
HAL Id: hal-00907744
https://hal.science/hal-00907744v1

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prototyping DSU techniques using Python
Sébastien Martinez, Fabien Dagnat, Jérémy Buisson

To cite this version:
Sébastien Martinez, Fabien Dagnat, Jérémy Buisson. Prototyping DSU tech-
niques using Python. HotSWUp’13, Jun 2013, San José, United States.
https://www.usenix.org/conference/hotswup13/prototyping-dsu-techniques-using-python. �hal-
00907744�

https://hal.science/hal-00907744v1
https://hal.archives-ouvertes.fr

Prototyping DSU techniques using Python

Sébastien Martinez and Fabien Dagnat

Université Européenne de Bretagne
IRISA / Institut Mines-Télécom / Télécom Bretagne

Jérémy Buisson

Université Européenne de Bretagne
IRISA / Écoles de St-Cyr Coëtquidan

Abstract

This paper presents PyMoult, a Python library im-
plementing various dynamic software update (DSU)
mechanisms. This library aims to provide a proto-
typing platform for experimenting with DSU and to
implement a vast choice of update mechanisms while
allowing their combination and customization.

We selected different update mechanisms from
the literature and implemented them in PyMoult.
This paper focuses on how we implemented these
mechanisms and discusses the cost of implementing
DSU in Python.

1 Introduction

A huge number of Dynamic Software Update plat-
forms have been proposed. For instance, Seifzadeh
et al. [8] cite around fifty proposals. Several sur-
veys [5, 7, 8, 9] help a software engineer needing
such a platform by comparing their characteristics
and constraints. Either an existing DSU platform
fits exactly his requirements or he has to come up
with a new ad-hoc solution. Indeed each proposal
presents a platform, not a collection of reusable and
composable mechanisms.

By implementing several update mechanisms in-
spired by existing DSU platforms, PyMoult is ad-
dressed to different kinds of users: a DSU researcher
experimenting new mechanisms, a program devel-
oper testing a dynamically updatable program or an
update developer wanting to test an update proto-
type. Our intent in PyMoult is to provide cus-
tomizable and combinable building blocks that can
be reused and adapted to implement specific update
mechanisms. This paper reports the first version of
PyMoult and discusses its implementation.

PyMoult is written in Python because it is a
good language to prototype complex applications.

main

socket server

spawns controller

thread

controller

thread...

Figure 1: Structure of a PyMoult program.

Being a dynamic language and supporting modules
relinking, Python simplifies DSU implementation.
We use the PyPy Python interpreter. In compari-
son to Cpython (the most widely used one), PyPy
offers additional functionalities useful to implement
DSU, among which continulets (see §2.1). Further-
more, PyPy is written in Python making it easier
to modify, if needed. Running the interpreter in an
interpreter incurs an overhead; but as we only intend
to prototype DSU, the overhead does not matter.

Section 2 presents how to use PyMoult and the
update mechanisms currently provided. Section 3
demonstrates the capabilities of PyMoult using
an example with several updates. Then Section 4
discusses issues met with PyPy and the choice of
Python for our intent. Our concluding remarks and
future directions are in Section 5.

2 Update mechanisms

PyMoult controls programs wrapped within an up-
date manager. As shown on Figure 1, an update
manager consists of a set of controllers (one for each
threads) and a socket server which listens to update
commands and forwards them to the controllers.

A user of PyMoult must define the tasks of his
application and create a thread for each of them.
Each thread may be active or passive depending on
the way its controller manages updates as detailled
in §2.1. The user must register them to the socket
server using the register_threads function. This

A

A

BC

A

B

C

A

switch

1 switch

2

switch

3

B terminates4 A terminates5

Figure 2: Continulets of PyPy

enables the user to select threads that will not be
managed and therefore, not updated.

To update his application, the user must also
write a new Python module that configures the up-
date (e.g. defines new classes and functions, selects
an update mechanism). When receiving an update
command, the socket server loads and triggers this
update module dynamically into the program.

Threads are the basic unit PyMoult considers.
While updates are triggered for the whole program,
each thread has an update function and starts it in-
dependently. An update function implements all the
operations needed for an update such as for exam-
ple replacing functions, converting objects, ensur-
ing quiescence or starting new threads. PyMoult
provides tools to handle the most usual update op-
erations (see §2.2 and §2.3). Notice that as each
thread has its own update function, the user may
trigger updates targeting only a subset of the threads
(which is equivalent to updating only a part of the
program). This also means that updates concern-
ing several threads (e.g. updating functions called
in several threads or shared objects) and all con-
currency matters must be handled by the update
functions.

