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Abstract

Light propagation in turbid media is driven by the equation of radiative transfer. We give a
formal probabilistic representation of its solution in the framework of biological tissues and we
implement algorithms based on Monte Carlo methods in order to estimate the quantity of light
that is received by an homogeneous tissue when emitted by an optic fiber. A variance reduction
method is studied and implemented, as well as a Markov chain Monte Carlo method based on
the Metropolis-Hastings algorithm. The resulting estimating methods are then compared to the
so-called Wang-Prahl (or Wang) method. Finally, the formal representation allows to derive a
non-linear optimization algorithm close to Levenberg-Marquardt that is used for the estimation of
the scattering and absorption coefficients of the tissue from measurements.

Keywords. Light propagation, equation of radiative transfer, Markov chain Monte Carlo meth-
ods, parameter estimation.

2010 Mathematics Subject Classification. Primary : 78M31; Secondary : 65C40, 60J20.

1 Introduction

The results presented in this article have initially been motivated by several research projects grounded
on Photodynamic therapy (PDT), which is a type of phototherapy used for treating several diseases
such as acne, bacterial infection, viruses and some cancers. The aim of this treatment is to kill
pathological cells with a photosensitive drug that is absorbed by the target cells and that is then
activated by light. For appropriate wavelength and power, the light beam makes the photosensitizer
produce singlet oxygen at high doses and induces the apoptosis and necrosis of the malignant cells.
See [29, 30] for a review on PDT.

The project that initiated this work focuses on an innovative application : the interstitial PDT for
the treatment of high-grade brain tumors [6, 5]. This strategy requires the installation of optical fibers
to deliver light directly into the tumor tissue to be treated, while nanoparticles are used to carry the
photosensitizer into the cancer cells.

Due to the complexity of interactions between physical, chemical and biological aspects and due
to the high cost and the poor reproducibility of the experiments, mathematical and physical models
must be developed to better control and understand PDT responses. In this new challenge, the two
main questions to which these models should answer are:

1. What is the optimal shape, position and number of light sources in order to optimize the damage
on malignant cells?

2. Is there a way to identify the physical parameters of the tissue which drive the light propagation?

The light propagation phenomenon involves three processes: absorption, emission and scattering
that are described by the so-called equation of radiative transfer (ERT), see [10]. In general, this
equation does not admit any explicit solution, and its study relies on methods of approximation. One
of them is its approximation by the diffusion equation and the use of finite elements methods to solve it
numerically (see for example [2]). An other approach, which appeared in the 1970s, is the simulation of
particle-transport with Monte Carlo (MC) method (see [8, 9, 32] and references therein). This method
has been extended by several authors in order to deal with the special case of biological tissues and
there is now a consensus in favor of the algorithm proposed by L. Wang and S. L. Jacques in [28],
firstly described by S. A. Prahl in [21] and S. A. Prahl et al. in [22]. This method is based on a
probabilistic interpretation of the trajectory of a photon. It is widely used and there exist now turnkey
softwares based on this method. However, this method is time consuming in 3D and the associated
softwares lie inside some kind of black boxes. Due to a slight lack of formalism, it is difficult to speed
it up while controlling the estimation error, or to adapt it to inhomogenous tissues such as infiltrating
gliomas. Finally, even though there exist several methods in order to estimate the optical parameters
of the tissue (see for example [18, 13, 4, 20]), one still misses formal representations that answer to the
questions of identifiability.

In the current work, we wish to give a new point of view on simulation issues for ERT, starting
from the very beginning. We first derive a rigorous probabilistic representation of the solution to
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ERT in homogeneous tissues, which will help us to propose an alternative MC method to Wang’s
algorithm [28]. Then we also propose a variance reduction method.

Interestingly enough, our formulation of the problem also allows us to design quite easily a Markov
chain Monte Carlo (MCMC) method based on Metropolis-Hastings algorithm. We have compared both
MC and MCMC algorithms, and our simulation results show that the plain MC method is still superior
in case of an homogeneous tissue. However, MCMC methods induce quick mutations, which paves the
way to very promising algorithms in the inhomogenous case. Finally we handle the inverse problem
(of crucial importance for practitioners), consisting in estimating the optical coefficients of the tissue
according to a series of measurements. Towards this aim, we derive a probabilistic representation of
the variation of the fluence rate with respect to the absorption and scattering coefficients. This leads
us to the implementation of a Levenberg-Marquardt type algorithm that gives an approximate solution
to the inverse problem.

Our work should thus be seen as a complement to the standard algorithm described in [28]. Focusing
on a rigorous formulation, it opens the way to a thorough analysis of convergence, generalizations to
MCMC type methods and a mathematical formulation of the inverse problem.

The paper is organized as follows. We derive the probabilistic representation of the solution to ERT
in Section 2. In Sections 3 and 4, we describe the MC and MCMC algorithms which are compared
to Wang’s algorithm in Section 5. Finally, the sensitivity of the measures with respect to the optical
parameters of the medium, as well as their estimation are treated in Section 6.

2 Probabilistic representation of the fluence rate

2.1 The radiative transfer equation

Let D = R3 be the set of positions in the biological homogeneous tissue and S2 be the unit sphere in
R3. Let us denote the optical parameters of the tissue by µs > 0 for the scattering coefficient, µa > 0
for the simple absorption coefficient and µ = µs+µa for the total absorption coefficient (or attenuation
coefficient). Moreover, let us denote by Le(x, ω) the emitted light from x in direction ω and by L(x, ω)
the quantity of light at x in the direction ω. Then the equation of radiative transfer takes the following
form (see e.g. [21, 3]):

L(x, ω) = Li(x, ω) + TL(x, ω), x ∈ D, ω ∈ S
2, (2.1)

where Li(x, ω) is the incident volume emittance and T : L∞(R3×S2;R)→ L∞(R3×S2;R) is the linear
operator defined on the Banach space of essentially bounded real-valued functions ℓ : R3 × S

2 → R,
given by

T ℓ(x, ω) = µs

∫

R+

dr exp(−µr)

∫

S2

dσ(ω̂) f(ω, x− ωr, ω̂) ℓ(x− ωr, ω̂), (2.2)

with f the so-called bidirectional scattering distribution function and σ the uniform probability measure
on the unit sphere S2. The incident volume emittance Li is also defined by applying a linear operator
Ti to Le:

Li = TiLe, with Tiℓ(x, ω) =

∫ +∞

0

ℓ(x− rω, ω) exp(−µr)dr. (2.3)

In the following, we will denote the albedo coefficient by ρ := µs

µ < 1. Moreover, since we consider
an homogeneous biological tissue, the scattering function is given by the so-called Henyey-Greenstein
function, see [15], that is

f(ω, x, ω̂) = fHG(ω, ω̂) =
1− g2

(1 + g2 − 2g〈ω, ω̂〉)3/2
, ω, ω̂ ∈ S

2, ∀x ∈ D, (2.4)

where the constant g ∈ [0, 1) is the anisotropy factor of the medium. The function ω̂ 7→ fHG(ω, ω̂) is
a bounded and infinitely differentiable probability density function on S2 with respect to the uniform
probability σ. It only depends on the angle θ between ω and ω̂ since 〈ω, ω̂〉 = cos(θ). The greater the
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Figure 1: Density function of cos(θ) = 〈ω, ω̂〉 when ω̂ is scattered according to the Henyey-Greenstein
function fHG(ω, ·) for several values of the anisotropy parameter g.

anisotropic parameter g, the more likely the large values of cos(θ) and the less the scattering of the
ray (see Fig. 1).

