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Abstract. In this article is studied an infection load-structured SI model with exponential growth of the infection,
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1. Introduction. Epidemiological compartmental models of SIR type have been studied and ex-
tended in several directions since the classical Kermack and McKendrick [22, 23, 24] model was built.
The goal of such epidemiological models is to describe the propagation of an infectious disease in a popu-
lation, by incorporating in the model a susceptible class S linked to an infective class I and potentially a
recovered class R. Various SIR epidemics models are described either by ordinary differential equations
(ODEs) or by partial differential equations (PDEs), these latter models being structured according to
other variables than the time (age, space...). We refer to Bailey [5], Brauer and Castillo-Chavez [6],
Capasso [9], Diekmann and Heesterbeck [13], Murray [29], Perthame [34] and Thieme [43] and references
therein for a presentation and examples of SIR models described by ODEs or PDEs.

This article is devoted to the analysis of asymptotic properties and to the analysis of a numerical
scheme for an infection load-structured epidemiological SI model that describes an infection process
with an exponential growth of a fatal-issued disease. As illustrated at the end of the article, such a
structuration allows to model the transmission of prion pathologies (BSE, scrapie...).

Denoting by i the infection load in the infective class, it is supposed that, identically to size-structured
models (see Arino [4], Cushing [11], Webb [48] and references therein), the following evolution equation
is satisfied with respect to time t ≥ 0,

(1.1)
di

dt
= νi,

where the positive constant ν denotes the growth velocity of the infection. The model also incorporates,
additionnaly to the contagion process, a potential external source of contamination that may affect the
population, that is supposed to be constant and permanent. Taking into account a mass action law as in
SI models, the infection process is then described by a nonlinear system of ODE and PDE of transport
type given for t ≥ 0 and i ∈ J = (i−,+∞) ⊂ R+ by

(1.2)







dS(t)

dt
= γ − (µ0 + α)S(t)− S(t)T (βI)(t), t ≥ 0,

∂I(t, i)

∂t
= −

∂(νiI)(t, i)

∂i
− µ(i)I(t, i) + Φ(i)S(t)T (βI)(t), t ≥ 0, i ∈ J,

νi−I(t, i−) = αS(t),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(J).

In Problem (1.2), T is the integral operator defined for some integrable function h on J by

T : h 7→

∫

J

h(i) di.
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As a consequence, S(t) + T (I)(t) denotes the total population at time t ≥ 0, with initial population
S0 + T (I0).

Throughout the article the following hypotheses are made on the model:
(i) µ0, ν > 0 and α, γ ≥ 0 ;
(ii) function Φ ∈ C∞(J) is a non negative function such that limi→+∞ Φ(i) = 0 and

∫

J Φ(i)di = 1 ;
(iii) functions µ, β ∈ L∞(J) are such that µ(i) ≥ µ0 and β(i) ≥ β0 > 0 for almost every (f.a.e) i ∈ J .
As shown in the second equation, Problem (1.2) incorporates the infection load-structure i ∈ J =
(i−,+∞) of the infected population, with i− as minimal infection load: the infimum i− is a thresh-
old in the evolution of the infection process from which the individuals are considered to be infected and
infectious, so appear in the infective class I.
The model also takes into account demographics of the studied population by assigning a constant mor-
tality rate µ0 and a constant entering flux γ into the susceptible class S. The mortality rate for the
infective class is an infection-load dependent function i 7→ µ(i). A consequence of the assumption (iii) is
that function µ satisfies the following asymptotic property,

(1.3) lim
i→+∞

∫ i

i−
µ(s)ds = +∞.

The limit in equation (1.3) models that all the infected individuals leave the stage I by dying of the
disease with a finite infection load.
The infectious process is due to an horizontal transmission of the disease, that is modeled with a mass
action law of SI type, where the force of infection is given by T (βI) with β transmission rate. When
infection occurs, individuals get variable initial infection loads taking values in J . This variability of the
initial infected load at the contamination is therefore represented by the probability density function Φ,
whose role is to attribute an initial infection load to susceptible individuals when they get infected. Such
an approach has been developed for modelling the transmission of some prion pathologies[31, 41, 45].
In the model is also considered a potential external contamination source, supposed to be constant in time,
that is modeled as an input into the system that affects susceptibles with a constant rate α by attributing
the minimal initial infection load i− when the contamination occurs. This process of contamination is
stated in Problem (1.2) by the loopback boundary condition νi−I(t, i−) = αS(t), where a zero value of
α translates the case without external contamination. It can be seen that such a boundary condition
models an intering flux of the disease using the conservation law ∂tI(t, i) = −∂i(νiI)(t, i). Indeed, one
then gets for every t ≥ 0 and i ∈ J ,

d

dt

(∫ i

i−
I(t, i)

)

= νi−I(t, i−)
︸ ︷︷ ︸

entering flux in i−

−νiI(t, i)
︸ ︷︷ ︸

entering flux in i

.

When studying the evolution of a population over time, a fundamental question in ecology is the
persistence of the considered population, which consists to know if this last is eternally present or not. In
this article, we aim at studying the disease persistence otherwise its exitinction for the infinite dimensional
system (1.2). In other words, we wonder if the infected population is persistent or not. This question
has been studied in finite dimensional epidemiological systems, see for instance [8, 12, 19, 21, 36, 43] and
all references therein, and in some cases in infinite dimensional systems, see for instance [26, 39, 44] and
references therein, and [27, 28, 40, 42] for persistence study in the specific case of infection-age models.
In the present case, the study strongly depends on the value of the contamination parameter α. We prove
that, as we could expect by considering a permanent input in the model for the disease, that this last
is persistent when the parameter α is positive, and exhibit thresholds on parameters, linked to the basic
reproductive number of the disease R0, that ensure persistence or extinction of the disease when α is
zero. Moreover, drawing on existing results for the case of age-dependent infectivity SI models, we study
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Fig. 1.1. Diagram of population dynamics fluxes

the stability of the disease-free equilibrium and the endemic equilibrium of the system.

This article is structured as follows: we firstly recall in Section 2 some mathematical backgrounds
adapted to Problem (1.2): well-posedness, regularity and existence of a semiflow for the problem. In
a second step, the Section 3 is dedicated to the mathematical analysis of the time-asymtotic behavior
of Problem (1.2). We start this section by recalling some definitions of mathematical epidemiology,
that are the notion of epidemic persistence and the concept of R0. Then Section 3 follows with the
asymptotic analysis of the model, in both cases with external contamination and without. In the case
with contamination, we prove by the use of fluctuation methods that the disease is uniformly strongly-
persistent whatever the value of the positive parameter α and exhibit a concrete lower bound for the
infective population. In the case without contamination, that is α = 0, we prove, according to threshold
values linked to R0, some asymptotic properties of the problem, such as persistence or extinction of the
disease by a study of stability of equilibria of the system. These results are obtained with fluctuation
methods and also considering some spectral properties of the differential operator of Problem (1.2).
Then Section 4 is devoted to the introduction of a numerical scheme for Problem (1.2) and its numerical
analysis. Finally, we apply the results of the previous sections to the transmission of prion diseases
in Section 5, where we perform some simulations in specific scenarios (persistence vs. extinction) with
concrete parameter values.

2. Well-posedness, regularity and semiflow. In all that follows, (X, ‖ · ‖X) is the Banach space
given by

X = R× L1(J),

equiped by the product norm, and X+ is the non-negative cone of X , that is X+ = R+ × L1
+(J).

