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2Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502,

Vandœuvre-lès-Nancy, F-54506, France
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Abstract

Light propagation in turbid media is driven by the equation of radiative transfer. We give a
formal probabilistic representation of its solution in the framework of biological tissues and we
implement algorithms based on Monte Carlo methods in order to estimate the quantity of light
that is received by an homogeneous tissue when emitted by an optic fiber. A variance reduction
method is studied and implemented, as well as a Markov chain Monte Carlo method based on
the Metropolis-Hastings algorithm. The resulting estimating methods are then compared to the
so-called Wang-Prahl (or Wang) method. Finally, the formal representation allows to derive a
non-linear optimization algorithm close to Levenberg-Marquardt that is used for the estimation of
the scattering and absorption coefficients of the tissue from measurements.

Keywords. Light propagation, equation of radiative transfer, Markov chain Monte Carlo meth-
ods, parameter estimation.

2010 Mathematics Subject Classification. Primary : 78M31; Secondary : 65C40, 60J20.

1 Introduction

Photodynamic therapy (PDT) is a type of phototherapy used for treating several diseases such as acne,
bacterial infection, viruses and some cancers. The aim of this treatment is to kill pathological cells
with a photosensitive drug that is absorbed by the target cells and that is then activated by light. For
appropriate wavelength and power, the light beam makes the photosensitizer produce singlet oxygen
at high doses and induces the apoptosis and necrosis of the malignant cells. This technique is also
used in some framework to localize lesions.

Since the late 1970s, there have been a large development of this kind of therapy for cancers follow-
ing the discovery of the hematoporphyrin derivative as an effective tumor-localizing photosensitizer.
Restricted, at the beginning, to skin because of its easy access, this localization and treatment tool
spread rapidly to a wide range of lesions such as bladder, lung, brain or liver cancer. See [27, 28] for a
review on PDT and [9] for a review on tumor localization by hematoporphyrin derivative fluorescence.

Due to the complexity of interactions between physical, chemical and biological aspects and due
to the high cost and the poor reproducibility of the experiments, there is a real demand in good
mathematical and physical models which might help to better control and understand PDT responses.
The two main questions to which these models should answer are:

1. What is the optimal shape and position of the light source in order to optimize the damage on
malignant cells?

2. Is there a way to identify the physical parameters of the tissue which drive the light propagation?

The light propagation phenomenon involves three processes: absorption, emission and scattering
that are described by the so-called equation of radiative transfer (ERT), see [7]. In general, this
equation does not admit any explicit solution, and its study relies on methods of approximation. One
of them is its approximation by the diffusion equation and the use of finite elements methods to solve it
numerically (see for example [2]). An other approach, which appeared in the 1970s, is the simulation of
particle-transport with Monte Carlo (MC) method (see [5, 6, 30] and references therein). This method
has been extended by several authors in order to deal with the special case of biological tissues and
there is now a consensus in favor of the algorithm proposed by L. Wang and S. L. Jacques in [26] and
initiated by S. A. Prahl in [19] and S. A. Prahl et al. in [20]. This method is based on a probabilistic
interpretation of the trajectory of a photon. It is widely used and there exist now turnkey softwares
based on this method. However, this method is time consuming in 3D and the associated softwares lie
inside some kind of black boxes. Due to a slight lack of formalism, it is difficult to speed it up while
controlling the estimation error, or to adapt it to inhomogenous tissues such as infiltrating gliomas.
Finally, even though there exist several methods in order to estimate the optical parameters of the
tissue (see for example [16, 11, 3, 18]), one still misses formal representations that answer to the
questions of identifiability.

In the current work, we wish to give a new point of view on simulation issues for ERT, starting
from the very beginning. Specifically, we address three problems:
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(i) We first derive a rigorous probabilistic representation of the solution to the ERT in homogeneous
tissues, which will help us to propose an alternative MC method to Wang’s algorithm [26]. Then we
also propose a variance reduction method.

