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Abstract. We consider a strategic game, where players submit jobs to
a machine that executes all jobs in a way that minimizes energy while
respecting the jobs’ deadlines. The energy consumption is then charged
to the players in some way. Each player wants to minimize the sum of that
charge and of their job’s deadline multiplied by a priority weight. Two
charging schemes are studied, the proportional cost share which does not
always admit pure Nash equilibria, and the marginal cost share, which
does always admit pure Nash equilibria, at the price of overcharging by
a constant factor.

1 Introduction

In many computing systems, minimizing energy consumption and maximizing
quality of service are opposed goals. This is also the case for the speed scaling
scheduling model considered in this paper. It has been introduced in [9], and
triggered a lot of work on offline and online algorithms; see [1] for an overview.

The online and offline optimization problem for minimizing flow time while
respecting a maximum energy consumption has been studied for the single ma-
chine setting in [14, 2, 5, 8] and for the parallel machines setting in [3]. For the
variant where an aggregation of energy and flow time is considered, polynomial
approximation algorithms have been presented in [7, 4, 11].

In this paper we propose to study this problem from a different perspective,
namely as a strategic game. In society many ecological problems are either ad-
dressed in a centralized manner, like forcing citizens to sort household waste,
or in a decentralized manner, like tax incentives to enforce ecological behavior.
This paper proposes incentives for a scheduling game, in form of an energy cost
charging scheme.

Consider a scheduling problem for a single processor, that can run at variable
speed, such as the modern microprocessors Intel SpeedStep, AMD PowerNow!
or IBM EnergyScale. Higher speed means that jobs finish earlier at the price
of a higher energy consumption. Each job has some workload, representing a
number of instructions to execute, and a release time before which it cannot be



scheduled. Every user submits a single job to a common processor, declaring the
jobs parameters, together with a deadline, that the player chooses freely.

The processor will schedule the submitted jobs preemptively, so that all re-
lease times and deadlines are respected and the overall energy usage is mini-
mized. The energy consumed by the schedule needs to be charged to the users.
The individual goal of each user is to minimize the sum of the energy cost share
and of the requested deadline weighted by the user’s priority, which represents a
quality of service coefficient. This individual priority weight implies a conversion
factor that allows of aggregation of deadline and energy.

In a companion paper [15] we study this game from the point of view of
the game regulator, and compare different ways to organize the game which
would lead to truthfulness. In this paper we focus on a particular game setting,
described in the next section.

2 The model

Formally, we consider a non-cooperative game with n players and a regulator.
The regulator manages the machine where the jobs are executed. Each player
has a job i with a workload wi, a release time ri and a priority pi, representing a
quality of service coefficient. The player submits its job together with a deadline
di > ri to the regulator. Workloads, release times and deadlines are public
information known to all players, while quality of service coefficients can be
private.

The regulator implements some cost sharing mechanism, which is known to
all users. This mechanism defines a cost share function bi specifying how much
player i is charged. The penalty of player i is the sum of two values: his energy

cost share bi(w, r, d) defined by the mechanism, where w = (w1, . . . , wn), r =
(r1, . . . , rn) and d = (d1, . . . , dn), and his waiting cost, which can be either pidi
or pi(di − ri); we use the former waiting cost throughout the article but all our
results apply to both. The sum of all player’s penalties, i.e., energy cost shares
and waiting costs will be called the utilitarian social cost.

The regulator computes a minimum energy schedule for a single machine
in the speed scaling model, which stipulates that at any point in time t the
processor can run at arbitrary speed s(t) ≥ 0; for a time interval I, the workload
executed in I is

∫

t∈I
s(t)dt, while the energy consumed is

∫

t∈I
s(t)αdt for some

fixed physical constant α ∈ [2, 3] characteristic for a device [6]. The sum of the
energy used by this optimum schedule and of all the players’ waiting costs will
be called the effective social cost.

