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Semi-classical measures on Quantum graphs and
the Gauß map of the determinant manifold

Yves Colin de Verdière∗

November 21, 2013

Introduction

The so-called Quantum Ergodic Theorem (QE), due mainly to Alexander Shnirelman
[Shn74, Shn93, Zel87, CdV85], asserts that the eigenfunctions of the Laplace op-
erator on a smooth closed Riemannian manifold whose geodesic flow is ergodic
are equi-distributed on the manifold in the limit of large eigenvalues provided one
removes a sub-sequence of density 0. The paper [JSS13] gives QE Theorems in
the case of metrics with discontinuities on smooth manifolds: the Assumptions
are ergodicity of the geodesic flow which in this context is a Markov process and
the fact that recombining geodesics are exceptional. The results apply also to
piecewise smooth metrics on simplicial complexes, in particular to metric graphs
(also called “quantum graphs”). The geodesic flow is then ergodic, but they are
many recombining geodesics. Hence the second assumption is not satisfied for
quantum graphs. It is currently believed that QE does not hold in general for a
FIXED quantum graph. This is proved for star graphs in [BKW04] and [KMW02]
(put f(x) = x2 in Equation (51)). In the litterature, QE for graphs means some
property of the eigenfunctions in the limit of a sequence of graphs whose number
of vertices is going to infinity (see for example [GKF10]).

In the present paper, our goal is to describe all weak limits of measures
|φj|

2|dx|~l, where (φj) is an orthonormal basis of eigenfunctions for the Lapla-

cian ∆~l on a metric graph (G,~l) and |dx|~l is the Riemannian measure, and to
get upper bounds on the densities of the associated sub-sequences of eigenfunc-
tions. In particular we show that QE does not hold for a generic metric ~l on a
fixed graph, except if the graph is homeomorphic to an interval or to a circle.
In order to avoid confusion, we will denote this last property by QEF (Quantum
Ergodicity for Fixed graph).

∗Université de Grenoble, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP
74, 38402-Saint Martin d’Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr
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If G = (V,E) is a finite graph, we introduce, following ideas in [BG00, BG01],
an algebraic sub-manifold ZG, which we call the “determinant manifold”, of the
torus (R/2πZ)E which allows to compute the eigenvalues thanks to the so-called
“secular equation”. The Gauß map Γ associates to any point of the smooth part
Zreg
G of ZG the half-line of the cone PE := [0,+∞[E which is orthogonal to ZG.

Let us denote by MG the semi-algebraic set which is the closure of the image of
Γ. Let us state the main result of this note:

Theorem 0.1 Let us fix G. For a generic metric ~l, the set of non-normalized
semi-classical measures is the set of all

∑
e∈Eme|dte| where ~m ∈ MG and where

|dte| is the Riemannian measure on the edge e, i.e. te is an arc-length parametriza-
tion of the edge e. Moreover the densities of the corresponding eigenfunctions
sub-sequences are bounded in terms of the image by Γ of a measure µBG,~l on Z

reg
G

introduced in [BG00, BG01].

Another related result is the description of all semi-classical measures with min-
imal support, which are analogs of the so-called “scars” in the case of manifolds:
the supports of these scars are simple paths joining two vertices of degree one
and simple cycles (this is related to the paper [SK03]). From this, we deduce that

QEF does not hold for a generic ~l, except for graphs homeomorphic to intervals
or circles.

A good introduction to Quantum graphs is the recent book [BK13].

1 The determinant manifold of a quantum graph

In this section, we recall the way to compute the spectra of the Laplacians ∆~l on a
graph G = (V,E) from an algebraic hyper-surface ZG of a torus TE = (R/2πZ)E

which depends only of the combinatorics of the graph and not of the lengths
~l. This approach is closely related to what people do in several papers like
[BG00, BKW04, BW08, Ba12, BB13].

Let us consider a finite connected graph G = (V,E) where loops and multiple
edges are allowed. We choose an orientation of the edges. We associate, in the
usual way, to G a 1D singular manifold |G| by gluing together #E intervals using
the combinatorics of G. A (Riemannian) metric on |G| is given by the lengths of

the edges. We will denote by ~l ∈]0,+∞[E the collection of the lengths and the

pair (G,~l) is called a Quantum Graph.

