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condition

Xiequan Fan∗, Ion Grama and Quansheng Liu
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Abstract

An expansion of large deviation probabilities for martingales is given, which extends the classical
result due to Cramér to the case of martingale differences satisfying the conditional Bernstein
condition. The upper bound of the range of validity and the remainder of our expansion is
the same as in the Cramér result and therefore are optimal. Our result implies a moderate
deviation principle for martingales.

Key words: expansions of large deviations; Cramér type large deviations; large deviations;
moderate deviations; exponential inequality; Bernstein’s condition; central limit theorem

2000 MSC: Primary 60G42; 60F10; 60E15; Secondary 60F05

1. Introduction

Consider a sequence of independent and identically distributed (i.i.d.) centered real random
variables �1, ..., �� satisfying Cramér’s condition � exp{�0∣�1∣} < ∞, for some constant �0 > 0.
Denote �2 = ��21 and �� =

∑�
�=1 ��. In 1938, Cramér [5] established an asymptotic expansion

of the probabilities of large deviations of ��, based on the powerful technique of conjugate
distributions (see also Esscher [8]). The results of Cramér imply that, uniformly in 1 ≤ � =
�(�1/2),

log
ℙ(�� > ��

√
�)

1− Φ(�)
= �

( �3√
�

)
as �→ ∞, (1)

where Φ(�) = 1√
2�

∫ �

−∞ exp{−�2/2}�� is the standard normal distribution. Various large de-
viation expansions for sums of independent random variables have been obtained by many
authors, see for instance Feller [10], Petrov [22], Rubin and Sethuraman [27], Statulevičius [29],
Saulis and Statulevičius [28] and Bentkus and Račkauskas [1]. We refer to the book of Petrov
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[23] and the references therein for a detailed account. Despite the fact that the case of sums of
independent random variables is well studied, there are only a few results on expansions of type
(1) for martingales: see Bose [3, 4], Račkauskas [24, 25, 26], Grama [13, 14] and Grama and
Haeusler [15, 16]. It is also worth noting that limit theorems for large and moderate deviation
principle for martingales have been proved by several authors, see e.g. Liptser and Pukhalskii
[21], Gulinsky and Veretennikov [17], Gulinsky, Liptser and Lototskii [18], Gao [12], Dembo
[6], Worms [30] and Djellout [7]. However, these theorems are less precise than large deviation
expansions of type (1).

Let (��,ℱ�)�=0,...,� be a sequence of square integrable martingale differences defined on a
probability space (Ω,ℱ ,ℙ), where �0 = 0 and {∅,Ω} = ℱ0 ⊆ ... ⊆ ℱ� ⊆ ℱ . Denote �� =∑�

�=1 ��. Assume that there exist absolute constants � > 0 and � ≥ 0 such that max� ∣��∣ ≤ �
and ∣∑�

�=1 �(�
2
� ∣ℱ�−1)− �∣ ≤ �2. Here and hereafter, the equalities and inequalities between

random variables are understood in the ℙ-almost sure sense. From the results in Grama and
Haeusler [15], it follows that, for any constant � > 0 and �

√
log � ≤ � = �

(
�1/6

)
,

ℙ (�� > �
√
�)

1− Φ (�)
= 1 +�

(
(� +�)

�3√
�

)
(2)

and, for any 0 ≤ � = �
(√

log �
)
,

ℙ (�� > �
√
�)

1− Φ (�)
= 1 +�

(
(� +�)(1 + �)

log �√
�

)
(3)

as � → ∞ (se also [14, 16] for more results in the last range). In this paper we extend
the expansions (2) and (3) to the case of martingale differences (��,ℱ�)�=0,...,� satisfying the
conditional Bernstein condition,

∣�(��� ∣ℱ�−1)∣ ≤
1

2
�!��−2

�(�2� ∣ℱ�−1), for � ≥ 3 and 1 ≤ � ≤ �, (4)

where � is a positive absolute constant. Note that in the i.i.d. case Bernstein’s condition (4) is
equivalent to Cramér’s condition (see Section 8) and therefore (2) implies Cramér’s expansion
(1). It is worth stressing that the remainder in expansion (2) is of the same order as that in
(1) in the stated range and therefore cannot be improved. As to the remainder in (3), from the
rate of convergence result in Bolthausen [2] we conclude that it is also optimal.

Another objective of the paper is to find an asymptotic expansion of large deviation for
martingales in a wider range than that of (2). From Theorems 2.1 and 2.2 of the paper it
follows that, for any constant � > 0 and �

√
log � ≤ � = �

(
�1/2

)
,

log
ℙ (�� > �

√
�)

1− Φ (�)
= �

( �3√
�

)
as �→ ∞. (5)

This improves the corresponding result in [15] where (5) has been established only in the range
� ∈ [�

√
log �, �1�

1/4] for some absolute constant �1 > 0. The upper bound of the range and
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the remainder in expansion (5) cannot be improved since they are of the same order as in the
Cramér’s expansion (1).

The idea behind our approach is similar to that of Cramér for independent random variables
with corresponding adaptations to the martingale case. We make use of the conjugate multi-
plicative martingale for changing the probability measure as proposed in Grama and Haeusler
[15] (see also [9]). However, we refine [15] in two aspects. First, we relax the boundedness
condition ∣��∣ ≤ �, replacing it by Bernstein’s condition (4). Secondly, we establish upper and
lower bounds for the large deviation probabilities in the range � ∈ [0, �1�

1/2) thus enlarging
the range � ∈ [0, �1�

1/4] established in [15]. In the proof we make use of a rate of conver-
gence result for martingales under the conjugate measure. It is established under the Bernstein
condition (4), unlike [15] where it is established only for bounded martingale differences. As
a consequence, we improve the result on the rate of convergence in the central limit theorem
(CLT) due to Bolthausen [2] (see Theorem 3.1 below).

The paper is organized as follows. Our main results are stated and discussedin in Section
2. A rate of convergence in the CLT for martingales is given in Section 3. Section 4 contains
auxiliary assertions used in the proofs of the main results. Proofs are deferred to Sections 5, 6
and 7. We clarify the relations among the conditions of Bernstein, Cramér and Sakhanenko in
Section 8.

Throughout the paper, � and ��, probably supplied with some indices, denote respectively
a generic positive absolute constant and a generic positive constant depending only on �.
Moreover, ��’s stand for values satisfying ∣��∣ ≤ 1.

2. Main results

2.1. Main theorems

Assume that we are given a sequence of martingale differences (��,ℱ�)�=0,...,�, defined on
some probability space (Ω,ℱ ,ℙ), where �0 = 0, {∅,Ω} = ℱ0 ⊆ ... ⊆ ℱ� ⊆ ℱ are increasing
�-fields and (��)�=1,...,� are allowed to depend on �. Set

�0 = 0, �� =
�∑

�=1

��, � = 1, ..., �. (6)

Let ⟨�⟩ be the quadratic characteristic of the martingale � = (��,ℱ�)�=0,...,� :

⟨�⟩0 = 0, ⟨�⟩� =
�∑

�=1

�(�2� ∣ℱ�−1), � = 1, ..., �. (7)

In the sequel we shall use the following conditions:

(A1) There exists a number � ∈ (0, 1
2
] such that

∣�(��� ∣ℱ�−1)∣ ≤
1

2
�!��−2

�(�2� ∣ℱ�−1), for � ≥ 3 and 1 ≤ � ≤ �;

3



(A2) There exists a number � ∈ [0, 1
2
] such that ∣⟨�⟩� − 1∣ ≤ �2.