The minimum energy schedule can be computed in time O(n2 log n) [10]
and has (among others) the following properties [16]. The jobs in the schedule
are executed by preemptive earliest deadline first order (EDF), and the speed
s(t) at which they are processed is piecewise linear. Preemptive EDF means
that at every time point among all jobs which are already released and not yet
completed, the job with the smallest deadline is executed, using job indices to
break ties.
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The cost sharing mechanism defines the game completely. Ideally, we would
like the game and the mechanism to have the following properties.

existence of pure Nash equilibria This means that there is a strategy pro-
file vector d such that no player can unilaterally deviate from their strategy
di while strictly decreasing their penalty.

budget balance The mechanism is c-budged balanced, when the sum of the
cost shares is no smaller than the total energy consumption and no larger
than c times the energy consumption.

In the sequel we introduce and study two different cost sharing mechanisms,
namely Proportional Cost Sharing where every player pays exactly the
cost generated during the execution of his job, and Marginal Cost Sharing

where every player pays the increase of energy cost generated by adding this
player to the game.

3 Proportional cost sharing

The proportional cost sharing is the simplest budget balanced cost sharing
scheme one can think of. Every player i is charged exactly the energy consumed
during the execution of his job. Unfortunately this mechanism does not behave
well as we show in Theorem 1.

Fact 1 In a single player game, the player’s penalty is minimized by the deadline

r1 + w1(α− 1)1/αp
−1/α
1 .

Proof. If player 1 chooses deadline d1 = r1+x then the schedule is active between
time r1 and r1 + x at speed w1/x. Therefore his penalty is

p1(r1 + x) + x1−αwα
1 .

Deriving this expression in x, and using the fact that the penalty is concave in
t for any x > 0 and α > 0, we have that the optimal x for the player will set to
zero the derivative. This implies the claimed deadline. ⊓⊔

If there are at least two players however, the game does not have nice prop-
erties as we show now.

Theorem 1. The Proportional Cost Sharing does not always admit a

pure Nash equilibrium.

The proof consists of a very simple example: there are 2 identical players
with identical jobs, say w1 = w2 = 1, r1 = r2 = 0 and p1 = p2 = 1. First
we determine the best response of player 1 as a function of player 2, then we
conclude that there is no pure Nash equilibrium.
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argument value applicable range

d
(1)
1 = (α− 1)1/α g1(d2) = α(α− 1)1/α−1 d2 ≥ 2(α− 1)1/α

d
(2)
1 = d2

2
g2(d2) = d2/2 + (d2/2)1−α d2 ≤ 2(α− 1)1/α

d
(3)
1 = 2

(

α−1
2

)1/α
g3(d2) = α

(

α−1
2

)1/α−1 (

α−1
2

)1/α
≤ d2 ≤ 2

(

α−1
2

)1/α

d
(4)
1 = d2 + (α− 1)1/α g4(d2) = d2 + α (α− 1)1/α−1 d2 ≤ (α− 1)1/α−1

Table 1. The local minimum in the range of f corresponding to fi is a function of α
and d2, which we denote by d

(i)
1 . The value at such local minimum is again a function

of α and d2, which we denote by gi(d2). These are only potential minima: they exist if
and only if the condition given in the last column is satisfied.

Lemma 1. Given the second player’s choice d2, the penalty of the first player

as a function of his choice d1 is given by

f(d1) =



















f1(d1) = d1 + d1−α
1 if d1 ≤ d2

2

f2(d1) = d1 + (d2

2 )1−α if d2

2 ≤ d1 ≤ d2

f3(d1) = d1 + (d1

2 )1−α if d2 ≤ d1 ≤ 2d2

f4(d1) = d1 + (d1 − d2)1−α if d1 ≥ 2d2

(1)

The local minima of f(d1) are summarized in Table 1, and the penalties corre-

sponding to player 1 picking these minima are illustrated in Figure 1.
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Fig. 1. First player’s penalty (in bold) when choosing his best response as a function
of second player’s strategy d2, here for α = 3.