2.2 Neumann series expansion of the solution

In general, (2.1) admits no analytical solution and a classical way to express its solution is to expand
it in Neumann series. This method is based on the next classical and general result.

Theorem 1 ([31] p.69). Let B be a Banach space equipped with a norm ‖ · ‖ and A a linear operator
on B. If ‖A‖ < 1, then the Neumann series

∑∞
n=0 A

n converges, the operator Id−A is invertible and
for any x0 ∈ B, the equation x = Ax+ x0 admits a unique solution given by

x = (Id −A)−1x0 =

∞∑

n=0

Anx0.

In order to apply Theorem 1 in our context, let us now bound the norm of the operator T defined
above by (2.2).

Lemma 2. The operator T defined in (2.2), with f given by (2.4), satisfies ‖T ‖ = ρ < 1, where we
recall that we have set ρ := µs

µ < 1.

Proof. Let ℓ ∈ L∞(R3 × S2;R). We have

|T ℓ(x, ω)| 6 µs

∫

R+

dr exp(−µr)

∫

S2

dσ(ω̂) |fHG(ω, ω̂) ℓ(x− ωr, ω̂)|

6 µs‖ℓ‖∞

∫

R+

dr exp(−µr) =
µs

µ
‖ℓ‖∞,

since fHG is a density function on S2. Thus, ‖T ‖ 6 µs

µ and since T1 ≡ µs

µ , we obtain ‖T ‖ = µs

µ and
the proof is complete.

As a corollary of the previous considerations, we are able to derive an analytic expansion for the
solution to equation (2.1):

Corollary 3. If Le ∈ L∞(R3×S2;R), then the radiative transfer equation (2.1) with a phase function
given by (2.4) admits a unique solution L in L∞(R3 × S2;R). Moreover, L can be decomposed as
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L =
∑∞

n=0 T
nLi =

∑∞
n=0[T

n ◦ Ti]Le where T 0 ≡ Id and where for n ≥ 1, the linear operator T n ◦ Ti

on L∞(R3 × S2;R) is given by:

[T n ◦ Ti] ℓ(x, ω0) = µn
s

∫

R
n+1
+

dr0 · · · drn exp


−µ

n∑

j=0

rj



∫

(S2)n
dσ⊗n(ω1, . . . , ωn)

n−1∏

j=0

fHG (ωj, ωj+1) ℓ

(
x−

n∑

k=0

ωkrk, ωn

)
. (2.5)

Proof. Assume that Le ∈ L∞(R3 × S2;R). It is readily checked from the definition (2.3) of Li that we
also have Li ∈ L∞(R3 × S2;R). Indeed,

‖Li‖∞ ≤
‖Le‖∞

µ
< +∞.

Hence, Theorem 1 and Lemma 2 provide the existence and uniqueness of the solution, as well as its
expansion in Neumann series. Formula (2.5) is then found by induction.

Our next step is now to recast representation (2.5) into a probabilistic formula.

2.3 Probabilistic representation

The Neumann expansion of T enables us to express L =
∑∞

n=0 T
nLi as an expectation. To this aim,

we now introduce some notation. Let us define

A =

∞⋃

n=0

Mn, with Mn = R
n+1
+ ×

(
S
2
)n+1

. (2.6)

We denote by (r,ω) a generic element of A and by (rn,ωn) a generic element ofMn for n ∈ N with
rn = (r0, . . . , rn) and ωn = (ω0, . . . , ωn). If (r,ω) ∈ A, we set

|r| =

∞∑

n=1

n1Mn
(r,ω) (2.7)

and call it size or length of the path. For n ∈ N, let

G(n)
x (rn,ωn) = Le

(
x−

n∑

k=0

ωkrk, ωn

)
(2.8)

be defined onMn, and let

Gx(r,ω) =

∞∑

n=0

G(n)
x (rn,ωn)1Mn

(r,ω) (2.9)

be a function on A. Let Y = (R,W ) be a A-valued random variable defined on a probability space
(Ω,F ,P), whose law ν is given by

ν(F ) =
∞∑

n=0

(1− ρ)ρnνn (F ∩Mn) , (2.10)

where we recall that ρ = µs

µ and where νn is the probability measure onMn defined by

νn(drn, dωn) = µn+1 e−µ
∑n

j=0 rj

n−1∏

j=0

fHG (ωj, ωj+1) drn σ⊗(n+1)(dωn) (2.11)

with
∏−1

j=0 aj = 1 by convention. Before we express L as an expectation involving Gx and Y , let us
state some properties of Y = (R,W ).
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Proposition 4. Let n ∈ N and let π be a permutation of {0, . . . , n}. Let us recall that ν defined
by (2.10) is the distribution of Y = (R,W ). Then, conditionally on the event {Y ∈Mn}, the distri-
bution of the variable (R0, . . . , Rn,W0, . . . ,Wn) is the probability measure νn defined by (2.11), which
satisfies

νn(dr0, . . . , drn, dω0, . . . , dωn) = νn(drπ(0), . . . , drπ(n), dωn, dωn−1, . . . , dω0). (2.12)

In other words, on the event {Y ∈Mn}, the random variables (Rπ(0), . . . , Rπ(n),Wn,Wn−1, . . . ,W0)
and (R0, . . . , Rn,W0, . . . ,Wn) have the same distribution νn.

Proof. By definition of ν = L(Y ) and since (Mp)p∈N
is a collection of pairwise disjoint sets, it

is straightforward that νn is the distribution of the variable (R0, . . . , Rn,W0, . . . ,Wn) on the set
{Y ∈Mn}. Let us now emphasize that the phase function is symmetric, i.e. fHG(ω, ·) = fHG(·, ω).
Then replacing fHG(ωj , ωj+1) by fHG(ωj+1, ωj) and using the invariance of the definition of νn by
permutations of the variables (r0, . . . , rn), we obtain Equation (2.12).

Corollary 5. For all n ∈ N, conditionally on the events {Y ∈ Mn} and {Y ∈
⋃

p≥nMp}, for any

j = 0, . . . , n, the marginal distribution γWj
of the direction Wj is the uniform probability σ on S2. In

particular, W0 is uniformly distributed on S2.

Proof. Let n, j ∈ N such that j ≤ n. By proposition 4, on the event {Y ∈Mn}, the probability
measure νn defined by (2.11) is the distribution of (Rn,W n). Then, integrating the law νn with
respect to all variables except wj and using that fHG(ω, ·) = fHG(·, ω) is a density function on S2,
one obtains that on the event {Y ∈Mn} , Wj is uniformly distributed on S2. Since this also holds
replacing n by any p ≥ n and since Mp, p ≥ n, are pairwise disjoint sets, this implies that on the
event {Y ∈

⋃
p≥nMn}, Wj is also uniformly distributed on S2.