For every constant R > 0, BR denotes the ball of X ,

BR = {x ∈ X, ‖x‖X ≤ R}.

Linked to Problem (1.2), we consider the differential operator A : D(A) ⊂ X → X defined by

D(A) = {(x, ϕ) ∈ X, (iϕ) ∈ W 1,1(J) and ϕ(i−) = αx},

A =

(
−µ0 − α 0

0 L

)

,

with

Lϕ = −
d

di
(νiϕ)− µϕ
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and the function f : X → X is given by

(2.1) f(u, v) =

(
γ − uT (βv)
ΦuT (βv)

)

.

Then Problem 1.2 rewrites as

(2.2)







d

dt

(

S(t)

I(t)

)

= A

(

S(t)

I(t)

)

+ f(S(t), I(t)),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(J).

Note the following properties of function f :
Lemma 2.1. The function f : X → X given in (2.1) satisfies:
1. ∀M > 0, ∀((u1, v1), (u2, v2)) ∈ B2

M ,

‖f(u1, v1)− f(u2, v2)‖X ≤ 2‖β‖∞M‖(u1, v1)− (u2, v2)‖X

2. f is continuously differentiable and its differential is a compact operator on X.
Proof. The first point of the lemma is proved in [33].

From (2.1) one deduces that for (u0, v0) ∈ X the differential D(u0,v0)f of f is given by

D(u0,v0)f =

(
−T (βv0) −u0T (β ·)
ΦT (βv0) Φu0T (β ·)

)

.

From here, for (u, v) ∈ X one gets, denoting ‖ · ‖op the operator norm,

‖D(u,v)f −D(u0,v0)f‖op ≤ 2‖β‖∞(|T (v)− T (v0)|+ |u− u0|) ≤ 2‖β‖∞‖(u, v)− (u0, v0)‖X ,

so f is continuously differentiable from X to X and for every (u, v) ∈ X , the operator D(u,v)f is bounded.
Moreover, its range is clearly a finite dimensional space so this operator is compact.

The following theorem, stating the existence and the uniqueness of the solution of Problem (1.2), is
proved in [33].

Theorem 2.2.

1. The differential operator (A,D(A)) is an infinitesimal generator of a strongly continuous positive
semigroup {TA(t)}t≥0 on X that satisfies

(2.3) ‖TA(t)‖ ≤ 2 e(ν−µ0)t ∀t ≥ 0.

2. For every (S0, I0) ∈ X+, Problem (1.2) has a unique mild solution (S, I) ∈ C(R+, X+).
Corollary 2.3. Problem (1.2) induces a continuous semiflow via

R+ ×X+ → X+

(t, x0) 7→ φt(x0) = (S(t), I(t)),

where (S(t), I(t)) is the unique solution that satisfies (S(0), I(0)) = x0.
Proof. For convenience, let us denote x(t) = (S(t), I(t)) the unique mild solution of Problem (1.2)

with initial condition x0 ∈ X+. From the definition of a mild solution, the map φt satisfies

(2.4) φt(x0) = TA(t)x0 +

∫ t

0

TA(t− s)f(φs(x0)) ds,

where {TA(t)}t≥0 is the semigroup of Theorem 2.2 and function f is defined in (2.1).
Then the semigroup property of {TA(t)}t≥0 clearly implies that for every τ ≥ 0,

φt ◦ φτ (x0) = φt+τ (x0),
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and so (t, x0) 7→ φt(x0) is a semiflow on R+ ×X+.
We now prove the continuity. Let M > 0 and (τ, x0),(t, y0) ∈ BM . Then, from Lemma 2.1 and equation
(2.3), one gets

‖φτ (x0)− φt(y0)‖X ≤ ‖φτ (x0)− φt(x0)‖X + 2e(ν−µ0)t (1 + 2Mt‖β‖∞)‖x0 − y0‖X

A consequence of Theorem 2.2 is that t 7→ φt(x0) ∈ C(R+, X+) and so the latter inequality proves the
continuity of the semiflow.

Since from Lemma 2.1 function f is continuously differentiable, the following corollary is a conse-
quence of the regularity theorem p.187 in [30] :

Corollary 2.4. Suppose that the initial condition satisfies (S0, I0) ∈ D(A). Then the mild solution
of Problem (1.2) is a classical solution.

3. Asymptotic properties. We assume in all that follows that the initial condition (S0, I0) ∈
D(A) ∩X+ and is not zero.

3.1. Definitions. In this section, we express some standard notions from mathematical ecology by
formulating in the context of Problem (1.2) the definitions of R0 (see [1, 13] for an introduction) and
persistence (see [7, 17, 43]).

In epidemiology, a fundamental concept is the basic reproduction number of the disease, denoted R0,
i.e. the number of secondary infections resulting from a single primary infection into an otherwise suscep-
tible population. Mathematically, R0 is looked as a threshold, depending on epidemiological parameters
of the problem, that ensures or not the stability of an equilibrium point called disease-free equilibrium
when this latter exists.

Another fundamental epidemiological concept linked toR0 is the disease persistence. Let ρ : X → R+

be a nonnegative uniformly continuous function on X and consider the composition σρ(t, x) = ρ(φt(x)),
where φt is the semiflow defined in Corollary 2.3. Remark that this latter corollary implies that σρ is a
continuous map from R+ ×X+ to R+. Let us introduce the following notations, that will be used in all
that follows :

σ+
ρ (x) = lim sup

t→+∞
σρ(t, x), σ−

ρ (x) = lim inf
t→+∞

σρ(t, x)

Remark 1. If no misunderstanding about the initial condition x ∈ X is possible, we may omit the
x-dependence by writing σρ(t) rather than σρ(t, x) and σ±

ρ rather than σ±
ρ (x).

Here is the definition of persistence for our system.
Definition 3.1. The semiflow φt is said
• strongly ρ-persistent if

∀x ∈ X, ρ(x) > 0 ⇒ σ−
ρ (x) > 0

• uniformly strongly ρ-persistent if there exists ε > 0 such that

∀x ∈ X, ρ(x) > 0 ⇒ σ−
ρ (x) ≥ ε

The semiflow φt is said weakly ρ-persistent, respectively uniformly weakly ρ-persistent, if the
considered limits above are σ+

ρ (x) instead of σ−
ρ (x).

With the above definition, we say that:
• the total population in Problem (1.2) is persistent if the semiflow φt is ρ̃-persistent for
the mapping ρ̃ : (u, v) ∈ X 7→ u+ T (v);
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• the disease in Problem (1.2) is persistent if the semiflow φt is ρ-persistent for the mapping
ρ : (u, v) ∈ X 7→ T (v).

One can now give a necessary condition to get persistence of the disease.
Lemma 3.2. The total population in Problem (1.2) is a non negative bounded function which is

uniformly strongly persistent if γ > 0 and converges to 0 if γ = 0. Moreover, for γ > 0 the set X0 = {x ∈
X+, ρ̃(x) ≤

γ
µ0
} is an invariant set for the system (1.2).

Proof. The quantity σρ̃(t, (S0, I0)) clearly represents the total population in Problem (1.2). The
positivity of the solution stated by Theorem 2.2 directly yields the positivity of the total population for
initial densities such that ρ̃(S0, I0) ≥ 0.
Applying the operator T to the transport equation in (1.2) one deduces, using the boundary condition,
assumption (ii) on Φ and equation (3.5), the equality

(3.1) σ′
ρ̃(t) = γ − µ0S(t)− T (µI)(t).

