry. Then he measured magnetic charges compatible with the elementary
magnetic charge calculated by Dirac. The value of such a charge is then a
question that must be solved experimentally.

The experimental work of L. Urutskoev had in common with Mikhailov’s
work only the use of an electric arc. To shatter concrete, little holes were made
and filled with water, an electric wire was put in each hole and an electric
condenser was discharged into the wires. The discharge produced an explosion
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and this explosion shattered the concrete. The first astonishing fact was the
great speed of the pieces of concrete smashed by the explosion, this induced a
need to better study what was going there.

The continuation of experiments was to shoot into pure water, without con-
crete. An intense glowing was found to appear above the device. The duration
of this phenomenon, about 5ms, was much greater than the duration of the dis-
charge, 0.15ms. A spectral analysis of the emitted light was performed. Spectral
lines of nitrogen or oxygen were very weak, while the glowing was emitted into
the air. and the strongest spectral lines showed the presence of Ti, Fe, Cu, Zn,
Cr, Ni, Ca, Na. The presence of Cu and Zn could come from the electric wires,
the presence of Ti signified that the Ti foils used in discharges spread above the
device, in spite of the cover. The presence of the other elements was enigmatic.
This induced to analyze more finely the metal powder resulting from the explo-
sion of the Ti foil in water. Observations made were still stranger. While the
foil was made of 99.7% Ti the ratio of Ti in powder could go down to 92%. The
amount of disappeared titanium corresponded to the amount of new elements
appearing, Fe, Si, Al, Ca, Na, Cu, Zn, principally. In addition, an isotopic anal-
ysis showed that the isotopic composition of Ti was changed, with a significant
decline of the ratio of 48Ti. Experiments were repeated many times, with all
necessary precautions. Other metals were used, in particular zirconium. Ratios
of different outside elements changed on composition of the exploded foil. For
instance there was much more Cr with the zirconium than with titanium, and
much less Si and Al.

Since the transformation from an element to another is usually associated
to radioactivity, an intensive search of radioactive emission was made. There
was no X-γ rays detected, in spite of 1019 - 1020 transformed atoms at each
shot. Detection of neutrons was also performed. Scintillator detectors indicated
a pulse that allowed to estimate the speed of the radiation to 20 - 40 m/s. Such
a low speed could not match a neutron flux, because neutrons should be ultra
cold. A detection of the radiation with photo emulsions was applied, for lack
of better means. We will come back farther on what is seen with these films.
Urutskoev saw next that the presence of a strong magnetic field changed the
aspect of these traces, and he deduced that the radiation going out his shots
had magnetic properties. He led then experiments to trap the radiation with
strong magnets and he used the Moessbauer effect to prove the reality of these
captures.

Urutskoev noted also that the transformations come principally from even-
even kernels, that is to say from kernels with an even number of protons and an
even number of neutrons. He noticed that the mean binding energy of produced
kernels was very few different from the mean binding energy of initial kernels:
there was no nuclear energy emitted or absorbed in significant amount. And all
the produced kernels were in the ground state, there was no radioactivity.

Experiments made by N. G. Ivoilov [36] indicated that it was possible to get
similar traces on photographic films with much less energy: he used an electric
arc into water, with a current exceeding not 40 A with a 80 V tension. He
got traces complying to properties of magnetic monopoles predicted by the G.
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Lochak’s theory.

7.2 Works at E.C.N.

Works made at the Ecole Centrale de Nantes, in the laboratory of Guillaume
Racineux by Didier Priem and Claude Daviau [48] with the help of Henri Lehn
and of the Fondation Louis de Broglie, had the aim to satisfy and to continue the
Urutskoev’s work. This seemed necessary in view of the extraordinary nature
of yet obtained results.

Figure 1: Vessel

The experimental device is dependent on the available equipment at the
E.C.N. and then is different, even if it is as few as possible, from this used by
Urutskoev. The generator is an American one, Maxwell type, maximum power
12 kJ at 8.4 kV, capacity 360 µF and a vessel (Figure 1). The first containment
vessel was made of aluminum, it was replaced by a second vessel to allow to
collect the gas produced during a shot. Experiments made by Urutskoev allow
him to see that the gas is almost totally hydrogen. This second vessel was made
of stainless steel, it contained a tank with an internal diameter of 20 mm covered
by polyurethane. The internal diameter was then reduced to 16 mm which has
improved the yield. A third vessel was made when the second was tired. The
current coming from the generator is distributed into two electrodes, one up
and one down. They are linked by a fuse made of Ti40.

After a shot, the gas is collected, its volume is measured. Powders are col-
lected with the liquid which contains them, and are placed during 24 hours
under a photographic plate exposed to the radiation coming out of powders.
This photographic film is then developed and examined with an optic micro-
scope. Powders are dessicated and examined with the electronic microscope of
the E.C.N.. This allows us to get three kinds of results, about powders, gas and
traces on the photographic films.
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7.2.1 Results about powder and gas

Our observations confirm very widely the results obtained by L. Urutskoev,
even if our ratios of production are lower than those he got. The energy of the
discharge being lower than this of Urutskoev, and the discharge being shorter,
this is not astonishing. But outside this, strange elements whose we get spectro-
grams into the electronic microscope have a composition very near that obtained
by Urutskoev. In the same time our observations make the things still stranger:
when we notice the presence of one per cent of iron into our powders, this iron
is not dispersed a little everywhere. On the contrary what we notice is: one per
cent of the particles are made of so much iron than titanium is quasi missing. It
is often iron which is dominating but there are shots where we find more copper
than iron. The particles made of copper have any scale, some are numerous
and have length of about one micrometer, others much rarer are greater and
even visible to the naked eye. Those particles contain very few titanium. The
composition of the exotic particles may be more complicated: we observe par-
ticles of iron-chromium, of copper-zinc. Iron is rarely alone, it is most of time
with chromium, a little nickel, sometimes 1% manganese, and with carbon and
oxygen. The composition of particles is often not homogeneous, a particle may
have not transformed titanium at places and titanium may have been nearly all
replaced at another place.

Figure 2 shows a particle with an evident continuity, which has dark places
and one light place, in addition to many holes. On the left and above, titanium
remains intact. At the center, the spectral analysis indicates the following mass
composition : Fe 69, 8%, Ti 10, 81%, Ni 7.28%, Cr 4, 33%, O 3, 98%, C 3, 8%.
Holes are also significant, because they indicate a gas production just before the
solidification caused by the intense cooling in water.

Figure 2: Particle with an iron place

The fact that iron is rarely alone, and that it is associated to chromium
and nickel has much complicated our work, because the stainless steel of our
tank is made of those three metals, and we could be objected that stainless
steel of our tank contaminated powders. Stainless steel was therefore removed
from the inside of the tank, it contains now only titanium and polyurethane.
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The suppression of the stainless steel has changed nothing actually, there is also
iron into powders when the alone metal inside the tank is titanium. This was
predictable since the composition indicated above is not this of the stainless
steel of our vessel. We can also easily satisfy that the Ti40 used to make our
fuse does not contain the ratio of iron, copper and other materials found into
powders.

Extraordinary results obtained by Urutskoev are therefore well real. The
one who should say them impossible only has to reproduce the experiment. If
he is honest, he will be obliged to see that something really happens.

But nothing should happen: conditions of the experiment move an energy
measured in kJ, this furnish only a hundred of eV at uppermost for each con-
cerned atom of titanium. This is ridiculously small in comparison with nuclear
binding energies. In addition interactions known until then work in a completely
different way. For instance weak interactions allow to transform one proton of
a kernel into a neutron, or vice versa, and that is submitted to general laws of
quantum mechanics, where random plays a obligatory and permanent role. If
the kernel of a titanium atom was transformed by weak interaction, it could
give a kernel of scandium or vanadium. Neither of those metals was seen until
then. We saw vanadium rays not only once, and vanadium is an obligatory way
if you want to go, with weak interactions, from titanium to iron or copper. And
if weak interactions were acting, transformed kernels should arrive at random,
in time and in space, not into macroscopic bundles.

We must not forget that our experiment is an explosion and an explosion is
not precisely the best way to assemble into a packet some dispersed atoms. It is
on the contrary a very good way to disperse a concentrated matter. Since we see
particles made of iron, or of copper, or of nickel, or of iron-chromium, with very
few titanium, these elements were produced together. We do not understand
how it is possible, but that changes nothing to the reality of the phenomenon.

In addition there are energy constraints. The mass of the elements found
into our powders and which should not be there is 1010 times greater than
the mass of the energy brought by the electric discharge. With an excellent
precision we can then say that the total energy of the produced atoms is equal
to the total energy of the destroyed atoms. This conservation of the total energy
restricts considerably the possibilities of reaction. We cannot get for instance
vanadium. The isotopes of vanadium are heavier than these of titanium, which
allows to 48V to be β+ radioactive and to disintegrate into 48Ti. And as we have
no radioactivity linked to these transformations, it is necessary that the total
number of electrons, of protons and of neutrons are also conserved. So strange
as it may be, all these conditions of conservation do not forbid the observed
transformations. As Urutskoev said, all is just like if for instance 100 kernels of
48Ti go together for some reason to form a big ”kernel”, then reallocate their
nucleons to form in the same time lighter and heavier kernels. Doing so they
also respect the conservation laws of energy, electric charge, baryonic charge,
leptonic charge... And in addition this magical transformation is accompanied
by no significant radioactivity!

Now we do not know enough to have an idea about mechanisms of trans-
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formation. We do not know why after one shot we get many iron particles
while after the following shot we will get instead copper particles. To begin to
understand what happens will necessitate probably a very fine analysis of the
obtained particles and of the physical conditions into our vessel. In view of the
brevity of the discharge (72µs) and the intense pressures linked to the shock
wave, it will be not easy to learn more.

Some gas was always produced during the metallurgical works made at the
Ecole Centrale. The presence of this gas was besides considered as a nuisance,
limiting the repetitiveness of the shots. The device that we use allows to measure
easily the quantity of produced gas. This gas is quasi totally made of hydrogen.
As titanium heated to a very high temperature is a reducing agent, this is not
surprising. It is also difficult to estimate the quantity of oxygen going into the
powders as oxide or dioxide of titanium, or dissolving into water. We have
estimations indicating that a part of the hydrogen does not come from the
dissociation of water. To satisfy this a shot into heavy water has been done
with success by L. Urutskoev. He got not only D2, but also HD and H2. And
this hydrogen cannot come from the water. Transformations of titanium can
leave isolated protons and electrons which form hydrogen atoms. This hydrogen,
either from chemical origin or not, is formed inside particles, which are often so
much spongy that they float on the water in which we collect the powders.

7.2.2 Stains

After each trial, the titanium powders from the fusible are collected along with
the water contained in the trial chamber and are placed under a photographic
plate. The traces are produced, not immediately in the electric arc, but by
what is in the water and powders, and leaving several hours after the electric
arc. Sometimes, something go out of the water, it is not only the things that
make the traces, but also a part of the powders on the surface of the water.
They emerge from the water, despite the gravity and the surface tension of
water, and are glued on the wrapping paper of the photographic plate:

Figure 1: Stained paper, experiments 103, 62, 79.
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7.2.3 Traces

Powders collected after a shot and the photographic plate, following both indica-
tions of Urutskoev and Lochak, are placed between two metallic plates forming
a plane condenser, under a low 10V tension. The move of a magnetic monopole
in a fixed uniform electric field is analogous to the move of an electric charge in
a fixed uniform magnetic field. The Laplace force is

~F = g( ~H − ~v

c
× ~E) (7.2)

where g is the charge of the magnetic monopole. In a constant electric field
orthogonal to the plane of the plate, a monopole must have a circular move
We expect rotations into the plane of the photographic plate, and it is what
happens rather often, as figures 3 to 7 show.

Figure 3: Circle, diameter: 0,2 mm

Figure 4: Circle, length of the picture: 2,6 mm

Figure 5: circle, length of the picture: 2,47 mm

Figure 6: Circle, length of the picture: 0,95 mm

Figure 7: Circle, length of the picture: 1,45 mm

We must not expect all traces to be circular, because the presence of glass
dishes between plates induces a certainly non-uniform electric field. We must
also notice we do not know a priori what we seek, we see probably only a little
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part of traces, in the absence of knowing completely the dynamics of magnetic
monopoles. We also do not know how monopoles interact with the photographic
plate. It is easier to see the very long and stark traces, more difficult to see the
short and weak traces. Circles are not the only curved traces, we obtain also
horseshoes:

Figure 8: Horseshoe, length of the picture: 0,19 mm

We must expect not perfect circles, notably because the loss of energy gives
a smaller radius. This is visible on the following pictures

Figure 9: Braking, length of the picture: 1,78 mm

Figure 10: Braking, length of the picture: 1,9 mm

Figure 11: Braking, length of the picture: 0,57 mm
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Figure 12: Braking, length of the picture: 0,2 mm

Large traces, as in figures 8 or 12, are actually double traces. This doubling
of traces is more visible when the two traces are well separated:

Figure 13: Double trace, length of the picture: 2,67 mm

Figure 14: Double trace, length of the picture: 0,58 mm

The magnetic monopole of G. Lochak is a chiral object, built from an angle
which is pseudo-scalar. The simpler object of our usual world explaining what
is chirality is a screw. There are left screws and right screws. This property is
verified for several observed traces54. We can see spirals, often with difficulty.
Sometimes the spiral is very visible, as on this trace and its enlargements :

Figure 15: Spiral trace (length 2mm)

54This is at the moment the best proof of the predictive power of the Lochak’s idea of a
Dirac wave for the magnetic monopole.
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Figures 16 and 17: Enlargements of figure 15

Undulations are often seen on enlargements of our pictures:

Figure 18: Wave, length of the picture: 2,67 mm

A wavelength is directly measurable on this picture, where we count 30 wave-
lengths, this gives a 89µm wavelength. A wavelength is also directly measurable
on the following picture:

Figure 19: Wave, length of the picture: 1,54 mm

Considering the four undulations in the middle we can estimate the wave-
length: 130µm. Moreover a second thing is visible on this picture, a double
pattern with alternatively rising and descending traces.

The Lochak’s theory of the magnetic monopole can account for this double
pattern: the wave is a Dirac spinor made of two Weyl spinors, a right one and
a left one. If the proper mass of the monopole is null these two Weyl spinors
are independent and may move one without the other. If the proper mass is
not null the two Weyl spinors are coupled by the mass term. Perhaps what we
see on figure 19 is exactly that, a left wave and a right wave, whose we see only
pieces. They are superposed at ends and successively seen in the middle. A
double pattern is rather common, we can see this in the following figures:

Figure 20: Double pattern, length of the picture: 2 mm

The wavelength is estimated to 143µm.

Figure 21: Double pattern, length of the picture: 1,64 mm

Here the wavelength is estimated to 65µm.
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Figure 22: Double pattern, length of the picture: 2,65 mm

The wavelength is estimated to 177µm. If the wavelength is the de Broglie’s
wavelength, not an artifact55, it is possible to calculate the impulse:

p = mv =
h

λ
(7.3)

For the wave of figure 21 where the wavelength is the shortest the impulse
is about 10−29kgm/s. The big question is then the velocity of the magnetic
monopole. If it is the light speed the energy is very small. Can a wave with
only 0,02eVc−2 make the visible effects on figure 21 ? This is dubious. The only
experimental velocity was given by Urutskoev and it is very low: 20-40 m/s. A
velocity of 20 m/s gives then a mass: 5.10−31kg, similar to the proper mass of
the electron. A velocity still lower is possible since it is perhaps at the end of
the braking that we saw this trace. Another theoretical possibility is given by
(5.42) where the limit speed has a null limit when ǫ is near 1.

Figure 23: Continuous-broken trace, length of the picture: 1,47 mm.

Continuity of many traces is only an appearance coming from a blurred picture.
We can see this on the next picture, where a numeric enlargement allows to
count grains and to estimate the distance between two grains: 8µm.

Figure 24: Enlarged trace, length of the picture: 0,38 mm.

Another frequent aspect of our traces is the quasi-parallelism of very long traces,
as on the following figure:

55G. Lochak thinks that what we see is not the de Broglie’s wavelength, but only a scale
corresponding to the response of the plate to the move of the wave. But then why two patterns
?
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Figure 25: Multiple traces, length of the picture: 1,97 mm.

Figure 25 shows only a part of each trace which extends on the two sides of the
picture. We see five traces nearly parallel and we guess two other ones. We can
suppose the double character of these traces is linked to the double character of
the wave, with a left and a right part. Following this hypothesis we can think
single traces due to superimposed left and right parts. The parallelism of some
traces can come from a weak separation of divergent traces, as on the following
figure:

Figure 26: Divergent traces, length of the picture: 2,67 mm.

These traces present obviously a granular structure, with distances between
grains very similar: this pleads strongly for the hypothesis of a unique wave,
left and right. The wavelength is estimated to 19, 6µm. A few branchings
between traces may be seen:

Figure 27: Branching, length of the picture: 1,87 mm.

Figure 28: Branching, length of the picture: 0,77 mm.

One trace favoring best the hypothesis of the left and right spinors is the fol-
lowing, with an enlargement of the upper trace and another of the down trace:
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Figure 29: Double spiral, length of the picture: 1,94 mm.

The two enlargements are similar to two screws turning inversely.
All these traces show stark differences from physics of particles with an

electric charge. To see the left or right nature of a trace will necessitate a three-
dimensional observation of these traces. Such observations show that monopoles
make depressions on the surface of the plate [22].

7.3 Electrons and monopoles

The invariant wave equation (3.9) of the electron was obtained from the wave
equation of the Lochak’s magnetic monopole (3.11) in the particular case (3.12)
where the wave equation is homogeneous. To do this we replaced the local chiral
gauge by the local electric gauge. We shall then get the invariant wave equation
of the magnetic monopole by using the inverse transformation, replacing the
electric gauge by the chiral gauge. We read this gauge in space algebra as :

φ′ = eiaφ ; QB′ = QB −∇a ; Q =
g

~c
(7.4)

where a is a real number and where g is the charge of the magnetic monopole.
iB is the pseudo-vector of space-time magnetic potential, which is also the
Cabibbo-Ferrari’s potential of the theory of the monopole and which is also the
potential term that is multiplied by the projector P0 in (6.13). The invariant
wave equation of the magnetic monopole reads then :

φ(∇φ̂)σ21 + φQiBφ̂σ21 +mρ = 0. (7.5)

First difference with the case of the electron : this wave equation has none linear
approximation. It is not allowed to add a e−iβ term into the mass term because
β is not chiral gauge invariant.

To get the 8 numeric equations of this invariant wave equation we use a
space-time vector U satisfying

φQBφ̂ = Uµσµ (7.6)
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and we get in the place of (3.21) to (3.28) the system

0 = w3 − U3 +mρ (7.7)

0 = v2 (7.8)

0 = −v1 (7.9)

0 = w0 − U0 (7.10)

0 = −v3 (7.11)

0 = w2 + U1 (7.12)

0 = −w1 − U2 (7.13)

0 = −v0 (7.14)

As with the electron the scalar part of the invariant wave (7.7) is the Lagrangian
density. Lochak immediately remarked that in this Lagrangian density the cur-
rent J = D0 is replaced by K = D3. From there comes in 7.7 the 3 index
instead of a 0 index. We can say that the invariant wave equation is somewhere
simpler than the invariant wave of the electron : all four vµ terms are zero. This
means that the four Dµ vectors are conservative. We recall that the density D0

0

gives in the case of the electron that quantum theory see, from the Schrödinger
equation, as a probability density. Lochak has proved that K = D3 is the con-
servative current linked to the invariance of the Lagrangian density (7.7) under
the chiral gauge (7.4). Vectors D1 and D2, equally conservative, are unknown
of the formalism of Dirac matrices. We have seen in (2.103)-(2.104) that the
electric gauge gives a rotation in the (D1, D2) plane. With the chiral gauge
all four Dµ are invariant. They are with (2.56) the elements of an orthogonal
basis, and their components are the elements of the matrix of the dilatation D
in (3.55).