Note that in the case of normalized sums of i.i.d. random variables conditions (A1) and
(A2) are satisfied with � = 1

�
√
�
and � = 0 (see conditions (A1′) and (A2′) below). In the case

of martingales � and � usually depend on � such that � = �� → 0 and � = �� → 0.
The following two theorems give upper and lower bounds for large deviation probabilities.

Theorem 2.1. Assume conditions (A1) and (A2). Then, for any constant � ∈ (0, 1) and all
0 ≤ � ≤ � �−1, we have

ℙ(�� > �)

1− Φ (�)
≤ exp

{
��

(
�3�+ �2�2

)}(
1 + �� (1 + �) (� ∣log �∣+ �)

)
(8)

and
ℙ(�� < −�)

Φ (−�) ≤ exp

{
��

(
�3�+ �2�2

)}(
1 + �� (1 + �) (� ∣log �∣+ �)

)
, (9)

where the constant �� does not depend on (��,ℱ�)�=0,...,�, � and �.

Theorem 2.2. Assume conditions (A1) and (A2). Then there is an absolute constant �0 > 0
such that, for all 0 ≤ � ≤ �0 �

−1 and � ≤ �0,

ℙ(�� > �)

1− Φ (�)
≥ exp

{
− ��0

(
�3�+ �2�2 + (1 + �) (� ∣log �∣+ �)

)}
(10)

and
ℙ(�� < −�)

Φ (−�) ≥ exp

{
− ��0

(
�3�+ �2�2 + (1 + �) (� ∣log �∣+ �)

)}
, (11)

where the constants �0 and ��0
do not depend on (��,ℱ�)�=0,...,�, � and �.

Using the inequality ∣��−1∣ ≤ ��∣�∣ valid for ∣�∣ ≤ �, from Theorems 2.1 and 2.2, we obtain
the following improvement of the main result of [15].

Corollary 2.1. Assume conditions (A1) and (A2). Then there is an absolute constant �0 > 0
such that, for all 0 ≤ � ≤ �0 min{(� ∣log �∣)−1, �−1},

ℙ(�� > �)

1− Φ (�)
= exp{�1��0

�3�}
(
1 + �2��0

(1 + �)(� ∣log �∣+ �)
)

(12)

and
ℙ(�� < −�)

Φ (−�) = exp{�3��0
�3�}

(
1 + �4��0

(1 + �)(� ∣log �∣+ �)
)
, (13)

where ��0
does not depend on �, � but �� possibly depend on (��,ℱ�)�=0,...,�, � and �.

For bounded martingale differences ∣��∣ ≤ � under condition (A2), Grama and Haeusler [15]
proved the asymptotic expansions (12) and (13) for � ∈ [0, �1 min{�−1/2, �−1}] and some small
absolute constant �1 ∈ (0, 1

8
]. Thus Corollary 2.1 extends the asymptotic expansions of [15] to

a larger range � ∈ [0, �0 min{(� ∣log �∣)−1, �−1}) and non bounded martingale differences.
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2.2. Remarks on the main theorems

Combining the inequalities (8) and (10), we conclude that under (A1) and (A2) there is an
absolute constant �0 > 0 such that, for all 0 ≤ � ≤ �0 �

−1 and � ≤ �0,
∣∣∣∣ log

ℙ(�� > �)

1− Φ (�)

∣∣∣∣ ≤ ��0

(
�3�+ �2�2 + (1 + �) (� ∣log �∣+ �)

)
. (14)

We show that this result can be regarded as a refinement of the moderate deviation principle
(MDP) in the framework where (A1) and (A2) hold. Assume that (A1) and (A2) are satisfied
with � = �� → 0 and � = �� → 0 as �→ ∞. Let �� be any sequence of real numbers satisfying
�� → ∞ and ���� → 0 as �→ ∞. Then inequality (14) implies the MDP for (��)�≥1 with the
speed �� and rate function �2/2. Indeed, using the inequalities

1√
2�(1 + �)

�−�2/2 ≤ 1− Φ(�) ≤ 1√
�(1 + �)

�−�2/2, � ≥ 0,

we deduce that, for any � ≥ 0,

lim
�→∞

1

�2�
logℙ(�� > ���) = −�

2

2
.

By a similar argument, we also have, for any � ≥ 0,

lim
�→∞

1

�2�
logℙ(�� < −���) = −�

2

2
.

The last two equalities are equivalent to the statement that: for each Borel set �,

− inf
�∈��

�2

2
≤ lim inf

�→∞
1

�2�
logℙ

(
1

��
�� ∈ �

)

≤ lim sup
�→∞

1

�2�
logℙ

(
1

��
�� ∈ �

)
≤ − inf

�∈�

�2

2
,

where �� and � denote the interior and the closure of � respectively, see Lemma 4.4 of [20].
Similar results can be found in Gao [12] for the martingale differences satisfying the conditional
Cramér condition ∣∣�(exp{�0∣��∣}∣ℱ�−1)∣∣∞ <∞.

To show that our results are sharp, assume that �� = ��/
√
�, where (��,ℱ�)�=1,...,� is a

sequence of martingale differences satisfying the following conditions:

(A1′) (Bernstein’s condition) There exists a positive absolute constant � such that

∣�(��� ∣ℱ�−1)∣ ≤
1

2
�!��−2

�(�2� ∣ℱ�−1), for � ≥ 3 and 1 ≤ � ≤ �;

(A2′) There exists an absolute constant � ≥ 0 such that ∣∑�
�=1 �(�

2
� ∣ℱ�−1)− �∣ ≤ �2.
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These conditions are satisfied with some � > 0 and � = 0 if, for instance, �1, �2, ..., �� are i.i.d.
random variables with finite exponential moments (see Section 8 for an explicit expression of
the positive absolute constant �).

Corollary 2.2. Assume conditions (A1′) and (A2 ′). Then there is an absolute constant �2 > 0
such that for any absolute constant �1 > 0 and all �1

√
log � ≤ � ≤ �2�

1/2, we have

log
ℙ(
∑�

�=1 �� > �
√
�)

1− Φ (�)
= �

(
(� +�)

�3√
�

)
(15)

and

log
ℙ(
∑�

�=1 �� < −�√�)
Φ (−�) = �

(
(� +�)

�3√
�

)
(16)

as �→ ∞.

It is worth noting that the remainders of the expansions (15) and (16) are of the same order
as in (1) and therefore are optimal.

Corollary 2.3. Assume conditions (A1′) and (A2′). Then, for all 0 ≤ � = �
(√

log �
)
,

ℙ(
∑�

�=1 �� > �
√
�)

1− Φ (�)
= 1 +�

(
(� +�)(1 + �)

log �√
�

)
(17)

and
ℙ(
∑�

�=1 �� < −�√�)
Φ (−�) = 1 +�

(
(� +�)(1 + �)

log �√
�

)
(18)

as �→ ∞.

Notice that (17) extends expansion (3) proved in Grama and Haeusler [15] to the case of
martingale differences satisfying the conditional Bernstein condition (A1′). The Remark 2.1 of
[15] and the sharp rate of convergence in the CLT due to Bolthausen [2] hint that the remainders
of the expansions (17) and (18) are sharp.