Since µ0 ≤ µ(i) ≤ ‖µ‖∞ for a.e. i ∈ J , the latter equality implies that the total population σρ̃(t) satisfies
the differential inequalities

γ − ‖µ‖∞ σρ̃(t) ≤ σ′
ρ̃(t) ≤ γ − µ0 σρ̃(t).

Then using standard Gronwall arguments one deduces that

(3.2) f∞(t) ≤ σρ̃(t) ≤ f0(t),

where f0 is the following function,

f0(t) = e−µ0tρ̃(S0, I0) +
γ

µ0

(
1− e−µ0t

)
,

and f∞(t) is the same function as f0 but with ‖µ‖∞ instead of µ0. It follows from (3.2) that the total
population is a bounded function. Moreover, letting t → +∞ in (3.2) one gets

(3.3)
γ

‖µ‖∞
≤ σ−

ρ̃ ≤ σ+
ρ̃ ≤

γ

µ0
,

which proves the persistence result.
Finally, from (3.2) one deduces that for γ > 0, σρ̃(t, x) ≤ γ

µ0
for every x ∈ X0, that is equivalent to

φt(X0) ⊂ X0, which ends the proof of the lemma.
As a consequence of Lemma 3.2, we focus on the study in the case where the total population does

not extinct by assuming in all that follows that γ > 0.

3.2. Study in a particular case. We now look at the particular case where µ and β are non
negative constant parameters. We therefore suppose in all that follows the following assumption,

(H) µ(i) := µ1 ≥ µ0, and β(i) := β0 for a.e. i ∈ J.

Then denoting Y (t) = T (I)(t) one gets the following proposition.
Proposition 3.3. Suppose that assumption (H) is satisfied. Then (S(t), Y (t)) satisfies for every

t ≥ 0 the following differential equations system,

(3.4)







dS(t)

dt
= γ − (µ0 + α)S(t) − β0S(t)Y (t),

Y (t)

dt
= αS(t) + β0S(t)Y (t)− µ1Y (t),

S(0) = S0, Y (0) = T (I0).
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Proof. Let us start by proving that the infected stage satisfies the following asymptotic property,

(3.5) lim
i→+∞

iI(t, i) = 0.

Indeed from Corollary 2.4 one gets iI(t, i) ∈ W 1,1(J) for every t ≥ 0. Then from the equality

iI(t, i) =

∫ i

i−
∂u(uI(t, u)) du +

α

ν
S(t),

one deduces that for every t ≥ 0 there exists l(t) ≥ 0 such that limi→+∞ iI(t, i) = l(t). Finally, since
iI(t, i) ∈ W 1,1(J) ⊂ L1(J), then necessarily l(t) = 0 for every t ≥ 0 and (3.5) is then proved.
Integrating w.r.t. i ∈ J the transport equation of Problem (1.2) yields, as a consequence of the expression
of the boundary condition and of the limit stated by (3.5),

dY (t)

dt
= νi−I(t, i−) + β0S(t)Y (t)− µ1Y (t)

= αS(t) + β0S(t)Y (t)− µ1Y (t),

and so the proposition is proved.
Remark 2. Observe that from (3.4), we obtain the following balance equation

(3.6)
d

dt

[
S(t) + Y (t)

]
= γ − µ0S(t) + µ1Y (t),

which states that the total population can change only due to the entering flux and death. Note that, using
the mapping ρ and ρ̃ previously defined, this equation can also be written as

d

dt

[
σρ̃(t)

]
= γ − µ0σρ̃(t) + (µ0 + µ1)σρ(t),

where the initial condition (S0, I0) is deliberately avoided.
In the particular case where assumption (H) is satisfied, we consider the R0 value given by

R0 =
γβ0

µ0µ1
.

Proposition 3.4. Suppose that assumption (H) is satisfied. Then
• If α > 0, Problem (3.4) has a unique equilibrium point (S̄, Ȳ ) given by

(3.7) Ȳ =
δ +

√

δ2 + 4αγβ0µ1

2βµ1
, S̄ =

µ1Ȳ

α+ β0Ȳ

with δ = γβ0 − (µ0 + α).
• If α = 0, then

– R0 ≤ 1 ⇒ there exists a unique equilibrium E0 =
(

γ
µ0
, 0
)

,

– R0 > 1 ⇒ there are two equilibria, E0 and E∗ =
(

µ1

β0
, µ0

β0
(R0 − 1)

)

Proof. Suppose that α > 0. Looking for a steady state (S̄, Ȳ ) in (3.4), the second equation gives the
equality that links S̄ to Ȳ in (3.7). From here, substituting the S̄ value in the first equation one gets

β0µ1 Ȳ
2 − δ Ȳ − αγ = 0.
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The latter equation has only one admissible point that is the non negative value Ȳ stated in (3.7).
Suppose now that α = 0. Then for Ȳ = 0 one gets S̄ = γ

µ0
from the first equation leading to the

equilibrium E0. Moreover, taking α = 0 in (3.7) yields S̄ = µ1

β0
and then the first equation in (3.4) implies

that γ − µ0µ1

β0
− µ1Ȳ = 0 and so one deduces E∗ as given in the proposition.

In the case where assumption (H) is satisfied and α > 0, the latter proposition implies that the
disease may not extinct. The following theorem is a particular result of a more general result that will
proved without the assumption (H) (see Theorem 3.11 and 3.12).

Theorem 3.5. Suppose that assumption (H) is satisfied and I0 > 0. If α > 0 then the disease is
uniformly strongly persistent. If α = 0 then

R0 < 1 ⇒ E0 is locally asymptotically stable,

R0 > 1 ⇒ E∗ is locally asymptotically stable and the disease is uniformly strongly persistent.

3.3. Mathematical study in the general case. We now suppose that assumption (H) is not
satisfied, translating that the mortality rate and the transmission rate are infection-load dependent func-
tional parameters satisfying hypothesis (iii) .

3.3.1. Disease with external contamination. This case is translated by the assumption α > 0.
Theorem 3.6. Suppose that I0 > 0 and α > 0. Then the disease is uniformly strongly persistent,

and we have the following lower bound,

σ−
ρ (S0, I0) ≥

αγµ0

‖µ‖∞(µ2
0 + αµ0 + ‖β‖∞γ)

.

Proof. To prove this theorem, we make several uses of fluctuation method (see [20, 43]). Let us
denote in all the proof the following limit,

(3.8) S− = lim inf
t→+∞

S(t).

By fluctuation method, there exists a sequence tn → +∞ such that

lim
n→+∞

S(tn) = S−, lim
n→+∞

S′(tn) = 0.

Since γ > 0, Lemma 3.2 implies that t 7→ ρ̃(t) is bounded and so σ+
ρ < +∞ and same for S+.

Let ε > 0. By definition of σ+
ρ one gets lim supn→+∞ σρ(tn) ≤ σ+

ρ < σ+
ρ + ε and so σρ(tn) ≤ σ+

ρ + ε for
every n big enough. The differential equation of susceptibles in Problem (1.2) then gives for every n big
enough,

S′(tn) ≥ γ − (µ0 + α)S(tn)− ‖β‖∞S(tn)(σ
+
ρ + ε).

From the latter equation, for n → ∞ one gets

(3.9) S− ≥
γ

µ0 + α+ ‖β‖∞(σ+
ρ + ε)

> 0.