Proof. Formula (1) follows by a straightforward case inspection. Then, to find
all the local minima of f , we first look at the behavior of each of fi, finding their
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local minima in their respective intervals, and afterwards we inspect the border
points of these intervals.

Range of f1: The derivative of f1 is

f ′
1(d1) = 1 − (α− 1)d−α

1 ,

whose derivative in turn is positive for α > 1. Therefore, f1 has a local

minimum at d
(1)
1 as specified. Since we require that this local minimum is

within the range where f coincides with f1, the necessary and sufficient

condition is d
(1)
1 ≤ d2

2 .
Range of f2: f2 is an increasing function, and therefore it attains a minimum

value only at the lower end of its range, d
(3)
1 . However, if d

(2)
1 is to be a local

minimum of f , there can be no local minimum of f in the range of f1
(immediately to the left), so the applicable range of d

(2)
1 is the complement

of that of d
(1)
1 .

Range of f3: The derivative of f3 is

f ′
3(d1) = 1 −

α− 1

2
(d1/2)−α , (2)

whose derivative in turn is positive for α > 1. Hence, f3 has a local minimum

at d
(3)
1 as specified. The existence of this local minimum requires d2 ≤ d

(3)
1 ≤

2d2, which is equivalent to
d
(3)
1

2 ≤ d2 ≤ d
(3)
1 .

Range of f4: The derivative of f4 is

f ′
4(d1) = 1 − (α− 1)(d1 − d2)−α , (3)

whose derivative in turn is positive for α > 1. Hence, f4 has a local minimum

at d
(4)
1 as specified. The existence of this local minimum requires d

(4)
1 ≥ 2d2.

Now let us consider the border points of the ranges of each fi. Since f2 is
strictly increasing, the border point of the ranges of f2 and f3 is not a local

minimum of f . This leaves only the border point d
(2)
1 = 2d2 of the ranges of f3

and f4 to consider. Clearly, d
(2)
1 is a local minimum of f if and only if f ′

3(d
(2)
1 ) ≤ 0

and f ′
4(d

(2)
1 ) ≥ 0. However, by (2), f ′

3(d
(2)
1 ) = 2 − (α − 1)d−α

2 , and by (3),

f ′
4(d

(2)
1 ) = 2−2(α−1)d−α

2 < f ′
3(d

(2)
1 ), so d

(2)
1 is not a local minimum of f either.

⊓⊔

Note that the range of g1 is disjoint with the ranges of g3 and g4, and with
the exception of the shared border value 2(α− 1)1/α, also with the range of g2.
However, the ranges of g2, g3 and g4 are not disjoint. Therefore, we now focus on
their shared range, and determine which of the functions gives rise to the true
local minimum (the proof is omitted due to space constraints).
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Lemma 2. The function g3(d2) is constant, the function g4(d2) is an increasing

linear function, and the function g2(d2) is decreasing for d2 < d
(3)
1 . Moreover,

there exist two unique values

d†2 = α(α− 1)1/α−1(21−1/α − 1) such that g4(d†2) = g3(d†2) , (4)

d‡2 ∈
(

d†2, d
(3)
1

)

such that g2(d‡2) = g3(d‡2) . (5)

With Lemma 1 and Lemma 2, whose statements are summarized in Table 1
and Figure 1, we can finally determine what is the best response of the first
player as a function of d2.

Lemma 3. The best response for player 1 as function of d2 is

d
(4)
1 = d2 + (α− 1)1/α if 0 < d2 ≤ d†2 ,

d
(3)
1 = 2

(

α− 1

2

)1/α

if d†2 < d2 ≤ d‡2 ,

d
(2)
1 =

d2
2

if d‡2 < d2 ≤ 2(α− 1)1/α ,

d
(1)
1 = (α− 1)1/α if 2(α− 1)1/α < d2 .