2.1 Controlled threads

In Python, a thread cannot pause another thread
and access its stack. We use continuations to simu-
late this feature, using PyPy’s continulets.

A continulet is a continuation that can be
switched to and from at will and is associated with
a function. Figure 2 explains how it works. Let A be
the continuation of a thread and C a continulet. (1)
When the thread invokes the switch method of C, a
new continuation B (running the function associated
with C) is pushed onto the stack and activated. (2)
If the code in B calls the switch method of the con-
tinulet, it is paused and A resumes. (3) If A invokes
switch again, B resumes. The program continues

switching between A and B until one of the two ter-
minates. (4) If B terminates, A definitively resumes;
the continulet cannot be switched anymore. (5) If A

terminates before B, the continuation B is cancelled.
Using continulets, we implement two kinds of con-

trollers. Both can pause their running code and
update themselves in a new continuation before re-
suming their execution. An active thread (spawned
by start_active_threads) starts its update immedi-
ately after receiving the update trigger. Whereas a
passive thread (spawned by start_passive_threads)
starts updates only when its execution reaches some
specific points and the update has been triggered1.

Active threads use the trace facility of the debug-
ging infrastructure: a trace function is called after
each line of code. Our trace function checks if an up-
date has been triggered and if so uses a continulet to
switch to the controller to run its update function.

In passive threads, the code of the target applica-
tion must invoke the start_passive_update function,
which plays the same role as the trace function of ac-
tive threads. These calls should be placed on spots
where the user thinks the program may be quies-
cent. Checking quiescence is under the responsibil-
ity of the update function2: if the checking fails the
update function will be re-executed at next point.

The following code illustrates thread controllers.

def passive_main():

...

start_passive_update()

...

def active_main(): ...

threads = start_passive_threads(passive_main)

threads += start_active_threads(active_main)

Starting the manager with the configured threads

register_threads(threads)

2.2 Stack manipulation

In this section, we address how an update function
checks the state of its thread in the runtime stack,
e.g., to detect quiescence. PyMoult provides func-
tions handling two update mechanisms using stack
manipulation. Safe function redefinition relinks a
function when the stack contains no call to that func-
tion. Thread reboot stops definitely the function of
a thread and starts another function instead.

Safe function update is used by Opus [1] and
Ksplice [2]. It walks the stack frame by frame. When
it finds a call to the function, the update is aborted
and retried later. If the function is not in the stack,

1We named these threads passive and active from the point
of view of the manager.

2And therefore, of the user.

Presented and published at HotSWUP’13, USENIX Federated conference week

Socket_port = 5678

class Product(object): ...

class Site(object): ...

company = []

def get_site_by_name(name): ...

#Manager active thread

def site_manager_main():

Initialization of the sites

...

Main loop

while True:

for site in company:

print(string_of(site))

print("")

for x in range(10):

time.sleep(1)

def order(quantity,product,site):

the_site = get_site_by_name(site)

print(the_site.order(product,quantity))

def do_command(command):

opers = command.split()

if opers[0] == "order" and len(opers) == 4:

order(int(opers[1]),opers[2],opers[3])

def socket_main():

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

s.bind((socket.gethostname(),Socket_port))

s.listen(5)

while True:

conn,addr = s.accept()

command = conn.recv(9999)

start_passive_update()

do_command(command)

start_passive_update()

data = ""

conn.close()

Spawn application threads

pool = enable_eager_object_conversion()

threads = \

start_active_threads(pool,site_manager_main) \

+ start_passive_threads(pool,socket_main)

register_threads(threads)

Figure 3: Version 1 of example.py.

it is relinked to its updated version. For example in
the code below, new_fun redefines safely fun.

def new_fun(args): ...

upd_fun = safe_redefine("fun",new_fun,"__main__")

set_update_function(upd_fun,thread)

Thread reboot (a mechanism of ReCaml [3]) stops
the continuation of the thread and replaces it with a
new one. The user can extract values from the stack
to use them in the new function, for instance to ini-
tialize it or to implement stack reconstruction. In the
following code, the thread restarts with new_main.

def new_main(args): ...

update_fun = reboot_thread(new_main)

set_update_function(update_fun,thread)

2.3 Heap manipulation

This section describes how an update converts ob-
jects of given classes in the heap. We implement two
mechanisms for this purpose among all the schedul-
ing strategies. Eager object conversion updates the
objects at update time. Lazy object conversion up-
dates the objects when the program needs them.

Eager object conversion uses the same mechanism
as DynamicML [4]. Because PyPy does not let us
walk the heap, we hook object creation to store weak
references in a global pool. The update function can
access this global pool to relink immediately the
classes of the objects. The code below shows how
to activate the pool of weak references and how to
update the class Foo using eager object conversion.