Furthermore, the fluctuation method also implies that there exists a sequence sn → +∞ such that

lim
n→+∞

σρ(sn) = σ−
ρ

lim
n→+∞

σ′
ρ(sn) = 0.
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Since S− > 0, one can consider now 0 < ε′ < S−. Then one gets S(sn) > S−− ε′ for every n big enough.
The inequality µ(i) ≥ ‖µ‖∞ f.a.e. i ∈ J and equation (3.1) imply that for every n big enough,

σ′
ρ(sn) ≥ α(S− − ε′)− ‖µ‖∞σρ(sn).

For n → ∞ one finally gets, taking (3.9) into account,

σ−
ρ ≥

α

‖µ‖∞

(
γ

µ0 + α+ ‖β‖∞(σ+
ρ + ε)

− ε′
)

.

Now, letting ε, ε′ → 0,

σ−
ρ ≥

αγ

‖µ‖∞(µ0 + α+ ‖β‖∞σ+
ρ )

.

Moreover, equation (3.3) induces that σ+
ρ ≤ γ

µ0
so the latter bound is independent of the initial condition,

and the disease is uniformly persistent and the lower bound in the theorem is satisfied.

3.3.2. Disease without external contamination. We now study the case without external con-
tamination, that is α = 0. To perform the persistence analysis, we exhibit some spectral properties of
the differential operator A and of the semigroup {TA(t)}t≥0 of Theorem 2.2.
Before proceeding, we introduce some notations and recall some definitions of spectral theory.
Denoting ρ(A) the resolvent set of A : D(A) ⊂ X → X , we define the spectrum σ(A), the point spectrum
σp(A) and the spectral bound s(A) by

σ(A) = C\ρ(A),

σp(A) = {λ ∈ C, λI −A is not injective},

s(A) = sup{Reλ, λ ∈ σ(A)}.

For an isolated λ0 ∈ σ(A), the associated spectral projection Pλ0 is

Pλ0 =
1

2πi

∫

γλ0

Rλ dλ,

where Rλ is the resolvent operator of (A,D(A)) and γλ0 is a Jordan path in the complement of σ(A)\{λ0}
enclosing {λ0}.
The algebraic multiplicity ma(λ0) ∈ N ∪ {+∞} of λ0 is the dimension of the range of Pλ0 . We recall the
following fundamental result of spectral theory (see Yosida [49]) :

Theorem 3.7. If ma(λ0) < ∞ then λ0 ∈ σp(A).
Denoting L(X) the set of bounded linear operators on X and K(X) the subset of compact operators

on X , we then define the essential norm ‖L‖ess of L ∈ L(X) by

‖L‖ess = inf
K∈K(X)

‖L−K‖X .

We recall that the quotient L(X)/K(X) is called the Calkin algebra which, when providing the norm

‖L̂‖ = ‖L‖ess

where L̂ = L + K(X), is a Banach algebra with unit (see [15] and references cited in for details). The
growth bound ω0(A) ∈ [−∞,+∞) of A is defined by

ω0(A) = lim
t→+∞

1

t
ln (‖TA(t)‖X) ,



10 Antoine PERASSO and Ulrich RAZAFISON

and the essential growth bound ωess(A) ∈ [−∞,+∞) of A is

ωess(A) = lim
t→+∞

1

t
ln (‖TA(t)‖ess) .

The following theorem that gives a characterization of the growth bound using the spectrum of A was
proved by Engel and Nagel [15].

Theorem 3.8. The growth bound of A satisfies

ω0(A) = max{ωess(A), s(A)},

and for every ω > ωess(A) the set σω = {λ ∈ σ(A), Re (λ) > ω} is finite and composed of finite algebraic
multiplicity elements.

A consequence of Theorems 3.7 and 3.8 is that

(3.10) ω > ωess(A) ⇒ σω ⊂ σp(A).

Remark 3. Another definition of the essential norm can be stated by the use of the Kuratovski
measure of non-compactness ([46, 47]). However, this definition is equivalent to the one we use (see
[3]). Due to the quotient defined previously, the use of the Calkin algebra shows well why the compact
operators do not affect the growth bound values. More specifically, one gets ωess(A + K) = ωess(A) for
every K ∈ K(X).

In all that follows, let us consider for every µ ∈ L∞(J) the function πµ ∈ L1(J), and the values R−,
R0 and R+ given by

πµ(i) =
1

νi

∫ i

i−
Φ(s)e−

∫

i

s

µ(l)
νl

dl ds

R− =
γβ0

µ0‖µ‖∞
, R0 =

γ

µ0
T (βπµ), R+ =

γ‖β‖∞
µ2
0

.

Remark 4. One can check that the following equalities are satisfied,

R− =
γ

µ0
T (β0π‖µ‖∞

), R+ =
γ

µ0
T (‖β‖∞πµ0),

and so the three values R−, R0 and R+ are related by the inequalities R− ≤ R0 ≤ R+. As a consequence,
one gets R− > 1 ⇒ R0 > 1 and R+ < 1 ⇒ R0 < 1.

Proposition 3.9.

• If R0 ≤ 1 then Problem (1.2) has a unique equilibrium E0 ∈ X+, that is the disease free equilib-
rium given by

E0 = (SF , 0) =

(
γ

µ0
, 0

)

• If R0 > 1 then Problem (1.2) has two equilibria in X+, that are the disease free equilibrium E0

and an endemic equilibrium E∗ given by

E∗ = (S∗, I∗) =

(
SF

R0
,
γ(R0 − 1)

R0
πµ

)

Proof. Looking for (S̄, Ī) ∈ X+ constant solutions of Problem (1.2) one gets






0 = γ − µ0S̄ − S̄T (βĪ),

(νiĪ)′ = −µ(i)Ī(i) + Φ(i)S̄T (βĪ), i ∈ J,

νi−I(i−) = 0.
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The first equation and the integration of the second equation give

S̄ =
γ

µ0 + T (βĪ)
,(3.11)

Ī(i) = S̄T (βĪ)πµ(i).(3.12)

Applying the T (β ·)-operator to (3.12) yields

T (βĪ)

(

1−
S̄R0

SF

)

= 0.

From here, either T (Ī) = 0, and since T (Ī) ≤ T (βĪ)
β0

so Ī = 0 in L1(J) and (3.11) implies that E0 is

the desired disease free equilibrium, or T (Ī) > 0. In that case Ī is not zero in L1(J). Then necessarily
S̄ = S∗ and from (3.11) follows

T (βĪ) =

(
γ

S∗
− µ0

)

= µ0 (R0 − 1) .

This latter is positive if and only if R0 > 1, and then (3.12) finally implies

Ī = S∗T (βĪ)πµ = I∗.

Since the semilinear part f defined in (2.1) is continuously differentiable, a result from the theory of
semilinear evolution equations proves that, under some conditions on the growth bound ω0(A) and on
the essential growth bound ωess(A), it is possible to approach the stability of some equilibrium points for
the infinite-dimensional system (1.2) in the same way as for a finite dimensional system. More precisely,
the following proposition hods:

Proposition 3.10. For every equilibrium point E of the Problem (2.2), we have
1. ω0(A+DEf) < 0 implies that E is locally asymptotically stable.
2. ω0(A+DEf) > 0 and ωess(A+DEf) ≤ 0 implies instability of E.
We refer to [35] or Proposition 4.19 in [46] for the proof of this result.
Using this result one gets the following theorem proving that the disease may extinct when R0 < 1

whereas the disease-free equilibrium is unstable when R0 > 1. Moreover, we exhibit stronger assumptions
on R− and R+ that provide either the global stability of the disease-free equilibrium, either the uniform
strong persistence of the disease.