7.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of the
antiparticle. We note the wave of the antimonopole φa :

φ̂ = φ̂aσ1 ; φa = −φσ1 ; φ = σ1φa (7.15)

The invariant wave equation is then read as

σ1φa(∇φ̂a)σ1σ21 + σ1φQiBφ̂aσ1σ21 +mρ = 0. (7.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φ̂a)σ21 − φaQiBφ̂aσ21 +mρ = 0. (7.17)

This is usually simplified into

φa(∇φ̂a)σ21 + φaQiBφ̂aσ21 −mρ = 0. (7.18)

110



Therefore Lochak remarked immediately that the charge conjugation does not
change the sign of the magnetic charge, contrarily to the case of the electric
charge. Then there is no polarization of the void from magnetic charges.[40]
[41] [42]. But the form invariance of the wave equation indicates that the true
wave equation is (7.17), not (7.18). It should then be more correct to say that,
contrarily to the case of the electron, the charge conjugation changes here not
only the differential term, but also the charge, then it does not change the gauge
nor the sign of the mass-energy.

7.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential A, a con-
travariant vector, this is correct because O. Costa de Beauregard explained [24]
why potential terms are moving with sources that are electric and magnetic
charges. The QB vector, similar to the qA vector, is a covariant vector (see
section 4). This allows the interaction by gauge invariance. We have seen in
section 6 that the Weinberg-Salam θW angle is invariant under the group of di-
lations. An electric charge creating a A potential creates then also, with (6.85),
a potential :

B = cos(θW )A (7.19)

Since this B potential is present in the wave equation of the magnetic monopole,
it is able to interact with the electric charge. This interaction was detailed by
Lochak. The basis of his calculation is the continuity of the wave function
under the group of rotations. The continuity of the wave being comforted by
the continuity of the potential, it is not necessary to review the calculation and
we can use [40] [42]. The B potential used there was questionable because it
is not continuous in each point of the z axis. It is why the result, even if the
physical reasoning was perfect, is a little too short. In the case of a potential
created by an electric charge we have

A0 = −e
r
; B0 = cos(θW )A0 = cos(θW )(−e

r
) = −e cos(θW )

r
= −e

′

r
(7.20)

where e′ = e cos(θW ). The Dirac formula giving the magnetic charge that
Lochak obtained by the only condition of continuity of the wave under the
group of rotations becomes then

e′g

~c
=
n

2
(7.21)

where n is an integer, this gives a magnetic charge which is a multiple of :

g =
~c

2e cos(θW )
. (7.22)

We get then a lightly greater charge, 1.134 times the charge calculated by the
Dirac formula. This charge has been gotten by numerous ways, for instance from
the angular momentum of the electromagnetic field, or from the movement of
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an electric charge in the field of a magnetic monopole. In this case it is a
iB potential that is created by the magnetic charge. The electron sees the A
potential that comes from (6.85) and we get also

A = cos(θW )B (7.23)

Then all is as if the charge of the magnetic monopole should be g′ = g cos(θW ).
In the place of (7.21) we get

eg′

~c
=
n

2
(7.24)

which gives again the modified Dirac formula (7.22). This small change to the
value of the magnetic charge is the only change. The Poincaré’s equation giving
the trajectory of an electron upon a magnetic monopole [35] is unchanged, as
the cone that he introduced. Lochak proved that this cone is the Poinsot cone
of a quantum top [43].

The presence of a σ21 term in the invariant wave equation implies similarly
to the electron case, the existence of two other wave equations obtained by a
circular permutation of indexes 1, 2, 3 in Pauli matrices (see section 5). A fourth
kind of magnetic monopole comes from the wave equation of a fourth neutrino
(6.183) by adding a gauge term. We can then think that four kinds of magnetic
monopoles may exist, three of them similarly to the fact that there are electrons
but also muons and tauons. These three generations must be treated separately
in the electro-weak interactions that we look at now

7.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to (6.250) allowing to Ψ−1 to exist every-
where, we suppose then that the wave of the monopole interacting is

Ψ =

(
φL φn
φ̂n φ̂L

)
; φn = φnL + φnR (7.25)

where φn is the wave of the magnetic monopole. We use here the idea of Lochak
of the monopole as an excited state of the neutrino, and we place the wave of the
monopole where was the place of the neutrino. The supplementary left spinor
φL may be seen as a part of an electric wave. We conserve the form (6.22) of
the covariant derivative. Since only P0 was changed when we went from the
lepton case to the quark case, we shall use the same projectors P± of (6.12) and
we use again projectors Pj in (6.14) to (6.16). In the place of (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i (7.26)

where a and b are real numbers. We get the same commutation relations as in
(6.17), except the last equality which must be replaced by :

P0Pj = PjP0 = −aiPj . (7.27)
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Therefore the gauge group has the same structure U(1)× SU(2). We get with
(7.25)

P+(Ψ) =

(
φL φnL
φ̂nL φ̂L

)
; P−(Ψ) =

(
0 φnR
φ̂nR 0

)
. (7.28)

We recall that

γ21 =

(
iσ3 0
0 iσ3

)
; φRσ3 = φR ; φLσ3 = −φL. (7.29)

We then have

Ψγ21 = i

( −φL φnR − φnL
−φ̂nR + φ̂nL φ̂L

)
; P−(Ψ) = i

(
0 −φnR
φ̂nR 0

)

P0(Ψ) = i

( −aφL (a− b)φnR − aφnL
(−a+ b)φ̂nR + aφ̂nL aφ̂L

)
(7.30)

BP0(Ψ) = i

(
(−a+ b)Bφ̂nR + aBφ̂nL aBφ̂L

−aB̂φL (a− b)B̂φnR − aB̂φnL

)
(7.31)

We use (7.29) and (6.15), then we get

P2(Ψ) =

(
φnL −φL
−φ̂L φ̂nL

)
(7.32)

P1(Ψ) = P2(Ψ)i = i

(
φnL φL
−φ̂L −φ̂nL

)
(7.33)

(W1P1 +W2P2)(Ψ) = i

(
(−W 1 + iW 2)φ̂L (−W 1 − iW 2)φ̂nL
(Ŵ 1 − iŴ 2)φnL (Ŵ 1 + iŴ 2)φL

)
(7.34)

Using W+ and W− defined in (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(
W−φ̂L −W+φ̂nL
Ŵ+φnL −Ŵ−φL

)
(7.35)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

( −φL φnL
−φ̂nL φ̂L

)
(7.36)

W3P3(Ψ) = i

(
−W 3φ̂nL W 3φ̂L
−Ŵ 3φL Ŵ 3φnL

)
(7.37)

The gauge derivative (6.22) is then equivalent to the system

Dφ̂n = ∇φ̂n + i
g1
2
[aBφ̂nL + (−a+ b)Bφ̂nR] + i

g2
2
(W−φ̂L −W 3φ̂nL) (7.38)

Dφ̂L = ∇φ̂L + i
g1
2
aBφ̂L + i

g2
2
(−W+φ̂nL +W 3φ̂L) (7.39)
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With(6.83) we get

g2W
3 =

√
g21 + g22Z

0 + g1B (7.40)

Then (7.38) reads

Dφ̂n = ∇φ̂n + i
g1
2
[(a− 1)Bφ̂nL + (−a+ b)Bφ̂nR]

+ i
g2
2
W−φ̂L − i

2

√
g21 + g22Z

0φ̂nL (7.41)

We want to get ∇φ̂n + iQBφ̂n then we must have

g1(a− 1) = g1(b− a) = 2Q (7.42)

The first equality gives b = 2a− 1 and if this condition is satisfied we get

g1 =
q

cos(θW )
=

e

~c cos(θW )

e(a− 1)

~c cos(θW )
= 2Q =

2g

~c

e(a− 1)

cos(θW )
= 2g =

~c

e cos(θW )

a− 1 =
~c

e2
=

1

α
(7.43)

where α is the fine structure constant and we must take

a = 1 +
1

α
; b = 1 +

2

α
(7.44)

This gives in (7.39)

Dφ̂L = ∇φ̂L + i
g1
2
(1 +

1

α
)Bφ̂L + i

g2
2
(−W+φ̂nL +W 3φ̂L) (7.45)

which is not the derivative term of an electron and remains to interpret. Since
terms containing a are much bigger than other terms the magnetic charge term
seems dominant in (7.41) and (7.45).

This third spinor is not only a theoretical invention: it is perfectly visible
on figure 29. We can enlarge this image and then see two interlaced spirals in
the strong trace and an alone spiral in the weak trace.

7.3.4 Form and gauge invariant wave equation

The couple wave of the monopole - φL wave is similar to the couple electron-
neutrino, we can see this by letting:

Ψm = Ψγ0 =

(
φn φL
φ̂L φ̂n

)
. (7.46)
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The wave equation for the Ψ in (7.25) is then similar to (6.256):

Ψ̃(DΨ)γ012 +mρρρΨ̃χm = 0 ; χm = χγ0. (7.47)

The ρρρ term and χ are obtained by the replacement of Ψl by Ψm in formulas of
B. The wave equation is form invariant under the transformation R in (1.42)
induced by M because we have (6.105) and:

Ψ′ = NΨ ; N =

(
M 0

0 M̂

)
(7.48)

Ψ̃′ = Ψ̃Ñ (7.49)

ρρρ′ = rρρρ (7.50)

m′ρρρ′ = m′rρρρ = mρρρ. (7.51)

The existence of one mass term, then of one impulse-energy vector, implies the
same wavelength for each of the three spinors, this may be seen on figure 29.

The wave equation (7.46) is also gauge invariant under the gauge transfor-
mation defined by (6.119) to (6.122), because P0 has the general form studied
in B and we then get:

Ψ̃′(D′Ψ′)γ012 +mρρρΨ̃′χ′
m = 0. (7.52)

The mechanism of the spontaneously broken gauge symmetry is not necessary,
neither for the electron nor for the magnetic monopole since the wave equations
are simply gauge invariant.

8 Conclusion

Starting from old flaws of the relativistic quantum mechanics, we re-

sume the new insights of the standard model that are allowed by our

new way with Clifford algebras. Physics using a principle of mini-

mum is only a part of undulatory physics. Beyond the confrontation

between theory and experiment, beyond future applications, the stan-

dard model appears both comforted and essential. Only novelties are

the leptonic magnetic monopoles.

8.1 Old flaws

The discovery of the spin of the electron goes back to 1926 and was not predicted
by the physical theory. Physicists have very naturally begun to get round the
novelty by trying to reduce spinorial waves to tensors that were better known.
The study was difficult, the field was cleared by the students of Louis de Broglie,
mainly O. Costa de Beauregard [23] and T. Takabayasi [51] who was able to give
a set of tensorial equations equivalent to the Dirac equation. These tensorial
equations however act on quantities which are quadratic on the wave. But when
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we add the waves these tensors do not add. Therefore the spinorial wave itself
is essential on the physical point of view, propagating and interfering. Only the
solutions of the spinorial wave explain quanta, the true quantum numbers, the
true number of bound states and the true energy levels. Let us go to the end of
the Takabayasi’s attempt, let us replace completely spinors by a set of tensors
and let us solve completely the tensorial equations in the case of the hydrogen
atom. Should we get the true results, the true number of bound states, the true
quantum numbers and the true energy levels? The answer is: no, because true
representations of the rotation group SO(3) use only integer numbers, not the
half-integer numbers which are necessary to get the true results. These true
results are obtained only by taking the representations of SL(2,C), but then we
are in Cl3.

The second reason why scientists did not understand the novelty of the
spinorial wave was the difficulty of the mathematical tools. Two different groups
may be similar in the vicinity of their neutral element. SL(2,C) and L↑

+ or
their subgroups SU(2) and SO(3) are globally different but locally identical.
The present study does not use infinitesimal operators, then it is able to see the
difference between a Lie group and its Lie algebra.

Physical waves imply the use of trigonometric functions, then imply the
complex exponential function that simplifies calculations. Going into a very
unusual axiomatization, the quantum theory has been locked on the only use of
complex numbers. This is equivalent to work only with plane geometry, with a
unique i with square -1 that is the generator of all rotations of the Euclidean
plane. It is somewhere a ”2D software”. The basic tool of the present study
is a ”3D software”, the Clifford algebra of the 3-dimensional physical space.
Next the building of Clifford algebras by recursion on the dimension allows
to use this basic tool in the algebra of space-time as in the algebra of the 6-
dimensional space-time which is necessary for physics of the standard model.
These algebras present all abilities of the linear spaces built on the complex
field, because they are also linear spaces. But they also allow to use products.
The exponential function is then everywhere defined and allows to study a large
variety of undulatory phenomenons. These algebras also allow to use the inverse,
when it exists. Indisputable mathematical rules replace then the not well defined
tensorial products of hermitian spaces and the operators operating on undefined
linear spaces.

8.2 Our work

Two kinds of particles, fermions and bosons, are used by the standard model.
Each kind of fermion is a quantum object with a wave following the Dirac equa-
tion. This is the starting point of our work. Following the initial de Broglie’s
idea of a physical wave linked to the move of any particle, we have introduced
a change in the wave equation which concerns only the mass term. This wave
equation is nonlinear, homogeneous and has the Dirac equation as linear ap-
proximation.

First interesting result, the true sign of the mass-energy comes directly from
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the wave equation, and from the charge conjugation, which changes the sign of
the derivative terms of the wave equation. This form of the charge conjuga-
tion was firstly gotten by the standard model itself, which uses, for the Dirac
equation, the old frame of Dirac matrices.

The second result was very difficult to get, because the resolution of the
Dirac equation is very accurate in the case of bound states of the H atom,
and any change in terms of this wave equation could imply disaster. But for
each bound state a solution of the linear equation exists such that the Yvon-
Takabayasi β angle is everywhere defined and small. This result is very accurate
and surprising. It means that physical bound states are the rare solutions
of the homogeneous nonlinear equation (see Appendix C). We can therefore
understand why there are privileged bound states and why an electron in a H
atom is always in one of these states, never in a linear combination of states.

A second frame for the Dirac wave was introduced by D. Hestenes, the
Clifford algebra of space-time, which is the second starting point of our work. A
comparison between old and new frame is easy if we use the Dirac matrices as
a matrix representation of the space-time vectors. We have reviewed in section
1 and 2 how the relativistic invariance is gotten for fermion waves. These waves
appear very different, they are not vectors or tensors of the space-time, but a
different kind of object, spinors.

The spinorial form of the fermion wave is included in the standard model,
it is one of its main features. What we have done here is only to fully account
for consequences of this fact. The form invariance of the Dirac equation neces-
sitates the use of the SL(2,C) group that is a sub-set of the Clifford algebra of
the physical space, Cl3. We have learned to read all the Dirac theory in this
frame. This algebra is isomorphic to the matrix algebraM2(C) of 2×2 complex
matrices. This algebra allows to see its multiplicative group GL(2,C) = Cl∗3 as
the true group of form invariance of the Dirac theory.

Then we have explained in a simple way how this form invariance, that is a
reinforcement of relativistic invariance, rules not only the Dirac wave equation,
but all the electromagnetism (section 4). This is well hidden in the case of
the electromagnetic field itself because only the SL(2,C) part of the Cl∗3 group
acts upon this boson field (and this is true of any other boson field). The
electromagnetic field has properties resulting from its antisymmetric building
from a pair of spinors. It is a pure bivector, sum ~E + i ~H of a vector ~E and
a pseudo-vector i ~H, without scalar nor pseudo-scalar term. It rotates under a
Lorentz rotation but it is insensitive to the ratio r of a dilation nor to the chiral
angle. This behaviour is imposed by the form of its invariance under Cl∗3.

More generally boson fields may be gotten by antisymmetric product of an
even number of fermions. Their wave is then a physical wave, a function of space
and time with value in the even sub-algebra of the Clifford algebra of the usual
4-dimensional space-time, or of the complete 6-dimensional space-time. Such
a construction was impossible in the old formalism of Dirac matrices, because
the wave had values into a linear space which is not an algebra. The frame
of Clifford algebras allows to use the internal multiplication and the inverse to
build waves of systems of particles. This has interesting physical consequences:
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all waves are true functions of the space-time into well defined sets. These sets
of functions are the Hilbert spaces whose existence is supposed in the standard
model. Clifford algebras have matrix representations, and their elements can
always be considered as operators. The use of creation and annihilation opera-
tors is a consequence of the fact that products of an even number of elements
belong to the same linear space.

The form invariance of the electromagnetism uses a group which fully ac-
counts for two main aspects of the modern physical results: the conservation
of the orientation of the time, the conservation of the orientation of the space.
These two orientations are not a consequence of the invariance group. The form
invariance is only compatible with such conserved orientations, which are a true
experimental discovery of the second part of the twentieth century. The oriented
space is fully compatible with a gauge group which acts differently on left and
right waves. The conservation of an oriented time is compatible with laws of
thermodynamics.

The extended form invariance allows a better understanding of old questions
as: why there is a Planck constant? What is a charge, or a mass, what is the
difference between a charge and a mass? Charges appear in terms necessary to
link a contravariant vector as A to a covariant vector as qA or to link a∇Âj term

to a q(AkÂl − AlÂk) term of a Yang-Mills gauge group. The invariance under
Cl∗3 necessitates q = r2q′. Mass appears in a term necessary to link a differential
term to a constant term in the invariant wave equation. The invariance under
Cl∗3 necessitates m = rm′. Therefore a charge is not a mass, a mass is not a
charge, they have a different behaviour under Cl∗3. These new aspects of old
concepts comes from the supplementary strains added by a greater invariance
group. They are fully compatible with classical and relativistic mechanics and
electromagnetism.

Anything in the previous review is compatible with the standard model,
particularly with the CPT theorem which is now trivially satisfied. Nevertheless
several habits must be abandoned. For instance the Planck factor linking proper
mass to frequency is variable if we consider the full invariance group. This
is completely hidden if the Planck factor is changed into a constant number.
Tensors constructed from the Dirac waves with Dirac matrices do not have
a behaviour allowing the full invariance group. This implies to use Clifford
algebras, only frames where the full invariance group acts. Another bad habit
to abandon is the habit to go up or down an index of tensor, because covariant
and contravariant vectors vary differently under the full invariance group.

If you have paid the preceding prices to account for the full invariance group
you are able to get many awards. The first one is the possibility to read the
electro-weak theory in a much simpler way, with a wave which is a function of
space-time into a Clifford algebra: firstly of the usual space-time if you account
only for the electron-neutrino case and secondly of a 6-dimensional space-time to
account for all fermions of one generation. In this second case the gauge group is
exactly the U(1)×SU(2)×SU(3) group of the standard model, the lepton part
of the complete wave sees only the U(1)×SU(2) part of the gauge group. Then
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electron and neutrino are automatically unable to see strong interactions and the
right wave of the neutrino does not interact at all. A greater gauge group is not
available, this account for the fact that no way exists to transform a quark into
a lepton. Then this justifies the empiric construction, in the standard model, of
conservative quantum numbers as the baryonic number. Another award is the
comprehension of both the existence of exactly three generations of fermions,
completely similar and having nevertheless a separate behaviour in the gauge
invariance, and of four kinds of neutrinos (see 6.4.1)

The generalization to the complete wave of the geometric dilation linked to
the electron wave is possible if only two additional dimensions are added to the
three usual dimensions of the physical space56. The reward to this new strain
on the theory is that this construction includes all parts of the standard model
in a closed frame. Moreover the usual space-time is a well bounded part of
the complete space-time, bounded by the fact that usual space-time is real in
a complete space-time with a natural complex structure (see 6.5). A second
award is a unique dimension for the time in the complete space-time, this time
is then our usual oriented time, oriented from past to future. Another award
is a much more general geometric transformation between the intrinsic space-
time and the usual space-time, as soon as neutrino and quarks are considered.
The study of the wave of all fermions of the first generation introduces, in each
point of the space-time, two Clifford algebras and a geometric transformation
from the intrinsic manifold into the relative manifold. Then the corresponding
mathematical tool is two bundles whose fiber is Cl5,1.