Proof. The proof consists in determining which of the applicable local minima
of f is the global minimum for each range of d2. Again, the cases are depicted
in Figure 1.

case (i) 0 < d2 ≤ d†2: In this case, we claim that the best response of player 1
is

d
(4)
1 = d2 + (α− 1)1/α .

First we prove that

d†2 ∈

(

(

α− 1

2

)1/α

, (α− 1)1/α−1

)

.

The upper bound hold since

α(α− 1)1/α−1(21−1/α − 1) < (α− 1)1/α−1

α(21−1/α − 1) < 1,

holds for α ≥ 2.
The lower bound holds since,

α(α− 1)1/α−1(21−1/α − 1) >

(

α− 1

2

)1/α

α

α− 1
(21−1/α − 1) > 2−1/α

α

α− 1
(2 − 21/α) > 1
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Fig. 2. Best response of player 1 as function of d2, and best response of player 2 as
function of d1. Here for α = 3.

holds for α ≥ 2.

In fact, both inequalities are true even for α > 1, but as we require α ≥ 2
due to Lemma 2, we settle for simpler proofs.

These bounds imply that in case (i) player 1 chooses the minimum among

the 3 local minima d
(2)
1 , d

(3)
1 , and d

(4)
1 , where the middle one is only an option

for
(

α−1
2

)1/α
≤ d2 ≤ d†2. It follows from Lemma 2 that the last option always

dominates: by (5), for every
(

α−1
2

)1/α
≤ d2 < d‡2, we have g3(d2) < g2(d2),

and by (4), for every
(

α−1
2

)1/α
≤ d2 ≤ d†2, we have g4(d2) < g3(d2). This

concludes the analysis for case (i).

case (ii) d†2 < d2 ≤ d‡2: In this case, we claim that the best response of player
1 is

d
(3)
1 = 2

(

α− 1

2

)1/α

.

First we observe that by Lemma 2 (5),

d‡2 < d
(4)
1 ,

which rules out d
(1)
1 as a choice for player 1, leaving only d

(2)
1 , d

(3)
1 , and d

(4)
1 .

Again, Lemma 2 implies that d
(4)
1 dominates other choices: by (5), we have

g3(d2) < g2(d2) for all
(

α−1
2

)1/α
≤ d2 < d‡2, and by (4), we have g3(d2) <

g4(d2) for all d2 > d†2.

Note that for α = 2, the range of this case is empty.

case (iii) d‡2 < d2 ≤ 2(α− 1)1/α: For this range, only d
(2)
1 and d

(3)
1 are viable

choices for player 1, and Lemma 2 (5) implies that d
(2)
1 dominates. Therefore
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first player’s best response is

d
(2)
1 =

d2
2

.

case (iv) 2(α− 1)1/α < d2: For this range, the only viable choice for player 1
is

d
(1)
1 = (α− 1)1/α ,

which is therefore his best response.

This concludes the proof of the lemma. ⊓⊔

By the symmetry of the players, the second player’s best response is in fact
an identical function of d1 as the one stated in Lemma 3. By straightforward
inspection it follows that there is no fix point (d1, d2) to this game, which implies
the following theorem, see figure 2 for illustration.

4 Marginal cost sharing

In this section we propose a different cost sharing scheme, that improves on the
previous one in the sense that it admits pure Nash equilibria, however for the
price of overcharging by at most a constant factor.

Before we give the formal definition we need to introduce some notations. Let
OPT(d) be the energy minimizing schedule for the given instance, and OPT(d−i)
be the energy minimizing schedule for the instance where job i is removed. We
denote by E(S) the energy cost of schedule S.

In the marginal cost sharing scheme, player i pays the penalty function

pidi + E(OPT(d)) − E(OPT(d−i)).

This scheme defines an exact potential game by construction [12]. Formally, let
n be the number of players, D = {d|∀j : dj > rj} be the set of action profiles
(deadlines) over the action sets Di of each player.