Theorem 3.11. Suppose that I0 > 0 and R0 < 1. Then the disease free equilibrium E0 is locally
asymptotically stable. Moreover, under the stronger assumption R+ < 1, the disease free equilibrium E0

is globally asymptotically stable.
Proof. The linearized system (1.2) about the disease-free equilibrium E0 is

(3.13)
d

dt

(
S(t)
I(t)

)

= (A+DE0f)

(
S(t)
I(t)

)

,

where DE0f is the differential at the disease free equilibrium. We first prove that ω0(A+DE0f) < 0.
The estimation (2.3) shows that ω0(A) ≤ ν − µ0, so does not guarantee a negative value of the growth
bound when the exponential velocity ν is too big. However, one can prove that ωess(A) < 0. Indeed the
change of variables using the mapping (t, ξ) 7→ (t, i) = (t, i−eν(t−ξ)) and standard integrative computa-
tions imply that the semigroup TA(t) satisfies for every t ≥ 0 and every (u, v) ∈ X ,

(3.14) TA(t)

(
u
v

)

= v(ie−νt)

(
0

e−
∫

t

0
(µ(ie−νs)+ν)dsχ{θ(i)≥t}

)

+ u

(
e−µ0t

0

)

,
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where θ(i) = 1
ν ln

(
i
i−

)
. Moreover, a change of variables clearly gives

∫

{θ≤t}

v(ie−νt)ds ≤ eνt‖v‖L1(J),

and since the u-part in (3.14) has rank 1, then it is compact and one gets with assumption (iii) on µ,

‖TA(t)‖ess ≤ e−µ0t.

From here, ωess(A) ≤ −µ0, and since from Lemma 2.1.2 the differential DE0f is a compact operator, one
deduces that ωess(A +DE0f) < 0. As a consequence of Theorems 3.7 and 3.8 we only have to focus on
the point spectrum of A+DE0f , by proving that sup{Reλ, λ ∈ σp(A+DE0f)} < 0 when R0 < 1.
For λ ∈ C such that Reλ > −µ0 and looking for a solution I(t, i) = z(i)eλt of the linearized problem
(3.13), function z satisfies

λz(i) + (iνz(i))′ = −µ(i)z(i) +
γ

µ0
Φ(i)T (βz).

Since the boundary is homogeneous, an integration then gives

z(i) =
γ

µ0
T (βz)πµ+λ

and applying the operator T (β ·) leads to the following characteristic equation for λ ∈ C, Reλ > −µ0,

(3.15) ξ(λ) = 1

where ξ(λ) = γ
µ0
T (βπµ+λ). Suppose now that R0 < 1. On can check that ξ(0) = R0 < 1. Moreover,

for λ ∈ R the Lebesgue dominated convergence theorem implies that λ 7→ ξ(λ) is a strictly decreasing
function on (−µ0,∞) and

lim
λ→+∞

ξ(λ) = 0.

Then necessarily (3.15) implies that λ ∈ (−µ0, 0) and sup{σp(A+DE0f) ∩R} < 0. Now, for λ ∈ C such
that Reλ > −µ0 one gets, considering the real part in (3.15),

1 =
γ

µ0
T

(
β(i)

νi

∫ i

i−
Φ(s) cos(Imλ ln(i/s))e−

∫

i

s

Re λ+µ(l)
νl

dl ds

)

≤ ξ(Reλ).

From here, R0 < 1 ⇒ Reλ < 0. To conclude, A +DE0f has a dominant eigenvalue with negative real
part for R0 < 1 so Theorem 3.8 implies that ω0(A+DE0f) < 0. Proposition 4.19 in [46] finally gives the
stability of the disease-free equilibrium E0.

We now suppose that R+ < 1 and prove the global stability of the disease free equilibrium using the
fluctuation method. The goal is to prove that σ+

ρ = 0, where ρ : (u, v) ∈ X 7→ T (v).
Applying the operator T to the infected equation in Problem (1.2), one deduces from assumption (iii) on
parameter µ that

dT (I)

dt
≤ αS + ‖β‖∞ST (I)− µ0T (I).

Then the fluctuation method implies that

σ+
ρ (‖β‖∞S+ − µ0) ≥ 0,
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where

S+ = lim sup
t→+∞

S(t).

From (3.2) one deduces that

γ

µ0
≥ σ+

ρ̃ ≥ S+,

so one gets

σ+
ρ (R+ − 1) ≥ 0,

which proves that, unformly in (S0, I0), σ
+
ρ = 0 when R+ < 1. Then the global stability of E0 yields.

Theorem 3.12. Suppose that I0 > 0 and R0 > 1. Then the disease free equilibrium E0 is unstable
and the endemic equilibrium E∗ is locally asymptotically stable. Moreover, under the stronger assumption
R− > 1, the disease is uniformly strongly persistent.

Proof. Same calculus than in the proof of Theorem 3.11 proves that for R0 > 1 the disease free
equilibrium E0 is unstable. Indeed, since ξ(0) = R0 > 1, continuity and decreasing of λ 7→ ξ(λ) on R

imply that there exists an unique λ0 > 0 such that ξ(λ0) = 1. So ω0(A+DE0f) > 0 and the unstability
yields from Proposition 3.10.
We now prove on the stability of the endemic equilibrium E∗. Since ωess(A +DE∗f) < 0, we only have
to focus on the point spectrum of A +DE∗f . The linearized system (1.2) about E∗ rewrites, using the
expression of equilibria E0, E∗ and R0,

(3.16)







dS(t)

dt
= −µ0R0S(t)−

SF

R0
T (βI)(t), t ≥ 0,

∂I(t, i)

∂t
= −

∂(νiI)(t, i)

∂i
− µ(i)I(t, i) + Φ(i)SF

R0
T (βI)(t) + Φ(i)µ0(R0 − 1)S(t)

For λ ∈ C such that Reλ > −µ0 and looking for S(t) = eλts and I(t, i) = z(i)eλt of the linearized
problem (3.16), one gets

{

λs = −µ0R0s−
SF

R0
T (βz)

λz(i) + (iνz(i))′ = −µ(i)z(i) + Φ(i)
(

γ
µ0
T (βz) + µ0(R0 − 1)s

)

.

The latter equation may be integrated and then applying the T (β ·) operator one deduces that (s, T (z))
satisfies the linear system

(

(λ + µ0R0)
γ

µ0R0

T (βπµ+λ)µ0(R0 − 1)
γT (βπµ+λ)

µ0R0
− 1

)

.

(
s

T (βz)

)

= 0.

Since R0 > 1, several computations lead to the characteristic equation for Reλ > −µ0,

γT (βπµ+λ)(λ+ µ0)

µ0R0(λ+ µ0R0)
= 1.

Let us denote by Γ(λ) the left hand side of the previous equality. Considering the real and imaginary
parts of λ then identifying the real part of the equation Γ(λ) = 1 gives

µ0R0[(Reλ+ µ0R0)(Reλ+ µ0) + (Im λ)2]

(Reλ+ µ0)2 + (Imλ)2
= γ T

(
β(i)

νi

∫ i

i−
Φ(s) cos(Imλ ln(i/s))e−

∫

i

s

Re λ+µ(l)
νl

dl ds

)

.
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Using the equality S∗ = γ
µ0R0

, this latter equality can be also written as

µ0(Re λ+ µ0)(R0 − 1) = [(Reλ+ µ0)
2 + (Imλ)2]×
(

S∗T

(
β(i)

νi

∫ i

i−
Φ(s) cos(Imλ ln(i/s))e−

∫

i

s

Re λ+µ(l)
νl

dl ds

)

− 1

)

.(3.17)

Suppose now that Reλ ≥ 0. Then one gets

S∗T

(
β(i)

νi

∫ i

i−
Φ(s) cos(Im λ ln(i/s))e−

∫

i

s

Re λ+µ(l)
νl

dl ds

)

≤ S∗T (βπµ) = 1.