Corollary 2.4. Assume conditions (A1′) and (A2 ′). Then, for any absolute constant � > 0
and �

√
log � ≤ � = �

(
�1/6

)
,

ℙ(
∑�

�=1 �� > �
√
�)

1− Φ (�)
= 1 +�

(
(� +�)

�3√
�

)
(19)

and
ℙ(
∑�

�=1 �� < −�√�)
Φ (−�) = 1 +�

(
(� +�)

�3√
�

)
(20)

as �→ ∞.

The remainders of the expansions (19) and (20) are of the same order as in (1) in the stated
range and therefore cannot be improved.

Remark 2.1. The results formulated above are proved under Bernstein’s condition (A1′). But
they are also valid under some equivalent conditions which are stated in Section 8.
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3. Rates of convergence in the CLT

Let (��,ℱ�)�=0,...,� be a sequence of martingale differences satisfying condition (A1) and
� = (��,ℱ�)�=0,...,� be the corresponding martingale defined by (6). For any real � satisfying
∣�∣ < �−1, consider the exponential multiplicative martingale �(�) = (��(�),ℱ�)�=0,...,�, where

��(�) =
�∏

�=1

����

�(���� ∣ℱ�−1)
, � = 1, ..., �, �0(�) = 1.

For each � = 1, ..., �, the random variable ��(�) defines a probability density on (Ω,ℱ ,ℙ). This
allows us to introduce, for ∣�∣ < �−1, the conjugate probability measure ℙ� on (Ω,ℱ) defined by

�ℙ� = ��(�)�ℙ. (21)

Denote by �� the expectation with respect to ℙ�. For all � = 1, . . . , �, let

��(�) = �� − ��(�) and ��(�) = ��(��∣ℱ�−1).

We thus obtain the well-known semimartingale decomposition:

�� = ��(�) +��(�), � = 1, ..., �, (22)

where � (�) = (��(�),ℱ�)�=1,...,� is the conjugate martingale defined as

��(�) =
�∑

�=1

��(�), � = 1, ..., �, (23)

and �(�) = (��(�),ℱ�)�=1,...,� is the drift process defined as

��(�) =
�∑

�=1

��(�), � = 1, ..., �.

In the proofs of Theorems 2.1 and 2.2, we make use of the following assertion, which gives us
a rate of convergence in the central limit theorem for the conjugate martingale � (�) under the
probability measure ℙ�.

Lemma 3.1. Assume conditions (A1) and (A2). Then, for all 0 ≤ � < �−1,

sup
�

∣ℙ�(��(�) ≤ �)− Φ(�)∣ ≤ � (� �+ � ∣log �∣+ �) .

If � = 0, then ��(�) = �� and ℙ� = ℙ. So Lemma 3.1 implies the following theorem.

Theorem 3.1. Assume conditions (A1) and (A2). Then

sup
�

∣ℙ(�� ≤ �)− Φ (�) ∣ ≤ � (� ∣log �∣+ �). (24)
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Remark 3.1. By inspecting the proof of Lemma 3.1, we can see that Theorem 3.1 holds true
when condition (A1) is replaced by the following weaker one:

(C1) There exists a number � ∈ (0, 1
2
] depending on � such that

∣�(��� ∣ℱ�−1)∣ ≤ ��−2
�(�2� ∣ℱ�−1), for � = 3, 5 and 1 ≤ � ≤ �.

Remark 3.2. Bolthausen (see Theorem 2 of [2]) showed that if ∣��∣ ≤ � and condition (A2)
holds, then

sup
�

∣ℙ(�� ≤ �)− Φ (�) ∣ ≤ �1 (�
3� log �+ �). (25)

We note that Theorem 3.1 implies Bolthausen’s inequality (25) under the less restrictive condi-
tion (A1). Indeed, by condition (A2), we have 3/4 ≤ ⟨�⟩� ≤ ��2 and then � ≥

√
3/(4�). For

� ≤ 1/2, it is easy to see that �3� log � ≥ 3 �∣ log �∣/4. Thus, inequality (24) implies (25) with
�1 = 4�/3.

4. Auxiliary results

In this section, we establish some auxiliary lemmas which will be used in the proofs of
Theorems 2.1 and 2.2. We first prove upper bounds for the conditional moments.

Lemma 4.1. Assume condition (A1). Then

∣�(��� ∣ℱ�−1)∣ ≤ 6�!��, for � ≥ 2,

and
�(∣��∣�∣ℱ�−1) ≤ �!��−2

�(�2� ∣ℱ�−1), for � ≥ 2.

Proof. By Jensen’s inequality and condition (A1),

�(�2� ∣ℱ�−1)
2 ≤ �(�4� ∣ℱ�−1) ≤ 12�2�(�2� ∣ℱ�−1),

from which we get
�(�2� ∣ℱ�−1) ≤ 12�2.

We obtain the first assertion. Again by condition (A1), for � ≥ 3,

∣�(��� ∣ℱ�−1)∣ ≤
1

2
�!��−2

�(�2� ∣ℱ�−1) ≤ 6�!��.

If � is even, the second assertion holds obviously. If � = 2� + 1, � ≥ 1, is odd, by Hölder’s
inequality and condition (A1), it follows that

�
(
∣��∣2�+1∣ℱ�−1

)
≤ �

(
∣��∣�∣��∣�+1∣ℱ�−1

)
≤
√

�
(
�2�� ∣ℱ�−1

)
�

(
�
2(�+1)
� ∣ℱ�−1

)

≤ 1

2

√
(2�)!(2� + 2)!�2�−1

�(�2� ∣ℱ�−1)

≤ (2� + 1)!�2�−1
�(�2� ∣ℱ�−1).

8



This completes the proof of Lemma 4.1. □

The following lemma establishes a two sided bound for the drift process ��(�).

Lemma 4.2. Assume conditions (A1) and (A2). Then for any constant � ∈ (0, 1) and all
0 ≤ � ≤ � �−1,

∣��(�)− �∣ ≤ ��2 + ���
2�. (26)

Proof. By the relation between � and �� on ℱ�, we have

��(�) =
�(���

��� ∣ℱ�−1)

�(���� ∣ℱ�−1)
, � = 1, ..., �.

Jensen’s inequality and �(��∣ℱ�−1) = 0 imply that �(���� ∣ℱ�−1) ≥ 1. Since

�(���
��� ∣ℱ�−1) = �

(
��(�

��� − 1)∣ℱ�−1

)
≥ 0, for � ≥ 0,

by Taylor’s expansion for ��, we find that

��(�) ≤
�∑

�=1

�(���
��� ∣ℱ�−1)

=
�∑

�=1

�
(
��(�

��� − 1)∣ℱ�−1

)

= �⟨�⟩� +
�∑

�=1

+∞∑

�=2

�

(
��(���)

�

�!

∣∣∣∣ℱ�−1

)
. (27)

Using condition (A1), we obtain, for any constant � ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

�∑

�=1

+∞∑

�=2

(
��(���)

�

�!

∣∣∣∣ℱ�−1

)
≤

�∑

�=1

+∞∑

�=2

∣�
(
��+1
� ∣ℱ�−1

)
∣�

�

�!

≤ 1

2
�2�⟨�⟩�

+∞∑

�=2

(� + 1)(��)�−2

≤ �� �
2�⟨�⟩�. (28)

Using condition (A2), we get ⟨�⟩� ≤ 2 and, for any constant � ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

�∑

�=1

+∞∑

�=2

∣∣∣∣�
(
��(���)

�

�!

