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. We expect that this approach can be applied to a large variety of parametric PDEs, showing that the curse of dimensionality can be overcome under mild assumptions.

Introduction 1.High dimensional parametric PDE's

This paper is concerned with the numerical approximation of parametric partial differential equations of the general form D(u, y) = 0 (1.1) where u → D(u, y) is a partial differential linear or nonlinear operator that depends on a parameter vector y = (y 1 , . . . , y d ) ∈ R d , and therefore so does the solution u(y). We assume that the y j vary in finite intervals.

Up to a change of variable, we may assume for simplicity that all these intervals are [-1, 1] and therefore y ranges in the hypercube

U = [-1, 1] d ⊂ R d , (1.2) 
Assuming that for any y ∈ U , the above problem is well posed in a certain Banach space X, we may introduce the solution map y ∈ U → u(y) ∈ X .

(1.3) Such PDEs occur in both contexts of deterministic and stochastic modelling. In the first case, the parameter sequence y is known or controlled by the user, and a typical goal is to optimize an output of the equation with respect to y. In the second case, the parameters y j are random variables which take upon rescaling, values in [-1, 1]. This reflects the uncertainty in the model, and the goal is the resulting statistical properties of the solution u.

In both settings, a typical challenge is to simultaneously approximate solutions to the entire family of equations up to some prescribed accuracy, at reasonable computational cost. This may be viewed as building a cheaply computable numerical approximation ũ to the solution map u, for example based on the knowledge of only a few instances of solutions associated to particular choices of y. This task is difficult, since, in contrast to the standard problem of approximating a real-valued function u : R → R, the solution map u (i) takes its value in an infinite dimensional space X, or in a finite dimensional subspace X h ⊂ X when using a given numerical solver.

(ii) is defined on a multidimensional domain U ⊂ R d where the parametric dimension d can be large, or even infinite.

The second item refers to the exponential blow up of complexity occuring in discretization methods, as the number d of variables grows, often refered to as the curse of dimensionality. Another expression of this phenomenon is the deterioration of approximation rates as d grows, for functions of a given smoothness: for example the accuracy in the L ∞ (or uniform) metric of reconstructing an arbitrary function with continuous derivatives up to order m by piecewise polynomials from h-spaced grid samples is at best of order h m and therefore, in terms of the number of degrees of freedom n, equal to n -m/d , which is a very poor convergence rate when d is large. A deeper investigation in terms of nonlinear width theory [START_REF] Devore | Optimal nonlinear approximation Manuscripta Math[END_REF][START_REF] Temlyakov | Nonlinear Kolmogorov width[END_REF] reveals that this poor convergence rate cannot be improved by any other discretization method.

A typical setting for high dimensional parametric PDEs occurs for problems with are parametrized by a function h varying over a certain class, according to P(u, h) = 0.

(1.4)

The function h may for example describe (i) a spatially variable diffusion coefficient, (ii) a source term, or (iii) the shape of the physical domain. Using a given basis (ψ j ) j≥1 for expanding h into

h = h(y) := j≥1 y j ψ j , (1.5) 
results in the parametric model (1.1), where D(u, y) := P(u, h(y)) = P u, j≥1 y j ψ j , (1.6) and where the number of variables is now countably infinite, that is d = ∞, or very large if the above expansion has been truncated with high accuracy. This situation is for example typical in the case of diffusion equations with ramdom coefficients expanded in the Karhunen-Loeve basis.

In view of the above mentionned obstructions, numerical approximation of the resulting solution map requires non-standard discretization tools and a description of the smoothness of this map which differs from the classical description in terms of C m spaces. A key idea is to introduce more subtle models which reflect the anisotropy of this map in the sense that it has a weaker or smoother dependence on certain variables than others. Intuitively this is due the fact that the convergence of the series (1.5) for all y ∈ U should typically be reflected by a certain form of decay in the size of ψ j as j → +∞, resulting into weaker dependence in the corresponding variables y j . As a consequence the discretization tools should also reflect this anisotropy.

Sparse polynomial approximation

The effectiveness of the previously described paradigm was demonstrated in [START_REF] Cohen | Convergence rates of best N -term Galerkin approximations for a class of elliptic sPDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF], using sparse polynomials approximations in the parametric variables. The considered problem was the elliptic diffusion equation

-div(a∇u) = f, (1.7) 
set on a physical domain D ⊂ R m with homogeneous Dirichlet boundary conditions and right-hand side f ∈ H -1 (D), with the diffusion coefficient function a depending on a parameter vector in an affine manner a = a(x, y) = ā(x) + j≥1 y j ψ j (x), x ∈ D, y ∈ U,

with U = [-1, 1] N . The functions ā and (ψ j ) j≥1 belong to L ∞ (D) and one assumes that the ellipticity assumption 0 < r ≤ a(x, y) ≤ R < ∞, (

holds for all x ∈ D and y ∈ U , so that the solution map is well-defined and bounded from U to X := H 1 0 (D). The approach consists in studying the summability properties of the formal Taylor expansion

u(y) = ν∈F t ν y ν , (1.10) 
where

y ν := j≥1 y νj j , t ν = 1 ν! ∂ ν u(0) ∈ X, ν! := j≥1 ν j !, (1.11) 
and where F is the set of all finitely supported sequences ν = (ν 1 , ν 2 , . . . , 0, 0, . . .) ∈ N N 0 . The main result, Theorem 1.2 in [START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF], is the following.

Theorem 1.1 If ( ψ j L ∞ (D) ) j≥1 ∈ ℓ p (N)
for some 0 < p < 1 and if (1.9) holds, then the sequence ( t ν X ) ν∈F belongs to ℓ p (F), and one has

u(y) = ν∈F t ν y ν , (1.12)
in the sense of unconditional convergence in L ∞ (U, X).

This result has some important consequences regarding the convergence of approximations u n of u obtained by restriction of its Taylor series to the indices corresponding to the n largest t ν X . Generally speaking, to any sequence (a ν ) ν∈F of real numbers indexed by F and any n ≥ 1, we associate the sets Λ n := Λ n ((a ν ) ν∈F ) of indices ν corresponding to the n largest |a ν | (with an arbitrary choice in case of non-uniqueness). Then, an elementary observation is that if (a ν ) ν∈F ∈ ℓ p (F) and q > p, one has

ν / ∈Λn |a ν | q 1/q ≤ (a ν ) ℓ p (F ) (n + 1) -1 p + 1 q . (1.13)
This is proved by introducing the decreasing rearrangement (a * j ) j>0 of the sequence (|a ν |) ν∈F and by combining the two observations ν / ∈Λn

|a ν | q 1/q = j>n (a * j ) q 1/q ≤ j>n (a * n+1 ) q-p (a * j ) p 1/q ≤ (a * n+1 ) 1-p/q (a ν ) p/q ℓ p (F ) , (1.14) 
and

(n + 1)(a * n+1 ) p ≤ j≤n+1 (a * j ) p ≤ (a ν ) p ℓ p (F ) . (1.15)
Working under the assumptions of the above theorem, and denoting by Λ n ⊂ F the set of indices ν ∈ F corresponding to the n largest t ν X , we thus have

sup y∈U u(y) - ν∈Λn t ν y ν X ≤ ν / ∈Λn t ν X ≤ ( t ν X ) ℓ p (F ) (n + 1) -s , s := 1 p -1 . (1.16)
The polynomials ν∈Λn t ν y ν therefore provide approximations to the solution map u which converge in L ∞ (U, X) with rate n -s despite the fact that d = ∞. This shows that one can in principle overcome the curse of dimensionality in the approximation of u(y) by a proper choice of sparse polynomial spaces. The proof of Theorem 1.1 is based on the analysis of the anisotropic smoothness of the solution map, in the sense of extending it to the complex domain and making a fine study of its region of holomorphy in several complex variables. Unfortunately this latter aspect is heavily tied to the affine dependence of the coefficients with respect to the parameters in (1.8) and to the linear nature of the equation (1.7).

Many practically relevant parametric PDEs are nonlinear and depend on the parameters y in a nonaffine manner. The objective of the present paper is to propose a general strategy in order to derive similar polynomial approximation results for such PDEs. Here are a few examples, among many others, that can be treated by our approach: (i) Operator equations such as (1.7), with non-affine, yet holomorphic, dependence in y of the diffusion coefficients and such that the problem is well posed uniformly in y ∈ U . Typical instances are a(x, y)

:= ā + j≥1 y j ψ j 2 , (1.17) 
with ā a strictly positive function which satisfies ā(x) ≥ r > 0 for any x ∈ D, or

a(x, y) = exp j≥1 y j ψ j , y ∈ U (1.18)
so that the solution u(y) of (1.7) is uniquely defined in X = H 1 0 (D).

(ii) Linear parabolic evolution equations with spatial operators as in (i). Specifically, for a coefficient a as in (i), we consider in the Gel'fand evolution triple V ⊂ H ≃ H * ⊂ V * the parabolic problem

∂ t u -div(a∇u) -f = 0 in (0, T ) × D, (1.19) 
where f ∈ L 2 (0, T ; V * ), with initial and boundary conditions u| ∂D = 0 for 0 < t < T , and u| t=0 = u 0 ∈ H , for y ∈ U .

(1.20)

Here V = H 1 0 (D) and H = L 2 (D). A solution space (see [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]) is

X := L 2 (0, T ; V ) ∩ H 1 (0, T ; V * ). (1.21)
Other boundary conditions can be accomodated with other choices of the space V .