Since R0 > 1, a contradiction yields from the last equation and (3.17). As a consequence, A + DE∗f
always has a dominant eigenvalue with negative real part. Finally one deduces, as in the proof of Theorem
3.11, that the endemic equilibrium E∗ is locally stable.

We now prove that the disease is uniformly strongly persistent under the assumption R− > 1. We
start by proving the uniform weak persistence of the disease. Suppose by contradiction that the disease

is not uniformly-weakly persistent: then for a fixed 0 < ε < µ0(R−−1)
‖β‖∞

, there exists initial conditions

(that may depend on ε) such that σ+
ρ < ε. The same arguments than ones developed to prove (3.9) then

give S− ≥ γ
µ0+‖β‖∞ε , where S− is defined in (3.8). Moreover, Applying the operator T to the transport

equation in (1.2) one deduces, using the boundary condition, assumption (ii) on Φ and equation (3.5),
that there exists τ > 0 such that for every t > τ , σ′

ρ(t) ≥ (−‖µ‖∞ + β0S
−)σρ(t). After an integration,

one gets for every t ≥ τ ,

σρ(t) ≥ e
µ0‖µ‖∞

µ0+‖β‖∞ε

(

R−−1− ‖β‖∞ε

µ0

)

(t−τ)
σρ(τ).

Since ε < µ0(R−−1)
‖β‖∞

, one finally gets σ+
ρ = +∞, which contradicts σ+

ρ < ε. Consequently, the disease is

uniformly weakly persistent.
To prove that the disease persistence is uniformly strong, we now refer to a compactness argument that
ensures that uniform weak persistence implies uniform strong persistence when there exists a compact
attractor under the semiflow φt (see Thieme [43], Theorem A.32).
Using the equality (2.4) for the semiflow φt = (φS

t , φ
I
t ) and the expression (3.14) of the semigroup, one

deduces that the second component TA(t−s)[f(φs(x))]
∣
∣
I
satisfies for every x = (xS , xI) ∈ X+ the equality

TA(t− s)[f(φs(x))]
∣
∣
I
(i) = φS

s (x)T (βφI
s(x))Φ(ie

ν(s−t))e−
∫

t−s

0
(µ(ie−νξ)+ν)dξχ{θ(i)≥t−s}.

Then an obvious change of variable implies that the component φI
t of the semiflow φt rewrites as φ

I
t (x) =

φ1(t, x, ·) + φ2(t, x, ·) with

φ1(t, x, i) =
(

xI(ie−νt)e−
∫

t

0
(µ(ie−νs)+ν)ds

)

χ{θ(i)≥t},

φ2(t, x, i) =

∫

R+

φS
t−s(x)T (βφI

t−s(x))Φ(ie
−νs)e−

∫

s

0
(µ(ie−νξ)+ν)dξχ{0≤s≤min(θ(i),t)}ds

From here, consider the subset B ⊂ X+ defined by B = {(φS
t (x), φ2(t, x, ·)), t ≥ 0, x ∈ X0} where X0 is

defined in Lemma 3.2. We now prove that the adherence of B in X is a compact attractor in the following
sense:

1. B
X

is a compact subset of X ;
2. ∀x ∈ X0, limt→+∞ d(φt(x), B) = 0
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–1. We start to prove the relative compactness of B. Since φS
t (x) is a real variable, we only need to

consider the family {φ2(t, x, ·), t ≥ 0, x ∈ X0} of L1(J). We identify L1(R) with the set of those functions
that are zero on (−∞, i−) and we use the well-known Riesz-Frechet-Kolmogorov criterion (see for instance
Yosida [49]). We leave to the reader easier conditions needed for the criterion, and concentrate the proof
to check that the family {φ2(t, x, ·), (t, x) ∈ R+ ×X0} satisfies

(3.18) lim
h→0

sup
(t,x)∈R+×X0

‖τhφ2(t, x, ·) − φ2(t, x, ·)‖L1 = 0,

where τh is the translation operator in L1. Note that the limit above is then satisfied uniformly for t ≥ 0
and for all solutions of the model. since x ∈ X0 which is an invariant set for the semiflow as stated in
Lemma 3.2 and θ is an increasing function, one gets by spliting the integral the following majoration,

(3.19) ‖τhφ2(t, x, ·)− φ2(t, x, ·)‖L1 ≤ ‖β‖∞

(
γ

µ0

)2

(I1(t, h) + I2(t, h)),

with

I1(t, h) =

∫∫

J×R+

∣
∣Φ((i + h)e−νs)e−

∫

s

0
µ((i+h)eνξ)dξ − Φ(ie−νs)e−

∫

s

0
µ(ieνξ)dξ

∣
∣χ{s≤min(t,θ(i)} ds di

and

I2(t, h) =

∫∫

J×R+

Φ((i+ h)e−νs)e−
∫

s

0
µ((i+h)eνξ)dξχ{min(t,θ(i))≤s≤min(t,θ(i+h))} ds di

Since θ is an increasing function one gets {min(t, θ(i)) ≤ s ≤ min(t, θ(i + h))} ⊂ {θ(i) ≤ s ≤ θ(i + h)},
and the assumption (iii) on µ then implies that

(3.20) I2(t, h) ≤

∫∫

J×R+

Φ((i + h)e−νs)e−µ0sχ{θ(i)≤s≤θ(i+h)} ds di.

Moreover, standard computations and majorations give

I1(t, h) ≤

∫∫

J×R+

∣
∣Φ((i+ h)e−νs)− Φ(ie−νs)

∣
∣e−µ0s ds di

+

∫∫

J×R+

Φ(ie−νs)

∣
∣
∣
∣
e−

∫

s

0
(µ((i+h)eνξ)+ν)dξ − e−

∫

s

0
(µ(ieνξ)+ν)dξ

∣
∣
∣
∣
ds di.(3.21)

From here, since assumptions (ii) and (iii) on Φ and µ imply that that the following functions are in
L1(J × R+),

(i, s) 7→ Φ((i+ h)e−νs)e−µ0sχ{θ(i)≤s≤θ(i+h)},

(i, s) 7→
∣
∣Φ((i + h)e−νs)− Φ(ie−νs)

∣
∣e−µ0s,

(i, s) 7→ Φ(ie−νs)
∣
∣e−

∫

s

0
µ((i+h)eνξ)dξ − e−

∫

s

0
µ(ieνξ)dξ

∣
∣,

one can apply the Lebesgue dominated convergence theorem in equations (3.20) and (3.21), proving that

lim
h→0

sup
t≥0

(
I1(t, h) + I2(t, h)

)
= 0.

Equation (3.19) then proves that (3.18) is satisfied, and the relative compactness of B yields.
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– 2. To prove this limit, we check that for x ∈ X0,

‖φ1(t, x, ·)‖L1 =

∫

θ(i)≥t

xI(ie−νt)e−
∫

t

0
(µ(ie−νs)+ν)dsdi

≤
γ

µ0
e−(µ0+ν)t,

which ends the proof.

4. The numerical method. In this section we describe and study the discretization of (1.2). The
scheme is then used in the next section to perform numerical simulations on the model applied to the
transmission of prion pathologies.