8.3 Principle of minimum

Modern physics always uses a principle of minimum. This was first seen by
Fermat. He understood that light goes in such a way that the duration of the
travel between two points is minimal. This was secondly seen in Hamiltonian
mechanics, where the move of any object is made in a way such that a quantity
called action is minimal. These two principles of minimum where united by
de Broglie and his discovery of the wave linked to the move of any material
particle. So the Dirac wave equation of an electron or of other fermions may
also be gotten from such a principle of minimum. But why?

Clifford algebra and the form invariance group give a strange answer. The
true wave equation of a unique fermion is the invariant form of the wave equa-
tion. And the scalar part of this wave equation is exactly the Lagrangian equa-
tion. This Lagrangian density is not truly minimal. In fact, it is exactly zero,
because the wave equation is homogeneous. The second part of the answer
comes from the fact that you can get the seven other equations by using the
calculus of variations. This is probably not very correctly done, because an
assumption is made that the infinitesimal variation of the wave is null on a

56We used in [18] two greater Clifford algebras, Cl2,3 and Cl3,4 which cannot allow the
relation (6.211) between the reverse in space-time algebra and the reverse in the complete
algebra. Relation (6.211) implies to use only Cl5,1, or Cl1,5 but it happens to be the same
algebra.
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boundary of the integration volume. It is easy to get this assumption in the
case of a bound state, but nobody proved that it is always possible for a propa-
gating wave. Since the true link between the Lagrangian density and the wave
equation is not what we thought, an error there is not very important. The
most important consequence is that the wave is more general than the principle
of minimum: it is easy to study wave equations which cannot be gotten from a
Lagrangian density (see 5.3).

Another part of this strange answer is the non equality between the light
speed as limit speed of any Dirac wave and the limit speed of other waves. We
have gotten a limit speed different from the light speed in the frame of a wave
equation coming not from a Lagrangian density (see 5.3.1).

8.4 Theory versus experiment

The world of the particles with magnetic charges is different and we are, in the
knowledge of this new world, probably no more aware than Colombus after his
first journey. We know it exists and this is already something.

The two parts of this article, the theoretical part formed by the six first
sections and three appendices, the experimental part in one modest section,
seem in the same time disconnected and disproportionate. We can expect that
more experiments will bring many new properties of the magnetic world.

These two parts are however doubly linked. Firstly probabilities, essential in
quantum theory, seem absent here. In our powders, random seems not to play
a very big role. When titanium is transformed at some place, all that can be
transformed is changed. Random may be the reason why results are variable,
but to get copper instead of iron, chromium instead of manganese can also come
from differences in temperature, pressure, duration of the discharge and so on.
We know nothing until now about that.

Second link between our two parts, space-time is different on what we
thought it was. In the theoretical part we explained how a second space-time
manifold appears, anisotropic, and how the spinor wave makes a bridge between
these two manifolds. This bridge can be extended to the complete space-time
which allows to include electro-weak and strong interactions. The usual space-
time is not the fundamental entity, it is only a part, well defined, of a complete
space-time where complex numbers appear naturally. The geometric transfor-
mation linked to the wave contains a sum of direct and of inverse dilations. It
is then very different from simple Lorentz rotations. Geometric transformations
are only induced by elements of a group coming from the space algebra. They
appear secondary objects, the fundamental one being the wave.

In the experimental part also space seems very different on what we thought,
since kernels of atoms that we think separated by huge distances in comparison
with their own size, seem able to put together their nucleons and to reallocate
them as if the distance between them was cancelled.
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8.5 Future applications

What will be the applications of magnetic monopoles is also a premature ques-
tion and this we are able to imagine today will probably have few to share with
the very practical applications which will go out laboratories in the future.

Urutskoev who is a nuclear physicist thinks to new nuclear reactors, intrin-
sically safe, driven by very intense magnetic fields. Another exciting possibility
is that magnetism may be linked to gravitation. There are some theoretical in-
dexes there, because G. Lochak [45] has explained that it is a magnetic photon
which is linked to the graviton in the fusion theory of Louis de Broglie.

A third kind of possible practical consequence is about geology. The mag-
netic monopole of G. Lochak is a kind of excited neutrino. The Sun can produce
magnetic monopoles which will arrive on our Earth, mainly at the magnetic
poles. This was experimentally satisfied [1]. These monopoles are likely to in-
duce the same transformations we see at the laboratory, notably to produce
hydrogen. This may change the process of fossilization and the creation of de-
posits. The future of the dynamo creating the Earth’s magnetic field may also
be involved if the life-time of monopoles is sufficient.

Evidently if magnetic monopoles are produced in the heart of the Sun, they
are able to produce effects on magnetic fields. The study of the magnetic
monopoles is perhaps the best way to progress in the comprehension of our
Sun.

It is easier, it needs less imagination, to prospect theoretical applications.
When Lorentz studied the electron particle he used a classical model of ex-
tended electron, with a mass-energy resulting from the energy of the electric
field created by the electron’s charge. If the electron is a point this energy is
infinite, which is unfortunate. If the electron is extended, forces coming from
the distribution of charges are repulsive, then must be offset by forces of attrac-
tion. These forces may only be weak forces, since the electron knows only the
electro-weak forces.

We can also have a good idea of what will not allow the double space-
time manifolds. The existence of a second space-time manifold changes nothing
to properties of the first manifold, this into which we move and observe our
universe. We must then not to dream to things we know forbidden by physical
laws, as to overtake the limit speed. Accelerate until this limit speed remains
impossible because the mass goes to infinite when the speed approaches the
limit speed, even if this limit speed is not necessarily equal to the light speed in
the void. Another restriction which has no chance to change is the one linked
to the time arrow. Any journey back into past will stay forbidden since the
invariance group conserves the orientation of our time.

8.6 Improved standard model

The different parts of the work that we present here are strongly interacting and
reinforcing one another. The Cl∗3 group is easier to see from the invariant form
(3.10) of the wave equation. The behaviour of the mass term used in section
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4 is a sufficient reason to prefer the nonlinear homogeneous wave equation to
its linear approximation, the Dirac equation. We got also the electro-weak
gauge group in a much simpler way. It was easy to extend this model from the
lepton sector to the quark sector. We can explain not only why there are three
completely similar generations (and four neutrinos57), but also why the different
generations must be separately treated in the gauge theory. We can explain why
the complete gauge group is the U(1)×SU(2)×SU(3) gauge group found from
experiments and why the SU(3) gauge group does not act upon the lepton part
of the complete wave, which was before postulated. The link between the wave
and the space-time geometry is reinforced by the fact that this link survives to
the extension of the wave to all fermions of a generation, which necessitates the
use of two supplementary dimensions of space.

A greater invariance group implies strong new strains. These news strains
imply a better understanding of old concepts and induce the only way to go
further. For instance the relation φ′ = Mφ is not new, it was used under
equivalent form since the Pauli equation in the twenty’s. But it indicates to
us that the relation between the φ wave and the Weyl’s spinors ξ and η is
invariant, that the right and left parts of the wave are invariant, that M and φ
are similar. When you know that, it is evident that the wave of a pair electron-

neutrino must read Ψl =

(
φe φn
φ̂n φ̂e

)
, and this equality gives then the form

of the projectors Pµ. Next these projectors have naturally the U(1) × SU(2)
structure of the electroweak gauge group. It is also easy to get the charges of
quarks u and d simply by changing P0 to P ′

0, changing only one coefficient from
1 into −1/3. Strains coming from the invariance group imply also that you have
only one simple way to get a wave with all fermions of one generation, which

is Ψ =

(
Ψl Ψr

Ψg Ψb

)
. But after that if you want again to have the same link

as before between the wave and the geometry of space-time, it is necessary to
dispose of (6.211). This in fact requires to use the link (2.125), well known in the
standard model, existing between the wave of the particle and the wave of the
antiparticle. This link restrict the value of the wave from Cl2,3 =M4(C) to its
sub-algebra Cl1,3 and from Cl2,5 =M8(C) to its sub-algebra Cl1,5. It happens
that this Clifford algebra is isomorphic to Cl5,1 and this isomorphism is both
the reason why the non-isomorphic sub-algebras Cl1,3 and Cl3,1 are equally
used, and a reason to be more confident on the standard model and its precepts
issued from a long building out of numerous experiments. Another reason to
be confident both in the standard model and in the use of Clifford algebra is
the link 6.6 between the cancellation of right waves, except the electron wave,
and the existence of a mathematical inverse, used to build waves of systems.
This should allow to build the wave of a proton or a neutron from their internal
quarks.

Questions of the initial quantum theory are today nearly forgotten. Why

57The fourth neutrino is not able to interact by electro-weak or strong forces, it is then a
part of the black matter.
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there is a Planck constant and why there are complex numbers were two of
them. Since nobody had a clear and simple answer, these questions were put
“under the table”. The existence of the Planck factor, that links proper mass
to frequency of the wave, is directly linked to supplementary strains of the
invariance group. Complex numbers are also simply explained, first by the
isomorphism between Cl3 and the algebra generated by Pauli matrices, next
by the matrix representation of Cl1,3, finally by the matrix representation of
Cl5,1. This algebra is isomorphic to a sub-algebra of the algebra M8(C) of
8 × 8 matrices on the complex field. The complete wave is then a function of
the space-time with value into Cl5,1, this justifies most of the mathematical
apparatus of the standard model. On the physical point of view, this allows to
build the boson fields by antisymmetric products of fermions in even number.

New strains used here also explain why old attempts were not successful. We
think to the numerous attempts made in the thirty’s to unify mechanics and
electromagnetism. Such an unification is limited by the fact that a charge is
not a mass when you use the full invariance group. Another attempt, made to
unify the different parts of the U(1)×SU(2)×SU(3) gauge group as subgroups
of SU(5) or SO(10) had no more success, predicting a possible disintegrating
proton which was not experimentally found. The structure of the gauge group
comes from the structure of the complete wave and does not change when you
increase the energy. The structure of the wave is then fully compatible with
protons without disintegration, and more generally with all known aspects of
modern physics.

The standard model shall remain so more essential because the wave equa-
tions with a mass term are compatible both with the form invariance and with
the gauge invariance. We have then no new particles to await, with the only
exception of the leptonic magnetic monopoles that we have yet observed.

A Calculations in Clifford algebras

A.1 Invariant equation and Lagrangian

Let M be an invertible matrix, element of Cl∗3, with determinant reiθ. Let R
and R be Lorentz dilations such as :

R : x 7→ x′ = R(x) =MxM† ; R : x 7→ x′ = R(x) =MxM̂. (A.1)

Let P be the matrix such as:

M =
√
rei

θ
2P (A.2)

and let L and L be dilations such as :

L : x 7→ x′ = L(x) = PxP † ; L : x 7→ x′ = L(x) = PxP̂ . (A.3)

We have:

reiθ = det(M) =MM =
√
rei

θ
2P

√
rei

θ
2P = reiθPP (A.4)
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we get then
PP = 1 ; P = P−1 ; L = L−1 (A.5)

P is then an element of SL(2,C) and L is a Lorentz rotation. We know, for
such a rotation, noting (L) the matrix of L in an orthonormal basis and g the
signature-matrix :

g =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (A.6)

that we have, M t being the transposed matrix 58 of M :

(L)−1 = g(L)tg ; (L)g = g(L)t. (A.7)

But we have also :

R(x) =MxM† =
√
rei

θ
2Px

√
re−i θ

2P † = rPxP † = rL(x) (A.8)

therefore
R = rL ; (R) = r(L). (A.9)

We have also:

R(x) =MxM̂ =
√
rei

θ
2Px

√
re−i θ

2 P̂ = rPxP̂ = rL(x) (A.10)

R = rL ; (R) = r(L). (A.11)

Multiplying (A.7) by r we get :

(R)g = g(R)t ; (R) = g(R)tg. (A.12)

which gives for j = 1, 2, 3 and k = 1, 2, 3:

R
0

0 = R0
0 ; R

j

0 = −R0
j ; R

0

j = −Rj
0 ; R

k

j = Rj
k (A.13)

Consequently lines as columns of the matrix Rν
µ are orthogonal, because we

have, for R and R, with:

Rµ =MσµM
† = Rν

µσν ; Rµ =MσµM̂ = R
ν

µσν (A.14)

Rµ ·Rν = Rµ ·Rν = δµνρ
2 (A.15)

where δ00 = 1, δ11 = δ22 = δ33 = −1, δµν = 0 if µ 6= ν. We have

φAφ̂ = Aµφσµφ̂ = A0D0 −
j=3∑

j=1

AjDj

= A0(D
µ

0σµ)−
j=3∑

j=1

Aj(D
µ

j σµ) (A.16)

58The transposition exchanges lines and columns of matrices : if M =

(
a b
c d

)
then Mt =

(
a c
b d

)
. We have, for any matrices A and B, (AB)t = BtAt and det(At) = det(A)
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But the link between the Dµ and the Dµ is the same as between the Rµ and
the Rµ and we get with (A.13) for j = 1, 2, 3 and k = 1, 2, 3:

D
0

0 = D0
0 ; D

j

0 = −D0
j ; D

0

j = −Dj
0 ; D

k

j = Dj
k (A.17)

which gives

φAφ̂ = A0(D
0

0 +

j=3∑

j=1

D
j

0σj)−
j=3∑

j=1

Aj(D
0

j +

k=3∑

k=1

D
k

jσk)

= A0(D
0
0 −

j=3∑

j=1

D0
jσj)−

j=3∑

j=1

Aj(−Dj
0 +

k=3∑

k=1

Dj
kσk)

= AνD
ν
µσ

µ (A.18)

The scalar part is then

< φAφ̂ >= Dν
0Aν = AµJ

µ (A.19)

The corresponding term with the Dirac matrices is

1

2
[(ψγµqAµ)ψ) + (ψγµqAµψ)

†]

=
q

2
Aµ[ψγ

µψ + (ψγµψ)] = qAµψγ
µψ

= qAµJ
µ. (A.20)

We get next

1

2
[(ψγµ(−i)∂µψ) + (ψγµ(−i)∂µψ)†]

=
i

2
(−ψγµ∂µψ + ∂µψγ

µψ)

=
i

2
[−ξ†∂0ξ − η†∂0η + (∂0ξ

†)ξ + (∂0η
†)η]

+
i

2

j=3∑

j=1

[−ξ†σj∂jξ + η†σj∂jη + (∂jξ
†)σjξ − (∂jη

†)σjη] (A.21)

which gives

1

2
[(ψγµ(−i)∂µψ) + (ψγµ(−i)∂µψ)†] (A.22)

=
i

2
(ξ1∂0ξ

∗
1 + ξ2∂0ξ

∗
2 + η1∂0η

∗
1 + η2∂0η

∗
2 − ξ∗1∂0ξ1 − ξ∗2∂0ξ2 − η∗1∂0η1 − η∗2∂0η2)

+
i

2
(ξ1∂1ξ

∗
2 + ξ2∂1ξ

∗
1 − η1∂1η

∗
2 − η2∂1η

∗
1 − ξ∗1∂1ξ2 − ξ∗2∂1ξ1 + η∗1∂1η2 + η∗2∂1η1)

+
1

2
(−ξ1∂2ξ∗2 + ξ2∂2ξ

∗
1 + η1∂2η

∗
2 − η2∂2η

∗
1 − ξ∗1∂2ξ2 + ξ∗2∂2ξ1 + η∗1∂2η2 − η∗2∂2η1)

+
i

2
(ξ1∂3ξ

∗
1 − ξ2∂3ξ

∗
2 − η1∂3η

∗
1 + η2∂3η

∗
2 − ξ∗1∂3ξ1 + ξ∗2∂3ξ2 + η∗1∂3η1 − η∗2∂3η2).
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In the Pauli algebra we have

φ(∇φ̂)σ21 (A.23)

= 2i

(
η∗1 η∗2
−ξ2 ξ1

)(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
−η1 −ξ∗2
−η2 ξ∗1

)

and with (2.91) we get

φ(∇φ̂)σ21 =

(
w3 + w0 − iv3 − iv0 v2 + iv1 + iw2 − w1

v2 − iv1 + iw2 + w1 w3 − w0 − iv3 + iv0

)
= (A.24)

2i




η∗1(−∂0η1 + ∂1η2 − i∂2η2 + ∂3η1) η∗1(−∂0ξ∗2 − ∂1ξ
∗
1 + i∂2ξ

∗
1 + ∂3ξ

∗
2)

+η∗2(−∂0η2 + ∂1η1 + i∂2η1 − ∂3η2) +η∗2(∂0ξ
∗
1 + ∂1ξ

∗
2 + i∂2ξ

∗
2 + ∂3ξ

∗
1)

−ξ2(−∂0η1 + ∂1η2 − i∂2η2 + ∂3η1) −ξ2(−∂0ξ∗2 − ∂1ξ
∗
1 + i∂2ξ

∗
1 + ∂3ξ

∗
2)

+ξ1(−∂0η2 + ∂1η1 + i∂2η1 − ∂3η2) +ξ1(∂0ξ
∗
1 + ∂1ξ

∗
2 + i∂2ξ

∗
2 + ∂3ξ

∗
1)



.

This gives

w3 + w0 − iv3 − iv0 = (A.25)

2i(−η∗1∂0η1 − η∗2∂0η2 + η∗1∂1η2 + η∗2∂1η1 − iη∗1∂2η2 + iη∗2∂2η1 + η∗1∂3η1 − η∗2∂3η2)

w3 − w0 − iv3 + iv0 = (A.26)

2i(ξ2∂0ξ
∗
2 + ξ1∂0ξ

∗
1 + ξ2∂1ξ

∗
1 + ξ1∂1ξ

∗
2 − iξ2∂2ξ

∗
1 + iξ1∂2ξ

∗
2 − ξ2∂3ξ

∗
2 + ξ1∂3ξ

∗
1)

v2 − iv1 + iw2 + w1 = (A.27)

2i(ξ2∂0η1 − ξ1∂0η2 − ξ2∂1η2 + ξ1∂1η1 + iξ2∂2η2 + iξ1∂2η1 − ξ2∂3η1 − ξ∗1∂3η2)

v2 + iv1 + iw2 − w1 = (A.28)

2i(−η∗1∂0ξ∗2 − η∗2∂0ξ
∗
1 − η∗1∂1ξ

∗
1 + η∗2∂1ξ

∗
2 + iη∗1∂2ξ

∗
1 + iη∗2∂2ξ

∗
2 + η∗1∂3ξ

∗
2 + η∗2∂3ξ

∗
1).