(iii) Nonlinear operator equations, with analytic dependence of D on u and on y, and such that the problem is uniformly well posed in y ∈ U . One typical instance is the monotone, elliptic problem

u 2q+1 -div(a∇u) -f = 0, (1.22)
which is set on a physical domain D ⊂ R m of dimension m ≥ 2 and with homogeneous Dirichlet boundary conditions on ∂D and right-hand side f ∈ H -1 (D), where a depends on y as in (1.8), and where q ≥ 0 is an integer such that q< m m-2 . These conditions ensure existence and uniqueness of the solution u(y) in X = H 1 0 (D), for every y ∈ U , by the theory of monotone operators (see Chapter 6 of [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF]).

(iv) Operator equations on domains whose shape depends on a parameter sequence y. As a simple example, consider the Laplace equation

-∆v = f, (1.23) 
with homogeneous Dirichlet boundary conditions set on a physical domain D(y) ⊂ R 2 that depends on y in the following manner

D(y) := {(x 1 , x 2 ) : 0 ≤ x 1 ≤ 1, 0 ≤ x 2 ≤ φ(x 1 , y)}, (1.24) 
where φ(t, y) := φ + j≥1 y j ψ j (t) satisfies a condition of the same type as (1.9) ensuring that the boundary of D(y) is not self-intersecting. Using the map Φ(y)(x 1 , x 2 ) := (x 1 , x 2 φ(x 1 )) one can transport back the solution v(y) ∈ H 1 (D(y)) into the reference domain D = [0, 1] 2 according to u(y) := v(y) • Φ(y) ∈ H 1 (D). The functions u(y) are now solutions to an elliptic PDE set on D with diffusion coefficients and source term that both depend on the parameter sequence y in an holomorphical, but non-affine manner.

The strategy developed in [START_REF] Cohen | Convergence rates of best N -term Galerkin approximations for a class of elliptic sPDEs[END_REF][START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF] for proving Theorem 1.1 for the model equation (1.7) with coefficients given by (1.8) does not carry over for the above problems. In fact, this theorem will generally fail to hold, in the sense that ( ψ j L ∞ (D) ) j≥1 ∈ ℓ p (N) for some p < 1 and yet the Taylor series of u does not converge in L ∞ (U, X). This is due to the fact that, for the above models, the solution map does not generally admit an holomorphic extension in a neighbourhood of the whole unit polydisc

U := j≥1 {|z j | ≤ 1} .
(1.25)

As a simple example, consider model (i) or (ii) with a(x, y) = 1 + by 2 1 , as a particular case of (1.17) where b is a constant strictly larger than 1. Then holomorphy in the first variable on an open disc {|z 1 | < ρ 1 } may hold only if ρ 1 ≤ b -1/2 < 1. A more elaborate inspection of models (iii) and (iv) reveals similar problems. A different approach is therefore needed for the construction and convergence analysis of sparse polynomial approximation.

Main results and outline 2.1 Sparse Legendre series

In this paper, we consider sparse approximations constructed by truncation of the tensorized Legendre series

u(y) = ν∈F u ν P ν (y), (2.1) 
where P ν (y) := j≥1 P νj (y j ), with P n denoting the univariate Legendre polynomial of degree n for the interval [-1, 1] normalized according to

P n L ∞ ([-1,1]) = |P n (1)| = 1
. This series may be rewritten into

u(y) = ν∈F v ν L ν (y), (2.2) 
where L ν (y) := j≥1 L νj (y j ), with L n denoting the version of P n normalized in L 2 ([-1, 1], dt 2 ) so that

u ν = j≥1 (1 + 2ν j ) 1/2 v ν . (2.3)
If the solution map is uniformly bounded in U in the sense that

u(y) X ≤ C 0 , y ∈ U, (2.4) 
then the convergence of the above series is ensured in the space L 2 (U, X) of square integrable, X-valued map with respect to the uniform product probability measure

dµ(y) := j≥1 dy j 2 . (2.5) 
The use of Legendre series in place of Taylor series allows us to obtain similar sparse approximation results under weaker assumptions on the domains of holomorphic extension of the solution map, which turn out to be valid for models such as (i), (ii) and (iii).

To be more specific, for s > 1, we introduce the Bernstein ellipse in the complex plane

E s := w + w -1 2 : |w| ≤ s , (2.6) 
which has semi axes of length s+s -1 2 and s-s -1
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and denote

E ρ := j≥1 E ρj , (2.7) 
the tensorized poly-ellipse when ρ := (ρ j ) j≥1 is a sequence. Our analysis of the sparsity of Legendre coefficients relies on holomorphic extensions of u over domains of this type. Note that when s is close to 1, the ellipse E s concentrates near the real interval [-1, 1] and does not contain the unit disc if s < s * = 1+ √ 5/2. Therefore the polydisc U is not contained in E ρ if ρ j < s * for at least one value of j. As it will be established, models (i), (ii), (iii) and (iv) are particular instances where the following general assumption holds for the operator D in (1.1). Definition 2.1 For ε > 0 and 0 < p < 1, we say that D satisfies the (p, ε)-holomorphy assumption HA(p, ε) if and only if (i) For each y ∈ U , there exists a unique solution u(y) ∈ X of the problem (1.1) and the map y → u(y) from U to X is uniformly bounded, i.e.

sup y∈U u(y) X ≤ C 0 , (2.8) 
for some finite constant C 0 > 0.

(ii) There exists a positive sequence (b j ) j≥1 ∈ ℓ p (N) and a constant C ε > 0 such that for any sequence ρ := (ρ j ) j≥1 of numbers strictly larger than 1 that satisfies

∞ j=1 (ρ j -1)b j ≤ ε, (2.9) 
the map u admits a complex extension z → u(z) that is holomorphic with respect to each variable z j on a set of the form

O ρ := j≥1 O ρj , O ρj ⊂ C is an open set containing E ρj . This extension is bounded on E ρ := j≥1 E ρj , according to sup z∈Eρ u(z) X ≤ C ε . (2.10)
Our first result is that such assumptions ensure ℓ p summability of the Legendre coefficients. For the purpose of further numerical implementation we do actually establish a stronger result. To any sequence c := (c ν ) ν∈F , we associate its monotone envelope c := (c ν ) ν∈F defined by

c ν := sup µ≥ν |c ν |, ν ∈ F, (2.11) 
where µ ≥ ν means that µ j ≥ ν j for all j. We also say that a set Λ ⊂ F is monotone if and only if ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

(2.12)

For p > 0, we introduce the space ℓ p m (F) of sequences that have their monotone envelope in ℓ p (F).

Theorem 2.2 If the differential operator D is such that HA(p, ε) holds for some 0 < p < 1 and ε > 0, then the sequences ( u ν X ) ν∈F and ( v ν X ) ν∈F belong to ℓ p m (F), and

u(y) = ν∈F u ν P ν = ν∈F v ν L ν , (2.13) 
holds in the sense of unconditional convergence in L ∞ (U, X).

Using (1.13), we can translate the conclusion of the above theorem in terms of convergence rates for sparse Legendre approximations: if Λ P n ⊂ F and Λ L n ⊂ F are the sets of indices ν ∈ F corresponding respectively to the n largest terms in the monotone envelopes u = (u ν ) ν∈F and v = (v ν ) ν∈F of the sequences (

u ν V ) ν∈F and ( v ν V ) ν∈F , then u - ν∈Λ P n u ν P ν L ∞ (U,X) ≤ ν / ∈Λ P n u ν ≤ u ℓ p (F ) (n + 1) -s , s := 1 p -1, (2.14) 
and

u - ν∈Λ L n v ν L ν L 2 (U,X,dµ) = ν / ∈Λ L n v 2 ν 1 2 ≤ v ℓ p (F ) (n + 1) -s , s := 1 p - 1 2 . (2.15)
In consequence, the n-term truncated Legendre series provide approximations to the solution map u in L ∞ (U, X) with similar convergence rates as the Taylor series and provide approximations with better decay rate in the least square sense. The interest of using the monotone envelope is that the sets Λ P n ⊂ F and Λ L n ⊂ F can be chosen to be monotone in the sense of (2.12), a property that appears to be useful for numerical computation [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF][START_REF] Chkifa | Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs[END_REF]. In the present paper, we shall make use of this property to show that the convergence rate n -s in (2.14) can be preserved when the Legendre projections are replaced by properly defined polynomial interpolations of u at certain points.

Establishing assumptions HA(p, ε)

In the case of models (i), (ii) and (iii), we verify HA(p, ε) using b j := ψ j L ∞ (D) , under the assumption that ( ψ j L ∞ (D) ) j≥1 belongs to ℓ p (N). In the case of model (iv), we establish the validity of HA(p, ε) using

b j := ψ j L ∞ (D) + ψ ′ j L ∞ (D)
, and therefore under the additional assumption that ( ψ ′ j L ∞ (D) ) j≥1 belongs to ℓ p (N). Here, we propose two general frameworks that allow us to establish HA(p, ε) for such models, as well as for many other potential models of parametric PDEs.