Proposition 6. The series
∑∞

n=0 T
nLi can be expressed as

L(x, ω) =

∞∑

n=0

T nLi(x, ω) =
1

µa
E [Gx(Y ) |W0 = ω] . (2.13)

Proof. We shall relate [Tn ◦ Ti]Le with the measure νn defined above, which will be sufficient for
our purposes. To this aim, consider ω̂0 ∈ S2, and write a somehow more cumbersome version of
formula (2.5) with ℓ = Le:

[T n ◦ Ti]Le(x, ω̂0) = µn
s

∫

R
n+1
+

dr0 · · · drn exp


−µ

n∑

j=0

rj



∫

(S2)n
dσ⊗n(ω1, . . . , ωn)

fHG (ω̂0, ω1)

n−1∏

j=1

fHG (ωj, ωj+1) Le

(
x− ω̂0r0 −

n∑

k=0

ωkrk, ωn

)
.

Noting that µn
s = (1−ρ) ρn µn+1

µa
, we thus get the following identity:

[T n ◦ Ti]Le(x, ω̂0) =
(1− ρ) ρn µn+1

µa

∫

R
n+1
+

dr0 · · · drn exp


−µ

n∑

j=0

rj



∫

(S2)n+1

dσ̂n,ω̂0(ω0, . . . , ωn)

n−1∏

j=0

fHG (ωj, ωj+1) Le

(
x−

n∑

k=0

ωkrk, ωn

)
,

where the measure σ̂n,ω̂0 on Sn+1 is given by σ̂n,ω̂0(dω0, . . . , dωn) = δω̂0(dω0)⊗ σ⊗n(dω1, . . . , dωn).
Finally set ϕn(rn,ωn) = Le(x−

∑n
k=0 ωkrk, ωn). Taking into account the identity above and (2.11),

we easily get

[T n ◦ Ti]Le(x, ω̂0) =
(1− ρ) ρn

µa
νn (ϕn|ω0 = ω̂0) ,

from which our claim is straightforward.
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Remark 7. In the following, we will call the random variable Y = (R,W ) a ray. Notice that it
does not correspond exactly to a ray of light in the physics sense, since Y has a finite length (though
random) and since a given realization of Y does not carry the information due to light absorption.
Also notice that Y owns a complete probabilistic description which allows to exactly simulate it (see
Proposition 10 for simulation considerations).

2.4 Model for light propagation

Observe that our formula (2.13) induces a Monte Carlo procedure to estimate L(x, ω) for each (x, ω) ∈
R3 × S2 based on the simulation of independent copies of Y . Nevertheless this procedure is time
consuming. Indeed, assuming that the light is only emitted by an optical fiber, many realizations y of
Y lead to a null contribution in the estimation of L(x, ω). Our aim is now to accelerate our simulation
by means of a coupling between random variables corresponding to different (x, ω). Towards this aim,
we now focus on an averaged model for light propagation.

Let thus V ⊂ R3 be a cube whose center coincides with the origin. We discretize it into a partition
of K smaller cubes (voxels in the image processing terminology) {Vk, k = 0, . . . ,K− 1}, whose volume
equals h3, h ∈ R+ and such that the origin is the center of V0. Let us denote by xk the center of the
voxel Vk. We work under the following simplified assumption for the form of the light source:

Hypothesis 8. We assume that the only emission of light in the domain V comes from the optical
fiber. Let C2α ⊂ S2 denote the cone with opening angle 2α, whose summit is placed at the origin and
whose axis follows −~e3. The light source is defined by S = {(x, ω) : x ∈ V0, ω ∈ C2α}. We assume
that the emission of light satisfies

Le(x, ω) = c1V0×C2α(x, ω) :=

{
c, if (x, ω) ∈ V0 × C2α,

0, otherwise,
(2.14)

where c > 0 is a given constant.

This model remains close to reality and it is possible to refine it by weighting the light directions
of the source in order to stick better to the shape of the fiber. With Hypothesis 8 in mind, we are
interested in estimating the fluence rate at the center of the voxels Vk, k 6= 0, that is the mean light
intensity averaged in all directions

L(xk) :=

∫

S2

L(xk, ω0)σ(dω0). (2.15)

This quantity admits a nice probabilistic representation.

Proposition 9. Let k ∈ {0, . . . ,K − 1} and let Y = (R,W ) be a random variable with distribution
ν defined by (2.10). Then, the fluence rate L(xk) at the center xk of the voxel Vk, which is defined
by (2.15), can also be expressed as

L(xk) =
c

µa
P


xk −

|R|∑

j=0

RjWj ∈ V0, W|R| ∈ C2α


 (2.16)

where we recall that the length |R| of the ray Y is defined by (2.7).

Proof. Invoking Proposition 6 and by definition of L, we get

L(xk) =
1

µa

∫

S2

E [Gxk
(Y )|W0 = ω0] σ(dω0)

where Gxk
is defined by (2.9). Since by Corollary 5, σ is the distribution of W0, the previous equation

can be written as

L(xk) =
1

µa
E [Gxk

(Y )] .
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Then using equations (2.8) and (2.7), we get

Gxk
(Y ) = Le


xk −

|R|∑

j=0

RjWj , W|R|


 .

Now applying Hypothesis 8, the random variable Gxk
(Y ) can be expressed as

Gxk
(Y ) = c1{

xk−
∑|R|

j=0 RjWj∈V0,W|R|∈C2α
},

which finishes our proof.

Now, instead of seeing Y as a ray starting at xk which possibly hits the light source V0 ×C2α, we
can imagine that it starts at the center of the light source and it possibly hits the voxel Vk in any
direction. This possibility stems from the invariance of ν stated in Proposition 4, and is exploited in
the next result.

Proposition 10. For any 0 6 k 6 K − 1 we have :

L(xk) =
c(1− cosα)

2µa
P (SN ∈ Vk) , (2.17)

where N ∼ NB(1, ρ) is a negative binomial random variable with parameter (1, ρ), that is a random
variable whose law is given by P(N = n) = (1− ρ)ρn for all n ∈ N, and where for n ∈ N

Sn =

n∑

i=0

RiWi

with (Ri)i≥0 and (Wi)i≥0 satisfying the following assertions:

• (Ri)i≥0 is a sequence of independent identically distributed (i.i.d.) exponentially random variables
of parameter µ (i.e such that E(Ri) = µ−1).

• W0 is uniformly distributed on the cone C2α.

• for any i ≥ 1, the conditional distribution of Wi given (W0, . . . ,Wi−1) = (ω0, . . . , ωi−1) is
fHG(ωi−1, ωi)σ(dωi).

• N , (Ri)i>0 and (Wi)i>0 are independent.