Definition 1.1 We will say that ~l is irrational if the components of ~l are inde-
pendent over the rational numbers.

To any metric ~l is associated the Riemannian measure on |G| denoted by |dx|~l =∑
e∈E |dte| where te ∈ [−le/2, le/2] is the arc-length parametrization of the edge e

following the given orientation and with the origin at the center of the edge e. We
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have
∫
|G|

|dx|~l = L where L =
∑

e∈E le is the total length of (G,~l). The Laplacian

∆~l is the self-adjoint operator on L2(|G|, |dx|~l) with domain the functions φ :
|G| → C which are in the Sobolev space ⊕e∈EH

2(e), are continuous on |G| and
satisfy the Kirchhoff condition that the sums of outgoing derivatives of φ at each
vertex vanish. Then ∆~lφ is given by −d2φ/dt2e on each edge. The operator ∆~l

has a discrete spectrum given by λj = k2j with k1 = 0 < k2 ≤ · · · . We denote by
φj : |G| → C an associated orthonormal basis of eigenfunctions. Let us remark
that we can assume that G has no vertex of degree 2 if we allow multiple edges
and loops.

Let us try to compute the non-zero part of the spectrum of ∆~l : let us look
for an eigenfunction φ with eigenvalue k2 with k > 0. On the edge e, we have

φ(te) = ae cos kte + be sin kte . (1)

Let us define ξe = cos kle/2 and ηe = sin kle/2. From the continuity conditions
and the Kirchhoff conditions, we get, for the function φ = φa,b, a linear system

Lξ,η(a, b) = 0

of 2#E equations with the same number of unknowns, because the values of the
function φ and its derivatives divided by k at the vertices are (linear) functions
of ξe and ηe. Let us remark that if we change any (ξe, ηe) into (−ξe,−ηe), the
solutions of the new system are changed by (ae, be) → (−ae,−be).

The determinant of the system Lξ,η(a, b) = 0 is an homogeneous polynomial of
degree 2 with respect to each ζe = (ξe, ηe). Hence, it can be expressed as a poly-
nomial of total degree #E in the variables ze = (xe, ye) with xe = cos kle, ye =
sin kle which is of degree 1 w.r. to each pair (xe, ye). Let θe be the corresponding
angles so that xe = cos θe, ye = sin θe. Let us denote this trigonometric polyno-
mial δG(θ) viewed as a function on the torus TE = (R/2πZ)E whose coordinates
are denoted by θ = (θe)e∈E. The following fact is clear from what we said, the

number k2, k > 0 is an eigenvalue of ∆~l if and only if δG([k~l]) = 0 where [ ]

means that we take the components modulo 2π. In other words, [k~l] belongs to
the algebraic hyper-surface ZG of equation δG = 0 of TE . Let us remark that, by
an elementary check, θ = 0 belongs too to ZG.

Let us discuss a few elementary property of ZG:

Theorem 1.1 If k2 > 0 is a non degenerate eigenvalue of ∆~l, the point [k~l]
is a smooth point of ZG and the tangent space to ZG at that point is given by∑

emedθe = 0 where me = a2e + b2e for an eigenfunction given by Equation (1).
The manifold ZG is singular in a set of co-dimension at least 1.

We will denote by Zreg
G the open dense subset of ZG consisting of points where

the corresponding eigenspace is of dimension 1.
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Questions: as we will see from the examples in Sections 6.2 and 6.3, ZG can
be reducible. For which graphs is ZG irreducible? Is the set of singular point of
co-dimension ≥ 2.
Proof.–

Using the homogeneity of the spectrum, i.e. , ∀c > 0, kj(c~l) =

c−1kj(~l), We can assume that k = 1. In other words ZG is identified

with the [~l]’s so that 1 is an eigenvalue of ∆~l. Let z0 = [~l] ∈ ZG. We
assume that the eigenvalue 1 is non-degenerate for ∆~l. Close to z0,

the set ZG is defined by the equation k([~l]) = 1 meaning that 1 is
an eigenvalue of ∆~l, so that ZG is smooth if dk 6= 0 and the tangent
space is the kernel of dk. From the calculation of dk in Appendix A,
we get the result.