Adding and subtracting (A.25) and (A.26) we get

w3 − iv3 =− iη∗1∂0η1 − iη∗2∂0η2 + iξ2∂0ξ
∗
2 + iξ1∂0ξ

∗
1

+ iη∗1∂1η2 + iη∗2∂1η1 + iξ2∂1ξ
∗
1 + iξ1∂1ξ

∗
2 (A.29)

+ η∗1∂2η2 − η∗2∂2η1 + ξ2∂2ξ
∗
1 − ξ1∂2ξ

∗
2

+ iη∗1∂3η1 − iη∗2∂3η2 − iξ2∂3ξ
∗
2 + iξ1∂3ξ

∗
1

w0 − iv0 =− iη∗1∂0η1 − iη∗2∂0η2 − iξ2∂0ξ
∗
2 − iξ1∂0ξ

∗
1

+ iη∗1∂1η2 + iη∗2∂1η1 − iξ2∂1ξ
∗
1 − iξ1∂1ξ

∗
2 (A.30)

+ η∗1∂2η2 − η∗2∂2η1 − ξ2∂2ξ
∗
1 + ξ1∂2ξ

∗
2

+ iη∗1∂3η1 − iη∗2∂3η2 + iξ2∂3ξ
∗
2 − iξ1∂3ξ

∗
1 .
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Separating the real and the imaginary part of (A.29) we get

2

i
w3 = (A.31)

ξ1∂0ξ
∗
1 + ξ2∂0ξ

∗
2 + η1∂0η

∗
1 + η2∂0η

∗
2 − ξ∗1∂0ξ1 − ξ∗2∂0ξ2 − η∗1∂0η1 − η∗2∂0η2

+ ξ1∂1ξ
∗
2 + ξ2∂1ξ

∗
1 − η1∂1η

∗
2 − η2∂1η

∗
1 − ξ∗1∂1ξ2 − ξ∗2∂1ξ1 + η∗1∂1η2 + η∗2∂1η1

− i(−ξ1∂2ξ∗2 + ξ2∂2ξ
∗
1 + η1∂2η

∗
2 − η2∂2η

∗
1 − ξ∗1∂2ξ2 + ξ∗2∂2ξ1 + η∗1∂2η2 − η∗2∂2η1)

+ ξ1∂3ξ
∗
1 − ξ2∂3ξ

∗
2 − η1∂3η

∗
1 + η2∂3η

∗
2 − ξ∗1∂3ξ1 + ξ∗2∂3ξ2 + η∗1∂3η1 − η∗2∂3η2

This gives with (A.22)

1

2
[(ψγµ(−i)∂µψ) + (ψγµ(−i)∂µψ)†] = w3 (A.32)

and with (A.20) we get (2.100). The Tetrode’s impulse-energy tensor coming
from the invariance of the Lagrangian density under translations satisfies

−Tµ
λ =

1

2
[(ψγµ(−i∂λ + qAλ)ψ + ((ψγµ(−i∂λ + qAλ)ψ)

†] (A.33)

We get then from (A.32)

w3 = −Tµ
µ − qψγµAµψ

w3 = −Tµ
µ − V 0

w3 + V 0 = −tr(T ) (A.34)

Now the imaginary part of (A.29) gives

−2v3 = ∂0(ξ1ξ
∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2) (A.35)

+ ∂1(ξ1ξ
∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1)

+ ∂2i(ξ1ξ
∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1)

+ ∂3(ξ1ξ
∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2)

= ∂µD
µ
3 = ∇ ·D3 (A.36)

Now the imaginary part of (A.30) gives

2v0 = ∂0(ξ1ξ
∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2) (A.37)

+ ∂1(ξ1ξ
∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1)

+ ∂2i(ξ1ξ
∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1)

+ ∂3(ξ1ξ
∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2)

= ∂µD
µ
0 = ∇ ·D0 (A.38)

and we get the conservation of the current of probability. From (A.18) we get

qAνD
ν
µσ

µ = φqAφ̂ = V = V µσµ

= V 0 − V 1σ1 − V 2σ2 − V 3σ3 (A.39)

V j = −qAνD
ν
j = −qA ·Dj ; j = 1, 2, 3. (A.40)
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The real part of (A.30) gives with (2.95)

2

i
w0 = 2iV 3 =

2

i
qA ·D3 = (A.41)

− ξ1∂0ξ
∗
1 − ξ2∂0ξ

∗
2 + η1∂0η

∗
1 + η2∂0η

∗
2 + ξ∗1∂0ξ1 + ξ∗2∂0ξ2 − η∗1∂0η1 − η∗2∂0η2

− ξ1∂1ξ
∗
2 − ξ2∂1ξ

∗
1 − η1∂1η

∗
2 − η2∂1η

∗
1 + ξ∗1∂1ξ2 + ξ∗2∂1ξ1 + η∗1∂1η2 + η∗2∂1η1

− i(ξ1∂2ξ
∗
2 − ξ2∂2ξ

∗
1 + η1∂2η

∗
2 − η2∂2η

∗
1 + ξ∗1∂2ξ2 − ξ∗2∂2ξ1 + η∗1∂2η2 − η∗2∂2η1)

− ξ1∂3ξ
∗
1 + ξ2∂3ξ

∗
2 − η1∂3η

∗
1 + η2∂3η

∗
2 + ξ∗1∂3ξ1 − ξ∗2∂3ξ2 + η∗1∂3η1 − η∗2∂3η2

Now adding and subtracting (A.27) and (A.28) we get

v2 + iw2 =iξ2∂0η1 − iξ1∂0η2 − iη∗1∂0ξ
∗
2 + iη∗2∂0ξ

∗
1

− iξ2∂1η2 + iξ1∂1η1 − iη∗1∂1ξ
∗
1 + iη∗2∂1ξ

∗
2 (A.42)

− ξ2∂2η2 − ξ1∂2η1 − η∗1∂2ξ
∗
1 − η∗2∂2ξ

∗
2

− iξ2∂3η1 − iξ1∂3η2 + iη∗1∂3ξ
∗
2 + iη∗2∂3ξ

∗
1

w1 − iv1 =iξ2∂0η1 − iξ1∂0η2 + iη∗1∂0ξ
∗
2 − iη∗2∂0ξ

∗
1

− iξ2∂1η2 + iξ1∂1η1 + iη∗1∂1ξ
∗
1 − iη∗2∂1ξ

∗
2 (A.43)

− ξ2∂2η2 − ξ1∂2η1 + η∗1∂2ξ
∗
1 + η∗2∂2ξ

∗
2

− iξ2∂3η1 − iξ1∂3η2 − iη∗1∂3ξ
∗
2 − iη∗2∂3ξ

∗
1 .

The real part of (A.42) gives

2v2 = ∂0i(−ξ1η2 + ξ2η1 + ξ∗1η
∗
2 − ξ∗2η

∗
1) (A.44)

+ ∂1i(ξ1η1 − ξ2η2 − ξ∗1η
∗
1 + ξ∗2η

∗
2)

+ ∂2(−ξ1η1 − ξ2η2 − ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂3i(−ξ1η2 − ξ2η1 + ξ∗1η
∗
2 + ξ∗2η

∗
1)

= −∂µDµ
2 = −∇ ·D2 (A.45)

which gives, with (2.93)
∇ ·D2 = −2v2 = 2V 1 (A.46)

and we get with (A.40)
∇ ·D2 + 2qA ·D1 = 0 (A.47)

which is (2.104). The imaginary part of (A.42) gives with (2.97)

2w2 = 0 = (A.48)

− ξ1∂0η2 + ξ2∂0η1 − η1∂0ξ2 − η2∂0ξ1 − ξ∗1∂0η
∗
2 + ξ∗2∂0η

∗
1 − η∗1∂0ξ

∗
2 + η∗2∂0ξ

∗
1

+ ξ1∂1η1 − ξ2∂1η2 − η1∂1ξ1 + η2∂1ξ2 + ξ∗1∂1η
∗
1 − ξ∗2∂1η

∗
2 − η∗1∂1ξ

∗
1 + η∗2∂1ξ

∗
2

+ i(ξ1∂2η1 + ξ2∂2η2 − η1∂2ξ1 − η2∂2ξ2 − ξ∗1∂2η
∗
1 − ξ∗2∂2η

∗
2 + η∗1∂2ξ

∗
1 + η∗2∂2ξ

∗
2)

− ξ1∂3η2 − ξ2∂3η1 + η1∂3ξ2 − η2∂3ξ1 − ξ∗1∂3η
∗
2 − ξ∗2∂3η

∗
1 + η∗1∂3ξ

∗
2 + η∗2∂3ξ

∗
1 .
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The real part of (A.43) gives with (2.98)

2w1 = 0 = (A.49)

i(−ξ1∂0η2 + ξ2∂0η1 − η1∂0ξ2 + η2∂0ξ1 + ξ∗1∂0η
∗
2 − ξ∗2∂0η

∗
1 + η∗1∂0ξ

∗
2 − η∗2∂0ξ

∗
1)

+ i(ξ1∂1η1 − ξ2∂1η2 − η1∂1ξ1 + η2∂1ξ2 − ξ∗1∂1η
∗
1 + ξ∗2∂1η

∗
2 + η∗1∂1ξ

∗
1 − η∗2∂1ξ

∗
2)

− ξ1∂2η1 − ξ2∂2η2 + η1∂2ξ1 + η2∂2ξ2 − ξ∗1∂2η
∗
1 − ξ∗2∂2η

∗
2 + η∗1∂2ξ

∗
1 + η∗2∂2ξ

∗
2

+ i(−ξ1∂3η2 − ξ2∂3η1 + η1∂3ξ2 + η2∂3ξ1 + ξ∗1∂3η
∗
2 + ξ∗2∂3η

∗
1 − η∗1∂3ξ

∗
2 − η∗2∂3ξ

∗
1)

The imaginary part of (A.43) gives

−2v1 = ∂0(−ξ1η2 + ξ2η1 − ξ∗1η
∗
2 + ξ∗2η

∗
1) (A.50)

+ ∂1(ξ1η1 − ξ2η2 + ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂2i(ξ1η1 + ξ2η2 − ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂3(−ξ1η2 − ξ2η1 − ξ∗1η
∗
2 − ξ∗2η

∗
1)

= ∂µD
µ
1 = ∇ ·D1 (A.51)

which gives, with (2.94)

∇ ·D1 = −2v1 = −2V 2 (A.52)

and we get with (A.40)
∇ ·D1 − 2qA ·D2 = 0 (A.53)

which is (2.103).

A.2 Calculation of the reverse in Cl5,1

Here, as in 1.5, indexes µ, ν, ρ . . . have value 0, 1, 2, 3 and indexes a, b, c, d, e have
value 0, 1, 2, 3, 4, 5. We get59

Λµν = ΛµΛν =

(
0 −γµ
γµ 0

)(
0 −γν
γν 0

)
=

(
−γµν 0
0 −γµν

)
(A.54)

Λµνρ = ΛµνΛρ =

(
−γµν 0
0 −γµν

)(
0 −γρ
γρ 0

)
=

(
0 γµνρ

−γµνρ 0

)
(A.55)

Λ0123 = Λ01Λ23 =

(
γ0123 0
0 γ0123

)
=

(
i 0
0 i

)
, i =

(
iI2 0
0 −iI2

)
(A.56)

We get also

Λ45 = Λ4Λ5 =

(
0 I4
I4 0

)(
0 −i

i 0

)
=

(
i 0
0 −i

)
= −Λ54 (A.57)

Λ012345 =

(
i 0
0 i

)(
i 0
0 −i

)
=

(
−I4 0
0 I4

)
(A.58)

Λ01235 = Λ0123Λ5 =

(
i 0
0 i

)(
0 −i

i 0

)
=

(
0 I4

−I4 0

)
. (A.59)

59I2, I4, I8 are unit matrices. The identification process allowing to include R in each real
Clifford algebra allows to read a instead of aIn for any complex number a.
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Similarly we get60

Λµ4 =

(
−γµ 0
0 γµ

)
; Λµ5 =

(
iγµ 0
0 iγµ

)
(A.60)

Λµν4 =

(
0 −γµν

−γµν 0

)
; Λµν5 =

(
0 γµν i

−γµν i 0

)
(A.61)

Λµνρ4 =

(
γµνρ 0
0 −γµνρ

)
; Λµνρ5 =

(
γµνρi 0
0 γµνρi

)
(A.62)

Λµ45 =

(
0 γµi
γµi 0

)
; Λµν45 =

(
−γµν i 0

0 γµν i

)
(A.63)

Λµνρ45 =

(
0 −γµνρi

−γµνρi 0

)
; Λ01234 =

(
0 i

i 0

)
(A.64)

Scalar and pseudo-scalar terms read

αI8 + ωΛ012345 =

(
(α− ω)I4 0

0 (α+ ω)I4

)
(A.65)

αI8 − ωΛ012345 =

(
(α+ ω)I4 0

0 (α− ω)I4

)
(A.66)

For the calculation of the 1-vector term

NaΛa = N4Λ4 +N5Λ5 +NµΛµ

we let
β = N4 ; δ = N5 ; a = Nµγµ. (A.67)

This gives

NaΛa =

(
0 βI4 − δi− a

βI4 + δi+ a 0

)
. (A.68)

For the calculation of the 2-vector term

NabΛab = N45Λ45 +Nµ4Λµ4 +Nµ5Λµ5 +NµνΛµν

we let
ǫ = N45 ; b = Nµ4γµ ; c = Nµ5γµ ; A = Nµνγµν (A.69)

This gives with (A.54) and (A.60)

NabΛab =

(
ǫi− b+ ic−A 0

0 −ǫi+ b+ ic−A

)
. (A.70)

For the calculation of the 3-vector term

NabcΛabc = Nµ45Λµ45 +Nµν4Λµν4 +Nµν5Λµν5 +NµνρΛµνρ

60
i anti-commutes with any odd element in space-time algebra and commutes with any even

element.
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we let

d = Nµ45γµ ; B = Nµν4γµν ; C = Nµν5γµν ; ie = Nµνργµνρ (A.71)

This gives with (A.55) and (A.61)

NabcΛabc =

(
0 di−B+ iC+ ie

−id−B− iC− ie 0

)
. (A.72)

For the calculation of the 4-vector term

NabcdΛabcd = Nµν45Λµν45 +Nµνρ4Λµνρ4 +Nµνρ5Λµνρ5 +N0123Λ0123

we let

D = Nµν45γµν ; if = Nµνρ4γµνρ ; ig = Nµνρ5γµνρ ; ζ = N0123 (A.73)

This gives with (A.56) and (A.62)

NabcdΛabcd =

(
−iD+ if + g + ζi 0

0 iD− if + g + ζi

)
. (A.74)

For the calculation of the pseudo-vector term

NabcdeΛabcde = Nµνρ45Λµνρ45 +N01234Λ01234 +N01235Λ01235

we let
ih = Nµνρ45γµνρ ; η = N01234 ; θ = N01235 (A.75)

This gives with (A.59) and (A.64)

NabcdeΛabcde =

(
0 −h+ ηi+ θI4

−h+ ηi− θI4

)
. (A.76)

We then get

Ψ =

(
Ψl Ψr

Ψg Ψb

)
(A.77)

=




(α− ω)I4 + (−b+ g)− (A+ iD) (β + θ)I4 − (a+ h) + (−B+ iC)
+i(c+ f) + (ζ + ǫ)i +i(−d+ e) + (−δ + η)i

(β − θ)I4 + (a− h)− (B+ iC) (α+ ω)I4 + (b+ g) + (−A+ iD)
−i(d+ e) + (δ + η)i +i(c− f) + (ζ − ǫ)i




This implies

Ψl = (α− ω)I4 + (−b+ g)− (A+ iD) + i(c+ f) + (ζ + ǫ)i (A.78)

Ψr = (β + θ)I4 − (a+ h) + (−B+ iC) + i(−d+ e) + (−δ + η)i (A.79)

Ψg = (β − θ)I4 + (a− h)− (B+ iC)− i(d+ e) + (δ + η)i (A.80)

Ψb = (α+ ω)I4 + (b+ g) + (−A+ iD) + i(c− f) + (ζ − ǫ)i (A.81)
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In Cl1,3 the reverse of

A =< A >0 + < A >1 + < A >2 + < A >3 + < A >4

is
Ã =< A >0 + < A >1 − < A >2 − < A >3 + < A >4

we must change the sign of bivectors A, B, iC, iD, and trivectors ic, id, ie, if
and we then get

Ψ̃l = (α− ω)I4 + (−b+ g) + (A+ iD)− i(c+ f) + (ζ + ǫ)i (A.82)

Ψ̃r = (β + θ)I4 − (a+ h) + (B− iC) + i(d− e) + (−δ + η)i (A.83)

Ψ̃g = (β − θ)I4 + (a− h) + (B+ iC) + i(d+ e) + (δ + η)i (A.84)

Ψ̃b = (α+ ω)I4 + (b+ g) + (A− iD) + i(−c+ f) + (ζ − ǫ)i (A.85)

The reverse, in Cl5,1 now, of

A =< A >0 + < A >1 + < A >2 + < A >3 + < A >4 + < A >5 + < A >6

is

Ã =< A >0 + < A >1 − < A >2 − < A >3 + < A >4 + < A >5 − < A >6

Only terms which change sign, with (A.65), (A.70) and (A.72), are scalars ǫ and
ω, vectors b, c, d, e and bivectors A, B, C61. We then get from (A.77)

Ψ̃ =




(α+ ω)I4 + (b+ g) + (A− iD) (β + θ)I4 − (a+ h) + (B− iC)
+i(−c+ f) + (ζ − ǫ)i +i(d− e) + (−δ + η)i

(β − θ)I4 + (a− h) + (B+ iC) (α− ω)I4 + (−b+ g) + (A+ iD)
+i(d+ e) + (δ + η)i −i(c+ f) + (ζ + ǫ)i




=

(
Ψ̃b Ψ̃r

Ψ̃g Ψ̃l

)
. (A.86)

And we have proved (6.211).

B Calculations for the gauge invariance

The operators P0 in (6.13) and (7.26) and P ′
0 in (6.135) have the form (7.26).

They satisfy
P0(Ψ) = aΨγ21 + bP−(Ψ)i.