Let us denote the effective social cost corresponding to a strategy profile d
by Φ(d). Then

Φ(d) =
n
∑

i=1

pidi + E(OPT(d)).

Clearly, if a player i changes its strategy di and his penalty decreases by
some amount ∆, then the effective social cost decreases by the same amount ∆,
because E(OPT(d−i)) remains unchanged.
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4.1 Existence of Equilibria

While the best response function is not continuous in the strategy profile, pre-
cluding the use of Brouwer’s fixed-point theorem, existence of pure Nash equi-
libria can nevertheless be easily established.

To this end, note that the global minimum of the effective social cost, if it
exists, is a pure Nash equilibrium. Its existence follows from (1) compactness of
a non-empty sub-space of strategies with bounded social cost and (2) continuity
of Φ.

For (2), note that
∑

i pidi is clearly continuous in d, and hence Φ(d) is con-
tinuous if E(OPT(d)) is. The continuity of the latter is clear once considers all
possible relations of the deadlines chosen by the players.

For (1), let d′ be any (feasible) strategy profile such that di > ri for each
player i. The subspace of strategy profiles d such that Φ(d) ≤ Φ(d′) is clearly
closed, and bounded due to the pidi terms. Thus it is a compact subspace that
contains the global minimum of Φ.

4.2 Convergence can take forever

In this game the strategy set is infinite. Moreover, the convergence time can be
infinite as we demonstrate below in Theorem 2. Notice that this also proves that
in general there are no dominant strategies in this game.

Theorem 2. For the game with the marginal cost sharing mechanism, the con-

vergence time to reach a pure Nash equilibrium can be unbounded.

Proof. The proof is by exhibiting again the same small example, with 2 players,
release times 0, unit weights, unit penalty factors, and α > 2.

For this game there are two pure Nash equilibria, the first one is

d1 =

(

α− 1

2

)1/α

, d2 = d1 + (α− 1)1/α,

while the second one is symmetric for players 1 and 2.

In the reminder of the proof, we assume that player 1 chooses a deadline which
is close to the pure Nash equilibrium above. By analyzing the best responses of
the players, we conclude that after a best response of player 2, and then of player
1 again, he chooses a deadline which is even closer to the pure Nash equilibrium
above but different from it, leading to an infinite convergence sequence of best
responses. The proofs of the following two lemmas are omitted.

Now suppose d1 = δ
(

α−1
2

)1/α
for some 1 < δ < 21/α. What is the best

response for player 2?
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Lemma 4. Given the first player’s choice d1, the penalty of the second player

as a function of his choice d2 is given by

h(d2, d1) =



















h1(d2, d1) = d2 + d1−α
2 + (d1 − d2)1−α − d1−α

1 if d2 ≤ d1

2

h2(d2, d1) = d2 + (2α − 1)d1−α
1 if d1

2 ≤ d2 ≤ d1

h3(d2, d1) = d2 + 2αd1−α
2 − d1−α

1 if d1 ≤ d2 ≤ 2d1

h4(d2, d1) = d2 + (d2 − d1)1−α if d2 ≥ 2d1,

and the best response for player 2 as function of d1 is

d1 + (α− 1)1/α = (α− 1)1/α(1 + 2−1/αδ) (6)

From now on we assume that player 2 chooses d2 = d1 + (α − 1)1/α =
(α− 1)1/α(1 + 2−1/αδ). What is the best response for player 1?

Lemma 5. Given the second player’s choice d2, the penalty of the first player as

a function of his choice d1 is given by h(d1, d2) and the best response for player

1 is

d1 = δ′
(

α− 1

2

)1/α

,

for some δ′ ∈ (1, δ).

This concludes the proof of Theorem 2. ⊓⊔

4.3 Bounding total charge

In this section we bound the total cost share for the Marginal Cost Sharing

Scheme, by showing that it is at least E(OPT(d)) and at most α times this
value. In fact we show a stronger claim for individual cost shares.