Using a result of L. Friedlander on the genericity of non degeneracy
of the eigenvalues of ∆~l [Fr05], we get the fact that the set Zreg

G is
dense in ZG and hence, because ZG is an algebraic manifold, the set
of singular points Zsing

G has co-dimension larger than one.

�

The singularities of Σ are associated to degenerate eigenvalues. A description
of these singularities would be of interest, already for general star graphs or com-
plete graphs. The case of diabolical singularities, corresponding to eigenvalues of
multiplicity two, is used in [BG01] in order to study the behavior as s→ 0 of the
distribution P (s)ds of the level spacing λj+1 − λj defined by

P (s)ds = lim
λ→∞

#{j|s ≤ λj+1 − λj ≤ s+ ds}

#{j|λj ≤ λ}
.

2 The Gauß map and semi-classical measures

Let us denote by PE the cone [0,+∞[E\{0}. For any ~m = (me)e∈E ∈ PE and

any ~l, we identify ~m with the measure
∑

e∈Eme|dte| on |G|. In other words, if ~l
is given, we consider PE as a sub-cone of the cone of positive Radon measures
on |G|. Our goal is to characterize the measures which are semi-classical limits.
We will need a

Definition 2.1 If φ is an eigenfunction of some ∆~l with eigenvalue k2 > 0, the
restriction of φ to the edge e writes φ(te) = ae cos kte + be sin kte; we denote by
µφ the measure on |G| defined by µφ =

∑
e(a

2
e + b2e)|dte| which belongs to PE.

Definition 2.2 A semi-classical limit for ∆~l is a weak limit of a sequence of
measures

∑
e∈E |φkj(te)|

2|dte| on |G| where φkj are non-zero eigenfunctions of ∆~l

with eigenvalues k2j → +∞.
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Remark 2.1 We do not use a lift of the measures to the cotangent space as in
the Shnirelman Theorem.

Remark 2.2 We do not ask the eigenfunctions to be L2-normalized. Our semi-
classical limits are in general not probability measures.

We can summarize the results as follows:

Theorem 2.1 1. Let µ =
∑

e∈Eme|dt|e be a semi-classical limit for ∆~l0
, then

there exists ~l∞ and an eigenfunction φ∞ of ∆ ~l∞
associated to the eigenvalue

1 so that µ = µφ∞.

2. Let us assume that φ is an eigenfunction of some ∆~l0
with a simple eigen-

value k20, then µφ is a semi-classical measure for ∆~l0
and for any ∆~l with

~l
irrational.

3. Let GG be the set of the ~l so that ~l is irrational and the line {[k~l] | k > 0}

does not meet Zsing
G . The set GG is Baire generic and, if ~l0 ∈ GG, the set

of semi-classical measures for ∆~l0
is the closure of the image of Zreg

G by the
Gauß map.

Proof.–

1. Let us consider a sequence of eigenfunctions of ∆~l defined by
φkj (te) = ae,j cos kjte+ be,j sin kjte. Then for large kj’s, the mea-
sures

∑
e φkj(te)

2|dte| have a weak limit if and only if the limits
me = limj→∞(a2e,j + b2e,j) exist and this limit measure is given by∑

e∈Eme|dt|e. By compactness of ZG, we can take assume that

[kj~l0] converges to [ ~l∞] and we can assume that all components

of ~l∞] are > 0 . Then we can again extract a sub-sequence so
that the numbers ae,j and be,j converge to some limit which will
be associated, by the closeness of the eigenfunctions equations,
to an eigenfunction of ∆ ~l∞

with eigenvalue 1.

2. From the assumption and Theorem 1.1, we get that the set ZG
is smooth near [k0~l0] and transverse to any curve t → [t~l] if

the components of ~l are all > 0. From this and the Poincaré
recurrence Theorem, we can get a sequence kj → +∞ so that

[kj~l0] → [k0~l0] as j → ∞ and we have that µφkj → µφ. Similarly,

if ~l is irrational, we can find kj → ∞ so that [kj~l] ∈ ZG and

[kj~l] → [k0~l0].
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3. The genericity comes from the fact that Zsing
G is of co-dimension

at least two in TE . From the previous part, we know already that
each measure in the image of the Gauß map is a semi-classical
measure and the same is true for a measure in the closure of this
image, because the set of semi-classical measures is closed. On
the other hand, we know that each semi-classical measure is the
limit of a sequence of µφkj ; because of the assumption on ~l this

implies that each semi-classical measure lies in the closure of the
image of the Gauß map.