(ii) Interestingly enough, our formulation of the problem also allows us to design quite easily a Markov
chain Monte Carlo (MCMC) method based on Metropolis-Hastings algorithm. We have compared
both MC and MCMC algorithms, and our simulation results show that the plain MC method is still
superior in case of an homogeneous tissue. However, MCMC methods induce quick mutations, which
paves the way to very promising algorithms in the inhomogenous case. We shall go back to this issue
in a subsequent publication.

(iii) Finally we handle the inverse problem (of crucial importance for practitioners), consisting in
estimating the optical coefficients of the tissue according to a series of measurements. Towards this aim,
we derive a probabilistic representation of the variation of the fluence with respect to the absorption and
scattering coefficients. This leads us to the implementation of a Levenberg-Marquardt type algorithm
that gives an approximate solution to the inverse problem.

Our work should thus be seen as a complement to the standard algorithm described in [26]. Focusing
on a rigorous formulation, it opens the way to a thorough analysis of convergence, generalizations to
MCMC type methods and a mathematical formulation of the inverse problem.

The paper is organized as follows. We derive the probabilistic representation of the solution to
the ERT in Section 2. In Sections 3 and 4, we describe the MC and MCMC algorithms which are
compared to Wang’s algorithm in Section 5. Finally, the sensitivity of the measures with respect to
the optical parameters of the medium, as well as their estimation are treated in Section 6.

2 Probabilistic representation of the fluence rate

2.1 The radiative transfer equation

In the particular case of biological tissues the equation of radiative transfer takes the following form,
see [19]. Let D = R

3 be the set of positions in the tissue and S
2 be the unit sphere in R

3. The quantity
of light at x in the direction ω is denoted by L(x, ω) and satisfies

L(x, ω) = Le(x, ω) + TL(x, ω), x ∈ D, ω ∈ S
2, (2.1)

where Le(x, ω) is the emitted light from x in direction ω and T is a linear operator defined by

TL(x, ω) = µs

∫

R+

dr exp(−µr)

∫

S2

dσ(ω̂) f(ω, x− ωr, ω̂)L(x− ωr, ω̂), (2.2)

where µs > 0 is the scaterring coefficient, µ the total absorption coefficient (or attenuation coefficient),
f the so-called bidirectional scattering distribution function and σ the uniform probability measure on
the unit sphere S

2. The total absorption coefficient µ is the sum of the scaterring coefficient µs and
the simple absorption coefficient µa > 0. In the following, we shall always assume that the albedo
coefficient ρ := µs

µ satisfies ρ < 1.
In the particular case of homogeneous biological tissues, the scattering function is given by the

so-called Henyey-Greenstein function, see [13], that is

f(ω, x, ω̂) = fHG(ω, ω̂) =
1− g2

(1 + g2 − 2g〈ω, ω̂〉)3/2
, ω, ω̂ ∈ S

2, ∀x ∈ D, (2.3)

where the constant g ∈ [0, 1) is the anisotropy factor of the medium. The function ω̂ 7→ fHG(ω, ω̂) is
a bounded and infinitely differentiable probability density function on S

2 with respect to the uniform
probability σ. It only depends on the angle θ between ω and ω̂ since 〈ω, ω̂〉 = cos(θ). The greater the
anisotropic parameter g, the more likely the large values of cos(θ) and the less the scattering of the
ray (see Fig. 1).
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Figure 1: Density function of cos(θ) = 〈ω, ω̂〉 when ω̂ is scattered according to the Henyen-Greenstein
function fHG(ω, ·) for several values of the anisotropy parameter g.

2.2 Neumann series expansion of the solution

In general, (2.1) admits no analytical solution and a classical way to express its solution is to expand
the equation in Neumann series. This method is based on the next classical and general result.

Theorem 1 ([29] p.69). Let B be a Banach space equipped with a norm ‖ · ‖ and A a linear operator
on B. If ‖A‖ < 1, then the Neumann series

∑∞
n=0 A

n converges, the operator Id−A is invertible and
the equation x = Ax+ x0 admits a unique solution given by

x = (Id−A)−1x0 =

∞∑

n=0

Anx0,

for any x0 ∈ B.