Theorem 3. For every player i, its marginal costshare is at least its propor-

tional costshare and at most α times the proportional costshare.

Proof. Fix a player i, and denote by S−i the schedule obtained from OPT(d)
when all executions of i are replaced by idle times. Clearly we have the following
inequalities.

E(OPT(d−i)) ≤ E(S−i) ≤ E(OPT(d))

Then the marginal cost share of player i can be lower bounded by

E(OPT(d)) − E(OPT(d−i)) ≥ E(OPT(d)) − E(S−i).

According to [16] the schedule OPT can be obtained by the following iterative
procedure. Let S be the support of a partial schedule. For every interval [t, t′)
we define its domain It,t′ := [t, t′)\S, the set of included jobs Jt,t′ := {j :
[rj , dj) ⊆ [t, t′)}, and the density σt,t′ :=

∑

j∈Jt,t′
wj/|It,t′ |. The procedure starts

with S = ∅, and while not all jobs are scheduled, selects an interval [t, t′) with
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maximal density, and schedules all jobs from Jt,t′ in earliest deadline order in
It,t′ at speed σt,t′ adding It,t′ to S.

For the upper bound, let t1 < t2 < . . . < tℓ be the sequence of all release
times and deadlines for some ℓ ≤ 2n. Clearly both schedules S run at uniform
speed in every interval [tk−1, tk). For every 1 ≤ k ≤ n let sk be the speed of S
in [tk−1, tk), and s′k the speed of S′ in the same interval.

From the algorithm above it follows that every job is scheduled at constant
speed, so let sa be the speed at which job i is scheduled in OPT(d). It also
follows that if sk > sa, then s′k = sk, and if sk ≤ sa, then s′k ≤ sk.

We establish the following upper bound.

E(OPT(d)) − E(OPT(d−i)) =

ℓ
∑

k=1

sαk (tk − tk−1) − s′αk (tk − tk−1)

=
∑

(tk − tk−1)(sαk − (sk − (sk − s′k))α)

=
∑

(tk − tk−1)sαk

(

1 −

(

1 −
sk − s′k

sk

)α)

≤
∑

(tk − tk−1)sαk

(

1 −

(

1 − α
sk − s′k

sk

))

=
∑

(tk − tk−1)αsα−1
k (sk − s′k)

≤ αsα−1
a

∑

(tk − tk−1)(sk − s′k)

= αsα−1
a wi

= α(E(OPT(d)) − E(S−i)).

The first inequality uses the generalized Bernoulli inequality, and the last one
the fact that for all k with sk 6= s′k we have sk ≤ sa.

The theorem follows from the fact that sα−1
a wi is precisely the proportional

cost share of job i in OPT(d). ⊓⊔

A tight example is given by n jobs, each with workload 1/n, release time 0
and deadline 1. Clearly the optimal energy consumption is 1 for this instance.
The marginal cost share for each player is 1 − (1 − 1/n)α. Finally we observe
that the total marginal cost share tends to α, i.e.

lim
n→+∞

n− n(1 − 1/n)α = α.

5 A note on cross-monotonicity

We conclude this paper by a short note on cross-monotonicity. This is a property
of cost sharing games, stating that whenever new players enter the game, the cost
share of any fixed player does not increase. This property is useful for stability
in the game, and is the key to the Moulin carving algorithm [13], which selects
a set of players to be served for specific games.
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In the game that we consider, the minimum energy of an optimal schedule for
a set S of jobs contrasts with many studied games, where serving more players
becomes more cost effective, because the used equipment is better used.

Consider a very simple example of two identical players, submitting their
respective jobs with the same deadline 1. Suppose the workload of each job is
w, then the minimum energy necessary to schedule one job is wα, while the cost
to serve both jobs is (2w)α, meaning that the cost share increase whenever a
second player enters the game. Therefore the marginal cost sharing scheme is
not cross-monotonic.
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