The first framework is when the parametric PDE has the general variational form

u ∈ X : B(u, v, y) = F (v, y), v ∈ Y, (2.16) 
where X, Y are Hilbert spaces over C and where, for every fixed y ∈ U , the maps (u, v) → B(u, v, y) and v → F (v, y) are continuous sesquilinear and antilinear forms on X × Y respectively on Y . In this setting, the operator D of (1.1) is defined from X × U into the antidual Y * of Y , according to

D(u, y) := B(u, •, y) -F (•, y) . (2.17) 
In many practical instances, the two spaces X and Y coincide, however X = Y is relevant for the treatment of parabolic evolution problems. We use the same notations B and F to denote the corresponding maps from U into the spaces of sesquilinear and antilinear continuous forms on X × Y and on Y , respectively, defined by

B(y)(v, w) := B(v, w, y) and F (y)(w) := F (w, y), v ∈ X, w ∈ Y, y ∈ U . (2.18)
The following result shows that the validity of HA(p, ε) expressing the analytic behaviour of the solution map y → u(y) follows from a similar analytic behaviour of the maps B and F .

Theorem 2.3 For ε > 0 and 0 < p < 1, assume that there exists a positive sequence (b j ) j≥1 ∈ ℓ p (N), and two constants 0 < r ≤ R < ∞ and a constant M < ∞ such that the following holds:

(i) For any sequence ρ := (ρ j ) j≥1 of numbers strictly greater than 1 that satisfies

∞ j=1 (ρ j -1)b j ≤ ε, (2.19) 
the maps B and F admit extensions that are holomorphic with respect to every variable on a set of the form

O ρ = j≥1 O ρj , where O ρj ⊂ C is an open set containing E ρj .
(ii) These extensions satisfy for all z ∈ O ρ the uniform continuity conditions

sup w∈Y \{0} |F (w, z)| w Y ≤ M, sup v∈X\{0},w∈Y \{0} |B(v, w, z)| v X w Y ≤ R, (2.20) 
and the uniform inf-sup conditions: there exists r > 0 such that

inf v∈X\{0} sup w∈Y \{0} |B(v, w, z)| v X w Y ≥ r and inf w∈Y \{0} sup v∈X\{0} |B(v, w, z)| v X w Y > r. (2.21)
Then, D satisfies the assumptions in HA(p, ε) with the same p and ε and with the same sequence b.

Our second framework is concerned with parametric PDEs of the form (1.4), where P is a linear or nonlinear operator defined from the product of two Banach spaces X and L over C into a third Banach space W over C. The parameter function h is expanded in terms of the parameter sequence y ∈ U according to (1.5), where the ψ j are functions in L and we assume that the expansion in (1.5) converges in L for all y ∈ U . In the particular case of (1.7), we have

X = H 1 0 (D) , L = L ∞ (D) and W = H -1 (D). We introduce the set h(U ) = {h(y) : y ∈ U } ⊂ L . (2.22)
The following theorem shows that the validity of HA(p, ε) is ensured provided that ( ψ j L ) j≥1 ∈ ℓ p (N) and that P satisfies certain smoothness properties, in addition to the well-posedness of the problem (1.4) over h(U ).

Theorem 2.4 Assume that:

• One has ( ψ j L ) j≥1 ∈ ℓ p (N) for some 0 < p ≤ 1. • The problem (1.4) is well-posed in X for all h ∈ h(U ). • The map (u, h) → P(u, h) is continuously differentiable from X × L into W .
• For every h ∈ h(U ), the partial differential ∂P ∂u (u(h), h) is an isomorphism from X onto W. Then there exists an ε > 0, for which D satisfies the assumptions HA(p, ε).

The rest of this paper is organized as follows. In §3, we prove Theorem 2.2 by deriving upper bounds for the X-norms of Legendre coefficients u ν X and showing the ℓ p (F) summability of the corresponding sequences of coefficient bounds. Our approach may be viewed as a variant of the technique developped in [START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF] in a special case. In §4, we show in addition that under the assumptions of Theorem (2.2), similar convergence rates O(n -s ) with s = 1 p -1 in L ∞ (U, X) can be obtained by certain interpolation processes introduced in [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF], despite the possible growth of the Lebesgue constant. The proofs of Theorems 2.3 and 2.4 are given in §5. Finally, we discuss in §6 the application of the two frameworks to models (i) to (iv). We show that (iv) and (iii) can be treated in the framework of Theorem 2.3 and Theorem 2.4, respectively, and that both frameworks may be used to treat (i) and (ii).

Sparse Legendre expansions

In this section, we prove a slightly stronger version of Theorem 2.2, as explained further. Note that

v ν X = u ν X j≥1 (1 + 2ν j ) 1/2 , (3.1) 
so that it suffices to prove the ℓ p (F) summability of the sequence ( u ν X ) ν∈F . We first give upper estimates for the u ν X . These estimates are a generalization of those established in [START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF]Lemma 4.2] for the particular problem (1.7) with coefficients given by (1.8). Since the proof is very similar, we only sketch it.

Lemma 3.1 Let ρ := (ρ j ) j≥1 be any sequence of numbers strictly larger than 1, such that that u has an extension that is holomorphic in each variable on a domain of the form

O ρ = j≥ O ρj , where O ρj ⊂ C is an open neighbourhood of E ρj , with uniform bound sup z∈Eρ u(z) V ≤ C. (3.2)
Then, the Legendre coefficients satisfy

u ν X ≤ C j≥1:νj =0 (2ν j + 1)φ(ρ j )ρ -νj j , (3.3) 
where φ(t) := πt 2(t-1) for t > 1, with in the case ν = (0, 0, . . .) the convention that the empty product equals 1.

Proof: For ν ∈ F, the coefficient u ν is given by

u ν = j≥1 (2ν j + 1) U u(y)P ν (y)dµ(y) . (3.4)
The estimate for ν = (0, 0, . . .) is trivial since dµ is a probability measure. We now prove, for ν ∈ F\{0}, U u(y)P ν (y)dµ(y)

X ≤ C j≥1:νj =0 φ(ρ j )ρ -νj j . (3.5)
To this end, we use induction on J ν := #(supp(ν)), the (finite) number of non-zero coordinates in ν. Let J ∈ N and assume that (3.3) holds for any µ ∈ F such that J µ ≤ J. Let ν ∈ F with J ν = J + 1. Without loss of generality, we suppose that ν 1 = 0. We introduce the notation ŷ := (y 2 , y 3 , . . .) and ν := (ν 2 , ν 3 , . . .).

Let us note that ν ∈ F and J ν = J. Now, we have

U u(y)P ν (y)dµ(y) = 1 -1 U u(y 1 , ŷ)P ν1 (y 1 )P ν (ŷ) dy 1 2 dµ(ŷ) = U w(ŷ)P ν (ŷ)dµ(ŷ), (3.6) 
where

w(ŷ) := 1 -1 u(y 1 , ŷ)P ν1 (y 1 ) dy 1 2 . ( 3.7) 
The induction hypothesis applied to w on the poly-ellipse

E ρ with ρ = (ρ 2 , ρ 3 , . . .) implies U u(y)P ν (y)dµ(y) X ≤ sup ẑ∈E ρ w(ẑ) X j≥2:νj =0 φ(ρ j )ρ -νj j (3.8)
It remains to show that there exists a constant C > 0 such that for any ẑ ∈ E ρ w(ẑ) X ≤ Cφ(ρ 1 )ρ -ν1 1 .

(3.9)

For any ẑ ∈ E ρ fixed, the map

z 1 → u(z 1 , ẑ) is holomorphic on an open neighborhood O ρ1 of the ellipse E ρ1 .
Therefore, Cauchy's integral formula applied with respect to z 1 yields

u(y 1 , ẑ) = 1 2iπ ∂Eρ 1 u(z 1 , ẑ) (z 1 -y 1 ) dz 1 , (3.10) 
for any

y 1 ∈ [-1, 1], hence w(ẑ) = 1 2iπ ∂Eρ 1 u(z 1 , ẑ) Q ν1 (z 1 ) 2 dz 1 , (3.11) 
where Q n is the function of a single complex variable t ∈ [-1, 1] defined by

Q n (t) := 1 -1 P n (s) t -s ds. (3.12)
With C as in (3.2) it follows that

w(ẑ) X ≤ C ρ 1 2 max z1∈Eρ 1 |Q ν1 (z 1 )| (3.13)
where we have used the fact that the ellipse E ρ1 has perimeter of length less than 2πρ 1 . We conclude by using the estimate

max z∈Et |Q n (z)| ≤ π t -n t -1 , (3.14) 
established at the bottom of page 313 in [START_REF] Philipp | Interpolation and Approximation[END_REF]. ✷

We now turn to the proof of Theorem 2.2. The previous lemma shows that if HA(p, ε) holds, then for any sequence ρ := (ρ j ) j≥1 of real numbers strictly larger than 1 such that

∞ j=1 (ρ j -1)b j ≤ ε, we have u ν X ≤ C ε j≥1:νj =0 (2ν j + 1)φ(ρ j )ρ -νj j , ν ∈ F -{(0, 0, . . .)}, (3.15) 
where (b j ) j≥1 and C ε are as in Definition 2.1. We use this estimate in order to establish the ℓ p (F) summability of the monotone envelope u of ( u ν X ) ν∈F . To this end, we use a specific design of the sequence ρ that depends on the index ν, in a similar spirit as in §4.3 of [START_REF] Cohen | Analytic regularity and polynomial approximation of parametric and stochastic PDE's[END_REF].