�

3 The Barra-Gaspard measure, Weyl formula

and the densities of semi-classical limits

In [BG00], the authors introduce a ~l−dependent measure on Zreg
G , which we

will denote by µBG,~l. The manifold Zreg
G is transverse to any vector with > 0

coordinates and hence oriented. The measure µBG,~l is defined by

µBG,~l = (2π)−|E||ι(~l) ∧e∈E dθe|

(ι(~V )ω is the inner product), which is a Radon measure with > 0 density every-
where on Zreg

G . We will need the following:

Lemma 3.1 If ~l is irrational and D ⊂ Zreg
G is a compact domain with piecewise

smooth boundary, we have

lim
K→∞

1

K
#{kj | 0 < kj ≤ K, [kj~l] ∈ D} =

∫

D

µBG,~l .

The same result holds if D is the interior of a piecewise smooth compact sub-set
of Zreg

G or by integrating a smooth function f : ZG → R with compact support in
Zreg
G :

lim
K→∞

1

K

∑

0<kj≤K, [kj~l]∈ZG

f([kj~l]) =

∫

ZG

fµBG,~l .

Proof.–

Let us choose ε > 0 small enough so that the map F : [−ε, ε]×D →

TE , defined by F (t, θ) = θ + t~l, is a smooth embedding of image Dε.
From the unique ergodicity of the Kronecker flows on the tori, we get

lim
K→∞

1

K
|{k | 0 < k ≤ K, [k~l] ∈ Dε}| = (2π)−|E|vol(Dε) (2)
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where |X| denote the Lebesgue measure of a set X ⊂ R. We observe

that [k~l] belongs to Dε if and only if there exists j so that [kj~l] ∈ D

and k~l = [kj~l] + t~l with |t| ≤ ε. The lefthandside of Equation (2) is
equal to

lim
K→∞

2ε

K
#{kj | 0 < kj ≤ K, [kj~l] ∈ D}

while, using the definition of µBG,~l, the righthandside of Equation (2)
is equal to 2εµBG,~l(D).

�

We have also

Lemma 3.2 If ~l belongs to GG, we have

lim
K→∞

1

K
#{kj | 0 < kj ≤ K, [kj~l] ∈ ZG} =

∫

ZG

µBG,~l .

A similar result holds for the integration of a continuous function f on ZG:

lim
K→∞

1

K

∑

0<kj≤K, [kj~l]∈ZG

f([kj~l]) =

∫

ZG

fµBG,~l .

Proof.–

The proof is an adaptation of the previous one. We first split ZG =
D ∪R with R a small neighborhood of Zsing

G . The asymptotics of the

set of k’s with [k~l] ∈ D is given by Lemma 3.1, while an upper bound
is given by remarking that the pre-images of the map F : R×[−ε, ε] →

TE given by F (θ, t) = θ+ t~l have a bounded number of elements: this
comes from the boundedness of the remainder term in Weyl’s formula
for ∆~l (see [BK13] p. 95).

�

Let us consider, for e ∈ E, the canonical projection πe : ZG → (R/2πZ)E\e.
The map πe is orientation preserving and hence we get

∫

ZG

µBG,~l =
∑

e∈E

le

∫

(R/2πZ)E\e

dege(θ)| ∧ d̂θe|

where dege(θ) is the cardinal of π−1
e (θ). The fact that δG is of degree 1 w.r. to

each (cos θe, sin thetae) implies that dege ≤ 2.
In fact dege ≡ 2 as follows from Lemma 3.2 and the Weyl asymptotic formula

(see [BK13] p. 95)
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Theorem 3.1 We have (Weyl’s law)

lim
K→∞

1

K
#{0 ≤ k ≤ K| [k~l] ∈ ZG} =

L

π
.