In order to apply Theorem 1 in our context, let us now bound the norm of the operator T defined
above by (2.2).

Lemma 2. Let L∞(S2×R3;R) be the Banach space of essentially bounded real-valued functions defined
on S

2 × R
3. The operator T : L∞(S2 × R

3;R) → L∞(S2 × R
3;R) defined in (2.2), with f given by

(2.3), satisfies ‖T‖ = ρ < 1, where we recall that we have set ρ := µs

µ < 1.

Proof. Let ℓ ∈ L∞(S2 × R
3;R). We have

|Tℓ(x, ω)| 6 µs

∫

R+

dr exp(−µr)

∫

S2

dσ(ω̂) |fHG(ω, ω̂) ℓ(x− ωr, ω̂)|

6 µs‖ℓ‖∞

∫

R+

dr exp(−µr) =
µs

µ
‖ℓ‖∞,

since fHG is a density function on S
2. Thus, ‖T‖ 6 µs

µ and since T1 ≡ µs

µ , we obtain ‖T‖ = µs

µ and
the proof is complete.

As a corollary of the previous considerations, we are able to derive an analytic expansion for the
solution to equation (2.1):

Corollary 3. If Le ∈ L∞((S2 × R
3;R), then the radiative transfert equation (2.1) with a phase

function given by (2.3) admits a unique solution L in L∞(S2×R
3;R). Moreover, L can be decomposed
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as L =
∑∞

n=0 T
nLe, where T 0 ≡ Id and for n ≥ 1, Tn is the linear operator on L∞(S2×R

3;R) defined
by

Tnℓ(x, ω0) = µn
s

∫

Rn
+

dr1 · · · drn exp


−µ

n∑

j=1

rj



∫

S2n

dσ⊗n(ω1, . . . , ωn)

n−1∏

j=0

fHG (ωj , ωj+1) ℓ

(
x−

n−1∑

k=0

ωkrk+1, ωn

)
. (2.4)

Proof. Theorem 1 and Lemma 2 provide the existence and uniqueness of the solution, as well as its
form. Formula (2.4) is then found by induction.

Our next step is now to recast representation (2.4) into a probabilistic formula.

2.3 Probabilistic representation

The Neumann expansion of T enables us to express
∑∞

n=0 T
nLe as an expectation. To this aim, let us

introduce some notation. Let us define

A =

∞⋃

n=1

S
2 ×Mn, with Mn = R

n
+ ×

(
S
2
)n

. (2.5)

We denote by (ω0, r,ω) a generic element of A and by (ω0, rn,ωn) a generic element of S2 ×Mn for
n ≥ 1 with rn = (r1, . . . , rn) and ωn = (ω1, . . . , ωn). If (ω0, r,ω) ∈ A, we set

|r| =
∞∑

n=1

n1S2×Mn
(ω0, r,ω) (2.6)

and call it size or length of the path. For n > 1, let

G(n)
x (ω0, rn,ωn) = Le

(
x−

n−1∑

k=0

ωkrk+1, ωn

)
(2.7)

be defined on S
2 ×Mn and let

Gx(ω0, r,ω) =

∞∑

n=1

G(n)
x (ω0, r,ω)1Mn

(r,ω) (2.8)

be a function on A. Let Y = (W0,R,W ) be a A-valued random variable defined on a probability
space (Ω,F ,P), whose law ν is given by

ν(F ) =

∞∑

n=1

(1− ρ)ρn−1νn
(
F ∩

(
S
2 ×Mn

))
, (2.9)

with νn the probability measure on S
2 ×Mn defined by

νn(dω0, drn, dωn)

= µn e−µ
∑n

j=1 rj

n−1∏

j=0

fHG (ωj , ωj+1) γW0
(dω0)drn σ

⊗n(dωn), (2.10)

where γW0 is any probability measure on S
2. With these notations in hand, we have the following

representation formula for the solution of (2.1).
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Proposition 4. The series
∑∞

n=0 T
nLe can be expressed as

L(x, ω) =

∞∑

n=0

TnLe(x, ω) = Le(x, ω) +
ρ

1− ρ
E [Gx(Y ) |W0 = ω] . (2.11)

Proof. The proof is straightforward starting from (2.4).