Let B > 0 be arbitrary but fixed, and J ≥ 1 be an integer such that j>J |b j | ≤ ε 4B . We introduce F := {j ∈ N : j > J} and define ν F := (ν J+1 , ν J+2 , . . .) for any ν ∈ F. We introduce the sequence ρ(ν) := (ρ j ) j≥1 that depends on ν according to

ρ j := 1 + ε 4 b ℓ 1 (N)
for j ≤ J and

ρ j := 1 + ε 4 b ℓ 1 (N) + B + ε 2|b j | ν j 1 + |ν F | for j > J, (3.16) 
where |ν F | := j>J ν j . It is easily checked that j≥1 (ρ j -1)|b j | ≤ ε, so that the estimate (3.15) holds with ρ = ρ(ν). We introduce the notation

κ = 1 + ε 4 (bj ) ℓ 1 and C κ = φ(κ) > 1.
Since φ is a decreasing function and ρ j ≥ κ for any j ≥ 1, then φ(ρ j ) ≤ C κ for any j ≥ 1. Consequently, for ν = 0,

u ν X ≤ C ε j≤J:νj =0 C κ (2ν j + 1)κ -νj j>J:νj =0 C κ (2ν j + 1)ρ -νj j .
(3.17)

Using the crude estimates (2n + 1)κ -n ≤ c κ κ -n 2 for some constant c κ > 1 and C κ (2n + 1) ≤ (3C κ ) n for any n ≥ 1, we have

u ν X ≤ q ν := C ε β E (ν)β F (ν), ν = 0 (3.18)
where

β E (ν) := (c κ C κ ) J j≤J κ -νj /2 and β F (ν) := j>J (3C κ ) νj ρ -νj j . (3.19) 
We denote F E the multi-indices in F supported in E := {j ≤ J} and F F the multi-indices in F supported in F , with convention that ν = 0 belongs to both sets. Observe that the estimate (3.18) remains valid for ν = 0. The separable form of this estimate implies that

ν∈F u ν p ≤ ν∈F q p ν = C p ε A E A F where A E := ν∈F E β E (ν) p and A F := ν∈F F β F (ν) p . (3.20)
Now, on the one hand, we have

A E = (c κ C κ ) pJ ν∈F E j≤J κ -pνj /2 = (c κ C κ ) pJ S J where S := ∞ n=0 κ -pn/2 < +∞. (3.21)
On the other hand, defining d j := 6Cκbj ε for j > J and using the inequality

ρ j ≥ ε 2|bj | νj 1+|ν F | , we obtain β F (ν) ≤ j>J 1 + |ν F | ν j d j νj = (1 + |ν F |) |ν F | ν ν F F j>J d νj j , (3.22) 
Using the bounds (1 + n) n ≤ n!e n+1 and n!e n ≤ max{1, e √ n}n n which holds for any n ≥ 1, it follows that

β F (ν) ≤ e |ν F |! ν F ! dν F , (3.23) 
where d defined by dj = ed j for j > J. Therefore

A F ≤ e p ν∈F F |ν F |! ν F ! dν F p = ν∈F |ν|! ν! dν p (3.24) 
where d := ( dJ+1 , dJ+2 , . . .). Up to possibly choosing a larger value of J, we may assume that

d ℓ 1 = j>J dj ≤ 6C κ ε j>J |b j | < 1.
We then invoke [5, Theorem 7.2] which says that the sequence ( |ν|! ν! dν ) ν∈F belongs to ℓ p (F) if and only if d ∈ ℓ p (N) and d ℓ 1 ≤ 1. This shows that A F < +∞. As a result (q ν ) ν∈F and ( u ν V ) ν∈F belongs to ℓ p (F).

Finally, denoting by e j := (0, . . . , 0, 1, 0, . . .),

the Kronecker sequence with 1 at position j, we observe that (q ν ) ν∈F satisfies

q ν+ej q ν = 1 √ κ , ν ∈ F, j ≤ J, (3.26) 
and for any j > J,

q ej q 0 = 3C κ 1 κ + B + ε 2|bj | 1 2
and

q ν+ej q ν = 3C κ κ + B + ε 2|bj | νj 1+|ν F | νj κ + B + ε 2|bj | νj +1 2+|ν F | νj +1 , ν = 0 . (3.27)
If B is chosen large enough, the quotient qν+e j qν is smaller than 1 for any ν ∈ F and any j ≥ 1. Therefore the sequence (q ν ) ν∈F is monotone decreasing in the sense that

µ ≤ ν ⇒ q ν ≤ q µ .
(3.28)

This implies that (q ν ) ν∈F coincides with its monotone envelope. As a result (q ν ) ν∈F ∈ ℓ p m (F). Therefore ( u ν X ) ν∈F ∈ ℓ p m (F), which concludes the proof of Theorem 2.2.

Sparse high dimensional interpolation

The conclusion of Theorem 2.2 shows that, under its assumptions, there exists a sequence of nested monotone sets

(Λ n ) n≥1 , with #(Λ n ) = n, such that inf v∈XΛ n u -v L ∞ (U,X) ≤ C(n + 1) -s , s = 1 p -1, (4.1) 
where we have used for any finite set Λ ⊂ F the notation

X Λ := span ν∈Λ v ν y ν : v ν ∈ X . (4.2)
We remark that X Λ := P Λ ⊗ X, where

P Λ := span{y ν : ν ∈ Λ} . (4.3) 
One way to compute an approximation of the solution map y → u(y) in the polynomial spaces X Λn is by interpolation. Polynomial interpolation processes on the spaces X Λ for arbitrary monotone sets Λ have been introduced and studied in [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF]. Given z := (z j ) j≥1 , a sequence of pairwise distinct points of [-1, 1], we associate with any finite subset Λ ⊂ F the following finite set of points in U ,

Γ Λ := {z ν : ν ∈ Λ} where z ν := (z νj ) j≥1 . (4.4) 
It is shown in [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF] that if Λ ⊂ F is monotone, then the set Γ Λ is unisolvent for P Λ , i.e. for any function g defined in Γ Λ and taking values in C, there exists a unique polynomial I Λ g in P Λ that coincides with g on Γ Λ . The interpolant can be expressed and computed in a simple manner: if we write Λ :

= {ν 1 , • • • , ν N } such that for any k = 1 • • • , N , the set Λ k := {ν 1 , • • • , ν k } is monotone, then I Λ g = N i=1 g ν i H ν i , (4.5) 
where the polynomials (H ν ) ν∈Λ are a hierarchical basis of P Λ given by

H ν (y) := j≥1 h νj (y j ) where h 0 (t) = 1 and h k (t) = k-1 j=0 t -z j z k -z j , k ≥ 1, (4.6) 
and where the coefficients g ν k are recursively defined by

g ν 1 := g(z 0 ), g ν k+1 := g(z ν k+1 ) -I Λ k g(z ν k+1 ) = g(z ν k+1 ) - k i=1 g ν i H ν i (z ν k+1 ) . (4.7) 
A standard vectorization technique yields that Γ Λ is also unisolvent for X Λ . The interpolation operator, that here maps functions defined from U to X into X Λ can also be computed by the recursion (4.5) where the coefficient g ν now belongs to the Banach space X. We use the same notation I Λ for this interpolation operator.

One way to relate the accuracy of the interpolation operator I Λ to the error of best polynomial approximation is via the Lebesgue constant, which is defined by

L Λ := sup g∈B(U ) I Λ g L ∞ (U ) g L ∞ (U ) , (4.8) 
where B(U ) is the set of bounded functions g on U which are defined everywhere on U . We indeed have the classical inequality

g -I Λ g L ∞ (U ) ≤ (1 + L Λ ) inf h∈PΛ g -h L ∞ (U ) , (4.9) 
from which it follows that

u -I Λ u L ∞ (U ) ≤ (1 + L Λ ) inf v∈vΛ u -v L ∞ (U,X) , (4.10) 
for a function u defined from U taking values in X.

In [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF], algebraic bounds have been derived for L Λ given that algebraic bounds are available for the Lebesgue constants λ k of the interpolation on the set of k + 1 points {z 0 , . . . , z k }. Namely, if there exists θ > 0 such that λ k ≤ (k + 1) θ , for any k ≥ 0, then for any finite monotone set Λ,

L Λ ≤ (#(Λ)) θ+1 . (4.11)
Let us stress that this bound is independent of the shape of the monotone set Λ, it only depends on its cardinality. Sequences z = (z j ) j≥0 for which it can be proved that λ k ≤ (k + 1) θ , are available in the literature, see [START_REF] Chkifa | On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection[END_REF], with 2 < θ < 3.

Using such sequences and the same monotone sets (Λ n ) n≥1 that give the estimate (4.1), under the assumptions of Theorem 2.2, it follows from (4.10) and (4.11) that a first estimate for the interpolation error is of the form

u -I Λn u L ∞ (U,X) ≤ C(n + 1) -s+θ+1 , s = 1 p -1 . (4.12) 
The following result recovers the best n-term approximation rate O(n -s ) for the interpolation based on a different choice of monotone sets. A similar analysis was developed in [START_REF] Chkifa | High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs[END_REF] in the particular case of the solution map u of (1.7) and under the assumptions of Theorem 1.1. It is based on the fact that the algebraic growth of the univariate Lebesgue constants λ k can be absorbed inside the estimates obtained for Legendre coefficients based on analyticity.