61These changes of sign are not the same in Cl5,1 as in Cl1,3. Differences are corrected by
the fact that the reversion in Cl5,1 also exchanges the place of Ψl and Ψb terms.
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Applied to

Ψ =

(
φe φn
φ̂n φ̂e

)
=

√
2




ξ1e −η∗2e 0 −η∗2n
ξ2e η∗1e 0 η∗1n
η1n 0 η1e −ξ∗2e
η2n 0 η2e ξ∗1e


 (B.1)

this gives

P0(Ψ) = ia

(
φeσ3 φnσ3
φ̂nσ3 φ̂eσ3

)
+ ib

(
φeR 0

0 −φ̂eR

)
(B.2)

P0(Ψ) = i
√
2




(a+ b)ξ1e (−a)(−η∗2e) 0 (−a)(−η∗2n)
(a+ b)ξ2e (−a)η∗1e 0 (−a)η∗1n
aη1n 0 aη1e −(a+ b)(−ξ∗2e)
aη2n 0 aη2e −(a+ b)ξ∗1e


 (B.3)

P0(Ψ) =
bi

2
Ψ + Ψ(a+

b

2
)γ21 (B.4)

Since by exp(a0P0)

ξe 7→ eia
0(a+b)ξe; ηe 7→ eia

0aηe; ηn 7→ eia
0aηn (B.5)

we get

[exp(a0P0)](Ψ) = ea
0 b

2
iΨea

0(a+ b
2
)γ21 (B.6)

We then get

∂µ

[
[exp(a0P0)](Ψ)

]

= ∂µa
0 b

2
iea

0 b
2
iΨea

0(a+ b
2
)γ21 + ea

0 b
2
i∂µΨe

a0(a+ b
2
)γ21

+ ea
0 b

2
iΨ∂µa

0(a+
b

2
)γ21e

a0(a+ b
2
)γ21

= ∂µa
0ea

0 b
2
i[
bi

2
Ψ + Ψ(a+

b

2
)γ21]e

a0(a+ b
2
)γ21 + ea

0 b
2
i∂µΨe

a0(a+ b
2
)γ21

= ∂µa
0ea

0 b
2
iP0(Ψ)ea

0(a+ b
2
)γ21 + ea

0 b
2
i∂µΨe

a0(a+ b
2
)γ21

= ea
0 b

2
i[∂µa

0P0(Ψ) + ∂µΨ]ea
0(a+ b

2
)γ21 . (B.7)

The gauge transformation defined such as

B′
µ = Bµ − 2

g1
∂µa

0 (B.8)

Ψ′ = [exp(a0P0)](Ψ) = ea
0 b

2
iΨea

0(a+ b
2
)γ21 (B.9)

133



gives:

DµΨ = ∂µΨ+
g1
2
BµP0(Ψ) (B.10)

D′
µΨ

′ = ∂µΨ
′ + (

g1
2
Bµ − ∂µa

0)P0(Ψ
′) (B.11)

= ∂µ

[
[exp(a0P0)](Ψ)

]
+ (

g1
2
Bµ − ∂µa

0)[
b

2
iΨ′ +Ψ′(a+

b

2
)γ21] (B.12)

= ea
0 b

2
i[∂µa

0P0(Ψ) + ∂µΨ+ (
g1
2
Bµ − ∂µa

0)P0(Ψ)]ea
0(a+ b

2
)γ21

= ea
0 b

2
i(DµΨ)ea

0(a+ b
2
)γ21 . (B.13)

We deduce:

D′Ψ′ = γµD′
µΨ

′ = γµea
0 b

2
i(DµΨ)ea

0(a+ b
2
)γ21

= e−a0 b
2
i(DΨ)ea

0(a+ b
2
)γ21 (B.14)

because i anti-commutes with each γµ. Next we have

Ψ̃′ = ea
0(a+ b

2
)γ̃21Ψ̃ea

0 b
2
ĩ

= e−a0(a+ b
2
)γ21Ψ̃ea

0 b
2
i (B.15)

Ψ̃′D′Ψ′ = e−a0(a+ b
2
)γ21Ψ̃ea

0 b
2
ie−a0 b

2
i(DΨ)ea

0(a+ b
2
)γ21

= e−a0(a+ b
2
)γ21Ψ̃(DΨ)ea

0(a+ b
2
)γ21 . (B.16)

In the case of the magnetic monopole the leptonic wave is:

Ψ =

(
φL φn
φ̂n φ̂L

)
=

√
2




0 −η∗2L ξ1n −η∗2n
0 η∗1L ξ2n η∗1n
η1n −ξ∗2n η1L 0
η2n ξ∗1n η2L 0


 (B.17)

this gives

P0(Ψ) = aΨγ21 + bP−(Ψ)i

= i
√
2




0 −a(−η∗2L) (a− b)ξ1n −a(−η∗2n)
0 −aη∗1L (a− b)ξ2n −aη∗1n

aη1n (−a+ b)(−ξ∗2n) aη1L 0
aη2n (−a+ b)ξ∗1n aη2L 0


 (B.18)

= − b
2
iΨ+Ψ(a− b

2
)γ21. (B.19)

The rest of the calculation is the same, with only the change of b into −b.

B.1 Tensors

In the case of the pair electron-neutrino, as in the case of the magnetic monopole,
each one among the three spinors has 4 real parameters, each one gives then
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4 × 5/2 = 10 components of tensors: a space-time vector (4 components) and
a space-time bivector (6 components). With the alone right spinor φR of the
electron (or of the magnetic monopole) 62

φR =
√
2

(
ξ1 0
ξ2 0

)
(B.20)

we get the space-time vector DR and the bivector SR
63 satisfying

DR = φRφ
†
R ; SR = φRσ1φR. (B.21)

DR is a space-time vector, because it satisfies D†
R = DR. Similarly with the left

spinor φL

φL =
√
2

(
0 −η∗2
0 η∗1

)
; φe = φR + φL (B.22)

we get the vector DL and the bivector SL satisfying

DL = φLφ
†
L ; SL = φLσ1φL. (B.23)

It is well-known [40] that the currents DR, DL are fundamental in the Dirac
theory and that the usual currents J = D0 and K = D3 are simply the sum
and the difference of these chiral currents:

D0 = DR +DL ; D3 = DR −DL. (B.24)

With the spinor φn = φnL of the electronic neutrino, that we write here

φn =
√
2

(
0 −ζ∗2
0 ζ∗1

)
(B.25)

we get the space-time vector Dn and the bivector Sn such as

Dn = φnφ
†
n ; Sn = φnσ1φn. (B.26)

Next with two of the three spinors we get 16 densities. We begin with φR
and φL. We let

P = 2φRφL = a+ SRL

P = 2φLφR = a− SRL (B.27)

I = DRL + idRL = 2φRσ1φ
†
L

I† = DRL − idRL = 2φLσ1φ
†
R (B.28)

62Since we want to study both the case of the electron and the case of the magnetic
monopole, we shall note without e index the components of the electron wave. We shall
note ζj what we have previously noted ηjn in the case of the left wave of the electron and ηjL
in the case of the supplementary left wave of the magnetic monopole.

63A detailed calculation of components is in B of [21].
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a and SRL are well-known in the Dirac theory:

a = det(φe) = Ω1 + iΩ2 = 2(ξ1η
∗
1 + ξ2η

∗
2) (B.29)

where Ω1, Ω2 are the relativistic invariants of (2.12) and (2.15). The bivector
S3 = SRL is the bivector defined in (2.59) which with Ω1, Ω2, D0 and D3, gives
the 16 densities which were the only densities known by the complex formalism.
They are the invariant ones under the electric gauge. Vectors DRL = D1 and
dRL = D2 are the space-time vectors defined in (2.54). Under the dilation R
defined en (1.42) a is changed into a′ such as

a′ =MφeφeM =MaM = aMM = reiθa. (B.30)

Therefore
a′a′

∗
= reiθare−iθa∗ = r2aa∗. (B.31)

Next with φL and φn we let

P = 2φ̂nσ1φ
†
L = b+ SLn

P = 2φ̂Lσ1φ
†
n = b− SLn (B.32)

I = DLn + idLn = 2φnφ
†
L

I† = DLn − idLn = 2φLφ
†
n. (B.33)

Vectors DLn and dLn are contravariant space-time vectors, SLn is a bivector.
We shall need:

b = φ̂nσ1φ
†
L + φ̂Lσ1φ

†
n = 2(η1ζ2 − η2ζ1) (B.34)

b′ = M̂bM† = M̂M†b = re−iθb

b′b′∗ = r2bb∗. (B.35)

Finally with φR and φn we let

P = 2φRφn = c+ SRn

P = 2φnφR = c− SRn (B.36)

I = DRn + idRn = 2φRσ1φ
†
n

I† = DRn − idRn = 2φnσ1φ
†
R. (B.37)

Vectors DRn and dRn are also contravariant, SRn is a bivector. We shall use

c = φRφn + φnφR = 2(ξ1ζ
∗
1 + ξ2ζ

∗
2 ) (B.38)

c′ =McM =MMc = reiθc ; c′c′
∗
= r2cc∗. (B.39)

We have established with (3.53) that the main invariant of the wave of the
electron is mρ. Since we have not only one but three similar terms, the natural
generalization, which is necessary to get the gauge invariance, uses:

ρρρ =
√
aa∗ + bb∗ + cc∗ (B.40)

mρρρ = m′rρρρ = m′ρρρ′. (B.41)
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B.2 Getting the wave equation

Since this term is the generalization of the invariant term of the Dirac wave,
that is also the mass term of the Lagrangian density, this density in the case of
the pair electron-neutrino, is the scalar real part L =< L > of

L = Ψ̃DΨγ012 +mρρρ (B.42)

whereD is the covariant (6.22) derivative. We shall use for the electron-neutrino
wave:

ΨL = P+(Ψ) =

(
φL φn
φ̂n φ̂L

)
(B.43)

ΨR = P−(Ψ) =

(
φR 0

0 φ̂R

)

Ψ = ΨR +ΨL (B.44)

P0(Ψ) = (ΨL + 2ΨR)γ21 (B.45)

and we have

P0(Ψ) = (ΨR +ΨL)γ21 +ΨRγ21 = (ΨL + 2ΨR)γ21 (B.46)

ΨL + 2ΨR =

(
φL + 2φR φn

φ̂n φ̂L + 2φ̂R

)
. (B.47)

We also have

DΨ = ∂∂∂Ψ+
g1
2
BP0(Ψ) +

g2
2
WjPj(Ψ) (B.48)

= ∂∂∂Ψ+
g1
2
B(ΨL + 2ΨR)γ21 +

g2
2
[W1ΨLγ3i+W2ΨLγ3 +W3ΨL(−i)]

which gives

DΨγ012 = ∂∂∂Ψγ012 +
g1
2
B(ΨL + 2ΨR)γ0 (B.49)

− g2
2
[W1ΨL +W2ΨLi+W3ΨLγ3].

Next we get

∂∂∂Ψγ012 =

(
0 ∇
∇̂ 0

)(
φe φn
φ̂n φ̂e

)(
0 −iσ3

−iσ3 0

)
(B.50)

=

(
−i∇(φ̂R + φ̂L)σ3 −i∇φ̂nσ3

−i∇̂φnσ3 −i∇̂(φR + φL)σ3

)

∂∂∂Ψγ012 = −i
(
∇(−φ̂R + φ̂L) ∇φ̂n

−∇̂φn ∇̂(φR − φL)

)
. (B.51)
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And we get for B

B(ΨL + 2ΨR)γ0 =

(
0 B

B̂ 0

)(
φL + 2φR φn

φ̂n φ̂L + 2φ̂R

)(
0 I
I 0

)

=

(
0 B

B̂ 0

)(
φn φe + φR

φ̂e + φ̂R φ̂n

)
(B.52)

BP0(Ψ)γ012 =

(
B(φ̂e + φ̂R) Bφ̂n

B̂φn B̂(φe + φR)

)
. (B.53)

Similarly we have

W1ΨL =

(
0 W 1

Ŵ 1 0

)(
φL φn
φ̂n φ̂L

)
=

(
W 1φ̂n W 1φ̂L
Ŵ 1φL Ŵ 1φn

)
(B.54)

W2ΨLi =

(
0 W 2

Ŵ 2 0

)(
φL φn
φ̂n φ̂L

)(
i 0
0 −i

)
=

(
iW 2φ̂n −iW 2φ̂L
iŴ 2φL −iŴ 2φn

)
(B.55)

W3ΨLγ3 =

(
0 W 3

Ŵ 3 0

)(
φL φn
φ̂n φ̂L

)(
0 σ3

−σ3 0

)

=

(
−W 3φ̂Lσ3 W 3φ̂nσ3
−Ŵ 3φnσ3 Ŵ 3φLσ3

)
=

(
−W 3φ̂L W 3φ̂n
Ŵ 3φn −Ŵ 3φL

)
. (B.56)

We then get

W1ΨL +W2ΨLi+W3ΨLγ3

=

(
(W 1 + iW 2)φ̂n −W 3φ̂L (W 1 − iW 2)φ̂L +W 3φ̂n
(Ŵ 1 + iŴ 2)φL + Ŵ 3φn (Ŵ 1 − iŴ 2)φn − Ŵ 3φL

)
. (B.57)

Next we get

Ψ̃DΨγ012 = Ψ̃∂∂∂Ψγ012 +
g1
2
Ψ̃B(ΨL + 2ΨR)γ0

− g2
2
Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3] (B.58)

Ψ̃∂∂∂Ψγ012 = −i
(
φe φ†n
φn φ†e

)(
∇(−φ̂R + φ̂L) ∇φ̂n

−∇̂φn ∇̂(φR − φL)

)
(B.59)

= −i
(
φe∇(−φ̂R + φ̂L)− φ†n∇̂φn φe∇φ̂n + φ†n∇̂(φR − φL)

φn∇(−φ̂R + φ̂L)− φ†e∇̂φn φn∇φ̂n + φ†e∇̂(φR − φL)

)
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With the matrix representation (1.75) the real part of a multivector in space-
time algebra is the real part of the scalar part of the matrix. We then get

ℜ(Ψ̃∂∂∂Ψγ012) = ℜ[iφe∇(φ̂R − φ̂L) + iφ†n∇̂φn]. (B.60)

Next we get

Ψ̃BP0(Ψ)γ012 =

(
φe φ†n
φn φ†e

)(
B(φ̂R + φ̂e) Bφ̂n

B̂φn B̂(φR + φe)

)
(B.61)

=

(
φeB(φ̂R + φ̂e) + φ†nB̂φn φeBφ̂n + φ†nB̂(φR + φe)

φnB(φ̂R + φ̂e) + φ†eB̂φn φnBφ̂n + φ†eB̂(φR + φe)

)

ℜ[Ψ̃BP0(Ψ)γ012] = ℜ[φeB(φ̂R + φ̂e) + φ†nB̂φn]. (B.62)

We also get

Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3] (B.63)

=

(
φe φ†n
φn φ†e

)(
(W 1 + iW 2)φ̂n −W 3φ̂L (W 1 − iW 2)φ̂L +W 3φ̂n
(Ŵ 1 + iŴ 2)φL + Ŵ 3φn (Ŵ 1 − iŴ 2)φn − Ŵ 3φL

)
=

(
U V

V̂ Û

)

U = φe[(W
1 + iW 2)φ̂n −W 3φ̂L] + φ†n[(Ŵ

1 + iŴ 2)φL + Ŵ 3φn] (B.64)

which gives

ℜ
[
Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3]

]
= ℜ(φeW 1φ̂n + φ†nŴ

1φL)

+ ℜ(iφeW 2φ̂n + iφ†nŴ
2φL)

+ ℜ(−φeW 3φ̂L + φ†nŴ
3φn). (B.65)

We get now

2ℜ[iφe∇(φ̂R − φ̂L) + iφ†n∇̂φn]
= −iη∗1∂0η1 + iη1∂0η

∗
1 − iη∗2∂0η2 + iη2∂0η

∗
2 + iξ2∂0ξ

∗
2 − iξ∗2∂0ξ2

+ iξ1∂0ξ
∗
1 − iξ∗1∂0ξ1 + iζ2∂0ζ

∗
2 − iζ∗2∂0ζ2 + iζ1∂0ζ

∗
1 − iζ∗1∂0ζ1

+ iη∗1∂1η2 − iη1∂1η
∗
2 + iη∗2∂1η1 − iη2∂1η

∗
1 + iξ2∂1ξ

∗
1 − iξ∗2∂1ξ1

+ iξ1∂1ξ
∗
2 − iξ∗1∂1ξ2 − iζ2∂1ζ

∗
1 + iζ∗2∂1ζ1 − iζ1∂1ζ

∗
2 + iζ∗1∂1ζ2

+ η∗1∂2η2 + η1∂2η
∗
2 − η∗2∂2η1 − η2∂2η

∗
1 + ξ2∂2ξ

∗
1 + ξ∗2∂2ξ1

− ξ1∂2ξ
∗
2 − ξ∗1∂2ξ2 − ζ2∂2ζ

∗
1 − ζ∗2∂2ζ1 + ζ1∂2ζ

∗
2 + ζ∗1∂2ζ2

+ iη∗1∂3η1 − iη1∂3η
∗
1 − iη∗2∂3η2 + iη2∂3η

∗
2 − iξ2∂3ξ

∗
2 + iξ∗2∂3ξ2

+ iξ1∂3ξ
∗
1 − iξ∗1∂3ξ1 + iζ2∂3ζ

∗
2 − iζ∗2∂3ζ2 − iζ1∂3ζ

∗
1 + iζ∗1∂3ζ1. (B.66)

For (B.65) we have

ℜ[φeB(φ̂R + φ̂e) + φ†nB̂φn]

= B0(η1η
∗
1 + η2η

∗
2 + 2ξ1ξ

∗
1 + 2ξ2ξ

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+B1(−η1η∗2 − η2η
∗
1 + 2ξ1ξ

∗
2 + 2ξ2ξ

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+B2i(−η1η∗2 + η2η
∗
1 + 2ξ1ξ

∗
2 − 2ξ2ξ

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+B3(−η1η∗1 + η2η
∗
2 + 2ξ1ξ

∗
1 − 2ξ2ξ

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 ) (B.67)
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and for (B.68) we have

ℜ(φeW 1φ̂n + φ†nŴ
1φL) =W 1

0 (η1ζ
∗
1 + η2ζ

∗
2 + ζ1η

∗
1 + ζ2η

∗
2)

+W 1
1 (−η1ζ∗2 − η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1)

+W 1
2 i(−η1ζ∗2 + η2ζ

∗
1 − ζ1η

∗
2 + ζ2η

∗
1)

+W 1
3 (−η1ζ∗1 + η2ζ

∗
2 − ζ1η

∗
1 + ζ2η

∗
2) (B.68)

ℜ(iφeW 2φ̂n + iφ†nŴ
2φL) =W 2

0 i(−η1ζ∗1 − η2ζ
∗
2 + ζ1η

∗
1 + ζ2η

∗
2)

+W 2
1 i(η1ζ

∗
2 + η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1)

+W 2
2 (−η1ζ∗2 + η2ζ

∗
1 + ζ1η

∗
2 − ζ2η

∗
1)

+W 2
3 i(−η1ζ∗1 + η2ζ

∗
2 − ζ1η

∗
1 + ζ2η

∗
2) (B.69)

ℜ(−φeW 3φ̂L + φ†nŴ
3φn) (B.70)

=W 3
0 (−η1η∗1 − η2η

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+W 3
1 (+η1η

∗
2 + η2η

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+W 3
2 i(+η1η

∗
2 − η2η

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+W 3
3 (η1η

∗
1 − η2η

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 ). (B.71)

Therefore the Lagrangian density is

L =
1

2




−iη∗1∂0η1 + iη1∂0η
∗
1 − iη∗2∂0η2 + iη2∂0η

∗
2 + iξ2∂0ξ

∗
2 − iξ∗2∂0ξ2

+iξ1∂0ξ
∗
1 − iξ∗1∂0ξ1 + iζ2∂0ζ

∗
2 − iζ∗2∂0ζ2 + iζ1∂0ζ

∗
1 − iζ∗1∂0ζ1

+iη∗1∂1η2 − iη1∂1η
∗
2 + iη∗2∂1η1 − iη2∂1η

∗
1 + iξ2∂1ξ

∗
1 − iξ∗2∂1ξ1

+iξ1∂1ξ
∗
2 − iξ∗1∂1ξ2 − iζ2∂1ζ

∗
1 + iζ∗2∂1ζ1 − iζ1∂1ζ

∗
2 + iζ∗1∂1ζ2

+η∗1∂2η2 + η1∂2η
∗
2 − η∗2∂2η1 − η2∂2η

∗
1 + ξ2∂2ξ

∗
1 + ξ∗2∂2ξ1

−ξ1∂2ξ∗2 − ξ∗1∂2ξ2 − ζ2∂2ζ
∗
1 − ζ∗2∂2ζ1 + ζ1∂2ζ

∗
2 + ζ∗1∂2ζ2

+iη∗1∂3η1 − iη1∂3η
∗
1 − iη∗2∂3η2 + iη2∂3η

∗
2 − iξ2∂3ξ

∗
2 + iξ∗2∂3ξ2

+iξ1∂3ξ
∗
1 − iξ∗1∂3ξ1 + iζ2∂3ζ

∗
2 − iζ∗2∂3ζ2 − iζ1∂3ζ

∗
1 + iζ∗1∂3ζ1




+
g1
2




B0(η1η
∗
1 + η2η

∗
2 + 2ξ1ξ

∗
1 + 2ξ2ξ

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+B1(−η1η∗2 − η2η
∗
1 + 2ξ1ξ

∗
2 + 2ξ2ξ

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+B2i(−η1η∗2 + η2η
∗
1 + 2ξ1ξ

∗
2 − 2ξ2ξ

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+B3(−η1η∗1 + η2η
∗
2 + 2ξ1ξ

∗
1 − 2ξ2ξ

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 )


 (B.72)

− g2
2




W 1
0 (η1ζ

∗
1 + η2ζ

∗
2 + ζ1η

∗
1 + ζ2η

∗
2) +W 2

0 i(−η1ζ∗1 − η2ζ
∗
2 + ζ1η

∗
1 + ζ2η

∗
2)

+W 3
0 (−η1η∗1 − η2η

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+W 1
1 (−η1ζ∗2 − η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1) +W 2

1 i(η1ζ
∗
2 + η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1)

+W 3
1 (η1η

∗
2 + η2η

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+W 1
2 i(−η1ζ∗2 + η2ζ

∗
1 − ζ1η

∗
2 + ζ2η

∗
1) +W 2

2 (−η1ζ∗2 + η2ζ
∗
1 + ζ1η

∗
2 − ζ2η

∗
1)

+W 3
2 i(η1η

∗
2 − η2η

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+W 1
3 (−η1ζ∗1 + η2ζ

∗
2 − ζ1η

∗
1 + ζ2η

∗
2) +W 2

3 i(−η1ζ∗1 + η2ζ
∗
2 − ζ1η

∗
1 + ζ2η

∗
2)

+W 3
3 (η1η

∗
1 − η2η

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 )




+m
√
aa∗ + bb∗ + cc∗.
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The Lagrange equation
∂L
∂ξ∗1

= ∂µ

( ∂L
∂(∂µξ∗1)

)
gives

0 = −i[(∂0 + ∂3)ξ1 + (∂1 − i∂2)ξ2] (B.73)

+ g1[(B0 +B3)ξ1 + (B1 − iB2)ξ2] +
m

ρρρ
(aη1 + cζ1).