Proof. Let k ∈ {0, . . . ,K − 1}. Notice that, if Vk + x denotes the translation of the voxel Vk by the
vector x ∈ R3, then it is clear that V0 + xk = Vk. Therefore, we can rewrite (2.16) as

L(xk) =
c

µa
P




|R|∑

j=0

RjWj ∈ Vk,W|R| ∈ C2α


 , (2.18)

where the distribution of Y = (R,W ) is the probability measure ν defined by (2.10). Then,

L(xk) =
c

µa

+∞∑

n=0

(1− ρ)ρnP




n∑

j=0

RjWj ∈ Vk,Wn ∈ C2α




where the distribution of (R0, . . . , Rn,W0, . . . ,Wn) is the probability νn defined by (2.11). Therefore,
applying Proposition 4, we get

L(xk) =
c

µa

+∞∑

n=0

(1− ρ)ρnP




n∑

j=0

RjWj ∈ Vk,W0 ∈ C2α


 .
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By definition of νn, we easily see that

P

(
n∑

i=0

RiWi ∈ Vk, W0 ∈ C2α

)
= σ(C2α)P

(
n∑

i=0

R′
iW

′
i ∈ Vk

)
,

where (R′
0, . . . , R

′
n,W

′
0, . . . ,W

′
n) is a random variable with distribution ν′n, defined by replacing in (2.11)

the uniform probability σ(dω0) on the sphere S2 by the uniform probability 1{ω′
0∈C2α}σ(dω

′
0)/σ(C

2α)

on the cone C2α. By definition of ν′n, this means that

P

(
n∑

i=0

RiWi ∈ Vk, W0 ∈ C2α

)
= σ(C2α)P(Sn ∈ Vk)

where S = (Sp)p≥0 is the random walk defined in the statement of the proposition. Thanks to
the fact that N is a NB(1, ρ) random variable independent of the random walk S, we easily get
relation (2.17).

Remark 11. The random variables N,Ri and W0 in Proposition 10 are simulated in a straightforward
way. The simulation of the sequence (Wi)i>1 is obtained as follows. The direction Wi of the i-th step
of the random walk is sampled relatively to the direction Wi−1. We sample the spherical angles
(Θi,Φi) between the two directions according to the Henyey-Greenstein phase function. Namely,
cos (Θi) = 〈Wi−1,Wi〉 owns the following invertible cumulative distribution function:

F−1(y) =
1

2g

(
1 + g2 −

(
1− g2

1− g + 2gy

)2
)
, y ∈ [0, 1]

and Φi, the azimuth angle of Wi in the frame linked to Wi−1, is uniformly distributed on [0, 2π],
see (2.4). To recover the cartesian coordinates of the directions, we inductively apply appropriate
changes of frame. The corresponding formulas can be found in [21, p. 37].

Remark 12. Notice that SN does not depend on the voxel xk under consideration. This permits
to use a single sample of realizations of this random variable in order to estimate the right hand
side of (2.17) for all k ∈ {0, . . . ,K − 1} simultaneously. We call this improvement coupling, meaning
that the random variables related to the Monte Carlo evaluations at different voxels are completely
correlated.

3 Monte Carlo approach with variance reduction

In the last section, we have derived a probabilistic representation of L(xk) for every voxel Vk by
means of the arrival position of a random walk (Sn)n>1 stopped at a negative binomial time. This
classically means that L(xk) can be approximated by MC methods. We first derive the expression
of the approximate fluence rate by means of the basic MC method and then describe the variance
reduction method that we implemented.

Proposition 13. Let us consider a random walk S = (Sn)n≥0 and a negative binomial random
variable N as defined in Proposition 10. Let (Si, Ni)1≤i≤M be M independent copies of (S,N). Then,
for k = 0, . . . ,K − 1,

L̂MC(xk) :=
c (1− cosα)

2µaM

M∑

i=1

1{

Si
Ni

∈Vk

} (3.1)

is an unbiased and strongly consistent estimator of L(xk).

Proof. This statement follows simply from the discussion of the previous section and the law of large
numbers (LNN).
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In addition to this proposition, let us highlight the fact that central limit theorem provides
confidence intervals for the estimators L̂MC(xk). Furthermore, owing to Remark 12, the family
(Si, Ni)1≤i≤M enables to estimate the fluence rate L(xk) for all k = 0, . . . ,K − 1 at once.

The reader should be aware of the fact that the quantity ρ is large in general in biological tissues,
which means that the size of the ray, given by N ∼ NB(1, ρ), will often be large. Typical values of the
parameters are provided in Table 1. Therefore, sampling a ray is relatively time consuming and it is
necessary to improve the basic Monte Carlo algorithm in order to reduce the variance of the estimates.

µs µa µ ρ g

healthy tissue 280 cm−1 0.57 cm−1 280.57 cm−1 0.998 0.9

tumor 73 cm−1 1.39 cm−1 74.39 cm−1 0.981 0.9

Table 1: Values given by [1] for the optical parameters in the rat brain for a wavelength λ = 632 nm
(red light).

Furthermore, because of the formulation (2.18), only the last point of each whole ray is used in the
estimation. It is however possible to take into account more points of the rays and still have unbiased
estimators. Finally, the angular symmetry of the problem, allows us to replicate observed rays by
applying rotation. We took these two considerations into account and named the resulting method
Monte Carlo with some points (MC-SOME). The idea is to firstly draw some random walks
which share the same initial direction and to pick a given number of points of each walk. Then, we
apply rotations to that set of points with respect to different initial directions. We finally count the
number of points in each voxel. This artificially increase the size of the samples and thus reduce the
variance of our estimation of L(xk). Specifically, the resulting estimator is given by :

Definition 14 (MC-SOME). Let M,Mpoints,Mrot ∈ N∗ be the parameters of the method. Let us
assume that the following assertions hold:

• (W j
0 )1≤j≤Mrot are i.i.d. copies of W0 ∼ U(C

2α).

• N ℓ
i , 1 6 i 6 M , 1 6 ℓ 6 Mpoints, are i.i.d. copies of a negative binomial random variable with

parameter (1, ρ).

•
(
Si
n

)
n≥0

, 1 ≤ i ≤M , are i.i.d. copies of the random walk S defined in Proposition 10, all sharing

the same initial direction W 1
0 .

• The sequences
(
N ℓ

i

)
i,ℓ

and
(
W j

0 , S
i
n

)
i,j

are independent.

Let Si,j

Nℓ
i

denotes the N ℓ
i -th point of the i-th random walk

(
Si
n

)
n≥0

after a rotation corresponding to

the j-th initial direction W0 = W j
0 .

Then, for k ∈ {0, . . . ,K − 1}, the MC-SOME estimate of L(xk) is defined by

L̂MC-SOME(xk) =
c (1− cosα)

2µaMrotMpointsM

M∑

i=1

Mpoints∑

ℓ=1

Mrot∑

j=1

1{

Si,j

Nℓ
i

∈Vk

} . (3.2)

This estimator is unbiased and strongly consistent. Its construction is illustrated in Fig. 2 and it
will be compared to Wang’s algorithm estimator in Section 5.
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Figure 2: Description of MC-SOME method. In this example, the grey path is a rotation of the black
one with respect to its initial direction ωj+1

0 and M = 4.

Remark 15. Choosing only some points (SNℓ , 1 6 ℓ 6 Mpoints) of the path instead of all (Si, 1 6 i 6 n)
provides a more efficient estimation. Indeed, it would take a lot of time to run over all voxels Vk in order
to evaluate the indicator functions 1{Si∈Vk}. Moreover, the information brought by close points is in
a sense redundant. Choosing the points according to a negative binomial law maintain the estimator
unbiased, while speeding up the estimation.

4 A Metropolis-Hastings algorithm for light propagation

Inspired by results in computer graphics, see [16, 25, 27], we implemented a Metropolis Hastings
algorithm which is a Markov chain Monte Carlo method (MCMC) by random walk [14, 23]. We shall
first discuss general principles and then practical implementation issues.