∣∣∣∣ℱ�−1

)∣∣∣∣ ≤ 2 ���
2�. (29)

Condition (A2) together with (27) and (29) imply the upper bound of ��(�): for any constant
� ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

��(�) ≤ �+ ��2 + 2 �� �
2�.

9



Using Lemma 4.1, we have, for any constant � ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

�
(
���� ∣ℱ�−1

)
≤ 1 +

+∞∑

�=2

∣∣∣∣�
(
(���)

�

�!

∣∣∣∣ℱ�−1

)∣∣∣∣

≤ 1 + 6
+∞∑

�=2

(��)�

≤ 1 + �1,� (��)
2. (30)

This inequality together with condition (A2) and (29) imply the lower bound of ��(�): for any
constant � ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

��(�) ≥
(

�∑

�=1

�(���
��� ∣ℱ�−1)

)(
1 + �1,� (��)

2

)−1

≥
(
�⟨�⟩� −

�∑

�=1

+∞∑

�=2

∣∣∣∣�
(
��(���)

�

�!

∣∣∣∣ℱ�−1

)∣∣∣∣

)(
1 + �1,� (��)

2

)−1

≥
(
�− ��2 − 2 ���

2�
)(

1 + �1,� (��)
2
)−1

≥ �− ��2 − (2 �� + � �1,�)�
2�,

where the last line follows from the following inequality, for any constant � ∈ (0, 1) and all
0 ≤ � ≤ � �−1,

�− ��2 − 2 ���
2� ≥ �− ��2 − (2 �� + � �1,�)�

2�+ �1,��
3�2

≥
(
�− ��2 − (2 �� + � �1,�)�

2�
)(

1 + �1,�(��)
2
)
.

The proof of Lemma 4.2 is finished. □

Now, consider the predictable cumulant process Ψ(�) = (Ψ�(�),ℱ�)�=0,...,� related with the
martingale � as follows:

Ψ�(�) =
�∑

�=1

log�
(
���� ∣ℱ�−1

)
. (31)

We establish a two sided bound for the process Ψ(�).

Lemma 4.3. Assume conditions (A1) and (A2). Then, for any constant � ∈ (0, 1) and all
0 ≤ � ≤ � �−1, ∣∣∣∣Ψ�(�)−

�2

2

∣∣∣∣ ≤ ���
3�+

�2�2

2
.

10



Proof. Since �(��∣ℱ�−1) = 0, it is easy to see that

Ψ�(�) =
�∑

�=1

(
log�(���� ∣ℱ�−1)− ��(��∣ℱ�−1)−

�2

2
�(�2� ∣ℱ�−1)

)
+
�2

2
⟨�⟩� .

Using a two-term Taylor’s expansion of log(1 + �), � ≥ 0, we obtain

Ψ�(�)−
�2

2
⟨�⟩� =

�∑

�=1

(
�(���� ∣ℱ�−1)− 1− ��(��∣ℱ�−1)−

�2

2
�(�2� ∣ℱ�−1)

)

+
1

2
(
1 + ∣�∣ (�(���� ∣ℱ�−1)− 1)

)
�∑

�=1

(
�(���� ∣ℱ�−1)− 1

)2
.

Since �(���� ∣ℱ�−1) ≥ 1, we find that
∣∣∣∣Ψ�(�)−

�2

2
⟨�⟩�

∣∣∣∣ ≤
�∑

�=1

∣∣∣∣�(�
��� ∣ℱ�−1)− 1− ��(��∣ℱ�−1)−

�2

2
�(�2� ∣ℱ�−1)

∣∣∣∣

+
1

2

�∑

�=1

(
�(���� ∣ℱ�−1)− 1

)2

≤
�∑

�=1

+∞∑

�=3

��

�!
∣�(��� ∣ℱ�−1)∣+

1

2

�∑

�=1

(
+∞∑

�=2

��

�!
∣�(��� ∣ℱ�−1)∣

)2

.

In the same way as in the proof of (28), using condition (A1) and the inequality �(�2� ∣ℱ�−1) ≤
12 �2 (cf. Lemma 4.1), we have, for any constant � ∈ (0, 1) and all 0 ≤ � ≤ � �−1,

∣∣∣∣Ψ�(�)−
�2

2
⟨�⟩�

∣∣∣∣ ≤ ���
3�⟨�⟩�.

Combining this inequality with condition (A2), we get, for any constant � ∈ (0, 1) and all
0 ≤ � ≤ � �−1, ∣∣∣∣Ψ�(�)−

�2

2

∣∣∣∣ ≤ 2 ���
3�+

�2�2

2
,

which completes the proof of Lemma 4.3. □

5. Proof of Theorem 2.1

For 0 ≤ � < 1, the assertion follows from Theorem 3.1. It remains to prove Theorem 2.1
for any � ∈ (0, 1) and all 1 ≤ � ≤ � �−1. Changing the probability measure according to (21),
we have, for all 0 ≤ � < �−1,

ℙ(�� > �) = ��

(
��(�)

−11{��>�}
)

= ��

(
exp {−��� +Ψ�(�)}1{��>�}

)

= ��

(
exp {−���(�)− ���(�) + Ψ�(�)}1{��(�)+��(�)>�}

)
. (32)
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Let � = �(�) be the largest solution of the equation

�+ ��2 + ���
2� = �, (33)

where �� is given by inequality (26). The definition of � implies that there exist ��,0, ��,1 > 0
such that, for all 1 ≤ � ≤ � �−1,

��,0 � ≤ � =
2�√

(1 + �2)2 + 4����+ 1 + �2
≤ � (34)

and
� = �− ��,1∣�∣(�2�+ ��2) ∈ [��,0, � �

−1 ]. (35)

From (32), using Lemmas 4.2, 4.3 and equality (33), we obtain, for all 1 ≤ � ≤ � �−1,

ℙ(�� > �) ≤ ���,2 (�
3
�+�

2
�2)−�

2
/2
��

(
�−���(�)1{��(�)>0}

)
. (36)

It is easy to see that

��

(
�−���(�)1{��(�)>0}

)
=

∫ ∞

0

��−��
ℙ�(0 < ��(�) ≤ �)��. (37)

Similarly, for a standard gaussian random variable � , we have

�

(
�−��1{�>0}

)
=

∫ ∞

0

��−��
ℙ(0 < � ≤ �)��. (38)

From (37) and (38), it follows

∣∣∣��

(
�−���(�)1{��(�)>0}

)
− �

(
�−��1{�>0}

)∣∣∣ ≤ 2 sup
�

∣∣∣ℙ�(��(�) ≤ �)− Φ(�)
∣∣∣.

Using Lemma 3.1, we obtain the following bound: for all 1 ≤ � ≤ � �−1,

∣∣∣��

(
�−���(�)1{��(�)>0}

)
− �

(
�−��1{�>0}

)∣∣∣ ≤ �
(
��+ � ∣log �∣+ �

)
. (39)

From (36) and (39) we find that, for all 1 ≤ � ≤ � �−1,

ℙ(�� > �) ≤ ���,2 (�
3
�+�

2
�2)−�

2
/2

(
�

(
�−��1{�>0}

)
+ �
(
��+ � ∣log �∣+ �

))
.