The Lagrange equation
∂L
∂ξ∗2

= ∂µ

( ∂L
∂(∂µξ∗2)

)
gives

0 = −i[(∂1 + i∂2)ξ1 + (∂0 − ∂3)ξ2] (B.74)

+ g1[(B1 + iB2)ξ1 + (B0 −B3)ξ2] +
m

ρρρ
(aη2 + cζ2).

Together these equations read

0 =− i

(
∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∂0 − ∂3

)(
ξ1 0
ξ2 0

)
(B.75)

+ g1

(
B0 +B3 B1 − iB2

B1 + iB2 B0 −B3

)(
ξ1 0
ξ2 0

)
+
m

ρρρ

[
a

(
η1 0
η2 0

)
+ c

(
ζ1 0
ζ2 0

)]
.

Multiplying by
√
2 we get

−i∇̂φR + g1B̂φR +
m

ρρρ
(aφ̂L + cφ̂n) = 0. (B.76)

Since φRσ3 = φR and φ̂Lσ3 = φ̂L, this reads

∇̂φRσ21 + g1B̂φR +
m

ρρρ
(aφ̂L + cφ̂n) = 0. (B.77)

Then by using the conjugation M 7→ M̂ we get

∇φ̂Rσ21 + g1Bφ̂R +
m

ρρρ
(a∗φL + c∗φn) = 0. (B.78)

The Lagrange equation
∂L
∂η∗1

= ∂µ

( ∂L
∂(∂µη∗1)

)
gives

0 =− i[(∂0 − ∂3)η1 + (−∂1 + i∂2)η2] +
g1
2
[(B0 −B3)η1 + (−B1 + iB2)η2]

− g2
2




(W 1
0 −W 1

3 )ζ1 + (−W 1
1 + iW 1

2 )ζ2
+i[(W 2

0 −W 2
3 )ζ1 + (−W 2

1 + iW 2
2 )ζ2]

−(W 3
0 −W 3

3 )η1 − (−W 3
1 + iW 3

2 )η2


+

m

ρρρ
(a∗ξ1 + bζ∗2 ). (B.79)

The Lagrange equation
∂L
∂η∗2

= ∂µ

( ∂L
∂(∂µη∗2)

)
gives

0 =− i[(−∂1 − i∂2)η1 + (∂0 + ∂3)η2] +
g1
2
[(−B1 − iB2)η1 + (B0 +B3)η2]

− g2
2




(−W 1
1 − iW 1

2 )ζ1 + (W 1
0 +W 1

3 )ζ2
+i[(−W 2

1 − iW 2
2 )ζ1 + (W 2

0 +W 2
3 )ζ2]

−(−W 3
1 − iW 3

2 )η1 − (W 3
0 +W 3

3 )η2


+

m

ρρρ
(a∗ξ2 − bζ∗1 ). (B.80)
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Together these equations give

0 =− i

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
η1 0
η2 0

)

+
g1
2

(
B0 −B3 −B1 + iB2

−B1 − iB2 B0 +B3

)(
η1 0
η2 0

)
(B.81)

− g2
2

[( W 1
0 −W 1

3 −W 1
1 + iW 1

2

−W 1
1 − iW 1

2 W 1
0 +W 1

3

)(
ζ1 0
ζ2 0

)

+ i

(
W 2

0 −W 2
3 −W 2

1 + iW 2
2

−W 2
1 − iW 2

2 W 2
0 +W 2

3

)(
ζ1 0
ζ2 0

)

−
(
W 3

0 −W 3
3 −W 3

1 + iW 3
2

−W 3
1 − iW 3

2 W 3
0 +W 3

3

)(
η1 0
η2 0

)]

+
m

ρρρ

[
a∗
(
ξ1 0
ξ2 0

)
+ b

(
ζ∗2 0
−ζ∗1 0

)]
.

Multiplying by
√
2 this reads

0 =∇φ̂Lσ21 +
g1
2
Bφ̂L +

g2
2
[−(W 1 + iW 2)φ̂n +W 3φ̂L] (B.82)

+
m

ρρρ
(a∗φR − bφnσ1).

Adding (B.78) and (B.82) we get the wave equation

0 =∇φ̂eσ21 +
g1
2
B(φ̂L + 2φ̂R) +

g2
2
[−(W 1 + iW 2)φ̂n +W 3φ̂L] (B.83)

+
m

ρρρ
(a∗φe − bφnσ1 + c∗φn)

This equation contains the covariant derivative (6.57) of the electron.

The Lagrange equation
∂L
∂ζ∗1

= ∂µ

( ∂L
∂(∂µζ∗1 )

)
gives

0 =− i[(∂0 − ∂3)ζ1 + (−∂1 + i∂2)ζ2] +
g1
2
[(B0 −B3)ζ1 + (−B1 + iB2)ζ2]

+
g2
2




−[(W 1
0 −W 1

3 )η1 + (−W 1
1 + iW 1

2 )η2]
+i[(W 2

0 −W 2
3 )η1 + (−W 2

1 + iW 2
2 )η2]

−(W 3
0 −W 3

3 )ζ1 − (−W 3
1 + iW 3

2 )ζ2


+

m

ρρρ
(c∗ξ1 − bη∗2). (B.84)

The Lagrange equation
∂L
∂ζ∗2

= ∂µ

( ∂L
∂(∂µζ∗2 )

)
gives

0 =− i[(−∂1 − i∂2)ζ1 + (∂0 + ∂3)ζ2] +
g1
2
[(−B1 − iB2)ζ1 + (B0 +B3)ζ2]

+
g2
2




−[(−W 1
1 − iW 1

2 )η1 + (W 1
0 +W 1

3 )η2
+i[(−W 2

1 − iW 2
2 )η1 + (W 2

0 +W 2
3 )η2]

−(−W 3
1 − iW 3

2 )ζ1 − (W 3
0 +W 3

3 )ζ2


+

m

ρρρ
(c∗ξ2 + bη∗1). (B.85)
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Together these equations read

0 =− i

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
ζ1 0
ζ2 0

)

+
g1
2

(
B0 −B3 −B1 + iB2

−B1 − iB2 B0 +B3

)(
ζ1 0
ζ2 0

)
(B.86)

+
g2
2

[
−
(
W 1

0 −W 1
3 −W 1

1 + iW 1
2

−W 1
1 − iW 1

2 W 1
0 +W 1

3

)(
η1 0
η2 0

)

+ i

(
W 2

0 −W 2
3 −W 2

1 + iW 2
2

−W 2
1 − iW 2

2 W 2
0 +W 2

3

)(
η1 0
η2 0

)

−
(
W 3

0 −W 3
3 −W 3

1 + iW 3
2

−W 3
1 − iW 3

2 W 3
0 +W 3

3

)(
ζ1 0
ζ2 0

)]

+
m

ρρρ

[
b

(
−η∗2 0
η∗1 0

)
+ b∗

(
ξ1 0
ξ2 0

)]
.

Multiplying by
√
2 this reads

0 =∇φ̂nσ21 +
g1
2
Bφ̂n +

g2
2
[(−W 1 + iW 2)φ̂L −W 3φ̂n]

+
m

ρρρ
(c∗φR + bφLσ1). (B.87)

This equation contains the covariant derivative (6.58) of the electronic neutrino.
The system made of the two wave equations (B.83) - (B.87) is equivalent to the
equation:

DΨγ012 +mρρρχ = 0 (B.88)

where

χ =
1

ρρρ2

(
a∗φe − bφnσ1 + c∗φn bφLσ1 + c∗φR

−b∗φ̂Lσ1 + cφ̂R aφ̂e + b∗φ̂nσ1 + cφ̂n

)
(B.89)

or to the invariant equation

Ψ̃DΨγ012 +mρρρΨ̃χ = 0. (B.90)

Now we explain how this wave equation has exactly the cancellation of the
Lagrangian density (B.72) L = 0 as real part. Then we shall prove the form
invariance and the gauge invariance of this equation under the gauge group of
electro-weak interactionss.

143



B.3 Invariances

With (B.89) we have

ρρρ2Ψ̃χ =

(
φe φ†n
φn φ†e

)(
a∗φe − bφnσ1 + c∗φn bφLσ1 + c∗φR

−b∗φ̂Lσ1 + cφ̂R aφ̂e + b∗φ̂nσ1 + cφ̂n

)

=

(
U V

V̂ Û

)
(B.91)

U = a∗φeφe − bφeφnσ1 + c∗φeφn − b∗φ†nφ̂Lσ1 + cφ†nφ̂R

V = bφeφLσ1 + c∗φeφR + aφ†nφ̂e + b∗φ†nφ̂nσ1 + cφ†nφ̂n. (B.92)

We have

a∗φeφe = aa∗ (B.93)

−bφeφnσ1 − b∗φ†nφ̂Lσ1 =

(
bb∗ 0
−bc bb∗

)
= bb∗ +

bc

2
(−σ1 + iσ2) (B.94)

c∗φeφn + cφ†nφ̂R =

(
0 −b∗c∗

0 2cc∗

)
= cc∗(1− σ3) +

b∗c∗

2
(−σ1 − iσ2)

(B.95)

U = ρ2 −ℜ(bc)σ1 −ℑ(bc)σ2 − cc∗σ3 (B.96)

ℜ(mρρρΨ̃χ) = mρρρ. (B.97)

Therefore the Lagrangian density (B.72) is also the real part of the invariant
equation (B.90). The value of V is more simple because a similar calculation
gives

V = ac∗. (B.98)

B.3.1 Form invariance

If M is any invertible matrix defining (1.42) we have

∇ =M∇′M̂ ; Ψ′ = NΨ (B.99)

D = ÑD′N ; N =

(
M 0

0 M̂

)
; Ñ =

(
M 0
0 M†

)
(B.100)

0 = Ψ̃DΨγ012 +mρρρΨ̃χ = Ψ̃ÑD′NΨγ012 +mρρρΨ̃χ

= Ψ̃′D′Ψ′γ012 +m′ρρρ′Ψ̃χ. (B.101)

We shall get the form invariance of the wave equation if and only if

Ψ̃χ = Ψ̃′χ′ = Ψ̃Ñχ′ (B.102)

χ′ = Ñ−1χ. (B.103)
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But we have

1

ρρρ′2
(a′

∗
φ′e − b′φ′nσ1 + c′

∗
φ′n)

=
1

r2ρρρ2
(re−iθa∗Mφe − re−iθbMφnσ1 + re−iθc∗Mφn)

=
M

reiθ
1

ρρρ2
(a∗φe − bφnσ1 + c∗φn) =M

−1 1

ρρρ2
(a∗φe − bφnσ1 + c∗φn). (B.104)

1

ρρρ′2
(b′φ′Lσ1 + c′

∗
φ′n)

=
1

r2ρρρ2
(re−iθbMφLσ1 + re−iθc∗Mφn)

=
M

reiθ
1

ρρρ2
(bφLσ1 + c∗φn) =M

−1 1

ρρρ2
(bφLσ1 + c∗φn). (B.105)

This gives (B.103) because

χ′ =

(
M

−1
0

0 M†−1

)
χ = Ñ−1χ. (B.106)

Then the wave equation is form invariant under Cl∗3, therefore it is relativistic
invariant.

B.3.2 Gauge invariance - group generated by P0

We use the following form of P0

P0(Ψ) =
i

2
Ψ +

3

2
Ψγ21 (B.107)

Ψ′ = [exp(θP0)](Ψ) = e
θ
2
iΨe

3θ
2
γ21 . (B.108)

From (B.14)) with a = b = 1 we deduce

D′Ψ′ = e−
θ
2
i(DΨ)e

3θ
2
γ21 (B.109)

D′Ψ′γ012 = e−
θ
2
i(DΨγ012)e

3θ
2
γ21 . (B.110)

(B.108) reads

(
φ′e φ′n
φ̂′n φ̂′e

)
=

(
ei

θ
2 0

0 e−i θ
2

)(
φe φn
φ̂n φ̂e

)(
e

3θ
2
iσ3 0

0 e
3θ
2
iσ3

)

=

(
ei

θ
2φee

3θ
2
iσ3 ei

θ
2φne

3θ
2
iσ3

e−i θ
2 φ̂ne

3θ
2
iσ3 e−i θ

2 φ̂ee
3θ
2
iσ3

)
. (B.111)
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This gives

(
ξ′1 −η′∗2
ξ′2 η′

∗
1

)
=

(
e2iθξ1 −e−iθη∗2
e2iθξ2 e−iθη∗1

)
;

(
0 −ζ ′∗2
0 ζ ′

∗
1

)
=

(
0 −e−iθζ∗2
0 e−iθζ∗1

)
(B.112)

and we get

(
ξ′1
ξ′2

)
= e2iθ

(
ξ1
ξ2

)
;

(
η′1
η′2

)
= eiθ

(
η1
η2

)
;

(
ζ ′1
ζ ′2

)
= eiθ

(
ζ1
ζ2

)
. (B.113)

We then have for a, b, c:

a′ = eiθa ; a′a′
∗
= aa∗ (B.114)

b′ = e2iθb ; b′b′∗ = bb∗ (B.115)

c′ = eiθc ; c′c′
∗
= cc∗ (B.116)

ρρρ′ = ρρρ. (B.117)

We must study

χ′ =
1

ρρρ′2
×
(
a′

∗
φ′e − b′φ′nσ1 + c′

∗
φ′n b′φ′Lσ1 + c′

∗
φ′R

−b′∗φ̂′Lσ1 + c′φ̂′R a′φ̂′e + b′∗φ̂′nσ1 + c′φ̂′n

)
. (B.118)

We get

a′
∗
φ′e − b′φ′nσ1 + c′

∗
φ′n

= e−iθa∗ei
θ
2φee

3θ
2
iσ3 − e2iθbei

θ
2φne

3θ
2
iσ3 + e−iθc∗ei

θ
2φne

3θ
2
iσ3 (B.119)

= e−i θ
2 (a∗φe − e3iθbφne

3iθσ3σ1 + c∗φn)e
3θ
2
iσ3

= e−i θ
2 (a∗φe − e3iθbφne

−3iθσ1 + c∗φn)e
3θ
2
iσ3

= e−i θ
2 (a∗φe − bφnσ1 + c∗φn)e

3θ
2
iσ3 (B.120)

ans similarly

b′φ′Lσ1 + c′
∗
φ′R = e2iθbei

θ
2φLe

3θ
2
iσ3σ1 + e−iθc∗ei

θ
2φRe

3θ
2
iσ3

= ei
5θ
2 bφLe

3iθσ3σ1e
3θ
2
iσ3 + e−i θ

2 c∗φRe
3θ
2
iσ3

= (ei
5θ
2 bφLe

−3iθσ1 + e−i θ
2 c∗φR)e

3θ
2
iσ3

= e−i θ
2 (bφLσ1 + c∗φR)e

3θ
2
iσ3 . (B.121)

This gives

χ′ =
1

ρρρ2

(
e−i θ

2 (a∗φe − bφnσ1 + c∗φn)e
3θ
2
iσ3 e−i θ

2 (bφLσ1 + c∗φR)e
3θ
2
iσ3

ei
θ
2 (−b∗φ̂Lσ1 + cφ̂R)e

3θ
2
iσ3 ei

θ
2 (aφ̂e + bφ̂nσ1 + cφ̂n)e

3θ
2
iσ3

)

(B.122)
which reads

χ′ = e−
θ
2
iχe

3θ
2
γ21 (B.123)
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and we finally get

D′Ψ′γ012 +mρρρ′χ′ = e−
θ
2
i(DΨγ012 +mρρρχ)e

3θ
2
γ21 = 0. (B.124)

This proves that the wave equation for the pair electron-neutrino is gauge in-
variant under the gauge group generated by P0.

B.3.3 Gauge invariance - group generated by P3

This generator acts only on left waves: we have

ξ′1 = ξ1 ; ξ′2 = ξ2. (B.125)

And with left waves we get

Ψ′
L = ΨLe

−θi (B.126)
(
φ′L φ′n
φ̂′n φ̂′L

)
=

(
φL φn
φ̂n φ̂L

)(
e−iθ 0
0 eiθ

)
(B.127)

φ′L = e−iθφL (B.128)

φ′n = eiθφn (B.129)

which reads

η′1 = eiθη1 ; η′2 = eiθη2 ; ζ ′1 = e−iθζ1 ; ζ ′2 = e−iθζ2. (B.130)

We then get for a, b, c:

a′ = e−iθa ; a′a′
∗
= aa∗ (B.131)

b′ = b ; b′b′∗ = bb∗ (B.132)

c′ = eiθc ; c′c′
∗
= cc∗ (B.133)

ρρρ′ = ρρρ. (B.134)

The covariant derivative is here reduced to

D = ∂∂∂ +
g2
2
W3P3. (B.135)

We let

[∂∂∂Ψ+
g2
2
W3P3(Ψ)]γ012 +mρρρχ =

(
A B

B̂ Â

)
. (B.136)

We have

A = (∇φ̂e + i
g2
2
W 3φ̂L)σ21 +

m

ρρρ
(a∗φe − bφnσ1 + c∗φn) (B.137)

B = (∇φ̂n − i
g2
2
W 3φ̂n)σ21 +

m

ρ
(bφLσ1 + c∗φR). (B.138)
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Only the left column of B is not zero, this gives the simple result:

B′ = e−iθB. (B.139)

For A which has a right column and a left column, we note

A = AL +AR (B.140)

AL = (∇φ̂L + i
g2
2
W 3φ̂L)σ21 +

m

ρ
(a∗φR − bφnσ1) (B.141)

AR = ∇φ̂Rσ21 +
m

ρ
(a∗φL + c∗φn). (B.142)

We then get

A′
L = eiθAL ; A′

R = AR (B.143)

A′ = A

(
eiθ 0
0 1

)
. (B.144)

Since the same matrix multiplies the differential term and the mass term of the
equation, we have proved that the equation is invariant under the gauge group
generated by P3.