The Barra-Gaspard measure is related to the densities of sequences of eigen-
values giving a given semi-classical limit. This density vanishes in general, so we
have to say it in the following way:

Theorem 3.2 Let D ⊂ PE be a compact domain with smooth boundary and
consider a sequence of eigenfunctions φkj of some ∆~l with ~l generic. Let us
assume that all semi-classical limits of the µφkj lie in D, then the density of the

sequence kj is bounded from above in terms of µBG,~l as follows:

lim sup
K→∞

#{kj ≤ K}

K
≤ µBG,~l

(
Γ−1(D)

)
.

The converse is true; for any generic ~l and for any compact domain D ⊂ PE,
there exists a sub-sequence φkj of density µBG,~l (Γ

−1(D)) so that the semi-classical
limits associated to sub-sequences of φkj belongs to D.

Proof.–

Let D′ ⊂ PE a neighborhood of D. Then for j large enough, Γ~l([kj
~l])

belongs to D′. So that, from a slight extension of Lemma 3.2 to
domains in ZG, we get the upper bound µBG,~l(Γ

−1
~l

(D′).
For, the converse, it is enough to take the sequence of kj’s so that

[kj~l] belongs to Γ−1(D).

�

We get the following

Corollary 3.1 If ~l belongs to Zreg
G and ~l is generic, let φ be an eigenfunction of ∆~l

with eigenvalue 1. Then, for all neighborhoods U of µφ, there exists sub-sequences
of positive densities of the eigenfunctions of ∆~l so that the semi-classical limits
of sub-sequences belongs to Γ(U).

Moreover, we have the following link with the Liouville measure:

Theorem 3.3 Let Γ~l be the map Γ normalized so that the sums
∑
me|dte| are

probabilities, then ∫
Γ~l(θ)dµBG,~l =

1

π

(∑

e

|dte|

)
.

This can be reformulated as “The average of the Gauß map with respect to µBG,~l

is the Liouville measure”.
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Proof.–

Le us define

Ae(K) =
le
2K

∑

0≤kj≤K

(a2j,e + b2j,e)

where the normalized eigenfunction φj writes, on the edge e, φj(te) =
aj,e cos kte + bj,e sin kte. From the local Weyl Theorem and the fact
that ∫

e

|φj(te)|
2dte =

le
2
(a2j,e + b2j,e) +O(1/k) ,

we get that
lim
K→∞

Ae(K) = le/π .

On the other hand, we have

Γ~l([kj
~l]) =

1

2
(a2j,e + b2j,e) +O(1/k) .

Using Lemma 3.2, we get

lim
K→∞

Ae(K) = le

∫

ZG

(
Γ~l(θ)

)
e
dµBG,~l .

�

From this, we deduce:

Corollary 3.2 If ~l is generic and there exists an eigenfunction φ of ∆~l so that

µφ is not the Liouville measure, then QEF does not holds for (G,~l).

4 Scars

Let us look at semi-classical measures with small supports; we have the:

Theorem 4.1 Let G be given. The minimal supports of the semi-classical mea-
sures for a generic ~l are the simple cycles and the simple paths between two
vertices of degree 1 of G. These measures are extremal points of the convex hull
of all semi-classical measures.

We start with the

Lemma 4.1 Let K ⊂ |G| be the support of a semi-classical measure µ. Then K
is an union of edges of G and every vertex of K is of degree ≥ 2 in K or is of
degree 1 in G.

Proof of the Lemma.–
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From the first Assumption of Theorem 2.1, we deduce that µ = µφ
where φ is an eigenfunction of some ∆ ~l∞

on G. The Lemma follows
then from the Kirchoff conditions applied to φ.

�

Proof of the Theorem.–

• Simple paths joigning to vertices of degree 1 are minimal sup-
ports: Let γ be a simple oriented path whose N vertices are
(1, 2, · · · , N) and choose a vector ~l so that the lengths of the

edges of the path are~l0 = (1/2, 1, 1, · · · , 1, 1/2). If we parametrize
this path by 0 ≤ t ≤ N−2, the function φ1 defined by φ1 = cos t
on γ and 0 outside is an eigenfunction of ∆~l with eigenvalue π2. I

claim that we can choose such a vector ~l extending ~l0 so that the
eigenvalue π2 of ∆~l is simple: if it is not, let X := ker

(
∆~l − π2

)
,

and lt defined by (lt)e = (1 − t)le for e /∈ γ and (lt)e = le for
e ∈ γ. Then the quadratic form on X defined by f → 〈∆̇f |f〉
vanishes on φ1 and is > 0 in any other direction (because as we
have seen the support of φ1 is minimal). It implies that π2 is a
simple eigenvalue for ∆~lt

for small non-zero t. It follows that the
uniform measure on γ is a semi-classical measure for this choice
of ~l and hence for all generic ~l’s.