Theorem 4.1 Under the assumptions of Theorem 2.2, there exists a constant C > 0 and a nested sequence of monotone sets (Λ n ) n≥1 with #(Λ n ) = n for which

u -I Λn u L ∞ (U,X) ≤ C(n + 1) -s , s = 1 p -1. (4.13) 
Proof: The unconditional convergence in L ∞ (U, X) of the Legendre series yields: for any finite monotone set Λ,

I Λ u = I Λ ν∈F u ν P ν = ν∈F u ν I Λ P ν = ν∈Λ u ν I Λ P ν + ν ∈Λ u ν I Λ P ν .
The univariate Legendre polynomial P k is of degree k, therefore for any ν ∈ F, the polynomial P ν belongs to P Rν where R ν := {µ ∈ F : µ ≤ ν}. The monotonicity of Λ implies then that P ν ∈ P Λ , hence I Λ P ν = P ν , for any ν ∈ Λ. From the recursive expression (4.5) of the interpolation operator, it is also easily checked that for any given ν ∈ F and monotone set Λ, P ∈ P Rν ⇒ I Λ P = I Λ∩Rν P .

The two previous observations imply

(I -I Λ )u = ν ∈Λ u ν (I -I Λ∩Rν )P ν ,
where I denotes the identity operator. Therefore

(I -I Λ )u L ∞ (U,X) ≤ ν ∈Λ u ν X (1 + L Λ∩Rν ) P ν L∞(U ) ≤ 2 ν ∈Λ u ν X L Λ∩Rν .
If the univariate sequence is such that λ k ≤ (k + 1) θ for some θ > 0, then we have

L Λ∩Rν ≤ #(Λ ∩ R ν ) θ+1 ≤ #(R ν ) θ+1 = j≥1 (1 + ν j ) θ+1 =: p θ (ν), so that (I -I Λ )u L ∞ (U,X) ≤ 2 ν ∈Λ u ν X p θ (ν) .
In order to prove (4.13), it is thus sufficient to prove that the sequence w = (w ν ) ν∈F with w ν := p θ (ν) u ν X belongs to ℓ p m (F). Indeed, the nested sequence of monotone sets Λ n of indices ν ∈ F corresponding to the n largest terms in the monotone envelope w of w then provide the estimate

u -I Λn u L ∞ (U,X) ≤ 2 w ℓ p (F ) (n + 1) -s , s = 1 p -1. (4.14)
Since we work under the assumptions of Theorem 2.2, we have by (3.17)

w ν ≤ C ε j≤J:νj =0 C κ (ν j + 1) θ+1 (2ν j + 1)κ -νj j>J:νj =0 C κ (ν j + 1) θ+1 (2ν j + 1)ρ -νj j , (4.15) 
where J, κ, C κ are defined in the proof of Theorem 2.2 given in the previous section. Using the crude estimates, (n + 1) θ+1 (2n + 1)κ -n ≤ c θ,κ κ -n 2 for some constant c θ,κ > 1 and C κ (n + 1) θ+1 (2n + 1) ≤ (mC κ ) n for some m ≥ 1, we infer (4.17)

w ν ≤ q ν := C ε β w E (ν)β w F ( 
These estimates are of similar type as those given in (3.19) for the sequence ( u ν X ) ν∈F , and the ℓ p m (F) summability of w may thus be derived by the exact same arguments as those given at the end of the previous section. ✷

Holomorphic extension on poly-ellipses

In this section, we provide the proofs of Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.3

Let p, ε, b, ρ := (ρ j ) j≥1 and O ρ be as in the assumptions of Theorem 2.3. First, using the continuity and inf-sup conditions (2.20) and (2.21), a standard functional analytic argument similar to the proof of the Lax-Milgram lemma, shows that for any z ∈ O ρ , the parametric, variational problem

D(u, z) := B(z)(u, •) -L(z)(•) = 0 in Y * (5.1)
is well posed in X, uniformly with respect to z. Accordingly, the solution map z ∈ O ρ → u(z)∈ X is well-defined and uniformly bounded in O ρ in the sense that

sup z∈Oρ u(z) X ≤ M r , (5.2) 
where r and M are given in the condition (2.20). To complete the proof of Theorem 2.3, we only need to prove that u is holomorphic in O ρ with respect to each variable. We first observe that u is continuous on O ρ : indeed, for z, z ∈ O ρ , we have from the equations D(u(z), z) = 0 and D(u(z), z) = 0 in Y * that

B(z) u(z) -u(z), v = -B(z) -B(z) (u(z), v) + F (z) -F (z) (v), v ∈ Y . (5.3) 
Therefore, taking v = u(z) -u(z) and using the continuity and inf-sup conditions (2.20) and (2.21), we obtain

r u(z) -u(z) 2 X ≤ B(z) -B(z) L(X×Y,C) u(z) X u(z) -u(z) X + F (z) -F (z) Y * u(z) -u(z) X , (5.4) 
which combined with (5.2) implies

u(z) -u(z) X ≤ 1 r B(z) -B(z) L(X×Y,C) M r + F (z) -F (z) Y * , (5.5) 
so that the holomorphy of B and F implies the continuity of u. Now let z ∈ O ρ , j ≥ 1 and δ ∈ C such that z + δe j ∈ O ρ , where e j is the j-th Kronecker sequence in C N and introduce

w δ = 1 δ (u(z + δe j ) -u(z)). Taking z = z + δe j in (5.3), we obtain, for every v ∈ Y B(z)(w δ , v) = - B(z + δe j ) -B(z) δ (u(z + δe j ), v) + F (z + δe j ) -F (z) δ (v), v ∈ Y . (5.6) 
By the holomorphic dependence of B and L on z,

F (z + δe j ) -F (z) δ - ∂F ∂z j (z) Y * = o δ (1) and B(z + δe j ) -B(z) δ - ∂B ∂z j (z) L(X×Y ,C) = o δ (1), (5.7)
where we use the generic notation o δ (1) for a positive quantity that tends to 0 as

C ∋ δ → 0. Hence for any v ∈ Y B(z)(w δ , v) - ∂F ∂z j (z)(v) + ∂B ∂z j (z)(u(z + δe j ), v) = v Y o δ (1), (5.8) 
where we have used (5.2) to get the bound u(z + δe j ) X ≤ M r for any δ such that z + δe j ∈ O ρ . This, combined with the continuous dependence of u on z, implies

B(z)(w δ , •) - ∂F ∂z j (z)(•) + ∂B ∂z j (z)(u(z), •) Y * = o δ (1) . (5.9)
Finally, if w 0 ∈ X is the unique solution of the variational problem

B(z)(w 0 , v) = ∂F ∂z j (z)(v) - ∂B ∂z j (z)(u(z), v), v ∈ Y , (5.10) then B(z)(w δ -w 0 , •) Y * = o δ (1) . (5.11)
Using again the inf-sup condition in (2.21), we deduce that w δ -w 0 X → 0. This shows that the map z → u(z) from C to X admits a partial complex derivative ∂u ∂zj (z) ∈ X with respect to the complex extension z j of each coordinate variable y j . In addition, this derivative is the unique solution of the variational problem

B(z)( ∂u ∂z j (z), v) = ∂F ∂z j (z)(v) - ∂B ∂z j (z)(u(z), v), v ∈ Y .
(5.12)

The proof of the holomorphy of u with respect to every variable on O ρ is then complete. ✷ Remark 5.1 Inspection of the proof of Theorem 2.3 reveals that it remains valid verbatim when X and Y are reflexive Banach spaces.

Proof of Theorem 2.4

We recall that the framework for Theorem 2.4 is as follows: the operator D depends on the parameter y ∈ U through the functions h(y) = j≥1 y j ψ j where the ψ j belong to some Banach space L over C, according to

D(u, y) = P u, h(y) , (5.13) 
where P is a linear or nonlinear operator from X × L into a Banach space W over C. We set b := (b j ) j≥1 with b j := ψ j L , and propose to use this sequence to show that D satisfies the assumptions HA(p, ε) of Defintion 2.1. It is already assumed that b ∈ ℓ p (N) for some p < 1. Therefore, in order to prove the theorem, we only need to show the existence of some ε > 0 for which the point (ii) in Definition 2.1 is satisfied. Before proving Theorem 2.4, we give two simple, yet useful observations. The first observation is that we can use a simple open neighbourhood O s for the complex ellipse E s . (5.14)

Then O s is an open neighborhood of E s .
Proof: It is sufficient to prove that ∂E s ⊂ O s . Since the ellipse ∂E s has half-axes s+s -1 2 and s-s -1 2 and foci ±1, for any ξ ∈ ∂E s we have

(i) If ℜ(ξ) ∈ [-1, 1], then since |ℑ(ξ)| ≤ s-s -1 2 < s -1, we have |ξ -ℜ(ξ)| < s -1. (ii) If ℜ(ξ) > 1 then |ξ + 1| > 2, but since |ξ -1| + |ξ + 1| = s + s -1 , we have |ξ -1| < s + s -1 -2 < s -1. (iii) If ℜ(ξ) < -1, then by symmetry with (ii), we have |ξ + 1| < s -1.
This shows that in the three cases |ξ -t| < s -1 for some t ∈ [-1, 1] and completes the proof. ✷

Our second observation is concerned with the topology of the set h(U ) := {h(y) : y ∈ U } ⊂ L introduced in (2.22).

Lemma 5.3 Assume that the the sequence ( ψ j L ) j≥1 belongs to ℓ 1 (N). Then h(U ) is compact in L.