For simplicity reasons, by slightly abusing the notations, we identify the stopped random walk
S = (Sn)06n6N of Proposition 10 with the ray (R0, . . . , RN ,W0, . . . ,WN ) which defines it. The law of
this ray, which will still be denoted by ν, is given by replacing in (2.10) the uniform measure σ(dω0)
on the sphere by the uniform measure on the cone C2α.

A realization of the walk S stopped at N = n will be indifferently referred to as (S0, . . . , Sn), as
(r0, . . . , rn, ω0, . . . , ωn) or as (r0, θ0, ϕ0, . . . , rn, θn, ϕn) where (θ0, ϕ0) are the spherical coordinates of
ω0 and for 1 6 i 6 n, cos(θi) = 〈ωi−1, ωi〉 and ϕi is the azimuth angle of ωi in the frame linked to
ωi−1.

4.1 General principle

For a given ω0 ∈ C2α and for 0 6 k 6 K − 1, we are willing to estimate the conditional probability
P (SN ∈ Vk |W0 = ω0) by generating a Markov chain whose steady-state measure is the conditional
distribution ν|W0=ω0 and by applying LNN for ergodic Markov chains. We then combined this estima-
tion with the classical LNN sampling the initial direction W0 in C2α to obtain an estimate of L(xk)
viewed as in (2.17).

An overview of the MCMC dynamics in this context is the following: Let ω0 ∈ C2α be a fixed initial
direction. The Markov chain starts at time t = 1 in the state S(1) ∈ A with W0 = ω0. At each time
t ∈ N∗, a move (mutation) is proposed from the current state S(t) to the state S′(t) according to a
proposal density q(S(t), ·) and such that the initial direction of S′(t) is still ω0. The chain then jumps
to S′(t) with acceptance probability α(S(t), S′(t)) or stays in S(t) with probability 1 − α(S(t), S′(t)).
This is described in pseudo-code in Algorithm 1. The MCMC simulation generates a Markov chain
{S(t); t > 1} on the space of rays A whose steady-state measure is the desired distribution ν|W0=ω0

(see [26, §2.3.1]).
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Algorithm 1 Metropolis-Hastings algorithm for light propagation

Initialization:
draw ω0 uniformly on C2α,
draw S(1) according to ν|W0=ω0

for t = 1 to T − 1 do
S′(t) ∼ q(S(t), ·)

α(S(t), S′(t))← min

{
1,

ν|W0=ω0 (S
′(t)) q(S′(t), S(t))

ν|W0=ω0 (S(t)) q(S(t), S
′(t))

}

if Rand()< α(S(t), S′(t)) then
S(t+ 1)← S′(t)

else
S(t+ 1)← S(t)

end if
end for

If the ray S(t) = (S0(t), . . . , SNt
(t)) denotes the position of the chain at a given time t, then, for

0 6 k 6 K − 1,

lim
T→∞

1

T

T∑

t=1

1{SNt
(t)∈Vk} = P (SN ∈ Vk |W0 = ω0) almost surely, (4.1)

on condition that the chain {S(t); t > 1} is Harris positive with respect to ν|W0=ω0 . Indeed, this
statement relies on LLN for Harris recurrent ergodic chains, see [19, Theorem 17.0.1].

We can then sample the law of W0 to recover an estimate of P (SN ∈ Vk). Let Mrot ∈ N∗ and let
(ω1

0 , . . . , ω
Mrot
0 ) be a sample of i.i.d. initial directions drawn according to U

(
C2α

)
. For i = 1, . . . ,Mrot

and t = 1, . . . , T , let S(i)(t) denote the rotation of the random walk S(t) with respect to the initial
direction ωi

0, see Fig. 2. For k ∈ {0, . . . ,K − 1}, our Metropolis-Hastings estimator of L(xk) is defined
by

L̂MH(xk) =
c (1− cosα)

2µaMrot T

Mrot∑

i=1

T∑

t=1

1{

S
(i)
Nt

(t)∈Vk

} . (4.2)

This estimator is strongly consistent on condition that the proposal density q(·, ·) of Algorithm 1
provides a Harris recurrent chain.

4.2 Mutation strategy

One of the delicate issues in the implementation of MCMC methods is the choice of a convenient
proposal density q. In our case, we have tested a mixture of mutations of two types for the Metropolis-
Hastings algorithm: rotation-translation and deletion-addition. In order to describe them, let us
introduce some notations. The method uses a perturbed phase function f εg

HG, ε ∈ [−1, 1] which has
an anisotropic coefficient εg instead of g. It also uses two coprime integers 1 6 j < J , which denote
respectively the small and the big size of a length change.

Remark 16. The need for these two numbers to be coprime will be made clearer in the proof of
Proposition 19, as it will ensure that the mutations produce paths of arbitrary length.

Definition 17 (Mutation rule). Let us assume that, at time t ∈ N
∗, the current ray is given by

S(t) = (r0, θ0, ϕ0, . . . , rnt
, θnt

, ϕnt
). Our proposition for the next move from S(t) to S(t + 1) is the

following.

(i) With probability 1
2 , the mutation is of type deletion-addition. Draw ∆(nt) according to the following

law that depends on the size of the current ray

∆(n) ∼





U ({−J,−j, j, J}) , if n > J,

U ({−j, j, J}) , if j 6 n < J,

U ({j, J}) , if 0 6 n < j.
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• If ∆(nt) < 0, then delete the last |∆(nt)| edges of S(t). The proposed path is

S′(t) =
(
r0, θ0, ϕ0, . . . , rnt−∆(nt), θnt−∆(nt), ϕnt−∆(nt)

)
.

• If ∆(nt) > 0, then add ∆(nt) new edges at the end of S(t):

- Draw
(
rnewnt+1, . . . , r

new
nt+∆(nt)

)
i.i.d. according to E(µ).

- Draw
(
θnewnt+1, . . . , θ

new
nt+∆(nt)

)
i.i.d. according to f εg

HG.

- Draw
(
ϕnew
nt+1, . . . , ϕ

new
nt+∆(nt)

)
i.i.d. uniformly on [0, 2π].

The proposed path is

S′(t) =
(
r0, θ0, ϕ0, . . . , rnt

, θnt
, ϕnt

, rnewnt+1, θ
new
nt+1, ϕ

new
nt+1, . . . , r

new
nt+∆(nt)

, θnewnt+∆(nt)
, ϕnew

nt+∆(nt)

)
.

(ii) With probability 1
2 , the mutation is of type rotation-translation. Choose an index i uniformly over

{0, . . . , nt}.

• If i 6= 0, then make a rotation of the path at the i-th edge:

- Draw a new angle θnewi according to f εg
HG.

- Draw a new angle ϕnew
i uniformly on [0, 2π].

The proposed path is (see Fig. 3)

S′(t) = (r0, θ0, ϕ0, . . . , ri, θ
new
i , ϕnew

i , . . . , rnt
, θnt

, ϕnt
) .

• If i = 0, then translate from the initial edge:

- Draw a new edge length rnew0 according to E(µ).

The proposed path is

S′(t) = (rnew0 , θ0, ϕ0, r1, θ1, ϕ1, . . . , rnt
, θnt

, ϕnt
) .

Remark 18. The initial direction is fixed, thus mutations of (θ0, ϕ0) are forbidden. However, the
length r0 has to change from time to time. This is ensured by the translations and this is why the
initial edge need to be considered separately in the mutation rule.