Since

�−�2/2
�
(
�−��1{�>0}

)
=

1√
2�

∫ ∞

0

�−(�+�)2/2�� = 1− Φ (�) (40)

12



and, for all � ≥ ��,0,

1− Φ (�) ≥ 1√
2�(1 + �)

�−�2/2 ≥ ��,0√
2�(1 + ��,0)

1

�
�−�2/2 (41)

(see Feller [11]), we obtain the following upper bound on tail probabilities: for all 1 ≤ � ≤ � �−1,

ℙ(�� > �)

1− Φ
(
�
) ≤ ���,2 (�

3
�+�

2
�2)
(
1 + ��,3 (�

2
�+ �� ∣log �∣+ �� )

)
. (42)

Next, we would like to compare 1− Φ(�) with 1− Φ(�). By (34), (35) and (41), we get

1 ≤
∫∞
�

exp{−�2/2}��∫∞
�

exp{−�2/2}�� = 1 +

∫ �

�
exp{−�2/2}��∫∞

�
exp{−�2/2}��

≤ 1 + ��,4�(�− �) exp{(�2 − �
2
)/2}

≤ exp{��,5 (�3�+ �2�2)}. (43)

So, we find that

1− Φ
(
�
)
=
(
1− Φ(�)

)
exp

{
∣�1∣��,5 (�3�+ �2�2)

}
. (44)

Implementing (44) in (42) and using (34), we obtain, for all 1 ≤ � ≤ � �−1,

ℙ(�� > �)

1− Φ (�)
≤ exp{��,6(�3�+ �2�2)}

(
1 + ��,7

(
�2�+ �� ∣log �∣+ ��

))

≤ exp{��,6(�3�+ �2�2)}
(
1 + ��,7 �

2�
)(

1 + ��,7 � (� ∣log �∣+ �)
)

≤ exp{��,8(�3�+ �2�2)}
(
1 + ��,7 � (� ∣log �∣+ �)

)
.

Taking �� = max{��,7, ��,8}, we prove the first assertion of Theorem 2.1. The second assertion
follows from the first one applied to the martingale (−��)�=0,...,�.

6. Proof of Theorem 2.2

For 0 ≤ � < 1, the assertion follows from Theorem 3.1. It remains to prove Theorem 2.2
for 1 ≤ � ≤ �0�

−1, where �0 > 0 is an absolute constant. Let � = �(�) be the smallest solution
of the equation

�− ��2 − �1/2�
2� = �, (45)

where �� is given by inequality (26). The definition of � implies that, for all 1 ≤ � ≤ 0.01�−1
1/2�

−1,
it holds

� ≤ � =
2�

1− �2 +
√
(1− �2)2 − 4�1/2��

≤ 2� (46)
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and
� = �+ �0∣�∣(�2�+ ��2) ∈ [1, 0.02 �−1

1/2�
−1]. (47)

From (32), using Lemmas 4.2, 4.3 and equality (45), we obtain, for all 1 ≤ � ≤ 0.01�−1
1/2�

−1,

ℙ(�� > �) ≥ �−�1 (�
3�+�2�2)−�2/2

��

(
�−���(�)1{��(�)>0}

)
. (48)

In the subsequent we distinguish two cases. First, let 1 ≤ � ≤ �1 min{�−1/2, �−1}, where
�1 > 0 is a small absolute constant whose value will be given later. Note that inequality (39)
can be established with � replaced by �, which, in turn, implies

ℙ(�� > �) ≥ �−�1 (�
3�+�2�2)−�2/2

(
�
(
�−��1{�>0}

)
− �2 (��+ � ∣log �∣+ �)

)
.

By (40) and (41), we obtain the following lower bound on tail probabilities:

ℙ(�� > �)

1− Φ (�)
≥ �−�1 (�

3�+�2�2)
(
1− �2

(
�2�+ �� ∣log �∣+ ��

))
. (49)

Taking �1 = (8�2)
−1, we deduce that, for all 1 ≤ � ≤ �1min{�−1/2, �−1},

1− �2
(
�2�+ �� ∣log �∣+ ��

)
≥ exp

{
−2�2

(
�2�+ �� ∣log �∣+ ��

)}
. (50)

Implementing (50) in (49), we obtain

ℙ(�� > �)

1− Φ (�)
≥ exp

{
− �3

(
�3�+ �� ∣log �∣+ �� + �2�2

)}
(51)

which is valid for all 1 ≤ � ≤ �1min{�−1/2, �−1}.
Next, we consider the case of �1 min{�−1/2, �−1} ≤ � ≤ �0�

−1 and � ≤ �0. Let � ≥ 1 be an
absolute constant, whose exact value will be chosen later. It is easy to see that

��

(
�−���(�)1{��(�)>0}

)
≥ ��

(
�−���(�)1{0<��(�)≤��}

)

≥ �−���
ℙ�

(
0 < ��(�) ≤ ��

)
, (52)

where � = ��+ �∣ log �∣+ � ≤ 4�
1/2
0 , if �0 ≤ 1. From Lemma 3.1, we have

ℙ�

(
0 < ��(�) ≤ ��

)
≥ ℙ

(
0 < � ≤ ��

)
− �5�

≥ ���−�2�2/2 − �5�

≥
(
��−8�2�0 − �5

)
�.

Taking �0 = 1/(16�2), we find that

ℙ�

(
0 < ��(�) ≤ ��

)
≥
(
1

2
� − �5

)
�.
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Letting � ≥ 8�5, it follows that

ℙ�

(
0 < ��(�) ≤ ��

)
≥ 3

8
�� ≥ 3

8
�

max
{
�2�, ��

}

�
.

Choosing � = max
{
8�5,

8�−2

1

3
√
�

}
and taking into account that �1 min{�−1/2, �−1} ≤ � ≤ �0�

−1,

we deduce that

ℙ�

(
0 < ��(�) ≤ ��

)
≥ 1√

��
.

Since the inequality 1√
��
�−�2/2 ≥ 1 − Φ (�) is valid for � ≥ 1 (see Feller [11]), it follows that,

for all �1 min{�−1/2, �−1} ≤ � ≤ �0�
−1,

ℙ�

(
0 < ��(�) ≤ ��

)
≥
(
1− Φ (�)

)
��

2/2. (53)

From (48), (52) and (53), we obtain

ℙ(�� > �)

1− Φ (�)
≥ exp

{
− ��0,6

(
�3�+ ��∣ log �∣+ �� + �2�2

)}
(54)

which is valid for all �1min{�−1/2, �−1} ≤ � ≤ �0�
−1.

Putting (51) and (54) together, we obtain, for all 1 ≤ � ≤ �0�
−1 and � ≤ �0,

ℙ(�� > �)

1− Φ (�)
≥ exp

{
− ��0,7

(
�3�+ �� ∣log �∣+ �� + �2�2

)}
. (55)

As in the proof of Theorem 2.1, we now compare 1−Φ(�) with 1−Φ(�). By a similar argument
as in (43), we have

1− Φ (�) =
(
1− Φ(�)

)
exp

{
−∣�∣�3 (�3�+ �2�2)

}
. (56)

Combining (46), (55) and (56), we obtain, for all 1 ≤ � ≤ �0�
−1 and � ≤ �0,

ℙ(�� > �)

1− Φ (�)
≥ exp

{
− ��0,8

(
�3�+ �� ∣log �∣+ �� + �2�2

)}
(57)

which gives the first conclusion of Theorem 2.2. The second conclusion follows from the first
one applied to the martingale (−��)�=0,...,�. □
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7. Proof of Lemma 3.1

The proof of Lemma 3.1 is a refinement of Lemma 3.3 of Grama and Haeusler [15] where it
is assumed that ∣��∣ ≤ 2�, which is a particular case of condition (A1). Compared to the case
where �� are bounded, the main challenge of our proof comes from the control of �1 defined in
(64) below.