Remark 5. In the following, we will call the random variable Y = (W0,R,W ) a ray. Notice that it
does not correspond exactly to a ray of light in the physics sense, since Y has a finite length (though
random) and since a given realization of Y does not carry the information due to light absorption.
Also notice that Y owns a complete probabilistic description which allows to exactly simulate it (see
Proposition 10 for simulation considerations).

2.4 Model for light propagation

Observe that our formula (2.11) induces a Monte Carlo procedure to estimate L(x, ω) for each (x, ω) ∈
R

3 × S
2 based on the simulation of independent copies of Y . Nevertheless this procedure is time

consuming. Indeed, assuming that the light is only emitted by an optical fiber, many realizations y of
Y lead to a null contribution in the estimation of L(x, ω). Our aim is now to accelerate our simulation
by means of a coupling between random variables corresponding to different (x, ω). Towards this aim,
we now focus on an averaged model for light propagation.

Let thus V ⊂ R
3 be a cube whose center coincides with the origin. We discretize it into a partition

of K smaller cubes (voxels in the image processing terminology) {Vk, k = 0, . . . ,K− 1}, whose volume
equals h3, h ∈ R+ and such that the origin is the center of V0. Let us denote by xk the center of the
voxel Vk. We work under the following simplified assumption for the form of the light source:

Hypothesis 6. We assume that the only emission of light in the domain V comes from the optical
fiber. Let C2α ⊂ S

2 denote the cone with opening angle 2α, whose summit is placed at the origin and
whose axis follows −~e3. The light source is defined by S = {(x, ω) : x ∈ V0, ω ∈ C2α}. We assume
that the emission of light satisfies

Le(x, ω) = c1V0×C2α(x, ω) :=

{
c, if (x, ω) ∈ V0 × C2α,

0, otherwise,
(2.12)

where c > 0 is a given constant.

This model remains close to reality and it is possible to refine it by weighting the light directions
of the source in order to stick better to the shape of the fiber. With Hypothesis 6 in mind, we are
interested in estimating the fluence at the center of the voxels Vk, k 6= 0, that is the mean light
intensity averaged in all directions with respect to a certain probability measure γW0

:

L(xk) :=

∫

S2

L(xk, ω0) γW0
(dω0). (2.13)

This quantity admits a nice probabilistic representation.

Proposition 7. Let k ∈ {0, . . . ,K−1} and let Y = (W0,R,W ) be a random variable with distribution
ν defined by (2.9). Then the fluence L(xk) at the center xk of the voxel Vk, which is defined by (2.13),
can also be expressed as

L(xk) = Le(xk) +
ρ c

1− ρ
P


xk −

|R|−1∑

i=0

Ri+1Wi ∈ V0, W|R| ∈ C2α


 (2.14)

where we recall that the length |R| of the ray Y is defined by (2.6).
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Proof. Noting that γW0 is the distribution of W0 and invoking Proposition 4 we get

L(xk) = Le(xk) +
ρ

1− ρ
E [Gxk

(Y )]

where Gxk
is defined by (2.8). Then using equations (2.7) and (2.6), we get

Gxk
(Y ) = Le


xk −

|R|−1∑

i=0

Ri+1Wi, W|R|


 .

Now applying Hypothesis 6, the random variable Gxk
(Y ) can be expressed as

Gxk
(Y ) = c1{

xk−
∑|R|−1

i=0 Ri+1Wi∈V0,W|R|∈C2α
},

which finishes our proof.

Let us, from now on, consider the particular case where W0 is distributed uniformly on the unit
sphere, that is γW0

(dω0) ≡ σ(dω0). In this particular (but very natural) case, the following property
will be the basis of our coupling method:

Proposition 8. If γW0(dω0) ≡ σ(dω0), then for all n ∈ N
∗, the probability measure νn defined in (2.10)

satisfies
νn(dω0, drn, dω1, . . . , dωn) = νn(dωn, drπn

, dωn−1, . . . , dω0),

where πn is any permutation of (r1, . . . , rn).