B.3.4 Gauge invariance - group generated by P1

This generator acts also only on left waves, we have

ξ′1 = ξ1 ; ξ′2 = ξ2. (B.145)

And with these left waves we have

Ψ′
L =

(
φ′L φ′n
φ̂′n φ̂′L

)
= ΨLe

θγ3i =

(
φL φn
φ̂n φ̂L

)(
cos(θ) −i sin(θ)σ3

−i sin(θ)σ3 cos(θ)

)

(B.146)

φ′L = cos(θ)φL − i sin(θ)φnσ3 ; φ′n = cos(θ)φn − i sin(θ)φLσ3 (B.147)

which reads with C = cos(θ) et S = sin(θ):

φ′L = CφL + iSφn ; φ̂′L = Cφ̂L − iSφ̂n (B.148)

φ′n = Cφn + iSφL ; φ̂′n = Cφ̂n − iSφ̂L (B.149)

η′1 = Cη1 − iSζ1 ; η′2 = Cη1 − iSζ2 (B.150)

ζ ′1 = Cζ1 − iSη1 ; ζ ′2 = Cζ2 − iSη2. (B.151)

We then get for a, b, c:

a′ = Ca+ iSc (B.152)

b′ = b (B.153)

c′ = Cc+ iSa (B.154)

ρρρ′
2
= a′a′

∗
+ b′b′∗ + c′c′

∗
= aa∗ + bb∗ + cc∗

= ρρρ2. (B.155)
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The covariant derivative is now reduced to

D = ∂∂∂ +
g2
2
W1P1. (B.156)

We let

[∂∂∂Ψ+
g2
2
W1P1(Ψ)]γ012 +mρρρχ =

(
A B

B̂ Â

)
. (B.157)

We have

A = ∇φ̂eσ21 −
g2
2
W 1φ̂n +

m

ρρρ
(a∗φe − bφnσ1 + c∗φn) (B.158)

B = ∇φ̂nσ21 −
g2
2
W 1φ̂L +

m

ρρρ
(bφLσ1 + c∗φR). (B.159)

As previously for A which has a left column and a right column we note:

A = AL +AR (B.160)

AL = (∇φ̂L + i
g2
2
W 1φ̂L)σ21 +

m

ρρρ
(a∗φR − bφnσ1) (B.161)

AR = ∇φ̂Rσ21 +
m

ρρρ
(a∗φL + c∗φn). (B.162)

We then get

A′
L = CAL − iSB (B.163)

A′
R = AR (B.164)

B′ = CB − iSAL. (B.165)

Since the mass term changes exactly in the same way as the derivative term we
have proved that the wave equation is gauge invariant under the group generated
by P1. Now it is not necessary to study the group generated by P2, because
P2 = P3P1. We have then proved both the form invariance and the gauge
invariance of the equation (B.90) under the Lie group U(1)× SU(2) generated
by P0, P1, P2, P3.

C The hydrogen atom

We study the resolution of the homogeneous nonlinear equation for

the hydrogen atom. Our resolution uses a method separating the vari-

ables in spherical coordinates. The solutions are very near particular

solutions of the Dirac equation which are not the usual ones, and

which have a Yvon-Takabayasi angle everywhere defined and small.

The hydrogen atom is the jewel of the Dirac theory. The solutions calculated
by C. G. Darwin [6], that we may find into newer reports [49], are proper
values of an ad hoc operator, coming from the non-relativistic theory, operator
that is not the total angular momentum operator. These solutions have as
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only physical explanation that they give the expected number of states, the
true formula for the energy levels, and to have the expected non-relativistic
approximations. This was considered very satisfying. The Darwin’s solutions
suffer the disadvantage, for most of them, to have a Yvon-Takabayasi angle
that is not everywhere defined and small. Therefore they cannot be linear
approximations of the solutions for our homogeneous nonlinear equation.

We got previously [9] other solutions of the Dirac equation, that have a
Yvon-Takabayasi angle everywhere defined and small, and so that may be the
linear approximations of the solutions for our nonlinear equation.

C.1 Separating variables

To solve the Dirac equation (2.42) or the homogeneous nonlinear equation (3.10),
in the case of the hydrogen atom, two methods exist. We shall use here, not the
initial method based on the non-relativistic wave equations, but the new method
invented more recently by H. Krüger [37], classical method on the mathematical
point of view for an equation with partial derivatives, separating the variables
in spherical coordinates:

x1 = r sin θ cosϕ ; x2 = r sin θ sinϕ ; x3 = r cos θ (C.1)

We use the following notations64:

i1 = σ23 = iσ1 ; i2 = σ31 = iσ2 ; i3 = σ12 = iσ3 (C.2)

S = e−
ϕ
2
i3e−

θ
2
i2 ; Ω = r−1(sin θ)−

1

2S (C.3)

~∂′ = σ3∂r +
1

r
σ1∂θ +

1

r sin θ
σ2∂ϕ. (C.4)

H. Krüger got the remarkable identity:

~∂ = Ω~∂′Ω−1 (C.5)

that, with:

∇′ = ∂0 − ~∂′ = ∂0 − (σ3∂r +
1

r
σ1∂θ +

1

r sin θ
σ2∂ϕ) (C.6)

also gives
Ω−1∇ = ∇′Ω−1. (C.7)

Into the wave equations (2.42) or (3.10), to separate the temporal variable x0 =
ct and the angular variable ϕ from the radial variable r and the angular variable
θ we let:

φ = ΩXe(λϕ−Ex0+δ)i3 (C.8)

64S has nothing to do with the tensor S3 and Ω must not be confused with the relativistic
invariants Ω1 and Ω2 studied in section 2.
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where X is a function, with value into the Pauli algebra, of r and θ alone, ~cE is
the electron’s energy, δ is an arbitrary phase which plays no role as the equations
(2.42) and (3.10) are electric gauge invariant. λ is a real constant. We get then

Ω−1φ = Xe(λϕ−Ex0+δ)i3 (C.9)

Ω−1φ̂ = X̂e(λϕ−Ex0+δ)i3 . (C.10)

We also have:

ρeiβ = det(φ) = det(Ω) det(X) det[e(λϕ−Ex0+δ)i3 ]

det(Ω) = r−2(sin θ)−1 ; det[e(λϕ−Ex0+δ)i3 ] = 1

ρeiβ =
det(X)

r2 sin θ
. (C.11)

So, if we let:
ρXe

iβX = det(X) (C.12)

we get:

ρ =
ρX

r2 sin θ
; β = βX . (C.13)

Thus with (C.8) for the wave, the Yvon-Takabayasi angle does not depend on
time nor on the ϕ angle, only on r and θ. It is why the separation of variables,
in the linear case or in the nonlinear case, may begin in the same way. We have

∇′Ω−1φ̂ = (∂0 − σ3∂r −
1

r
σ1∂θ −

1

r sin θ
σ2∂ϕ)[X̂e

(λϕ−Ex0+δ)i3 ] (C.14)

∂0(X̂e
(λϕ−Ex0+δ)i3) = −EX̂i3e(λϕ−Ex0+δ)i3 (C.15)

∂r(X̂e
(λϕ−Ex0+δ)i3) = (∂rX̂)e(λϕ−Ex0+δ)i3 (C.16)

∂θ(X̂e
(λϕ−Ex0+δ)i3) = (∂θX̂)e(λϕ−Ex0+δ)i3 (C.17)

∂ϕ(X̂e
(λϕ−Ex0+δ)i3) = λX̂i3e

(λϕ−Ex0+δ)i3 . (C.18)

We get then:

∇φ̂ = Ω(−EX̂i3 − σ3∂rX̂ − 1

r
σ1∂θX̂ − λ

r sin θ
σ2X̂i3)e

(λϕ−Ex0+δ)i3 . (C.19)

For the hydrogen atom, we have:

qA = qA0 = −α
r

; α =
e2

~c
(C.20)

where α is the fine structure constant. We have:

qAφ̂σ12 = −α
r
φ̂i3 = −α

r
ΩX̂e(λϕ−Ex0+δ)i3i3

= Ω(−α
r
X̂i3)e

(λϕ−Ex0+δ)i3 . (C.21)
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So the homogeneous nonlinear equation (3.10) becomes

−EX̂i3 − σ3∂rX̂ − 1

r
σ1∂θX̂ − λ

r sin θ
σ2X̂i3 −

α

r
X̂i3 +me−iβXi3 = 0 (C.22)

that is to say:

(E +
α

r
)X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = me−iβXi3 (C.23)

while the Dirac equation gives:

(E +
α

r
)X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = mXi3. (C.24)

We let now:

X =

(
a −b∗

c d∗

)
(C.25)

where a, b, c, d are functions with complex value of the real variables r and θ.
We get then:

X̂ =

(
d −c∗

b a∗.

)
(C.26)

We get then:

e−iβXi3 = ie−iβXσ3 = ie−iβ

(
a b∗

c −d∗

)
(C.27)

X̂i3 =

(
d −c∗

b a∗

)(
i 0
0 −i

)
=

(
id ic∗

ib −ia∗
)

(C.28)

σ3∂rX̂ =

(
1 0
0 −1

)(
∂rd −∂rc∗
∂rb ∂ra

∗

)
=

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
(C.29)

σ1∂θX̂ =

(
0 1
1 0

)(
∂θd −∂θc∗
∂θb ∂θa

∗

)
=

(
∂θb ∂θa

∗

∂θd −∂θc∗
)

(C.30)

σ2X̂i3 = i2X̂σ3 =

(
0 1
−1 0

)(
d −c∗

b a∗

)(
1 0
0 −1

)
=

(
b −a∗

−d −c∗

)
. (C.31)

Consequently the nonlinear equation (3.10) becomes:

(E +
α

r
)

(
id ic∗

ib −ia∗
)
+

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
+

1

r

(
∂θb ∂θa

∗

∂θd −∂θc∗
)

+
λ

r sin θ

(
b −a∗

−d −c∗

)
= ime−iβ

(
a b∗

c −d∗

)
. (C.32)

Conjugating equations with *, we get the system:

i(E +
α

r
)d+ ∂rd+

1

r
(∂θ +

λ

sin θ
)b = ime−iβa

−i(E +
α

r
)c− ∂rc+

1

r
(∂θ −

λ

sin θ
)a = −imeiβb (C.33)

i(E +
α

r
)b− ∂rb+

1

r
(∂θ −

λ

sin θ
)d = ime−iβc

−i(E +
α

r
)a+ ∂ra+

1

r
(∂θ +

λ

sin θ
)c = −imeiβd.
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In addition we have:

ρeiβ = det(φ) =
det(X)

r2 sin θ
=

ad∗ + cb∗

r2 sin θ
(C.34)

so we get:

eiβ =
ad∗ + cb∗

|ad∗ + cb∗| (C.35)

For the four equations (C.33) there are only two angular operators, so we let:

a = AU ; b = BV ; c = CV ; d = DU (C.36)

where A, B, C and D are functions of r whilst U and V are functions of θ. The
system (C.33) becomes:

i(E +
α

r
)DU +D′U +

1

r
(V ′ +

λ

sin θ
V )B = ime−iβAU

−i(E +
α

r
)CV − C ′V +

1

r
(U ′ − λ

sin θ
U)A = −imeiβBV (C.37)

i(E +
α

r
)BV −B′V +

1

r
(U ′ − λ

sin θ
U)D = ime−iβCV

−i(E +
α

r
)AU +A′U +

1

r
(V ′ +

λ

sin θ
V )C = −imeiβDU.

So if a κ constant exists such as:

U ′ − λ

sin θ
U = −κV ; V ′ +

λ

sin θ
V = κU (C.38)

the system (C.37) becomes:

i(E +
α

r
)D +D′ +

κ

r
B = ime−iβA

−i(E +
α

r
)C − C ′ − κ

r
A = −imeiβB (C.39)

i(E +
α

r
)B −B′ − κ

r
D = ime−iβC

−i(E +
α

r
)A+A′ +

κ

r
C = −imeiβD

To get the system equivalent to the Dirac equation, from the same process, it
is enough to replace β by 0, this does not change the angular system (C.38),
while in the place of (C.39) we get the system:

i(E +
α

r
)D +D′ +

κ

r
B = imA

−i(E +
α

r
)C − C ′ − κ

r
A = −imB (C.40)

i(E +
α

r
)B −B′ − κ

r
D = imC

−i(E +
α

r
)A+A′ +

κ

r
C = −imD
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C.2 Angular momentum operators

We established in [9] the form that, in space-time algebra, the angular momen-
tum operators take. With the Pauli algebra, we have (a detailed calculation is
in [16] A.3):

J1φ = (d1 +
1

2
σ23)φσ21 ; d1 = x2∂3 − x3∂2 = − sinϕ ∂θ −

cosϕ

tan θ
∂ϕ (C.41)

J2φ = (d2 +
1

2
σ31)φσ21 ; d2 = x3∂1 − x1∂3 = cosϕ ∂θ −

sinϕ

tan θ
∂ϕ (C.42)

J3φ = (d3 +
1

2
σ12)φσ21 ; d3 = x1∂2 − x2∂1 = ∂ϕ. (C.43)

Of course we also have
J2 = J2

1 + J2
2 + J2

3 . (C.44)

We get then
J3φ = λφ⇐⇒ φ = φ(x0, r, θ)eλϕi3 . (C.45)

So the wave φ satisfying (C.8) is a proper vector of J3 and λ is the magnetic
quantum number. More, always for a φ wave satisfying (C.8), we have:

J2φ = j(j + 1)φ (C.46)

if and only if

∂2θθX + [(j +
1

2
)2 − λ2

sin2 θ
]X − λ

cos θ

sin2 θ
σ12Xσ12 = 0. (C.47)

But (C.38) implies at the second order

0 = U ′′ + (κ2 − λ2

sin2 θ
)U + λ

cos θ

sin2 θ
U (C.48)

0 = V ′′ + (κ2 − λ2

sin2 θ
)V − λ

cos θ

sin2 θ
V (C.49)

0 = ∂2θθX + (κ2 − λ2

sin2 θ
)X − λ

cos θ

sin2 θ
σ12Xσ12 (C.50)

Consequently φ is a proper vector of J2, with the proper value j(j + 1), if and
only if

κ2 = (j +
1

2
)2 ; |κ| = j +

1

2
; j = |κ| − 1

2
. (C.51)

With (C.3) and (C.8) we can see that the change of ϕ into ϕ + 2π conserves
the value of the wave if and only if λ has a half-odd value. General results on
angular momentum operators imply then:

j =
1

2
,
3

2
,
5

2
, · · · ; κ = ±1, ± 2, ± 3, · · · ; λ = −j, − j + 1, · · · j − 1, j.

(C.52)
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To solve the angular system, if λ > 0 we let, with C = C(θ):

U = sinλ θ[sin(
θ

2
)C ′ − (κ+

1

2
− λ) cos(

θ

2
)C]

V = sinλ θ[cos(
θ

2
)C ′ + (κ+

1

2
− λ) sin(

θ

2
)C].

(C.53)

If λ < 0 we let:

U = sin−λ θ[cos(
θ

2
)C ′ + (κ+

1

2
+ λ) sin(

θ

2
)C]

V = sin−λ θ[− sin(
θ

2
)C ′ + (κ+

1

2
+ λ) cos(

θ

2
)C]

(C.54)

The angular system (C.38) is then equivalent [7] to the differential equation :

0 = C ′′ +
2|λ|
tan θ

C ′ + [(κ+
1

2
)2 − λ2]C (C.55)

The change of variable:

z = cos θ ; f(z) = C[θ(z)] (C.56)

gives then the differential equation of the Gegenbauer’s polynomials:65

0 = f ′′(z)− 1 + 2|λ|
1− z2

zf ′(z) +
(κ+ 1

2 )
2 − λ2

1− z2
f(z). (C.57)

And we get, as only integrable solution:

C(θ)

C(0)
=

∞∑

n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

( 12 + |λ|)nn!
sin2n(

θ

2
) (C.58)

with:

(a)0 = 1 , (a)n = a(a+ 1) . . . (a+ n− 1). (C.59)

The C(0) factor is a factor of U and V , its phase may be absorbed by the δ in
(C.8), and its amplitude may be transferred on the radial functions. We can
take therefore C(0) = 1, this gives:

C(θ) =

∞∑

n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

( 12 + |λ|)nn!
sin2n(

θ

2
) . (C.60)

Since we have the conditions (C.52) on λ and κ, an integer n always exists such
as

|λ|+ n = |κ+
1

2
| (C.61)

65When we solve the Dirac equation with the Darwin’s method, that is to say with the ad-
hoc operators, we get Legendre’s polynomials and spherical harmonics. Here, working with
φ, that is to say with the Weyl spinors ξ and η, we get the Gegenbauer’s polynomials, and it
is the degree of the Gegenbauer’s polynomial which is the needed quantum number.
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and this forces the (C.60) series to be a finite sum, so U and V are integrable.
And since U and V have real values, we have:

eiβ =
AD∗U2 + CB∗V 2

|AD∗U2 + CB∗V 2| (C.62)

C.3 Resolution of the linear radial system

We make the change of radial variable:

x = mr ; ǫ =
E

m
; a(x) = A(r) = A(

x

m
) (C.63)

b(x) = B(r) ; c(x) = C(r) ; d(x) = D(r).

The radial system (C.40) becomes:

i(ǫ+
α

x
)d+ d′ +

κ

x
b = ia

−i(ǫ+ α

x
)c− c′ − κ

x
a = −ib (C.64)

i(ǫ+
α

x
)b− b′ − κ

x
d = ic

−i(ǫ+ α

x
)a+ a′ +

κ

x
c = −id.

Adding and subtracting, we get:

i(ǫ+
α

x
)(d− c) + (d− c)′ − κ

x
(a− b) = i(a− b)

−i(ǫ+ α

x
)(a− b) + (a− b)′ − κ

x
(d− c) = −i(d− c) (C.65)

i(ǫ+
α

x
)(c+ d) + (c+ d)′ +

κ

x
(a+ b) = i(a+ b)

i(ǫ+
α

x
)(a+ b)− (a+ b)′ − κ

x
(c+ d) = i(c+ d).

We let then:

a− b = F− + iG− ; a+ b = F+ + iG+

d− c = F− − iG− ; c+ d = F+ − iG+ (C.66)

and the radial system becomes:

i(ǫ+
α

x
)(F− − iG−) + (F− − iG−)

′ − κ

x
(F− + iG−) = i(F− + iG−) (C.67)

−i(ǫ+ α

x
)(F− + iG−) + (F− + iG−)

′ − κ

x
(F− − iG−) = −i(F− − iG−)

i(ǫ+
α

x
)(F+ − iG+) + (F+ − iG+)

′ +
κ

x
(F+ + iG+) = i(F+ + iG+)

i(ǫ+
α

x
)(F+ + iG+)− (F+ + iG+)

′ − κ

x
(F+ − iG+) = i(F+ − iG+).
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Adding and subtracting equations (C.67), then dividing by i these equations
where i is a factor, we get the two separated systems:

(−1 + ǫ+
α

x
)F− −G′

− − κ

x
G− = 0

(1 + ǫ+
α

x
)G− + F ′

− − κ

x
F− = 0 (C.68)

(−1 + ǫ+
α

x
)F+ −G′

+ +
κ

x
G+ = 0

(1 + ǫ+
α

x
)G+ + F ′

+ +
κ

x
F+ = 0. (C.69)

These two systems are exchanged by replacing − indexes by + indexes and vice
versa, and by changing κ to −κ, so it is enough to study one of the two systems.
We let now:

F− =
√
1 + ǫ e−Λx(ϕ1 + ϕ2) ; Λ =

√
1− ǫ2 (C.70)

G− =
√
1− ǫ e−Λx(ϕ1 − ϕ2)

Dividing the first of the two equations (C.68) by
√
1− ǫ e−Λx and the second

by
√
1 + ǫ e−Λx, we get:

−Λ(ϕ1 + ϕ2) +
α

x

√
1 + ǫ

1− ǫ
(ϕ1 + ϕ2) + Λ(ϕ1 − ϕ2)

− ϕ′
1 + ϕ′

2 −
κ

x
(ϕ1 − ϕ2) = 0

Λ(ϕ1 − ϕ2) +
α

x

√
1− ǫ

1 + ǫ
(ϕ1 − ϕ2)− Λ(ϕ1 + ϕ2)

+ ϕ′
1 + ϕ′

2 −
κ

x
(ϕ1 + ϕ2) = 0 (C.71)

But we have: √
1 + ǫ

1− ǫ
=

1 + ǫ

Λ
;

√
1− ǫ

1 + ǫ
=

1− ǫ

Λ
(C.72)

and we let:
c1 =

α

Λ
; c2 =

αǫ

Λ
. (C.73)

We get then, adding and subtracting the equations (C.71):

−2Λϕ2+
c1 − κ

x
ϕ1 +

c2
x
ϕ2 + ϕ′

2 = 0 (C.74)

c1 + κ

x
ϕ2 +

c2
x
ϕ1 − ϕ′

1 = 0.