In this section, � denotes a positive absolute number satisfying � ∈ (0, 1), � denotes a real
number satisfying 0 ≤ � ≤ 1, which is different from �, and �(�) denotes the density function
of the standard normal distribution. For the sake of simplicity, we also denote � (�), ��(�) and
�(�) by �, �� and �, respectively. We want to obtain a rate of convergence in the central limit
theorem for the conjugate martingale � = (��,ℱ�)�=1,...,�, where �� =

∑�
�=1 ��. Denote the

quadratic characteristic of the conjugate martingale � by ⟨� ⟩� =
∑

�≤� ��(�
2
� ∣ℱ�−1), and set

Δ ⟨� ⟩� = ��(�
2
�∣ℱ�−1). It is easy to see that, for � = 1, ..., �,

Δ ⟨� ⟩� = ��

(
(�� − ��(�))

2∣ℱ�−1

)

=
�(�2��

��� ∣ℱ�−1)

�(���� ∣ℱ�−1)
− �(���

��� ∣ℱ�−1)
2

�(���� ∣ℱ�−1)2
. (58)

Since �(���� ∣ℱ�−1) ≥ 1 and ∣��∣� ≤ 2�−1(∣��∣� + ��(∣��∣∣ℱ�−1)
�), using condition (A1) and

Lemma 4.1, we obtain, for all � ≥ 3 and all 0 ≤ � ≤ 1
4
�−1,

��

(
∣��∣�∣ℱ�−1

)
≤ 2�−1

��

(
∣��∣� + ��(∣��∣∣ℱ�−1)

�∣ℱ�−1

)

≤ 2���

(
∣��∣�∣ℱ�−1

)

≤ 2��
(
∣��∣� exp{∣���∣}∣ℱ�−1

)

≤ �2��!��−2
�
(
�2� ∣ℱ�−1

)
.

Using Taylor’s expansion for �� and Lemma 1, we have, for all 0 ≤ � ≤ 1
4
�−1,

∣Δ ⟨� ⟩� −Δ ⟨�⟩�∣ ≤
∣∣∣∣
�(�2��

��� ∣ℱ�−1)

�(���� ∣ℱ�−1)
− �(�2�∣ℱ�−1)

∣∣∣∣+
∣∣∣∣
�(���

��� ∣ℱ�−1)
2

�(���� ∣ℱ�−1)2

∣∣∣∣

≤
∣∣�(�2����� ∣ℱ�−1)− �(�2�∣ℱ�−1)�(�

��� ∣ℱ�−1)
∣∣

+�(���
��� ∣ℱ�−1)

2

≤
∞∑

�=1

∣�(��+2
� ∣ℱ�−1)∣

��

�!
+ Δ⟨�⟩�

∞∑

�=1

∣�(���∣ℱ�−1)∣
��

�!

+

( ∞∑

�=1

∣�(��+1
� ∣ℱ�−1)∣

��

�!

)2

≤ ���Δ⟨�⟩�. (59)

Therefore,
∣⟨� ⟩� − 1∣ ≤ ∣⟨� ⟩� − ⟨�⟩�∣+ ∣⟨�⟩� − 1∣ ≤ ���⟨�⟩� + �2.
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Thus the martingale � satisfies the following conditions (analogous to conditions (A1) and
(A2)): for all 0 ≤ � ≤ 1

4
�−1,

(B1) ��(∣��∣�∣ℱ�−1) ≤ ���
�−2

�(�2� ∣ℱ�−1), 5 ≥ � ≥ 3;

(B2) ∣⟨� ⟩� − 1∣ ≤ �(��+ �2).

We first prove Lemma 3.1 for 1 ≤ � < �−1. Without loss of generality, we can assume that
1 ≤ � ≤ 1

4
�−1, otherwise we take � ≥ 4 in the assertion of the lemma. Set � = 1 + �2 and

introduce a modification of the quadratic characteristic ⟨�⟩ as follows:
�� = ⟨�⟩� 1{�<�} + �1{�=�}. (60)

Note that �0 = 0, �� = � and that (��,ℱ�)�=0,...,� is a predictable process. Set � = ��+�, where
� ∈ [1, �−1). Let �∗ ≥ 4 be a “free” absolute constant, whose exact value will be chosen later.
Consider the non-increasing discrete time predictable process �� = �2∗�

2 + � − ��, � = 1, ..., �.
For any fixed � ∈ ℝ and any � ∈ ℝ and � > 0, set for brevity,

Φ�(�, �) = Φ ((�− �)/
√
�) . (61)

In the proof we make use of the following two assertions, which can be found in Bolthausen’s
paper [2].

Lemma 7.1. [2] Let � and � be random variables. Then

sup
�

∣ℙ (� ≤ �)− Φ (�)∣ ≤ �1 sup
�

∣ℙ (� + � ≤ �)− Φ (�)∣+ �2
∥∥�
(
� 2∣�

)∥∥1/2
∞ .

Lemma 7.2. [2] Let �(�) be an integrable function of bounded variation, � be a random
variable and �, � > 0 are real numbers. Then

��

(
� + �

�

)
≤ �1 sup

�
∣ℙ (� ≤ �)− Φ (�)∣+ �2 �.

Let ��2
∗
�2 = � (0, �∗�) be a normal random variable independent of ��. Using a well-known

smoothing procedure (which employs Lemma 7.1), we get

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣ ≤ �1 sup
�

∣��Φ�(��, ��)− Φ(�)∣+ �2�

≤ �1 sup
�

∣��Φ�(��, ��)− ��Φ�(�0, �0)∣

+ �1 sup
�

∣��Φ�(�0, �0)− Φ(�)∣+ �2�

= �1 sup
�

∣��Φ�(��, ��)− ��Φ�(�0, �0)∣

+ �1 sup
�

∣∣∣∣∣Φ
(

�√
�2∗�

2 + �

)
− Φ(�)

∣∣∣∣∣+ �2�

≤ �1 sup
�

∣��Φ�(��, ��)− ��Φ�(�0, �0)∣+ �3�, (62)
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where

��Φ�(��, ��) = ℙ�(�� +��2
∗
�2 ≤ �) and ��Φ�(�0, �0) = ℙ�(��2

∗
�2+� ≤ �).

By simple telescoping, we find that

��Φ�(��, ��)− ��Φ�(�0, �0) = ��

�∑

�=1

(
Φ�(��, ��)− Φ�(��−1, ��−1)

)
.