Figure 3: Metropolis-Hastings algorithm. Example of a mutation by rotation.

Let us now compute the proposal density q(S, ·) of this mutation rule. For m ∈ N∗, let

ζ(m) =





1
4 , if m > J,
1
3 , if j 6 m < J,
1
2 , if 0 6 m < j.

Assume that S′ is a mutation of S, denote by i the first index where there is a difference between
them, denote by n′ and n their respective length and set ∆ = n′ − n. We have
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• if ∆ = 0 and i > 1, then q(S, S′) = 1
2

1
n+1

1
2π f εg

HG (θ′i);

• if ∆ = 0 and i = 0, then q(S, S′) = 1
2

1
n+1 µe

−µr′0 ;

• if ∆ < 0, then q(S, S′) = 1
2 ζ(n);

• if ∆ > 0, then q(S, S′) = 1
2 ζ(n)e

−µ
∑∆

k=1 r′n+k

(
µ
2π

)∆∏∆
k=1 f

εg
HG

(
θ′n+k

)
.

From these formulas, it is straightforward to recover the acceptance probability.

The idea behind this mixture of mutations is to find a compromise between large jumping size
of the Markov chain which implies a lot of “burnt” samples, and smaller jumps which provide more
correlated samples, hence a worse convergence. The rotations lead to a good exploration of the domain
at low cost, whereas the addition-deletion mutations ensure the visit of the whole state space A with
W0 = ω0. The use of a perturbed phase function decreases the acceptance probability of the mutations
and thus, increases the number of samples needed in order to converge to the invariant measure. But,
it allows a better exploration of the domain and this why the parameter ε, as well as the sizes j, J ,
need to be adapted on a case by case basis. Finally, we can prove that, with this rule of mutations,
Algorithm 1 produces a Markov chain that satisfies the LLN. This guarantees the convergence of the
estimator defined in (4.2).

Proposition 19. If the chain (S(t))t∈N∗ is obtained by Algorithm 1 with the mutation rule given in

Definition 17, then it is Harris positive with respect to the measure ν|W0=ω0 and the estimator L̂MH(xk)
defined in (4.2) is strongly consistent for all 0 6 k 6 K − 1.

Proof. The fact that ν|W0=ω0 is an invariant measure of (S(t))t∈N∗ is an inherent property of Metropolis-
Hastings algorithm ([24, 26]). The Harris recurrence is then obtained by checking that the chain is
irreducible with respect to ν|W0=ω0 , see [26, Corollary 2]. Let τA = inf {t ∈ N

∗ : S(t) ∈ A} denote
the hitting time of any A ⊂ A such that ν|W0=ω0(A) > 0. We must demonstrate that (S(t))t∈N∗ is
irreducible with respect to ν|W0=ω0 , that is,

Ps (τA < +∞) > 0, for all s ∈ A, (4.3)

where Ps(S(1) = s) = 1. Furthermore, notice that it is sufficient to check this property for subsets A
of the type

A = {ω0} × I0 ×

n∏

i=1

(Ii × Ei) , (4.4)

where n ∈ N∗ and where for all 1 6 i 6 n, the sets Ii ⊂ R+ and Ei ⊂ S2 are all sets of positive
Lebesgue measure.

In order to prove relation (4.3) for sets of the form (4.4), consider the conditional measure νn|W0=ω0

using (2.11). By assumptions on A, we see easily that ν|W0=ω0(A) > 0. Now, notice that by the Markov
property, if τA and τ{ω0}×I0 denote respectively the time for the chain to be in A, resp. in {ω0} × I0,
then we have

Ps (τA < +∞) > Ps

(
τ{ω0}×I0 < +∞

)
P{ω0}×I0 (τA < +∞) , for all s ∈ A.

Now we can lower bound the right hand side of this relation in the following way:
(i) We have that Ps

(
τ{ω0}×I0 < +∞

)
is greater than the probability of deleting all the edges of s

except (r0, ω0) and of modifying its length so that r′0 ∈ I0. This probability is strictly positive, as well
as its acceptance. Indeed, we use here the fact that j and J are coprime (through Bezout’s lemma)
plus elementary relations for uniform distributions to assert that the probability of deleting all the
edges is strictly positive. The positivity of acceptance is due to absolute continuity properties of q(s, ·).
(ii) The same kind of argument works in order to lower bound P{ω0}×I0 (τA < +∞). Namely, this
quantity is greater than the probability to construct directly a ray s ∈ A, which is itself strictly
positive. Indeed, since j and J are mutually prime, it is possible to construct a ray of any desired
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length. Moreover, at each step, the probability of adding an edge (r′i, ω
′
i) ∈ Ii × Ei, as well as its

acceptance are always strictly positive.
We have thus obtained that Ps

(
τ{ω0}×I0 < +∞

)
P{ω0}×I0 (τA < +∞) > 0, which concludes the proof.

Remark 20. The process (Nt)t>1 that gives the length of the ray S(t) at time t behaves like a birth-
death process with time inhomogeneous rates. If there exists an invariant measure of the process
(Nt)t>1, then it must coincide with the negative binomial distribution NB(1, ρ) that drives the length
of a path S ∼ ν. This provides an easy criterium in order to check that the chain has already mixed,
for example with a chi-squared test on the empirical distribution of (Nt)t>1.

5 Simulation and comparison of the methods

In this section, we compare the estimates of the fluence rate L(xk) provided by three methods: Monte
Carlo with Wang-Prahl algorithm (denoted by WANG, see [21, 28]), MC-SOME (see (3.2)) and the
Metropolis-Hastings (MH) (see (4.2)) with the mutation rule given in Definition 17. We tested the
methods in different settings. Here, we present results in a framework corresponding to a healthy
homogeneous rat brain tissue. We chose to follow [1] for the values of the optical parameters (see
Table 1). Other values for rat or human brain can be found in [7, 11, 17]. The volume of the cube

V equals 8 cm3, that is V = [−1, 1]3. It is discretized into voxels whose volume is (0.04)
3
cm3. The

half-opening angle of the optical fiber was set to α = π
10 and the constant c in (2.16) was set c = 1.

We chose the following simulation parameters for the three methods so that they need the same
amount of computational time. Those are

WANG: M = 6000 photons trajectory.

MC-SOME: M = 30000 rays, Mpoints = 40 points chosen in each ray and Mrot = 30 rotations with
respect to the initial direction.

MH j = 10, J = 21, ε = 0.9, T = 250000 steps of the chain and Mrot = 30 rotations with respect to
the initial direction.