We make then the change of variable:

z = 2Λx ; f1(z) = ϕ1(x) ; f2(z) = ϕ2(x) (C.75)
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this puts the system (C.74) on the form:

−f2+
c1 − κ

z
f1 +

c2
z
f2 + f ′2 = 0 (C.76)

c1 + κ

z
f2 +

c2
z
f1 − f ′1 = 0.

We develop now in series:

f1(z) =

∞∑

m=0

amz
s+m ; f2(z) =

∞∑

m=0

bmz
s+m. (C.77)

The system (C.76) gives, for the coefficients of zs−1:

(c1 − κ)a0 + (c2 + s)b0 = 0 (C.78)

(c2 − s)a0 + (c1 + κ)b0 = 0

A not null solution exists only if the determinant of this system is null:

0 =

∣∣∣∣
c1 − κ c2 + s
c2 − s c1 + κ

∣∣∣∣ = c21 − κ2 − c22 + s2 (C.79)

But we have, with (C.70) and (C.73):

c21 − c22 = α2 (C.80)

So we get:
0 = α2 + s2 − κ2 ; s2 = κ2 − α2 (C.81)

We must take:
s =

√
κ2 − α2 (C.82)

to make the wave integrable at the origin. In this case the system (C.78) is
reduced to

b0 =
κ− c1
c2 + s

a0 =
s− c2
c1 + κ

a0. (C.83)

The system (C.76) gives, for the coefficients of zs+m−1, the system:

−bm−1+(c1 − κ)am + (c2 + s+m)bm = 0 (C.84)

(c1 + κ)bm + (c2 − s−m)am = 0

This last equation gives:

am =
c1 + κ

−c2 + s+m
bm (C.85)

and the first one becomes:

− bm−1 + (c1 − κ)
c1 + κ

−c2 + s+m
bm + (c2 + s+m)bm = 0

[(c1 − κ)(c1 + κ) + (s+m)2 − c22])bm = (−c2 + s+m)bm−1 (C.86)
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which, with (C.79), gives:

bm =
−c2 + s+m

(2s+m)m
bm−1 =

(−c2 + s+ 1)m
(2s+ 1)mm!

b0. (C.87)

And so we have:

f2(z) = b0z
s

∞∑

m=0

(−c2 + s+ 1)m
(2s+ 1)mm!

zm = b0z
sF (1 + s− c2, 2s+ 1, z) (C.88)

where F is the hypergeometric function. We have also:

bm =
−c2 + s+m

c1 + κ
am ; bm−1 =

−c2 + s+m− 1

c1 + κ
am−1. (C.89)

The first of the two equations (C.84) becomes:

−−c2 + s+m− 1

c1 + κ
am−1+(c1−κ)am+(c2+s+m)

−c2 + s+m

c1 + κ
am = 0 (C.90)

which implies:

am =
−c2 + s− 1 +m

(2s+m)m
am−1 =

(−c2 + s)m
(2s+ 1)mm!

a0 (C.91)

And so we have:

f1(z) = a0z
s

∞∑

m=0

(−c2 + s)m
(2s+ 1)mm!

zm = a0z
sF (s− c2, 2s+ 1, z) (C.92)

This hypergeometric function is integrable only if the series are polynomial,66

(up a coefficient, it is a Laguerre’s polynomial) with degree n, that is to say if
an integer n exists such as

−c2 + s+ n = 0 (C.93)

s+ n =
ǫα

Λ
(C.94)

which gives, by taking the square ;

(s+ n)2(1− ǫ2) = ǫ2α2

(s+ n)2 = [(s+ n)2 + α2]ǫ2

ǫ2 =
1

1 +
α2

(s+ n)2

. (C.95)

66The integrability of the wave functions is not optional, but compulsory, since we have
seen in 3.4 that the normalization of the wave comes from the physical fact that the energy
of the electron is the energy of its wave.
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And we get the Sommerfeld’s formula for the energy levels:

ǫ =
1√

1 +
α2

(s+ n)2

; s =
√
κ2 − α2 ; |κ| = j +

1

2
. (C.96)

With (C.75), (C.83), (C.88) and (C.92), we get now:

ϕ1(x) = a0(2Λx)
sF (−n, 2s+ 1, 2Λx) (C.97)

ϕ2(x) =
−na0
c1 + κ

(2Λx)sF (1− n, 2s+ 1, 2Λx). (C.98)

We let, if n > 0:

P1 = F (1− n, 2s+ 1, 2Λx) ; P2 = F (−n, 2s+ 1, 2Λx). (C.99)

And we get:

F− =

√
1 + ǫ

c1 + κ
a0e

−Λx(2Λx)s[(c1 + κ)P2 − nP1] (C.100)

G− =

√
1− ǫ

c1 + κ
a0e

−Λx(2Λx)s[(c1 + κ)P2 + nP1]. (C.101)

We let then:

a1 =

√
1 + ǫ

c1 + κ
a0(2Λ)

s. (C.102)

We get finally:

F− = a1e
−Λxxs[(c1 + κ)P2 − nP1] (C.103)

G− =

√
1− ǫ

1 + ǫ
a1e

−Λxxs[(c1 + κ)P2 + nP1]. (C.104)

Since we go from F−, G− to F+, G+ by replacing κ by −κ, we have also:

F+ = a2e
−Λxxs[(c1 − κ)P2 − nP1] (C.105)

G+ =

√
1− ǫ

1 + ǫ
a2e

−Λxxs[(c1 − κ)P2 + nP1] (C.106)

where a2 is, as a1, a complex constant. We get the same condition on the energy
when we say that functions F+ and G+ must be polynomials to get integrability
of the wave, because (C.96) contains only κ2. Therefore if the formula (C.96)
is satisfied we get polynomials for the four radial functions and the wave is
integrable.
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C.4 Calculation of the Yvon-Takabayasi angle

We have with (C.62) and (C.63):

eiβ =
ad∗U2 + cb∗V 2

|ad∗U2 + cb∗V 2| . (C.107)

With (C.66) we get:

2a = F+ + F− + i(G+ +G−) ; 2b = F+ − F− + i(G+ −G−)

2d = F+ + F− − i(G+ +G−) ; 2c = F+ − F− − i(G+ −G−). (C.108)

And we get:

4(ad∗U2 + cb∗V 2)

= (F+F
∗
+ + F−F

∗
− −G+G

∗
+ −G−G

∗
−)(U

2 + V 2)

+ (F+F
∗
− + F−F

∗
+ −G+G

∗
− −G−G

∗
+)(U

2 − V 2)

+ i(F+G
∗
+ + F−G

∗
− +G+F

∗
+ +G−F

∗
−)(U

2 − V 2)

+ i(F+G
∗
− + F−G

∗
+ +G+F

∗
− +G−F

∗
+)(U

2 + V 2) (C.109)

With (C.103) to (C.106), we get then, if n > 0:

F+F
∗
+ + F−F

∗
− −G+G

∗
+ −G−G

∗
− (C.110)

=
2

1 + ǫ
e−2Λxx2s

(
(|a1|2 + |a2|2)[ǫ(c21 + κ2)P 2

2 + ǫn2P 2
1 − 2nc1P1P2]

+(|a2|2 − |a1|2)2κP2(−ǫc1P2 + nP1)

)

F+F
∗
− + F−F

∗
+ −G+G

∗
− −G−G

∗
+ (C.111)

= e−2Λxx2s(a1a
∗
2 + a2a

∗
1)

(
[(c1 − κ)P2 − nP1][(c1 + κ)P2 − nP1]

− 1−ǫ
1+ǫ ([(c1 − κ)P2 + nP1][(c1 + κ)P2 + nP1]

)

F+G
∗
+ + F−G

∗
− +G+F

∗
+ +G−F

∗
− (C.112)

= 2

√
1− ǫ

1 + ǫ
e−2Λxx2s

(
|a2|2[(c1 − κ)2P 2

2 − n2P 2
1 ]

+|a1|2[(c1 + κ)2P 2
2 − n2P 2

1 ]

)

F+G
∗
− + F−G

∗
+ +G+F

∗
− +G−F

∗
+ (C.113)

= e−2Λxx2s(a1a
∗
2 + a2a

∗
1)

√
1− ǫ

1 + ǫ

(
[(c1 − κ)P2 − nP1][(c1 + κ)P2 + nP1]
+[(c1 + κ)P2 − nP1][(c1 − κ)P2 + nP1]

)
.

There is a great reduction, that we will let now, if:

a1a
∗
2 + a2a

∗
1 = 0. (C.114)

In addition, we have:

c2 = s+ n =
αǫ

Λ
; c1 =

α

Λ
=
s+ n

ǫ
=
√
(s+ n)2 + α2. (C.115)

161



We have: s > 0, n > 0, therefore (s+ n)2 > s2, and

c1 =
√
(s+ n)2 + α2 >

√
s2 + α2 =

√
κ2 = |κ| > ±κ. (C.116)

So we always have:
c1 − κ > 0 ; c1 + κ > 0. (C.117)

If we choose to let:

|a1|2 = (c1 − κ)k ; |a2|2 = (c1 + κ)k (C.118)

where k is a real positive constant, we get:

F+F
∗
+ + F−F

∗
− −G+G

∗
+ −G−G

∗
−

=
2k

1 + ǫ
e−2Λxx2s[2ǫc1(c

2
1 − κ2)P 2

2 + 2ǫc1n
2P 2

1 − 4n(c21 − κ2)P1P2] (C.119)

and since:
c21 − κ2 = n(n+ 2s) ; ǫc1 = s+ n (C.120)

we get:

F+F
∗
+ + F−F

∗
− −G+G

∗
+ −G−G

∗
−

=
4nk

1 + ǫ
e−2Λxx2s

(
(n+ 2s)[(s+ n)P 2

2 − 2nP1P2] + n(s+ n)P 2
1

)

=
4nk

1 + ǫ
e−2Λxx2s

[
(n+ 2s)(

√
s+ nP2 −

n√
s+ n

P1)
2 +

ns2

s+ n
P 2
1

]
. (C.121)

And this term, which is the sum of two squares, il always positive, two successive
Laguerre’s polynomials having no common zero. Then we get

F+G
∗
+ + F−G

∗
− +G+F

∗
+ +G−F

∗
−

=
2
√
1− ǫ2

1 + ǫ
e−2Λxx2s

(
|a2|2[(c1 − κ)2P 2

2 − n2P 2
1 ]

+|a1|2[(c1 + κ)2P 2
2 − n2P 2

1 ]

)

=
4c1Λk

1 + ǫ
e−2Λxx2s[(c21 − κ2)P 2

2 − n2P 2
1 ]

=
4αnk

1 + ǫ
e−2Λxx2s[(n+ 2s)P 2

2 − nP 2
1 ] (C.122)

This allows us to write the Yvon-Takabayasi angle such as:

tanβ =
α[(2s+ n)P 2

2 − nP 2
1 ]

(n+ 2s)(
√
s+ nP2 − n√

s+n
P1)2 +

ns2

s+nP
2
1

× U2 − V 2

U2 + V 2
(C.123)

The denominator contains only sums of squares, which cannot be together null.
Consequently, for all the states with a n > 0 quantum number, a solution exists
such that the Yvon-Takabayasi β angle is everywhere defined. In addition the
presence of the fine structure constant, which is small, implies that the β angle
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is everywhere small. Moreover we now explain why U2 − V 2 is exactly null, for
any value of κ and λ, in the plane x1Ox2. We start here from the differential
equation (C.57). If f is a solution, then g defined by g(z) = f(−z) is also a
solution. Since there is only one polynomial solution with degree n, up to a real
factor, we get necessarily f(−z) = ±f(z) and f is either an even polynomial or
an odd polynomial. Therefore C is an even or an odd polynomial of cos θ. Now
from (C.53) we get

U2 + V 2 = sin2λθ[C ′2 + (κ+
1

2
− λ)2C2] (C.124)

U2 − V 2 = sin2λθ[− cos θC ′2 − 2(κ+
1

2
− λ) sin θC ′C + (κ+

1

2
− λ)2 cos θC2]

From (C.54) we get

U2 + V 2 = sin−2λθ[C ′2 + (κ+
1

2
+ λ)2C2] (C.125)

U2 − V 2 = sin−2λθ[cos θC ′2 + 2(κ+
1

2
+ λ) sin θC ′C − (κ+

1

2
+ λ)2 cos θC2]

This gives

(U2 − V 2)(
π

2
) = − λ

|λ| (κ+
1

2
− |λ|)(C ′C)(

π

2
) (C.126)

If C is a constant C ′ = 0. Otherwise either C is an even polynomial of cos θ
and then C ′ is odd and the product C ′C contains a cos θ factor, or C is an
odd polynomial of cos θ and the product C ′C contains also a cos θ factor. This
factor is null if θ = π

2 . This proves that

β(
π

2
) = 0 (C.127)

The solutions of the linear Dirac equation satisfying (C.114) and (C.118) may
therefore be the linear approximations of solutions for the homogeneous non-
linear equation. Now if we have a solution φ0 of the nonlinear homogeneous
equation (3.10) with a not small value β0 of the Yvon-Takabayasi angle at a
point M0 with coordinates (x0, y0, 0), since the nonlinear homogeneous equa-
tion is globally gauge invariant under the chiral gauge (3.31), we let

φ = e−i
β0

2 φ0 (C.128)

And we get

(φφ)(M0) = e−i
β0

2 φ0e
−i

β0

2 φ0 = e−iβ0ρ0e
iβ0 = ρ0. (C.129)

And φ has at this pointM0 a null β angle, so the equation (3.10) at this point is
exactly the Dirac equation, we get the separation of variables at this point, we
get the angular system (C.38) and the radial system (C.39) which is identical
to the radial system (C.40) of the linear equation. Then the β angle is null in
all the z = 0 plane and the radial system (3.39) is identical to (C.40) in all
the z = 0 plane. Then the necessity of integrability imposes the existence of
radial polynomials and we get the quantification of the energy levels and the
Sommerfeld’s formula (C.96)
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C.5 Radial polynomials with degree 0

To get absolutely all results of the Dirac equation, we have a last thing to
explain: why do we get 2n2 different states with a principal quantum number
n = |κ|+n, and we must return to the particular case where radial polynomials
are constants. We start directly from (C.64), and we let:

a = a0e
−Λxxs ; b = b0e

−Λxxs ; c = c0e
−Λxxs ; d = d0e

−Λxxs. (C.130)

We get from (C.39):

e−Λx(iǫd0x
s + iαd0x

s−1 − Λd0x
s + sd0x

s−1 + κb0x
s−1) = ia0e

−Λxxs

e−Λx(−iǫc0xs − iαc0x
s−1 + Λc0x

s − sc0x
s−1 − κa0x

s−1) = −ib0e−Λxxs

e−Λx(iǫb0x
s + iαb0x

s−1 + Λb0x
s − sb0x

s−1 − κd0x
s−1) = ic0e

−Λxxs (C.131)

e−Λx(−iǫa0xs − iαa0x
s−1 − Λa0x

s + sa0x
s−1 + κc0x

s−1) = −id0e−Λxxs.

This is equivalent to the set formed by the four following systems:

κb0 + (iα+ s)d0 = 0

(iα− s)b0 − κd0 = 0 (C.132)

−κa0 − (iα+ s)c0 = 0

−(iα− s)a0 + κc0 = 0 (C.133)

−ia0 + (iǫ− Λ)d0 = 0

−(iǫ+ Λ)a0 + id0 = 0 (C.134)

ib0 − (iǫ− Λ)c0 = 0

(iǫ+ Λ)b0 − ic0 = 0. (C.135)

The cancellation of the determinant in (C.132) and (C.133) gives again (C.81)
and (C.82). The cancellation of the determinant in (C.134) and (C.135) is
simply equivalent to Λ2 = 1 − ǫ2, which comes from the definition of Λ. Each
system (C.132) to (C.135) is then reduced into one equation:

κd0 = (iα− s)b0

κc0 = (iα− s)a0

d0 = (ǫ− iΛ)a0 (C.136)

b0 = (ǫ+ iΛ)c0.

We get then:

κd0 = κ(ǫ− iΛ)a0 = (iα− s)b0 = (iα− s)(ǫ+ iΛ)c0 =
(iα− s)2(ǫ+ iΛ)

κ
a0.

(C.137)
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We have a not null solution only if:

κ(ǫ− iΛ) =
(iα− s)2(ǫ+ iΛ)

κ

κ2(ǫ− iΛ)2 = (s− iα)2

κ(ǫ− iΛ) = ±(s− iα). (C.138)

Since ǫ, s, Λ and α are positive, we finally get

|κ| = s

ǫ
=
α

Λ
. (C.139)

This last equality gives again the formula of energy levels (C.96) with n = 0.
Since κ comes with its absolute value, we can equally have κ < 0 or κ > 0. But
the calculation of solutions by C. G. Darwin, who works with real constants,
not with complex constants at this stage of his computation, forbids to κ to be
negative, and it is that thing that allows, for a given principal quantum number
n = n+ |κ|, to get n(n+1)+n(n−1) = 2n2 states. Whatever really happens is
that to change sign in κ comes to change V into −V . And if we change the sign
of κ and V , then a, b, c, d are invariant if n = 0, and the wave is unchanged.
To change the sign of κ brings no more solutions and we can use only solutions
with κ > 0, in the case n = 0. And this allows to get the true number of states.

The formula obtained for the energy levels does not account for the Lamb
effect, which gives, if n > 0, a very small split between energy levels with
same other quantum numbers but with opposite signs of κ. If the formula
(C.96) was not the same for two opposite values of κ we should not be able to
get four polynomial radial functions with only one condition which gives the
quantification of the energy levels. Here also the standard model has already an
answer, with the polarization of the void. But the calculation must be revised,
both to avoid divergent integrals and to use our solutions instead of Darwin’s
solutions coming from the non-relativistic Pauli equation.
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Nantes, 1993.

[8] C. Daviau. Solutions of the Dirac equation and of a nonlinear Dirac equa-
tion for the hydrogen atom. Adv. Appl. Clifford Algebras, 7((S)):175–194,
1997.

[9] C. Daviau. Sur l’équation de Dirac dans l’algèbre de Pauli. Ann. Fond. L.
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[26] Louis de Broglie. L’électron magnétique. Hermann, Paris, 1934.
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