From this, taking into account that (��,ℱ�)�=0,...,� is a ℙ�-martingale and that

∂2

∂�2
Φ�(�, �) = 2

∂

∂�
Φ�(�, �),

we obtain
��Φ�(��, ��)− ��Φ�(�0, �0) = �1 + �2 − �3, (63)

where

�1 = ��

�∑

�=1

(
Φ�(��, ��)− Φ�(��−1, ��)

− ∂

∂�
Φ�(��−1, ��)�� −

1

2

∂2

∂�2
Φ�(��−1, ��)�

2
�

)
, (64)

�2 =
1

2
��

�∑

�=1

∂2

∂�2
Φ�(��−1, ��)

(
Δ ⟨� ⟩� −Δ��

)
, (65)

�3 = ��

�∑

�=1

(
Φ�(��−1, ��−1)− Φ�(��−1, ��)−

∂

∂�
Φ�(��−1, ��)Δ��

)
. (66)

We now give estimates of �1, �2 and �3. To shorten notations, set

��−1 = (�− ��−1)/
√
��.

a) Control of �1. Using a three-term Taylor’s expansion, we have

�1 = −��

�∑

�=1

1

6�
3/2
�

�′′
(
��−1 −

����√
��

)
�3� . (67)

In order to bound �′′(⋅) we distinguish two cases as follows.
Case 1 : ∣��/

√
��∣ ≤ ∣��−1∣/2. In this case, by the inequality �′′(�) ≤ �(�)(1 + �2), it follows

∣∣∣∣�
′′
(
��−1 −

����√
��

)∣∣∣∣ ≤ �

(
��−1 −

����√
��

)(
1 +

(
��−1 −

����√
��

)2
)

≤ sup
∣�−��−1∣≤∣��−1∣/2

�(�)(1 + �2)

≤ �(��−1/2)(1 + 4� 2
�−1).
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Define �1(�) = sup∣�−�∣≤3 �1(�), where �1(�) = �(�/2)(1 + 4�2). It is easy to see that �1(�) is a
symmetric integrable function of bounded variation, non-increasing in � ≥ 0. Therefore,

∣∣∣∣�
′′
(
��−1 −

����√
��

)∣∣∣∣1{∣��/√��∣≤∣��−1∣/2} ≤ �1(��−1). (68)

Case 2 : ∣��/
√
��∣ > ∣��−1∣/2. Since ∣�′′(�)∣ ≤ 2, it follows that

∣∣∣∣�
′′
(
��−1 −

����√
��

)∣∣∣∣1{∣��/√��∣>∣��−1∣/2} ≤ 2

(
1{∣��−1∣<2} +

4�2�
� 2
�−1��

1{∣��−1∣≥2}

)
. (69)

Now we bound the conditional expectation of ∣��∣�. Using condition (B1), we have

��(∣��∣3∣ℱ�−1) ≤ � �Δ⟨�⟩� and ��(∣��∣5∣ℱ�−1) ≤ � �3Δ⟨�⟩�,

where Δ⟨�⟩� = ⟨�⟩� −⟨�⟩�−1. From the definition of the process � (see (60)), it follows that
Δ ⟨�⟩� ≤ Δ�� = �� − ��−1,

��(∣��∣3∣ℱ�−1) ≤ �Δ�� � and ��(∣��∣5∣ℱ�−1) ≤ �Δ�� �
3. (70)

Thus, from (68), we obtain

��

(∣∣∣�′′
(
��−1 −

����√
��

)
�3�

∣∣∣1{∣��/√��∣≤∣��−1∣/2}
∣∣∣∣ℱ�−1

)
≤ �4 �1(��−1)Δ�� �. (71)

From (69), by (70) and the inequality �2

��
≥ �−2

∗ , we find

��

(∣∣∣�′′
(
��−1 −

����√
��

)
�3�

∣∣∣1{∣��/√��∣>∣��−1∣/2}
∣∣∣∣ℱ�−1

)
≤ �2(��−1)Δ�� �, (72)

where �2(�) = 2 �(1{∣�∣<2} + 4 1
�2
1{∣�∣≥2}). Set �(�) = �4 �1(�) + �2(�). Then �(�) is a symmetric

integrable function of bounded variation, non-increasing in � ≥ 0. Returning to (67), by (71)
and (72), we get

∣�1∣ ≤ ��

[
�∑

�=1

1

6�
3/2
�

��

(∣∣∣�′′
(
��−1 −

����√
��

)
�3�

∣∣∣
∣∣∣∣ℱ�−1

)]
≤ �1, (73)

where

�1 = � ���

�∑

�=1

1

�
3/2
�

� (��−1)Δ�� . (74)

Let us introduce the time change �� as follows: for any real � ∈ [0, � ],

�� = min{� ≤ � : �� > �}, where min ∅ = �. (75)
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It is clear that, for any � ∈ [0, � ], the stopping time �� is predictable. Let (��)�=1,...,�+1 be the
increasing sequence of moments when the increasing stepwise function ��, � ∈ [0, � ], has jumps.
It is clear that Δ�� =

∫
[��,��+1)

�� and that � = ��, for � ∈ [��, ��+1). Since �� = �, we have

�∑

�=1

1

�
3/2
�

� (��−1)Δ�� =
�∑

�=1

∫

[��,��+1)

1

�
3/2
��

� (���−1) ��

=

∫ �

0

1

�
3/2
��

� (���−1) ��.

Set, for brevity, �� = �2∗�
2 + � − �. Since Δ��� ≤ 12�2, we see that

� ≤ ��� ≤ ���−1 +Δ��� ≤ �+ 12�2, � ∈ [0, � ]. (76)

Taking into account that �∗ ≥ 4, we have

1

4
�� ≤ ��� = �2∗�

2 + � − ��� ≤ ��, � ∈ [0, � ]. (77)

Since �(�) is symmetric and is non-increasing in � ≥ 0, the last bound implies that

�1 ≤ � �

∫ �

0

1

�
3/2
�

���

(
�− ���−1

�
1/2
�

)
��. (78)

By Lemma 7.2, it is easy to see that

���

(
�− ���−1

��1/2

)
≤ �1 sup

�
∣ℙ�(���−1 ≤ �)− Φ(�)∣+ �2

√
��. (79)

Since ���−1 = ��� −Δ��� , ��� ≥ � (cf. (76)) and Δ��� ≤ 12�2, we get

�� − ���−1 ≤ �� − ��� +Δ��� ≤ 12�2 + � − � ≤ ��. (80)

Thus

��

(
(�� − ���−1)

2∣ℱ��−1

)
= ��

(
�∑

�=��

��(�
2
�∣ℱ�−1)

∣∣∣∣ℱ��−1

)

≤ ���

(
�∑

�=��

Δ ⟨�⟩�
∣∣∣∣ℱ��−1

)

= ���

(
⟨�⟩� − ⟨�⟩��−1 ∣ℱ��−1

)

≤ ��� (�� − ���−1∣ℱ��−1)

≤ � ��.
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Then, by Lemma 7.1, we find that, for any � ∈ [0, � ],

sup
�

∣ℙ�(���−1 ≤ �)− Φ(�)∣ ≤ �1 sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2
√
��. (81)

From (78), (79) and (81), we obtain

�1 ≤ �1 �

∫ �

0

��

�
3/2
�

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2 �

∫ �

0

��

��
. (82)

By elementary computations, we see that (since � ≥ 1)

∫ �

0

��

�
3/2
�

≤ �

�∗��
≤ �

�∗�
and

∫ �

0

��

��
≤ � ∣log �∣ . (83)

Then
∣�1∣ ≤ �1 ≤

�

�∗
sup
�

∣ℙ(�� ≤ �)− Φ(�)∣+ �2 � ∣log �∣ . (84)

b) Control of �2. Set �̃(�) = sup∣�∣≤2 �(� + �), where �(�) = �(�)(1 + �2)3/2. Then �̃(�) is
a symmetric integrable function of bounded variation, non-increasing in � ≥ 0. Since Δ�� =
−Δ��, we have ∣�2∣ ≤ �2,1 + �2,2, where

�2,1 = ��

�∑

�=1

1

2��

∣�′ (��−1) (Δ�� −Δ ⟨�⟩�)∣ ,

�2,2 = ��

�∑

�=1

1

2��

∣�′ (��−1) (Δ ⟨� ⟩� −Δ ⟨�⟩�)∣ .