Activating the pool

pool = enable_eager_object_conversion()

threads = \

start_active_threads(pool,main1,main2) \

+ start_passive_threads(pool,main3,main4)

register_threads(threads)

Using eager object conversion in thread 0

class FooV2(object): ...

update_fun = eager_update_class(Foo,FooV2)

set_update_function(update_fun,threads[0])

Lazy object conversion mimics the mechanism of
Ginseng [6]. PyMoult uses Python’s attribute ac-
cess hook to trigger the conversion function. The
following code shows how to update the class Foo

using lazy object conversion.

class FooV2(object): ...

start_lazy_update_class(Foo,FooV2)

To facilitate the implementation of update func-
tions, PyMoult offers high level functions that up-
date objects of a given class. Theses functions can be
used with the two previously presented mechanisms.

Eager and lazy object conversion mechanisms are
both compatible with the passive and active con-
trolled threads presented in the previous section.

3 Using an example: Products and

site management

To illustrate the previous matters, we use a simple
program managing products stored on stock sites.

Presented and published at HotSWUP’13, USENIX Federated conference week

Thread
manager

Thread
socket

initial code in black
red after update 1

green after update 2

Product

name

quantity

mark

votes

give_mark(int)

Site

name

mark

get_product(string) : Product

add_product(string,int)

order(string,int)

mark_product(string,int)

update_mark()

∗ stock

polls

ca
lls

or
de

r

or
ma

rk
_p

ro
du

ct

listen to
commands

order

rate

display
status
of site
with

marks

Figure 4: Product and site management

We design two updates, which combine the previ-
ously described mechanisms. Figure 4 presents the
structure of this example with its updates while ex-
tracts of its initial code are in Figure 3. The pro-
gram is composed of two threads and two classes.
The Product class is associated to the Site class; the
(passive) socket thread listens for text commands;
the (active) site_manager thread displays periodi-
cally the status of the sites.

The first version of the program only allows to or-
der products from a given site. In the first update
(Figure 5), products and sites may additionally be
rated. The simultaneous update of the two threads
can lead to version synchronisation problems if the
socket thread is updated before site_manager. Al-
though we are supposed to, we do not consider this
issue to keep the code short enough. We use safe
redefinition to relink the do_command function of the
socket thread. Instances of Product are converted
lazily while instances of Site use eager conversion.

After the second update, the site_manager thread
will display the ratings of the sites in their statuses
(Figure 6). For this, we use thread reboot. This
update does not need any value from the old stack.

4 Discussions

4.1 Pypy issues

Some issues with PyPy lead us to use workarounds
to implement some mechanisms in PyMoult.

It is not possible in Python to pause a thread and
access its stack from another thread. Instead, we
run part of the update manager in each thread. As
described in Section 2.1 we use continulet to simulate
that the update manager is in distinct threads.

Eager object conversion has to access all the ob-
jects of the heap. As PyPy does not allow it, we
have to maintain a pool of weak references when ob-
jects are created. PyPy does not provide any way to
intercept object creation. Instead, we intercept calls
to functions named __init__, which are construc-
tors in Python conventions. Modifying the PyPy in-
terpreter (exposing a heap walker or hooking object
creation) would make such assumption unnecessary.

When accessing the frames of a running program,
we only access mirror objects. Any modification of
the stack is therefore impossible. Offering an access
to the real frames could enable mechanisms relying
on stack modification.

4.2 Language discussion

As seen in the previous sections, implementing these
mechanisms in Python required some efforts and in-
troduced overhead. Using traces to intercept up-
date triggering or object creation disables the JIT.
On the other hand, using continulets makes it eas-
ier to pause a thread and run its update. More-
over, relinking new functions or classes is free thanks
to Python’s native indirection. In languages like C,
data may be outside of the heap (e.g. in the stack).
This makes it less natural to implement eager data
conversion. It would also require some overhead
to keep references to every variables. Moreover, to
implement lazy data updates, Ginseng uses prepro-
cessing to insert update code before each variable
usage whereas we do not need such a step when
using Python. Relinking and redefining classes or
functions in Python is free whereas it would request
some modifications of the Java Virtual Machine and
C would require using indirections.

Thanks to the flexibility of Python, the imple-
mentation of all the update mechanisms we tested
induced a low development cost.