Proof: Let (h n ) n≥1 be a sequence in h(U ). Since ( ψ j L ) j≥1 ∈ ℓ 1 (N), the sequence (h n ) n≥1 is bounded in L. Each h n is of the form h n = j≥1 y n,j ψ j . Using a Cantor diagonal argument, we infer that there exists y = (y j ) j≥1 ∈ U such that lim n→+∞ y σ(n),j = y j , j ≥ 1, (5.15) where (σ(n)) n≥1 is a monotone sequence of positive integers. Defining h := j≥1 y j ψ j ∈ h(U ), we may write for any k ≥ 1,

h σ(n) -h L ≤ k j=1 (y j -y σ(n),j )ψ j L + 2 j≥k+1 ψ j L .
(5.16)

It follows that h σ(n) converges towards h in L and therefore h(U ) is compact. ✷

We now consider an arbitrary y ∈ U and the corresponding h(y) ∈ h(U ). The assumptions of Theorem 2.4 say that P is continuously differentiable as a mapping from X × L into W , that P(u(y), h(y)) = 0 in W and that the partial differential ∂P ∂u (u(y), h(y)) is an isomorphism from X onto W . Therefore, by the holomorphic version of the implicit function theorem on complex Banach spaces, see [START_REF] Dieudonné | Treatise on analysis[END_REF]Theorem 10.2.1], there exists an ε > 0, and a mapping G from B(h(y), ε) the open ball of L with center h(y) and radius ε into X such that G(h(y)) = u(y) and P(G(h), h) = 0 for any h in B(h(y), ε). In addition, the map G is uniformly bounded and holomorphic on B(h(y), ε) with

dG(h) = - ∂P ∂u (G(h), h) -1 • ∂P ∂h (G(h), h), h ∈ B(h(y), ε) .
(5.17)

Let us note that ε = ε(y) depends actually on y. We claim that ε can be made independent of y ∈ U . Since

y∈U B(h(y), ε(y) 2 )
is an infinite open covering of h(U ) and since h(U ) is compact in L, there exists a a finite subcover, ie. a finite number M and y

1 , • • • , y M in U such that h(U ) ⊂ M j=1 B h(y j ), ε(y j ) 2 . (5.18) 
We introduce ε := min 1≤j≤M ε(y j ) 2 . Let y ∈ U and h ∈ L such that h -h(y) L < ε. According to (5.18), h(y) belongs to some B(h(y j ), ε(y j )

2 ), therefore, for j = 1, ..., M ,

h -h(y j ) L ≤ h -h(y) L + h(y) -h(y j ) L < ε + ε(y j ) 2 ≤ ε(y j ) 2 + ε(y j ) 2 = ε(y j ).
This shows that B(h(y), ε) ⊂ B(h(y j ), ε(y j )) and it implies that

h ε (U ) := y∈U B(h(y), ε) ⊂ M j=1 B(h(y j ), ε(y j )) . (5.19) 
In particular the map G is well defined and is continuously differentiable as a mapping from h ε (U ) into the complex Banach space X.

To conclude the proof of Theorem 2.4, we verify assumption HA(p, ε). Let ρ := (ρ j ) j≥1 a sequence of numbers strictly greater than 1 such that j≥1 (ρ j -1)b j ≤ ε and O ρ := j≥1 O ρj , where for s > 1, O s is the open domain in C defined in (5.14). For any z := (z j ) j≥1 ∈ O ρ , we define h(z) := j≥1 z j ψ j ∈ L. If y = (y j ) j≥1 ∈ U satisfies |z j -y j | < ρ j -1, for every j ≥ 1, we then have

h(z) -h(y) L = j≥1 (z j -y j )ψ j L ≤ j≥1 |z j -y j | ψ j L < j≥1 (ρ j -1)b j ≤ ε, (5.20) 
therefore h(z) ∈ h ε (U ) and G(h(z)) is well defined. We extend the solution map u on the domain O ρ by u(z) := G(h(z)). By holomorphy of G on h ε (U ) and affine dependence of h(z) on z, it follows that

z → h(z) → u(z) = G(h(z)),
is holomorphic with respect to every variable on O ρ . Moreover

sup z∈Oρ u(z) X = sup z∈Oρ G(h(z)) X ≤ sup h∈h ε (U ) G(h) X ≤ max i=1,...,M sup h∈ B(h(y j ),ε(y j )) G(h) X < ∞ . (5.21) 
This completes the proof of Theorem 2.4. ✷ Remark 5.4 Inspection of the above proof reveals that we can weaken the assumption in the sense that holomorphy of the map P is required only over a set of the form X × h η (U ) for some η > 0 instead of X × L, where h η (U ) := {h ∈ L : dist L (h, h(U )) < η}.

Applications

In this section, we show that the models (i)-(ii)-(iii)-(iv) discussed in the introduction are covered by at least one of the two frameworks of Theorem 2.3 or Theorem 2.4. Specifically, we check the assumptions of Theorem 2.3 for models (i)-(ii)-(iv) and of Theorem 2.4 for models (i)-(ii)-(iii).

Models (i) and (ii): Linear elliptic and parabolic PDEs with parametric coefficients

We recall that model (i) is the parametric elliptic diffusion equation (1.7) with the typical instances of the diffusion coefficient a a(x, y) := ā(x) + j≥1 y j ψ j (x)

2 or a(x, y) = exp j≥1 y j ψ j , x ∈ D, y ∈ U. (6.1) 
In both examples, we assume that the sequence b := ( ψ j L ∞ (D) ) j≥1 belongs to ℓ p (N) for some p < 1, and for z = (z j ) j≥1 ∈ C N we define a(x, z) by replacing y j by z j in the above expressions. We shall use the domains O ρ := ⊗ j≥1 O ρj given in (5.14) to verify the assumptions of Theorem (2.3). Here, the inf-sup condition (2.21) is implied by the usual coercivity condition. We begin with the first example, assuming that ā is in L ∞ (D) and is uniformly bounded from below by some r 0 > 0. This implies that a satisfies a uniform ellipticity assumption of type (1.9) with r 0 and

R 0 = ā L ∞ (D) + b 2 ℓ 1 (N)
and establishes the well-posedness of (1.7) in X = H 1 0 (D) for any y ∈ U . Now given ε = r0 2 and ρ := (ρ j ) j≥1 a sequence satisfying ρ j > 1 for every j and j≥1 (ρ j -1)b j ≤ ε, we have for z ∈ O ρ and x ∈ D

ℜ(a(x, z)) = ā(x) + j≥1 ℜ(z j )ψ j (x) 2 - j≥1 ℑ(z j )ψ j (x) 2 ≥ r 0 - j≥1 |ℑ(z j )|b j 2 ≥ r 0 - j≥1 (ρ j -1)b j 2 ≥ r, (6.2) 
with r := r0 2 > 0, where we have used that for s > 1 the domain O s is contained in the strip {t ∈ C : |ℑ(t)| ≤ s -1}. We also have the upper bound

|a(x, z)| ≤ ā(x) + j≥1 |z j ||ψ j (x)| 2 ≤ R 0 + j≥1 ρ j b j 2 ≤ R 0 + 2 j≥1 (ρ j -1)b j 2 + 2 j≥1 b j 2 ≤ R, with R := R 0 + 2ε 2 + 2 b 2 ℓ 1 .
Using in addition the fact that z → a(z) is holomorphic in each variable in O ρ , we conclude that the sesquilinear and antilinear form

B(u, v, z) = D a(x, z)∇u(x)∇v(x)dx and F (v, z) = F (v) = D f (x)v(x)dx (6.3)
satisfy the assumptions of Theorem 2.3 with X = Y = H 1 0 (D), p, ε, r, R and M = f H -1 (D) . For the second example, the uniform ellipticity assumption is satisfied with r 0 := exp -b ℓ 1 > 0 and R 0 = 1/r 0 . Now given an 0 < ε < π 2 and a sequence ρ with the usual assumption, we have for z ∈ O ρ and x ∈ D,

ℜ exp j≥1 z j ψ j = exp j≥1 ℜ(z j )ψ j cos j≥1 ℑ(z j )ψ j ≥ exp - j≥1 |ℜ(z j )|b j cos(ε) ≥ r (6.4) 
where r = exp -ε -b ℓ 1 cos(ε) > 0 and the upper bound

exp j≥1 z j ψ j = exp j≥1 ℜ(z j )ψ j ≤ R := exp(ε + b ℓ 1 ) . (6.5) 
Similar to the first example, Theorem 2.3 applies for this second model. For the parabolic equation (1.19) in model (ii), again with the spatial differential operator as in (1.7) with coefficient a as in (6.1), and with the choice of spaces X = L 2 (0, T ;

H 1 0 (D)) ∩ H 1 (0, T ; H -1 (D)) and Y = L 2 (0, T ; H 1 0 (D)) × L 2 (D)
, the sesquilinear and antilinear forms corresponding to the parabolic problem (1.19) read for v ∈ X and w = (w 1 , w 2 ) ∈ Y as

B(v, w, z) = T 0 D ∂ t v(x, t)w 1 (x, t) + a(x, z)∇ x v(x, t)∇ x w 1 (x, t) dxdt + D v(x, 0)w 2 (x)dx, (6.6) 
and