4.1. The numerical scheme. We introduce an infection load-time grids where the infection load
and the time steps are ∆i and ∆t respectively. We use the following discretizations ij+1/2 = i− + j∆i,

tn = n∆t where j, n ∈ N. We define the cells Kj =]ij−1/2, ij+1/2[ centered at ij =
1
2 (ij−1/2 + ij+1/2), for

j ≥ 1. We denote by Inj the approximation of the average of I(tn, i) over the cell Kj, namely

Inj ≃
1

∆i

∫

Kj

I(tn, i)di.

We use an implicit upwind finite volume scheme in order to compute Inj . The general scheme is as follows:
• We compute the initial states and the data:

S0 = S(0), I0j =
1

∆i

∫

Kj

I0(i)di,

βj =
1

∆i

∫

Kj

β(i)di, µj =
1

∆i

∫

Kj

µ(i)di and Φj =
1

∆i

∫

Kj

Φ(i)di.

(4.1)

• Assume now Sn and In = (Inj )j≥1 are computed,
⊲ we define

T (βIn) = ∆i
∑

j≥1

βjI
n
j ,

⊲ we compute

(4.2) Sn+1 =
γ∆t+ Sn

1 + ∆t(µ0 + α+ T (βIn))
,

⊲ we compute In+1 by solving the following linear system:

(4.3) − ν
∆t

∆i
ij−1/2I

n+1
j−1 +

(

1 + ν
∆t

∆i
ij+1/2 +∆tµj

)

In+1
j = Inj +∆tΦjS

n+1T (βIn).

Let us now prove some basic properties of the scheme, namely the stability and that it preserves the
positivity of the unknowns and it satisfies a balance equation.

Proposition 4.1. Assume that for any n ≥ 0, Sn and In are computed by (4.2)–(4.3).
(i) For any n ≥ 0, j ≥ 1, we have Sn ≥ 0 and Inj ≥ 0.
(ii) Under the assumption (H), Sn and In satisfy

(4.4)
Sn+1 − Sn

∆t
+

∆i

∆t

∑

j≥1

(
In+1
j − Inj

)
= γ − µ0S

n+1 − µ1T (In+1),

which is a discrete version of the balance equation (3.6).
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(iii) Let T > 0. Then for any tn ≤ T , we have the following stability results:

Sn ≤ γ T + S0,(4.5)

T (In) ≤ eT‖β‖∞(γT+S0)(T (I0) + αT (γ T + S0)).(4.6)

Proof. (i) Since S0 ≥ 0 and I0 ∈ L1
+(J), then from (4.1), we have that S0 ≥ 0 and for any j ≥ 1,

I0j ≥ 0. Next an easy induction argument shows, from (4.2)–(4.3), that Sn ≥ 0 and Inj ≥ 0 for any n ∈ N

and j ≥ 1.

(ii) Observe that one can rewrite (4.2)–(4.3) into the form

Sn+1 − Sn

∆t
= γ − (µ0 + α)Sn+1 − Sn+1T (βIn),

In+1
j − Inj

∆t
+

1

∆i

(
ν ij+1/2I

n+1
j − ν ij−1/2I

n+1
j−1

)
= −µj I

n+1
j +ΦjS

n+1T (βIn).

(4.7)

This leads to

Sn+1 − Sn

∆t
+

∆i

∆t

∑

j≥1

(
In+1
j − Inj

)

= γ − (µ0 + α)Sn+1 − Sn+1T (βIn) + νi1/2 I
n+1
0 −∆i

∑

j≥1

µjI
n+1
j + T (βIn)Sn+1∆i

∑

j≥1

Φj .

Then the discrete balance equation (4.4) follows from the boundary condition of (1.2) which implies that
νi1/2I

n+1
0 = αSn+1, from the fact that ∆i

∑

j≥1 Φj =
∫

J Φ(i)di = 1 and from assumption (H) that
implies µj = µ1, for any j ≥ 1.

(iii) From (4.2), we clearly have Sn ≤ (γ∆t+Sn−1), for any n ≥ 1. Then we can write Sn ≤ 2γ∆t+Sn−2

and by induction, for any n ≥ 1, such that n∆t ≤ T we obtain (4.5).
Now, summing the second equation of (4.7) over j ≥ 1, we get

∑

j≥1

In+1
j − Inj

∆t
−

ν

∆i
i1/2I

n+1
0 = −

∑

j≥1

µjI
n+1
j + Sn+1T (βIn)

∑

j≥1

Φj .

Using the same arguments as in (ii), we arrive at

∑

j≥1

(1 + ∆tµj)I
n+1
j =

1

∆i
T (In) +

∆t

∆i
Sn+1T (βIn) +

∆t

∆i
αSn+1.

Therefore, we have

T (In+1) ≤ (1 + ∆t‖β‖∞ Sn+1)T (In) + ∆tαSn+1.

It follows from (4.5) that

T (In+1) ≤ (1 + ∆t‖β‖∞(γT + S0))T (In) + ∆tα(γT + S0).

Using discrete version of Gronwall’s lemma we obtain (4.6).
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4.2. Comparison with explicit solutions. A possibility to validate the scheme is to compare
the numerical solutions with explicit available solutions. Since no explicit solutions are available for the
complete model (1.2), we consider the particular case of system (3.4) where we assume β(i) = 0 f.a.e. i
in J . Hence (3.4) is reduced to the following system of ODE

(4.8)







dS(t)

dt
= γ − (µ0 + α)S(t),

dT (I)(t)

dt
= αS(t)− µ1T (I)(t),

S(0) = S0, T (I)(0) = T (I0).

For convenience, we assume µ0+α−µ1 6= 0. Then system (4.8) has a unique pair of solution (S(t), T (I)(t))
defined by

S(t) =

(

S0 −
γ

µ0 + α

)

e−(µ0+α)t +
γ

µ0 + α

and

T (I)(t) = T (I0)e
−µ1t +

α

µ0 + α− µ1

(

S0 −
γ

µ0 + α

)(

e−µ1t − e−(µ0+α)t
)

+
αγ

µ1(µ0 + α)

(
1− e−µ1t

)
.

We now consider the following arbitrary parameters: µ0 = 0.1, µ1 = 0.15, ν = 0.1, α = 0.02, γ = 1. The
initial conditions are assumed to be S0 = 100 and T (I)(0) = 0.1. In order to reduce the computation,
we truncate the domain by assuming that i− ≤ i ≤ i+ and 0 ≤ t ≤ T , where we set i− = 0.1, i+ = 100
and T = 50. The infected load grid ∆i is fixed to ∆i = 0.05. We define the following relative L1-discrete
error norms

eS =

∑

0≤n≤N

|S(tn)− Sn|

∑

0≤n≤N

|S(tn)|
, eT =

∑

0≤n≤N

|T (I)(tn)− T (In)|

∑

0≤n≤N

|T (I)(tn)|
,

where N is an integer such that T = N∆t.
In Figure 4.1, we report the L1-discrete error norms eS and eT using logarithmic scale. We deduce the
orders of convergence for each variables, which are respectively 1 for S and 0.68 for T (I). Note that these
orders can be improved using more accurate schemes (see e.g. [25, 38]). On Figure 4.2, both explicit
and numerical solutions are plotted. For the numerical solutions we use the time step ∆t = 0.025. We
observe good agreements.