5 Conclusion

We have presented four mechanisms taken from four
different DSU platforms and two ways of starting up-
dates. All these mechanisms can be arbitrarily com-
bined, even within a single application. This paper
focuses on the high-level functions of PyMoult but
we also provide lower-level functions for users need-
ing to write their own update functions. We have

Presented and published at HotSWUP’13, USENIX Federated conference week

#References to program modules and threads

main = sys.modules["__main__"]

threads = main.threads

manager_thread = threads[0]

socket_thread = threads[1]

#Object updates

class ProductV2(object):

...

def __convert__(self):

self.mark = 0

self.votes = 0

def give_mark(self,mark): ...

start_lazy_update_class(main.Product,ProductV2)

class SiteV2(object):

...

def __convert__(self):

self.mark = 0

def mark_product(self,product,mark): ...

def update_mark(self): ...

site_update = eager_update_class(main.Site,SiteV2)

#We execute the eager update in the manager thread

set_update_function(site_update,manager_thread)

#Function updates

def rate(mark,product,site):

the_site = main.get_site_by_name(site)

print(the_site.mark_product(product,mark))

def new_do_command(command):

operands = command.split()

if operands[0] == "order" \

and len(operands) == 4:

main.order(int(operands[1]),operands[2],

operands[3])

if operands[0] == "rate" \

and len(operands) == 4:

rate(float(operands[1]),operands[2],

operands[3])

socket_update \

= safe_replace("do_command",new_do_command,

"__main__")

set_update_function(socket_update,socket_thread)

Figure 5: The update of the example.

main = sys.modules["__main__"]

mgr_thread = main.threads[0]

Manager update

def new_mgr_main():

company = main.company

while True:

for site in company:

print(string_with_marks_of(site))

for x in range(10):

time.sleep(1)

mgr_upd_fun = reboot_thread(new_mgr_main)

set_upd_function(mgr_upd_fun,mgr_thread)

Figure 6: Second update of the example

used these functions to reimplement the examples of
DynamicML [4] and ReCaml [3] using PyMoult.

Only eager and lazy scheduling strategies are im-
plemented for object conversion, according the phi-
losophy of PyMoult we aim to provide more strate-
gies and to let users write their own strategies.
While implementing new mechanisms in PyMoult,
we intend adding several parallel functionalities like
quiescence detection or correctness checking.

PyMoult is GPL software available on bitbucket.

http://bitbucket.org/smartinezgd/pymoult

Acknowledgments

This work is funded by the Brittany Region council
and took place in the Télécom Bretagne and Saint-

Cyr Coëtquidan engineering schools.

References

[1] Altekar, G., Bagrak, I., Burstein, P., and Schultz,
A. Opus: online patches and updates for security.
In USENIX Security Symposium (Baltimore, Maryland,
USA, Aug. 2005), pp. 287–302.

[2] Arnold, J., and Kaashoek, M. F. Ksplice: automatic
rebootless kernel updates. In European Conference on

Computer Systems (Apr. 2009), pp. 187–198.

[3] Buisson, J., and Dagnat, F. Recaml: execution state as
the cornerstone of reconfigurations. In Proceedings of the

15th ACM SIGPLAN international conference on Func-

tional programming (2010), ICFP ’10, pp. 27–38.

[4] Gilmore, S., Kirli, D., and Walton, C. Dynamic ML
without dynamic types. Tech. Rep. ECS-LFCS-97-378,
The University of Edinburgh, 1997.

[5] Miedes, E., and Muñoz-Escoí, F. D. A survey about dy-
namic software updating. Tech. Rep. ITI-SIDI-2012/003,
Instituto Universitario Mixto Tecnológico de Informática,
Universitat Politècnica de València, May 2012.

[6] Neamtiu, I., Hicks, M., Stoyle, G., and Oriol, M.
Practical dynamic software updating for C. In Proc of the

ACM SIGPLAN conference on Programming language

design and implementation (2006), PLDI ’06, pp. 72–83.

[7] Österberg, D., and Lilius, J. Rethinking software up-
dating: Concepts for improved updatability. Tech. Rep.
550, Turku Centre for Computer Science, Sep 2003.

[8] Seifzadeh, H., Abolhassani, H., and Moshkenani,
M. S. A survey of dynamic software updating. Journal

of Software: Evolution and Process (2012).

[9] Stoyle, G. P. A Theory of Dynamic Software Updates.
PhD thesis, University of Cambridge, 2006.

Presented and published at HotSWUP’13, USENIX Federated conference week

http://bitbucket.org/smartinezgd/pymoult

	Introduction
	Update mechanisms
	Controlled threads
	Stack manipulation
	Heap manipulation

	Using an example: Products and site management
	Discussions
	Pypy issues
	Language discussion

	Conclusion