The minimality follows from Lemma 4.1.

• Simple cycles are minimal supports: Let γ be a simple oriented
cycle whose N vertices are (1, 2, · · · , N − 1, N = 1) and choose

a vector ~l so that the lengths of the edges of γ are 1. By an
argument similar to the case of a simple path, we get that the
uniform measure on γ is a semi-classical measure for this choice
of ~l and all irrational ~l’s.

Again the minimality follows from lemma 4.1.

• If K is the support of a semi-classical measure, K contains a
simple path joigning 2 vertices of degree 1 of G or a simple cycle
of G: if K contains no simple cycles, K is a forest and every
vertex of degree 1 of K is also of degree 1 in G. So that every
sub-tree of K contains simple paths joigning 2 vertices of degree
1 in G.

�

As a Corollary, we get

Theorem 4.2 For a generic ~l, QEF holds for ∆~l if and only if |G| is homeo-
morphic to a circle or to an interval.
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Any connected graph which is not homeomorphic to a circle or an interval contains
as strict sub-graphs a simple cycle or a path whose end are of degree one. The
Theorem 3.3 implies that the image of Zreg

G by the Gauß map contains at least
one line distinct from the Liouville measure. The proof is completed by applying
Corollary 3.2.

5 Ergodicity of the geodesic flow on graphs

In the case of a connected quantum graph, the classical dynamics is ergodic as
shown from the study of the associated Perron-Frobenius operator done in [BG01].

The phase space Z of a Quantum graph G = (V,E,~l) (the unit cotangent bundle)
can be identified with the set of oriented edges: to a point x of an oriented edge, we
associate the unit co-vector pointing in the direction given from the orientation.
Using the probabilities given from the transition coefficients in Appendix B, we
get the geodesic flow on Z as a Markov process. We have the

Theorem 5.1 If G is connected and is not homeomorphic to a circle, the geodesic
flow on (V,E,~l) is ergodic.

Proof.–

It is enough to prove that the only functions invariant by the Perron-
Frobenius semi-group (Tt)t>0 are the constant functions. We see first
that such a function f has to be constant on each oriented edge by
using at a point x the invariance by Tt for t small. Moreover if G
is connected and is not homeomorphic to a circle, the geodesic flow
is transitive: for any pair x, y ∈ Z there exists a geodesic from x
to y. Let us choose f constant on the oriented edges and invariant
by the semi-group (Tt)t>0. Let us choose an edge e0 sot that ∀x ∈
Z, f(x) ≤ f(e0) and x0 ∈ e0. We have Ttf(x0) = f(x0) and Ttf(x0) =∑

γ:[0,t]→Z w(γ)f(γ(t)). Using the fact that
∑

γ:[0,t]→Z w(γ) = 1, we

get that f(y) = f(x0) if there is a geodesic γ so that γ(0) = x0 and
γ(t) = y. This holds for all y ∈ Z if the geodesic flow is transitive.

�

From the previous study, we see that the QEF Theorem is not valid for Quan-
tum Graphs even if the geodesic flow is ergodic, which is the case for all connected
graphs which are not homeomorphic to a circle, This is due to the fact that there
are a lot of recombining geodesics: for example in a star graph, they are many
geodesics starting from x in an edge e1 an coming back to x in the opposite
direction following a geodesic containing k1 times the edge e1 and k2 times the
edge e2 with k1, k2 ≥ 1 and with different orders.
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6 Examples

Figure 1: The 3 examples: the black circles are the vertices and the white circles
are the middle of the edges

6.1 The star graph with three edges

Let us consider for simplicity the case of a star graph with three edges G = (V,E)
where l1, l2, l3 are the lengths of three edges. The function δG can be computed
as follows: we assume that, we parametrize the jth edge by 0 ≤ tj ≤ lj where
0 corresponds to the vertex of degree 1. Then an eigenfunction of eigenvalue k2

will be of the form φ(tj) = aj cos ktj . Putting xj = cos ktj and yj = sin ktj , we
get the three equations

a1x1 = a2x2 = a3x3, a1y1 + a2y2 + a3y3 = 0 .