In Fig. 4, we picture for each methods, a zoom of the contour plot of the estimates in the plane
x = −0.04. In Fig. 6, we compare the estimates along several lines of voxels (ℓi)i=1,...,6 which are
parallel to the y-axis and pass through the points (0, 0,−0.08), (0, 0,−0.12), (0, 0,−0.16), (0, 0,−0.4),
(0, 0,−0.48) and (0, 0,−0.6) respectively (see Fig. 5). We notice that MC-SOME gives more consistant
estimates than the two other algorithms whose estimates are more noisy. Moreover, it seems that the
MH-estimates are not very symmetric. Perhaps because the algorithm had not converged yet.
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Figure 4: Contour plots of the fluence rate estimates in the plane x = −0.04 for WANG, MC-SOME
and MH.
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Figure 5: Choice of six particular voxels and position of the lines (ℓi)i=1,...,6 in the cube V .
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Figure 6: Fluence rate estimates along the lines (ℓi)i=1,...,6 with WANG, MC-SOME and MH.
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Let us conclude this section by studying the accuracy of the methods by mean of 50 independent
replicates of these estimates. In Fig. 7, the boxplots compare the dispersion of the 50 estimates of each
method in six voxels (vi)i=1,...,6 such that (see Fig. 5)

(0, 0.2, 0) ∈ v1, (0, 0.6, 0) ∈ v2, (0, 0,−0.2) ∈ v3,

(0, 0,−0.6) ∈ v4, (0, 0.2,−0.2) ∈ v5, (0, 0.6,−0.6) ∈ v6. (5.1)

On one hand, we see that MC-SOME is much more consistent than WANG, because of the variance
reduction that we use in MC-SOME. On the other hand, MH gives spread estimates. This is due to
the simulations for which the Markov chain has not yet converged. In Table 2, we have the mean of
the estimates and their mean square error in each of the 6 voxels.

Mean Mean Square Error

Wang MC-SOME M-H Wang MC-SOME M-H

v1 1.203 · 10−5 1.2366 · 10−5 1.3083 · 10−5 1.4484 · 10−12 3.9108 · 10−13 4.5158 · 10−12

v2 2.4309 · 10−7 2.7177 · 10−7 1.6545 · 10−7 6.3788 · 10−15 2.5597 · 10−15 1.4411 · 10−14

v3 2.0014 · 10−5 2.0033 · 10−5 1.8337 · 10−5 2.503 · 10−12 3.0408 · 10−13 1.6200 · 10−11

v4 3.4947 · 10−7 3.5713 · 10−7 2.1497 · 10−7 1.4136 · 10−14 8.1737 · 10−16 1.5819 · 10−14

v5 6.7519 · 10−6 6.6047 · 10−6 5.4786 · 10−6 8.0457 · 10−13 4.4781 · 10−14 1.1378 · 10−12

v6 3.9952 · 10−8 4.217 · 10−8 1.8755 · 10−8 8.4058 · 10−16 6.6977 · 10−17 6.5413 · 10−16

Table 2: Mean and mean square error of the 50 fluence rate estimates in 6 voxels with WANG,
MC-SOME and MH.

6 Inverse problem and sensitivity

For biologists, it is of considerable practical importance to have good estimates of the optical coef-
ficients of the tissue they consider. One way to do this estimate is to compare simulated data with
measurements of the fluence rate in the tissue and adjust the optical parameters of the simulation
until obtaining values close to the measurements. Thanks to the probabilistic representation (2.16),
this problem can be numerically solved as we shall see.

6.1 Sensitivity of the measurements

As a preliminary step towards a good resolution of the inverse problem, we first observe how fluence
rate measurements vary with respect to the optical parameters g, µs and µa. To this aim, we built a
small database of simulations for different values of the parameters and then compared the estimated
fluence rate. The estimates are computed by resorting to MC-SOME, which is the best performing
method among the three we have implemented according to Section 5.

First, we choose a reference simulation obtained with reference parameters (g∗, µ∗
a, µ

∗
s). Then, we

pick n > 1 voxels and consider their respective fluence rate estimates as measurements. That is, we
choose n voxel centers (xki

)i=1,...,n and define

mi = L̂(xki
; g∗, µ∗

a, µ
∗
s), i = 1, . . . , n,

where we recall that L(xki
) is defined by (2.15) with γW0 = 1{ω′

0∈C2α}σ(dω
′
0)/σ(C

2α) and where we

stress the dependence on the optical coefficients by writing L̂(xki
; g∗, µ∗

a, µ
∗
s) ≡ L̂(xki

). Now for each
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Figure 7: Boxplots of 50 fluence rate estimates in the voxels (vi)i=1,...,6 with WANG, MC-SOME and
MH.
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possible triplet of parameters (g, µa, µs), we compute the normalized quadratic error (or evaluation
error)

J(µa, µs, g) =
1

2

n∑

i=1

(
L̂(xki

; g, µa, µs)−mi

mi

)2

. (6.1)

For the dataset of simulations, we use the same settings as in Section 5 (|V | = 8 cm3, the volume

of a voxel is (0.04)
3
cm3 and α = π

10 ). The variable parameters are: g, µa and µs. Their values are
given in Table 3. This choice is motivated by [1, 7, 11, 17]. The anisotropy parameter g does not
vary a lot between tissue type (healthy or tumorous) and it is often even hidden in a reduction of the
scattering coefficient µ′

s = µs(1 − g). For this reason, we chose only three values in a small range of
common values. Concerning the other parameters, we chose five values in intervals covering values
corresponding to healthy and tumorous brain tissues according to [1, 17].

g 0.85 0.90 0.95

µa in cm−1 0.5 0.75 1 1.25 1.5

µs in cm−1 75 90 105 120 135

Table 3: Values of the optical parameters for the study of sensitivity.

Figures 8 and 9 give different representation of the variation of the error J(µa, µs, g) with respect
to the optical parameters. The real values are (µ∗

a, µ
∗
s, g

∗) = (0.75, 105, 0.9) and we set n = 3, xk1 ∈ v2,
xk2 ∈ v4, xk3 ∈ v6 respectively (see Fig. 5). We see that the sensitivity in the parameters µs and g
is very low compared to the sensitivity in µa. In Fig. 8, we see that a wrong value of µa has strong
effects on the error function and that it becomes then almost impossible to see any tendency for the
anisotropy parameter g. Notice also that an undervaluation of µa is worse than an overvaluation in
terms of the error.
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µ
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Figure 8: Colormap of the quadratic error (µa, µs) 7→ J(µa, µs, g) for three values of g, where µs is
displayed on the x axis and µa on the y axis.

6.2 Parameters estimation

This section is devoted to the estimation of the parameters µa and µs only. Indeed, we have seen in
the last section that the sensitivity of the fluence rate with respect to the anisotropic parameter g is
low. Moreover, simulations do not show any monotonicity or tendency in the error for this parameter
because, in our settings, the Monte Carlo error prevails over the evaluation error. In addition, for
our purpose, the uncertainty about g is small in front of the uncertainty of the two other parameters
(see [1]). We shall thus suppose in the sequel that g is known.
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Figure 9: Quadratic error µa 7→ J(µa, µs, g) for three values of g.

With these preliminary considerations in mind, our goal is to solve the following nonlinear least
square minimization problem: Find (µs, µa) in order to minimize

J(µs, µa) =
1

2

n∑

i=1

(
L(xki

;µs, µa)−mi

mi

)2

, (6.2)

where (mi)i=1,...,n are measurements in n different voxels centered at (xki
)i=1,...,n.

The optimization method that we implemented to solve this problem is based on the Levenberg-
Marquardt algorithm (see [12]). This gradient descent algorithm involves the computation of the
gradient, as well as the Hessian matrix of the score function J . It is described in pseudo-code in
Algorithm 2. In this description, we have set Hk = Hess(J)(µk

s , µ
k
a) for k > 0. The term Diag(Hk)

is the diagonal matrix of Hk, λk is the so-called damping factor which may be either constant or
corrected at each step, and τk ∈ R+ controls the step size of each iteration.