We first deal with �2,1. Since ∣�′(�)∣ ≤ �(�) ≤ �̃(�), for any real �, we have

∣�′ (��−1)∣ ≤ �̃ (��−1) . (85)

Note that 0 ≤ Δ�� −Δ ⟨�⟩� ≤ 2�21{�=�}, �� = �2∗�
2 and �∗ ≥ 4. Then, using (85), we get the

estimations
�2,1 ≤

�2
�∗

���̃ (��−1) ,

and, by (79) with � = �̃ and (81) with � = �,

∣�2,1∣ ≤
�1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2�.

We next consider �2,2. By (59), we easily obtain the bound

∣Δ ⟨� ⟩� −Δ ⟨�⟩�∣ ≤ ���Δ ⟨�⟩� ≤ ���Δ��.
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With this bound, we get

∣�2,2∣ ≤ �����

�∑

�=1

1

2��

∣�′ (��−1)∣Δ��.

Since ∣�′(�)∣ ≤ �(�) ≤ �̃(�), the right-hand side can be bounded exactly in the same way as

�1 in (74), with �� replacing �
3/2
� . What we get is (cf. (82))

∣�2,2∣ ≤ �1��

∫ �

0

��

��
sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2��

∫ �

0

��

�
1/2
�

.

By elementary computations, we see that

∫ �

0

��

�
1/2
�

≤
∫ �

0

��√
� − �

≤ �2,

and, taking into account that �� ≥ �2∗�
2,

∫ �

0

��

��
≤ �1
�∗��

∫ �

0

��

�
1/2
�

≤ �2
�∗��

.

Then
∣�2,2∣ ≤

�1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2��.

Collecting the bounds for �2,1 and �2,2, we get

∣�2∣ ≤
�1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2�. (86)

c) Control of �3. By Taylor’s expansion,

�3 =
1

8
��

�∑

�=1

1

(�� − ��Δ��)2
�′′′
(

�− ��−1√
�� − ��Δ��

)
Δ�2

�.

Since ∣Δ��∣ = Δ�� ≤ 12�2 and �∗ ≥ 4, we have

�� ≤ �� − ��Δ�� ≤ �2∗�
2 + � − �� + 12�2 ≤ 2��. (87)

Using (87) and the inequalities ∣�′′′(�)∣ ≤ �(�) ≤ �̃(�), we obtain

∣�3∣ ≤ ��2��

�∑

�=1

1

�2
�

�̃

(
��−1√

2

)
Δ��.
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Proceeding in the same way as for estimating �1 in (74), we get

∣�3∣ ≤
�1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2�. (88)

We are now in a position to end the proof of Lemma 3.1. From (63), using (84), (86) and
(88), we find

∣��Φ�(��, ��)− ��Φ�(�0, �0)∣ ≤
�1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2(��+ � ∣log �∣+ �).

Implementing the last bound in (62), we come to

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣ ≤ �1
�∗

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣+ �2(��+ � ∣log �∣+ �),

from which, choosing �∗ = max{2�1, 4}, we get

sup
�

∣ℙ�(�� ≤ �)− Φ(�)∣ ≤ 2�2(��+ � ∣log �∣+ �), (89)

which proves Lemma 3.1 for 1 ≤ � < �−1.
For 0 ≤ � < 1, we can prove Lemma 3.1 similarly by taking � = �∣ log �∣+ �. We only need

to note that in this case, instead of (83),

∫ �

0

��

�
3/2
�

≤ �

�∗�∣ ln �∣
and

∫ �

0

��

��
≤ � ∣log �∣ . (90)

8. Equivalent conditions

In the following we give several equivalent conditions to the Bernstein condition (A1′). In
the independent case equivalent conditions can be found in Saulis and Statulevičius [28]. For
the convenience of the readers and motivated by the fact that in [28] the conditions are rather
different from those used here, we decided to include independent proofs.

Proposition 8.1. The following three conditions are equivalent:
(I) Bernstein’s condition (A1′).
(II) (Sakhanenko’s condition) There exists some positive absolute constant � such that

� �(∣��∣3 exp{�∣��∣}∣ℱ�−1) ≤ �(�2� ∣ℱ�−1), for 1 ≤ � ≤ �.

(III) There exists some positive absolute constant � such that

�(∣��∣�∣ℱ�−1) ≤
1

2
�!��−2

�(�2� ∣ℱ�−1), for � ≥ 3 and 1 ≤ � ≤ �.
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Proof. First we prove that (I) implies (II). Let � ∈ (0, 1). By condition (I) and Lemma 4.1,
we find that

�(∣��∣3���
−1∣��∣∣ℱ�−1) =

∞∑

�=0

(��−1)�

�!
�(∣��∣�+3∣ℱ�−1)

≤
∞∑

�=0

(��−1)�

�!
(� + 3)!��+1�(�2� ∣ℱ�−1)

≤ ��(�2� ∣ℱ�−1)
∞∑

�=0

(� + 3)!

�!
��

=: �(�)��(�2� ∣ℱ�−1). (91)

Since �(�) = ��(�) is a continuous function in [0, 1
2
] and satisfies �(0) = 0 and �(1

2
) ≥ 3, there

exists �0 ∈ (0, 1
2
) such that �(�0) = 1. Taking � = �0�

−1, we obtain condition (II) from (91).
Next we show that (II) implies (III). By the elementary inequality �� ≤ �! ��, for � ≥ 0 and

� ≥ 0, it follows that, for � ≥ 3,

�(∣��∣�∣ℱ�−1) = �(∣��∣3�3−�∣���∣�−3∣ℱ�−1)

≤ (� − 3)!�3−�
�(∣��∣3 exp{∣���∣}∣ℱ�−1).

Using condition (II), for � ≥ 3,

�(∣��∣�∣ℱ�−1) ≤ (� − 3)!�2−�
�(�2� ∣ℱ�−1) ≤

1

2
�!��−2

�(�2� ∣ℱ�−1),

where � = 1
�
, which proves condition (III).

It is obvious that (III) implies (I) with � = �. □

Proposition 8.2. If �1, ..., �� are i.i.d., then Bernstein’s condition, Cramér’s condition and
Sakhanenko’s condition are all equivalent.

Proof. According to Theorem 8.1, we only need to prove that Cramér’s condition and Bern-
stein’s condition are equivalent. We can assume that, a.s., �1 ∕= 0.

First, from (30), we find that Bernstein’s condition (A1′) implies Cramér’s condition:

��
1

2
�−1�1 <∞.

Second, we show that Cramér’s condition, i.e. ���
−1

0
∣�1∣ := �1 < ∞, implies Bernstein’s

condition (A1′). By the inequality �� ≤ �! ��, for � ≥ 0 and � ≥ 0, it follows that

∣���1 ∣ ≤ ��0 �∣�−1
0 �1∣� ≤ �! ��0 ��

�−1

0
∣�1∣ = �! ��0 �1.

Then, it is easy to see that, for � ≥ 3,

∣���1 ∣ ≤
1

2
�! ��−2

0

2�20�1
�2

��21 ≤ 1

2
�!��−2

��21,

where �2 = ��21 and � = max
{
�0,

2�3
0
�1

�2

}
, which proves that condition (A1′) is satisfied. □
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[29] Statulevičius, V. A., 1966. On large deviations. Probab. Theory Relat. Fields, 6, 133–144.

[30] Worms, J., 2001. Moderate deviations for some dependent variables, part I: Martingales. Math. Methods

Statist., 10, 38–72.

26