Hence
δG(x, y) = x1x2y3 + x2x3y1 + x3x1y2 .

Singularities of Σ: The surface ΣG ⊂ TE is invariant by the eighth trans-
lations whose vectors have coordinates 0 or π. We will restrict ourselves to the
intersection of ΣG with the cube C = [−π/2, π/2]3. The seven other cubes are de-
duced by translations. The surface ΣG is also invariant by the central symmetry
σ : (θj) → (−θj).

We can cover Σ by four types of charts and use adapted coordinates taken
from the set Xj = xj/yj, Yj = yj/xj :

1. In the domain x1x2x3 6= 0, we get Y1 + Y2 + Y3 = 0 which is smooth.

2. In the domain y1y2y3 6= 0, we getX1X2+X2X3+X3X1 = 0 which is singular
at the eight points where all xj vanish. They are “diabolical” points located
at the vertices of the cubes.

3. In the domains, x1x2y3 6= 0 and x1y2y3 6= 0, ΣG is smooth.
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The boundary of the closure of the intersection Σ0 = Σ∩] − π/2, π/2[3 is
the union of the six edges of C which have no vertex (−π/2,−π/2,−π/2) or
(π/2, π/2, π/2). We call this closed path the equator of C. The surface Σ0 is a
smooth 2-disk whose boundary is the equator of C.

Γ

ZG

Figure 2: the surface Zstar and the equator of the cube; the map Γ from Zstar to the

semi-classical measures.

The set MG is the cone
∑3

i=1m
2
i ≤ 2

∑
1≤i<j≤3mimj . In particular, this

closed set is not equal to PE .

6.2 The eight figure

Let us denote by G8 the graph with one vertex and two edges (two loops). We
have

δG8
(θ1, θ2) = sin

θ1
2
sin

θ2
2
sin

θ1 + θ2
2

.

The set ZG8
is the union of the circles θ1 = 0, θ2 = 0 and θ1 + θ2 = 0. The

image by the Gauß map is the union of the three lines m2 = 0, m1 = 0 and
m1 = m2. The associated densities are up to global normalization l1, l2, l1 + l2.
This implies that there exactly three semi-classical limits for an irrational length
vector. The Liouville measure |dt1|+ |dt2| has relative density

1
2
. On this example

we see that the set of semi-classical measure is not even connected and that the
scars give measures which are extremal point of their convex hull.

6.3 The cherry

Let GC be the cherry graph consisting of one loop with an attached edge. Let us
denote by l1 the length of the loop and by l2 the length of the edge. We get for
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ZGC
the equation:

sin θ1 sin θ2 + 2(1− cos θ1) cos θ2 = 0.

The set ZGC
is the union of the three circles

{θ1 = 0} ∪ {tan θ2 + 2 tan θ1/2 = 0}

The circle {θ1 = 0} correspond to the scars localized on the loop ; the other part
corresponds to a continuum of semi-classical measures m1|dt1| + m2|dt2| with
m1l1 +m2l2 = 1, 1 ≤ m2/m1 ≤ 4.

7 Limits of graphs

From the characterization of the spectrum of ∆~l as the set of k2 so that [k~l]

belongs to ZG, on can still define the spectrum of ∆~l for
~l a real vector. In

particular, one can take some lengths to be zero and the others > 0. What is
then the interpretation of this “spectrum”?

Let G be a graph as before. Given a set of edges X ⊂ E, we introduce a new
graph GX obtained by contracting all edges e ∈ E. From the point of view of
Riemannian, metrics, the graph GX can be interpreted as the graph G where the
lengths of the edges in X vanish. We have the

Lemma 7.1 For any connected graph G = (V,E) not homeomorphic to the circle
or the interval, there exists a set X ⊂ E so that GX is homeomorphic to the star
graph with three edges, to G8 or to GC.