F (w) = T 0 D f (x, t)w 1 (x, t)dxdt + D u 0 (x)w 2 (x)dx (6.7)
with all integrals to be understood as the corresponding duality pairings. The boundedness (2.20) of these forms is readily verified with the above choices of spaces. The verification of the inf-sup conditions (2.21) for the parametric coefficients (1.8) or (6.1), on the parameter domain O ρ follows from the fact that

0 < r < ℜ(a(x, z)) ≤ |a(x, z)| ≤ R, x ∈ D, z ∈ O ρ , (6.8) 
and using the general arguments given in [START_REF] Ch | Space-Time adaptive wavelet methods for parabolic evolution equations[END_REF]Appendix]. The application of the previous arguments is tied to the simple formula of the diffusion coefficient a and may be tedious when applied to diffusion coefficients with complicated formulas. One can overcome this difficulty using the second framework, that is, Theorem 2.4. Let us consider a diffusion coefficient a that depends on y according to a(y) = A(h(y)), h(y) := j≥1 y j ψ j (x), (6.9)

where A is a map from L ∞ (D) into itself such that

0 < r ≤ A(h) ≤ R < ∞, (6.10) 
for all h ∈ h(U ), and such that A is continuously differentiable over L ∞ (D) viewed as a Banach space over C. We also assume that ( ψ j L ∞ ) j≥1 ∈ ℓ p (N) for some 0 < p < 1. The two examples (6.1) correspond to A(h) = ā + h 2 and A(t) = exp(h). To cast model (i) into the second framework, we introduce the operator

P(u, h) = -div (A(h)∇u) -f, (6.11) 
This operator is well defined and continuously differentiable from X × L into W where (X, L, W ) := (H 1 0 (D), L ∞ (D), H -1 (D)), (6.12) viewed as complex Banach spaces. For any u ∈ X and h ∈ L, ∂P ∂u (u, h)(v) = -div (A(h)∇v), (6.13) and therefore the uniform ellipticity assumption (6.10) implies that ∂P ∂u (u(h(y)), h(y)) is an isomorphism from X onto W , for all y ∈ U . Therefore, all the assumptions of Theorem 2.4 hold.

Similar arguments apply for the parabolic problem of model (ii) with

P(u, h) = (∂ t u -div (A(h)∇u) -f, u(•, 0)), (6.14) 
with the choices X := L 2 (0, T ; V )∩H 1 (0, T ; V * ), L := L ∞ (D) and W := L 2 (0, T ; V * )×H, where V = H 1 0 (D) and H = L 2 (D).

Model (iii): non linear, elliptic PDE

The nonlinear equation (1.22) is associated to the operator, D(u, y) := u 2q+1 -div(a(y)∇u) -f, (6.15) where f ∈ H -1 (D) is a given, real-valued function, D is a bounded Lipschitz subdomain of R m . Here a(y) is as in (1.8) and satisfies (1.9), and q ≥ 0 is an integer such that q< m m-2 so that u 2q+1 ∈ H -1 (D). Thus X = H 1 0 (D) and D maps X × U into X * = H -1 (D). More generally, we consider equations (1.1) associated with an operator of the form D(u, y) := g(u) -div(A(h(y))∇u) -f, (

where f ∈ X * and h(y) and A are as in the previous section §6.1, and with ( ψ j L ∞ ) j≥1 ∈ ℓ p (N) for some 0 < p < 1. In addition, we assume that g is a function defined on C, such that 1) g is holomorphic on C.

2) g(0) = 0 and, for t ∈ R, g ′ (t) ≥ 0.

3) g maps continuously X into X * . 4) For any u ∈ X, the sesquilinear form v, w → D g ′ (u)vw is continuous over X × X.

These assumptions are in particular fulfilled by the polynomial nonlinearity g : t → t 2q+1 when q < m m-2 . Let us now verify the assumptions of Theorem 2.4.

First, we establish for every y ∈ U , the well posedness of the nonlinear problem on X understood as a Banach space over R. It follows from the above items 2) and 3) that, for any fixed y ∈ U , the nonlinear operator T (y) : u → g(u) -div(A(h(y))∇u), (6.17) is continuous, strongly monotone and coercive from X into X * . By the theory of monotone operators on Banach spaces X over the coefficient field R, see for example Theorem 1 in Chapter 6 of [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], for every y ∈ U , the problem (1.1) admits a unique (real-valued) solution u(y) ∈ X.

We next view the spaces (X, L, W ) defined as in (6.12) as Banach spaces over C and observe that the map (v, h) → P(v, h)

:= g(v) -div (A(h)∇v) -f, (6.18) 
is continuously differentiable over X × L, thanks to the assumptions on g and A. For every (v, h) ∈ X × L, the first partial differential is given by

∂P ∂u (v, h)(w) = g ′ (v)w -div (A(h)∇w) ∈ W . (6.19) 
In particular, for any h ∈ h(U ), we have

∂P ∂u (u(h), h)(w) = g ′ (u(h))w -div (A(h)∇w) . (6.20)
This operator is associated to the sesquilinear form

b(v, w) = D g ′ (u(h))v w + D A(h)∇v • ∇w. (6.21) 
which is continuous by the upper inequality in (6.10) and item 4). In addition it satisfies the coercivity condition

b(v, v) ≥ r v 2 X , v ∈ X, (6.22) 
by the lower inequality in (6.10) and item 2). Therefore, by Lax-Milgram theory, it is an isomorphism from X onto W . All the assumptions in Theorem 2.4 are thus fullfilled.

Remark 6.1 In the case of the nonlinear equation (1.22), a possible way to extend the solution for complex valued parameter z would be to rather consider the equation

|u| 2q u -div(a(z)∇u) = f. (6.23)
It is easily seen that monotone operator theory applied to the equation verified by the vector (v, w) where u = v + iw allows us to uniquely define the solution u(z) of the above equation under the ellipticity condition 0 < r ≤ ℜ(a(z)) ≤ |a(z)| ≤ R. However the presence of the modulus |u| in the equation obstructs holomorphic dependence on the z j variable. In our approach, we maintain the original equation (1.22). In this case the existence and holomorphy of the solution u(z) for the complex argument z does not follow from monotone operator theory, but rather from the implicit function theorem argument used in Theorem 4.2.

Model (iv): Parametrized domain

As a simple example of PDE set on a parametrized domain, we consider the Laplace equation

-∆v = f (6.24)
with homogeneous Dirichlet boundary condition set on a physical domain D(y) ⊂ R 2 that depends on y ∈ U in the following manner

D(y) := {(x 1 , x 2 ) : 0 ≤ x 1 ≤ 1, 0 ≤ x 2 ≤ φ(x 1 , y)}, (6.25) 
with φ(t, y) := φ(t) + j≥1 y j ψ j (t), (6.26) where the functions φ and ψ j belong to W 1,∞ ([0, 1]), that is, are Lipschitz continuous on [0, 1]. We assume that φ satisfies a condition of the same type as (1.9), namely

0 < r ≤ φ(t) + j≥1 y j ψ j (t) ≤ R < ∞, t ∈ [0, 1], y ∈ U. (6.27)
The lower inequality ensures that the boundary of D(y) is not self-intersecting. We also assume that the above series converges in W 1,∞ ([0, 1]), uniformly in y ∈ U , that is

δ := |φ ′ | + j≥1 |ψ ′ j | L ∞ ([0,1]) < ∞ . (6.28)
In the above model, the source term f is fixed independently of y and should therefore be defined on the union of all domains D(y) for y ∈ U . For simplicity, we assume that f is defined over D

:= [0, 1] × [0, R] and that f ∈ L 2 ( D). It follows that f ∈ L 2 (D(y)), with f L 2 (D(y)) ≤ f L 2 ( D)
, for all y ∈ U .

Our strategy for treating this model is the following. We use the bijective map Φ(y) : meaning that u(x, y) = v(Φ(x, y), y) for all x ∈ D. We then study the linear elliptic PDE satisfied by u(y) on D. This PDE has matricial diffusion coefficients and source term that depends on y. We then show that under certain conditions on the functions ψ j , one can establish the HA(p, ε) for the solution map y → u(y), using the framework of Theorem 2.3.

x := (x 1 , x 2 ) → Φ(x, y) := (x 1 , x 2 φ(x 1 , y)), (6.29 

A change of variables

Having fixed a parameter y ∈ U , we use in what follows the simpler notation u, v and Φ for u(y), v(y) and Φ(y). The transformation Φ maps the domain D into D(y) and the boundary ∂D into ∂D(y). The function v ∈ H 1 0 (D(y)) is the unique solution of the variational problem:

D(y) ∇v • ∇w = D(y) f w, w ∈ H 1 0 (D(y)). ( 6 

.31)

The function u = v • Φ is defined on D, and we have

∇u(x) = (D Φ (x)) t ∇v(Φ(x)), (6.32) 
where, for

x = (x 1 , x 2 ) ∈ D, D Φ (x) =    1 0 x 2 φ ′ (x 1 , y) φ(x 1 , y)    , (6.33) 
where the derivative in φ ′ is meant with respect to the variable x 1 . Since Φ is Lipschitz continuous on D, it follows that u ∈ X := H 1 0 (D). Pulling back the variational formula (6.31) to the reference domain D using the bijective map Φ, one obtains that u is the unique solution to the variational problem