5. Application: transmission of prion pathologies. Prion pathologies, such as Scrapie or BSE,
are fatal-issued diseases characterized by variable incubation periods during which the disease cannot be
detected. At the end of the incubation period, infected individuals usually develop distinctive clinical
signs which are rapidly followed by death. As a consequence, no recovery is possible.
Modeling the same way as in [18, 41], incubation time heterogeneity may be incorporated in the model
through the infection load variable i. Indeed, Equation (1.3) on µ implies that the quantity Π : J → (0, 1]
given by

Π(i) = e−
∫

i

i−
µ(l)dl
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Fig. 4.1. L1 relative errors norms eS and eT in log/log scale

denotes the probability to survive for an infected individual with infection load i ∈ J . Consider now
a given threshold Πd ∈ (0, 1) such that an individual with an infection load that satisfies Π(i) ≤ Πd is
considered to be dead or about to die, meaning that the incubation time of the disease is gone. Since
Π is a strictly decreasing function, there is a unique id > i− such that Π(id) = Πd. Then for an initial
infection load at contamination i0 ∈ (i−, id) the incubation time τ is given by

τ =
1

ν
ln

(
id
i0

)

.

In other words, the incubation time τ represents the time for the infectious process to reach the value
id from the initial value i0. Then the map i0 7→ τ(i0) defines a natural change of variable between
incubation time of the disease and initial infection loads at contamination and enables us to incorporate
in the model the variable incubation times using the distribution Φ.

The goal of this section is to perform simulations that either allow to strengthen our theoretical
results or to show that these latter could be improved. To achieve that goal, we focus on a specific
prion pathology that is scrapie: indeed, Problem (1.2) is a variation of scrapie models that describe
the propagation of the disease in flocks [18, 31, 32, 41, 45], where the age-structure and the genotype
specificity are avoided. More precisely, the following table sums up the specific characteristics of scrapie
and why they are well-translated by the model:

Characteristics Model

No recovery states S (susceptible) and I (infected)

Disease with fatal issue infection-load dependent mortality rate

µ(i) for the class I with assumption (iii)

Exponential growth of the infection infection load i ∈ J that satisfies di/dt = νi

Variable incubation time at contagion distributed initial infection load with p.d.f. Φ

External source of contamination System input with contamination rate α

I infectious force of infection ∝ T (I) =
∫
J
I(i)di
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Fig. 4.2. Comparison between explicit solutions and computed solutions

The distribution of initial infection load Φ is choosed, according to [41], as a Γ distribution of
parameters (g, c), that is

Φ(i) =
ic−1e−

i
g

Γ(c)gc
.

The mean and standard deviation, that caracterize the distribution Φ, are given bymΦ = gc and σΦ = g2c.
Parameters g and c in Table 5.1 are computed to ensure that mΦ = 0.35 and σΦ = 0.05, as in [32].

In [41], the natural mortality rate is an age-dependent function µ(a) given by a Weibull distribution:
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Table 5.1

Parameter values used for the simulations.

Parameter definition symbol value

initial susceptible population size S0 10 indiv.
initial infected load range [i−, i+] [10−2, 102] years
basic mortality rate µ0 0.39 year−1

horizontal transmission rate β 4.10−2 (indiv. · year)−1

infection load velocity ν 1.15 year−1

contamination rate α 0 year−1

first infection load distribution Φ (g; c) (7.10−3; 49)

Scenario 1

initial infected population size T (I0)1 1 indiv.
entering flux (γ1; γ̃1) (10 ; 7)indiv.year−1

Scenario 2

initial infected population size T (I0)2 50 indiv.
entering flux (γ2; γ̃2) (3 ; 5) indiv.year−1

µ(a) = 0.222a, with the average natural lifespan that is ā = 4 years. The value of µ0 in Table 5.1 is then
computed from the weibull distribution and the value ā. From here, the infection mortality rate is taken

as µ(i) = µ0

(

2− 1+i−
2

1+i2

)

, so that assumption (iii) is satisfied.

The entering flux γ, choosed in order to simulate different scenarios, allows to compute some values
of R0, R+ or R− that are greater or smaller that 1. In both following scenarios the model is considered
without external source of contamination so that α = 0.

Scenario 1. This scenario illustrates the case of disease persistence. Corresponding to the value
γ1 = 10 we have R− ≈ 1.31. According to Theorem 3.12, one can check on Figures 5.1 that, even if the
initial data of infected is small (T (I0)1 = 1), the disease is persistent. Moreover, another value of the
entering flux is choosed in this scenario to test if the disease may persist when R− < 1 < R0. Taking
the value γ̃1 = 7 for the enterring flux, one gets R− ≈ 0.92 whereas R0 ≈ 1.17. In that case, one can
see that, although keeping a small intial data for the infected population, the persistence of the disease
remains.
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Fig. 5.1. Scenario 1- Total infected curve for R− > 1 (left) and R− < 1 < R0 (right)

Scenario 2. This scenario illustrates the case of disease extinction. The parameter value γ2, resp. γ̃2,
of the entering flux corresponds to the case where R+ < 1, resp. R0 < 1 < R+ (see Figures 5.2). For
these simulations, a big initial data for the infected population is choosed in proportion of the overall
population (≈ 60%), confirming the global stability of the disease free equilibrium. Indeed, the infected
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curve (red color) converges to 0, while the susceptible curve (green color) tends to stabilize around the
equilibrium point. Moreover, the value γ̃2 yields R+ ≈ 1.31 and R0 ≈ 0.84. In that particular case,
Figure 5.2 (right) also suggests that the global stability of the disease free equilibrium is satisfied when
R0 < 1.
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Fig. 5.2. Scenario 2- Total infected curve for R+ < 1 (a) and R0 < 1 < R+ (b)

6. Final remarks. In this paper, we have studied the asymptotic behavior of the solution of an
infection load-structured SI model. When the model incorporates a constant external contamination, we
proved by the use of fluctuation methods that the disease is uniformly strongly persistent, and exhibit a
lower uniform bound for the infected population. In the case whithout external contamination, we proved
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that the model exhibits the traditional threshold behavior where the disease-free equilibrium is locally
asymptotically stable if the basic reproduction number is less than one, and the endemic equilibrium is
locally asymptotically stable if the basic reproduction number is greater than one. These stability results
are proved using semigroup theory. Moreover, linked to the basic reproduction number R0, the value
R−, resp. R+, ensure that the disease is uniformly strongly persistent when R− is greater than one,
resp. the disease-free equilibrium is globally stable if R+ is less than one. These consistency results are
proved using fluctuation methods coupled with compactness arguments.
A numerical scheme adapted to the model is built and analyzed. We then show that such an infection load-
structured model can be applied to the transmition of prion pathologies and use the numerical scheme
to perform simulations. The different scenario we proposed illustrate well the theoretical results that
are proved in the paper. Furthermore, some simulations make us think that the consistency theoretical
results that are proved with values R− > 1 and R+ < 1 should remain by substituting the thresholds
R− and R+ by R0.
Future works will be dedicated to the analyzis of the global stability of the disease-free equilibrium when
R0 < 1 and of the endemic equilibrium when R0 > 1, on the basis of similar results proved in the case of
SI models structured according to age of infectivity [27, 28]. Another future work will be the study of a
model incorporating a more general external source of contamination. For instance, in the particular case
of prion pathologies, the food intake would lead to a linear but non-autonomous and periodic boundary
condition. Some other cases, such as an environmental spatially localized source of contamination, would
be modeled by a non-linear function of the density S(t) with a finite limit translating a saturation process
of the number of susceptibles in contact with the source. This would lead to formulate a PDE problem
with a non-linear boundary condition that may take into consideration more realistic cases than with a
linear external source of contamination.
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