The first case occur if G is a tree not reduced to an interval, the second one if
b1(X) ≥ 2 and the third one if b1 = 1 and G is not a circle.

Let (ZG)X be the intersection of ZG with the torus TX = {θe = 0, ∀e ∈ X}.
We have clearly an identification of (ZG)X with ZGX

.
Any non singular point of ZGX

is in this way associated to an non singular
point of ZG.

A The derivatives of the eigenvalues w.r. to the

edge lengths

This Lemma is contained in [Fr05]:

Lemma A.1 If λ is a non degenerate eigenvalue of ∆~l with a normalized eigen-
function φ(te) = ae cos kte+ be sin kte on the edge e, the derivative of λ w.r. to le
is given by

∂λ

∂le
= −λ

(
a2e + b2e

)
.
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Proof.–

Let us put t = te, I =] − le/2, le/2[ and choose a function ψ ∈
C∞
o (I,R) and the metric gu = exp(4uψ(t))|dt|2 on the edge e and inde-

pendent of u on the other edges. Then we have dle/du = 2
∫
I
ψ(t)|dt|,

‖φ‖2u = ‖φ‖′
2
0 +

∫

I

e2uψ(t)φ2(t)|dt| ,

and the Dirichlet integral

qu(φ) = q′0(φ) +

∫

I

e−2uψ(t)φ′2(t)|dt| ,

where ′
0 denotes the integrals on the other edges which are indepen-

dent of u. Let now take the u−derivative of the Rayleigh quotient
qu(φ)/‖φ‖

2
u at u = 0, we get

dλ/du = −2

∫

I

ψ(t)(φ′(t)
2
+ λφ(t)2)|dt

from which the result follows.

�

B Appendix: the transition probabilities for a

quantum graph

We want to describe the way a wave arriving at a vertex of a quantum graph
splits into several waves. Let us denote by O the vertex of degree d and by ej , j =
1, · · · , d the d-edges arriving at O. Let us denote the arc-length coordinate xj
along ej starting from 0 at O. Let us consider a function f1 compactly supported
in ]0,+∞[ and a wave u(x, t) defined on e1 by u(x1, t) = f1(x1+t)+g1(x1−t) and,
on ej for 2 ≤ j ≤ d, by u(xj, t) = g2(xj − t). From the Kirchhoff conditions, we
get f1(t) + g1(−t) = g2(−t) and f

′
1(t) + g′1(−t) + (d − 1)g′2(−t) = 0. Integrating

the second equation, we get f1(t) = g1(−t) + (d − 1)g2(−t) (we see that the
integration constant vanishes by putting t = 0). So that we get

g1(t) =
2− d

d
f1(−t), g2(t) =

2

d
f1(−t) .

The transition probabilities are the numbers

pj,j =

(
d− 2

d

)2
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and for i 6= j,

pi,j =

(
2

d

)2

.

The quantum graph is said classically ergodic if the following Markov process
defined on the unit tangent bundle of the metric graph is ergodic: follow the
edges with unit speed and arriving at a vertex use the transition probabilities
defined before. We can assume that the graph has no vertex of degree two.

C Appendix: the case ~l = (1, 1, · · · , 1)

In this case the spectrum is given by the k2j , kj ≥ 0 so that [k] ∈ ZG . Using Weyl
asymptotics, the number of kj’s with multiplicity is 2#E. On the other hand,
we find from [Ni84, Ni87, Catt97], that the eigenvalues of ∆~1 are given in terms
of the eigenvalues µl, l = 1, · · · ,#V, of the weighted adjacency operator defined

AGf(i) =
1

di

∑

j∼i

f(j) .

The result is the following one for the kj:

• For each |µl| < 1, 2 values of k defined by cos k = µl.

• The value k = 0 with multiplicity 1 + b1.

• The value k = π with multiplicity b1 + 1 if G is bipartite and b1 − 1 if-not.

At the end, we have, in the bipartite case 2#E = 2(#V − 2) + 2b1 + 2, and in
the non-bipartite case 2#E = 2(#V − 1) + 2b1. Both formulas give the Euler
formula for G:

#V −#E = 1− b1 .
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