D (D -1 Φ ) t ∇u • (D -1 Φ ) t ∇w J Φ = D (f • Φ) w J Φ , w ∈ V, (6.34) 
where J Φ is the Jacobian of the transformation Φ which is given by J Φ (x) = φ(x 1 , y) for any x ∈ D. We introduce the maps A and g defined on D × U by

A(x, y) := φ(x 1 , y)(D -1 Φ )(D -1 Φ ) t =    φ(x 1 , y) -x 2 φ ′ (x 1 , y) -x 2 φ ′ (x 1 , y) 1+(x2φ ′ (x1,y)) 2 φ(x1,y)    , (6.35) 
and g(x, y) 

:= φ(x 1 , y)(f • Φ)(x) = φ(x 1 , y)f x 1 , x 2 φ(x 1 , y) (6 
To be consistent with our previous notations, we use the notations B(w 1 , w 2 , y) instead of B(y)(w 1 , w 2 ) and F (w, y) instead of F (y)(w). From (6.34), we deduce that u(y) ∈ X is the unique solution to the variational problem B(u(y), w, y) = F (w, y), w ∈ X. (6.39) This is a linear elliptic PDE with parametric matricial diffusion coefficients and parametric source terms. Our next goal is to discuss under which circumstances the assumptions of Theorem 2.3 are satisfied for this problem, with X = Y = H 1 0 (D). We introduce the sequence b := (b j ) j≥1 , with

b j := ψ j L ∞ ([0,1]) + ψ ′ j L ∞ ([0,1]) (6.40)
and assume that b ∈ ℓ p (N) for some p < 1. We propose to use this sequence for the verification of the assumptions of Theorem 2.3.

Analyticity of the map F

We first study the antilinear forms w → F (w, y). The assumption that f ∈ L 2 ( D) ensures a uniform bound of the form

|F (w, y)| ≤ C w Y , w ∈ Y , y ∈ U (6.41) where C := C P sup y∈U g(y) L 2 (D) ≤ C P R f L 2 ( D) , (6.42) 
with C P the Poincaré constant for D. More assumptions on f are needed in order to define an holomorphic extension of F in a neighbourhood of U . One sufficient assumption is that the map Note that the uniform bound is independent of the choice of ρ that satisfies (6.49).

x 2 → f (•, x 2 ), ( 6 
Concerning the uniform inf-sup condition, we establish the stronger property that the sesquilinear forms B(z) are uniformly coercive on the domains O ρ , up to restricting the range of ε to a smaller interval than ]0, r/2].

We introduce the notation y := ℜ(z) and s := ℑ(z). Using (6.50), (6.51) and (6.52), we have for any t ∈ [0, 1] and any z ∈ O ρ that φ(t, y) = ℜ(φ(t, z)) ≥ This uniform coercivity implies both inf-sup conditions (2.21) with X = Y = H 1 0 (D). To complete the verification of the assumptions of Theorem 2.3, we only need to possibly reduce the value of ε so that ε ≤ ε 1 where ε 1 was used in the proof of the analyticity of the antilinear form F (z). ✷

  ) := (c θ,κ C κ ) J j≤J κ -νj /2 and β w F (ν) := j>J (mC κ ) νj ρ -νj j .

Lemma 5 . 2

 52 Let s > 1 and introduce the open set in C O s := t∈[-1,1] {ξ ∈ C : |ξ -t| < s -1} = {ξ ∈ C : dist(ξ, [-1, 1]) < s -1} .

  ) to transport back the solution v(y) ∈ H 1 0 (D(y)) into the reference domain D := [0, 1] 2 according to u(y) := v(y) • Φ(y), (6.30)

  .36) and the sesquilinear and antilinear forms B(y) and F (y) defined on X by B(y)(w 1 , w 2 ) := D A(x, y)∇w 1 (x) • ∇w 2 (x)dx (6.37) and F (y)(w) := D g(x, y)w(x)dx.

2 φ

 2 .43) from [0, R] to L 2 ([0, 1]) is analytic on [0, R]. Note that this assumption imposes smooth dependence of f on the second variable. It holds of course if f is analytic in both variables, for example if f is a constant. Since [0, R] is compact, there exists ε 1 > 0 such that the previous map has an holomorphic and uniformly bounded extension on the domainC ε1 := ξ ∈ C : dist(ξ, [0, R]) < ε 1 .(6.44)Let now ρ := (ρ j ) j≥1 a sequence of numbers strictly greater than 1 satisfying∞ j=1 (ρ j -1)b j ≤ ε 1 . (6.45)We consider the domain O ρ = ⊗ j≥1 O ρj where the definition of the open complex domains O s is given in(5.14). For z ∈ O ρ and y ∈ U such that |z j -y j | < ρ j -1 for any j ≥ 1, one has for any t ∈ [0, 1]|φ(t, z) -φ(t, y)| = j≥1 (z j -y j )ψ j (t) < j≥1 (ρ j -1)b j ≤ ε 1 . (6.46)Since by (6.27), φ(t, y) ∈ [0, R], then one has φ(t, z) ∈ C ε1 . It follows that the map y → g(y) defined from U into L 2 (D) admits an holomorphic extension z → g(z) on the domain O ρ , defined byg(x, z) := φ(x 1 , z)f (x 1 , x 2 φ(x 1 , z)).(6.47)Consequently, the map y → F (y) from U to Y * admits a uniformly bounded holomorphic extension on the domain O ρ , defined byF (z)(w) := D g(x, z)w(x)dx. (6.48)6.3.3 Analyticity of the map BThe map y → A(y) defined by (6.35) is a rational function of the components y j of y ∈ U taking values in the space of 2 × 2 symmetric matrices. Let 0 < ε ≤ r 2 where r is the lower bound in (6.27) and where ρ := (ρ j ) j≥1 is a sequence of numbers strictly greater than 1 satisfying∞ j=1 (ρ j -1)b j ≤ ε . (6.49)For z ∈ O ρ and y ∈ U such that |z j -y j | < ρ j -1 for every j ≥ 1, one has by (6.46) that |φ(t, z) -φ(t, y)| ≤ ε for any t ∈ [0, 1], therefore ℜ φ(t, z) ≥ φ(t, y) -ε ≥ r -ε ≥ r 2 , t ∈ [0, 1].(6.50)In addition, we have for all x ∈ D,r 2 ≤ |φ(x 1 , z)| = φ(x 1 , y) + j≥1 (z j -y j )ψ j (x 1 ) ≤ R + ε (6.51) and |φ ′ (x 1 , z)| = φ ′ (x 1 , y) + j≥1 (z j -y j )ψ ′ j (x 1 ) ≤ δ + ε,(6.52)It follows that the map y → A(y) admits a uniformly bounded holomorphic extension z → A(z) on O ρ defined byA(x, z) =    φ(x 1 , z) -x 2 φ ′ (x 1 , z) -x 2 φ ′ (x 1 , z) 1+(x2φ ′ (x1,z)), the map y → B(y) from U to B(X × X), the space of continuous sesquilinear forms over X, admits a uniformly bounded holomorphic extension on O ρ , defined by B(w 1 , w 2 , z) := D A(x, z)∇w 1 • ∇w 2 , w 1 , w 2 ∈ X. (6.54)

r 2 and 1 : 1 + 2 D |∇w| 2 ,

 21122 |φ(t, y)| ≤ |φ(t, z)| ≤ R + r 2 and |φ ′ (t, y)| ≤ |φ ′ (t, z)| ≤ δ + r 2 . (6.55) The symmetric real matrices A(x, y) have determinants equal to 1 and, from the above inequalities, their traces are positive and bounded by C are positive definite with coercivity constant r := 1/C 1 . This implies in particular that |B(w, w, y)| ≥ r w 2 X , w ∈ X, y = ℜ(z), z ∈ O ρ . (6.57)To prove the uniform coercivity of the bilinear forms B(z) on O ρ , it is therefore sufficient to prove that the parametric sesquilinear forms B(z) -B(y) have norms strictly smaller than r/2, uniformly on O ρ . To verify this, we note that the three entries in the symmetric matrices (A(x, z) -A(x, y)) are φ(x 1 , s), -x 2 φ ′ (x 1 , s) andξ(x, z) := 1 + (x 2 φ ′ (x 1 , z)) 2 φ(x 1 , z) -1 + (x 2 φ ′ (x 1 , y)) 2 φ(x 1 , y) . (6.58)Since O ρ is contained in the tensorized strip ⊗ j≥1 {|ℑ(z j )| ≤ ρ j -1}, the condition (6.49) readily implies that the two first entries are bounded by ε. Concerning the third entry, we haveξ(x, z) = 1 + (x 2 φ ′ (x 1 , y)) 2 1 φ(x 1 , y) + iφ(x 1 , s) -1 φ(x 1 , y) + 2x 2 2 φ ′ (x 1 , y)φ ′ (x 1 , s) -φ ′ (x 1 , s) 2 φ(x 1 , z) .(6.59) Therefore, combining the previous inequalities, we obtain |ξ(x, z)| ≤ the norms of the matrices (A(t, z) -A(t, y)) are uniformly bounded by C 2 ε for some constant C 2 depending on R, r and δ. Up to choosing ε small enough, we have C 2 ε < r 2 , in which case, we have for any w ∈ V |B(w, w, z) -B(w, w, y)| ≤ D (A(x, z) -A(x, y))∇w • ∇w ≤ r (6.61) Therefore, with this value of r > 0, for any z ∈ O ρ and for any w ∈ X holds |B(w, w, z)| ≥
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