Algorithm 2 Gradient descent algorithm for the estimation of µa and µs

Input: measurements (mi)i=1,...,n, initial couple (µ0
s, µ

0
a), precision ε > 0.

1: k ← 0
2: while J(µk

s , µ
k
a) > ε do

3: (µk+1
s , µk+1

a )← (µk
s , µ

k
a)− τk [Hk + λk Diag(Hk)]

−1
∇J(µk

s , µ
k
a)

4: k ← k + 1
5: end while

Output: an approximation (µk
s , µ

k
a) of the real parameters (µ∗

s, µ
∗
a)

The simple form of the objective function in (6.2) allows to express the term on the right hand side
of line 3 in Algorithm 2 explicitly as a function of the partial derivatives of L. Indeed, the gradient of
J is given by

∇J(·) =

n∑

i=1

L(xki
; ·)−mi

m2
i

∇L(xki
; ·), (6.3)

and its Hessian matrix is given by

Hess(J)(·) =
n∑

i=1

(
L(xki

; ·)−mi

m2
i

Hess(L)(xi; ·) +
1

m2
i

∇L(xki
; ·)∇tL(xki

; ·)

)
. (6.4)

Moreover, as stated in the following proposition, the formal representation in Proposition 6 allows
to also use the Monte Carlo method MC-SOME in order to estimate the first order and the second
order partial derivatives of L which can be expressed similarly to (2.18).
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Proposition 21. The partial derivatives of L(xki
;µs, µa) can be expressed as the expectation of fully

simulable random variables. Using the same notations as in (2.17), they are given by

∂L

∂µa
(xki

;µs, µa) = −
c(1− cos(α))

2µa
E


1{SN∈Vki}

N∑

j=0

Rj


 (6.5)

and
∂L

∂µs
(xki

;µs, µa) =
c(1− cos(α))

2µa
E


1{SN∈Vki}


N

µs
−

N∑

j=0

Rj




 . (6.6)

Proof. We start by differentiating term-by-term the Neumann series of Corollary 3. Let us first note
that by definition of Li we have:

∂Li

∂µa
(x, ω0;µs, µa) = −

∫ +∞

0

r exp(−(µs + µa)r)Le(x− rw,w)dr.

Moreover, for n > 1, by definition of T n ◦ Ti (see (2.5)), we also have:

∂ [T n ◦ Ti]Le

∂µa
(x, ω0;µs, µa) = µn

s

∫

Rn
+

dr0 · · · drn


−

n∑

j=0

rj


 exp


−(µs + µa)

n∑

j=0

rj




∫

(S2)(n+1)

dσ⊗(n+1)(ω0, . . . , ωn)

n−1∏

j=0

fHG (ωj, ωj+1) Le

(
x−

n∑

k=0

rkωk, ωn

)
.

Looking back at Section 2.3 and using the same notations, we deduce that

∞∑

n=0

∂ [T n ◦ Ti]Le

∂µa
(x, ω0;µs, µa) = −

∫

A

ν(dr, dω)Gx(r,ω)

|r|∑

i=0

ri,

where we recall that |r| stands for the size of r. Assuming that the left-hand side coincides with
the partial derivative ∂L

∂µa
, then (6.5) is found just like (2.17) and the same arguments provide (6.6),

considering that for all n ≥ 0

∂ [T n ◦ Ti]Le

∂µs
=

n

µs
[T n ◦ Ti]Le +

∂ [T n ◦ Ti]Le

∂µa
.

To conclude the proof, notice that the match between the partial derivatives and the term-by-term
differentiation of the Neumann series is ensured by the fact that the operator T n ◦ Ti is infinitely
continuously differentiable for all n and by the uniform convergence of the corresponding sequences of
truncated sums

sm =

m∑

n=0

∂[T n ◦ Ti]Le

∂µs
(x, ω0;µs, µa), m > 0.

Remark 22. Similar formula to (6.5) and (6.6) can be easily found for the second order derivatives
∂2L
∂µ2

s
, ∂2L

∂µs∂µa
and ∂2L

∂µ2
a
.

The probabilistic representation of L(xki
;µs, µa) in (2.18) and its partial derivatives allows us

to estimate the score J(µs, µa), its gradient and its Hessian matrix by Monte Carlo methods. A
sole sample (y1, . . . , yn) ∈ A

n of n observations of the random ray Y can be used to estimate the
expectations in L, ∇L(xki

; ·) and Hess(L)(xi; ·) at the same time. We denote these estimates by

L̂, ∇̂L(xki
; ·) and Ĥess(L)(xi; ·) and the corresponding score by Ĵ . The updating rule at line 3 in

Algorithm 2 becomes then

(µk+1
s , µk+1

a ) = (µk
s , µ

k
a)− τk

[
Ĥk + λk Diag(Ĥk)

]−1

∇̂J(µk
s , µ

k
a). (6.7)
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Implementation and discussion. The randomness coming from Monte Carlo estimation of the
score J , of its gradient and of its Hessian matrix during the run of the algorithm, makes a precise
estimation of the real values of (µ∗

a, µ
∗
s) difficult. We observed that far from the real value µ∗

a, the
eigenvalues of the Hessian matrix Ĥk are very small and that their sign can vary a lot because of
the volatility of the estimates. Conversely, near the real value µ∗

a, the estimate Ĥk is more robust
and its eigenvalues are almost always both positive, which legitimates the quadratic approximation of
Levenberg-Marquardt algorithm. For these reasons, we implemented a hybrid algorithm which chooses
between the Levenberg-Marquardt descent and the classic steepest gradient descent depending on the
sign of the eigenvalues of Hk. If they are both positive, one moves to the next point following (6.7),
else one makes a move in the opposite direction of the gradient, −∇̂J .

In Fig. 10 and 11, we can see two examples of descent of our algorithm. The settings are the
following: (1) we choose n = 3 positions for the measurements: xk1 ∈ v2, xk2 ∈ v4, xk3 ∈ v6 (see
Fig. 5) and the values of the measurements m1,m2 and m3 are taken from the database of simulations
described in Sec. 6.1 with the desired parameters, (2) the anisotropy factor is set to g = 0.9, (3) the
damping parameter is constant λ = 0.01, (4) the precision parameter (see Algo. 2) is set to ε = 0.005,
(5) the sequence (τk)k>1 controlling the step size of each iteration is decreasing in k and depends on
the score of the iteration, as well as on the sign of the eigenvalues of Hk.

In Fig. 10, the reference parameter are (µ∗
a = 1, µ∗

s = 75). Notice the oscillations around µ∗
a. Those

descent zigzags near the real value of µa are also apparent in the other descent in Fig. 11 for which
(µ∗

a = 1, µ∗
s = 105). They correspond to iteration where the descent is done according to the classic

steepest descent. The iterations for which one moves more vertically correspond, as for them, to the
case where the descent is done according to (6.7). As we can see, a satisfying estimate of µ∗

a comes up
rapidly, whereas µ∗

s is more difficult to approach. This is due to the low sensitivity of J with respect
to µs discussed in the previous section.
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Figure 10: Parameters estimation with an adaptation of Levenberg-Marquardt descent algorithm. The
real value of (µ∗

a, µ
∗
s) is (1, 75). The starting point is (2, 90). The final estimate is (1.07, 76.02) with a

score equal to J = 0.0035.
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