Proof. Notice first that in the definition of νn in (2.10), (r1, . . . , rn) are mutually independent, so the
vector (rπn(1), . . . , rπn(n)) has the same law as (r1, . . . , rn). Moreover, the phase function is symmetric:
fHG(ω, ·) = fHG(·, ω). Replacing γW0

(dω0) by σ(dω0) in (2.10) and replacing the terms fHG(ωj , ωj+1)
by fHG(ωj+1, ωj), we obtain immediately the desired property.

Corollary 9. Assume that γW0(dω0) ≡ σ(dω0) and consider Y = (W0,R,W ) a random variable
with distribution ν defined by (2.9). Then for all n ∈ N

∗, on the event
{
Y ∈ S

2 ×Mn

}
, for any

j = 1, . . . , n, the marginal distribution γWj
of any direction Wj is the uniform probability on S

2.

Proof. This is a direct consequence of the previous proposition. To see this, it suffices to integrate the
law νn defined in (2.10) with respect to all variables except for Wj and use the fact that fHG(ω, ·) =
fHG(·, ω) is a density function on S

2.

Now, instead of seeing Y as a ray starting at xk which possibly hits the light source V0 × C2α, we
can imagine that it starts at the center of the light source and it possibly hits the voxel Vk in any
direction.

Proposition 10. Assume that γW0
(dω0) ≡ σ(dω0). Then, for any 1 6 k 6 K − 1

L(xk) =
ρc(1− cosα)

2(1− ρ)
P (SN ∈ Vk) , (2.15)

where SN is a random variable that can be exactly simulated in the following way: consider a geometric
random variable N is a with parameter 1− ρ and for all n > 1, set

Sn =
n∑

i=1

RiWi,

with (Ri)i≥1 and (Wi)i≥0 satisfying the following assertions:

• (Ri)i≥1 is a sequence of independent identically distributed (i.i.d.) exponentially random variables
of parameter µ such that E(Ri) = µ−1.
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• W0 is uniformly distributed on the cone C2α.

• for any i ≥ 1, the conditional distribution of Wi given (W0, . . . ,Wi−1) = (ω0, . . . , ωi) is fHG(ωi−1, ωi)σ(dωi).

• N , (Ri)i>1 and (Wi)i>0 are independent.

Proof. Let k ∈ {1, . . . ,K − 1}. Notice that, if Vk + x denotes the translation of the voxel Vk by the
vector x ∈ R

3, then it is clear that V0 + xk = Vk. Furthermore, since k 6= 0, Le(xk) = 0. Therefore,
we can rewrite (2.14) as

L(xk) =
ρc

1− ρ
P




|R|−1∑

i=0

Ri+1Wi ∈ Vk,W|R| ∈ C2α


 , (2.16)

where the distribution of Y = (W0,R,W ) is the probability measure ν defined by (2.9) with γW0(dω0) ≡
σ(dω0). Then,

L(xk) =
ρc

1− ρ

+∞∑

n=1

(1− ρ)ρn−1
P

(
n−1∑

i=0

Ri+1Wi ∈ Vk,Wn ∈ C2α

)

where the distribution of (W0, R1, . . . , Rn,W1, . . . ,Wn) is the probability νn defined by (2.10). There-
fore, applying Proposition 8, we get

L(xk) =
ρc

1− ρ

+∞∑

n=1

(1− ρ)ρn−1
P

(
n∑

i=1

RiWi ∈ Vk,W0 ∈ C2α

)
.

By definition of νn, we easily see that

P

(
n∑

i=1

RiWi ∈ Vk, W0 ∈ C2α

)
= σ(C2α)P (Sn ∈ Vk) . (2.17)

This allows to replace, in the description of the random walk S = (Sn)n>1, the random variable

W0 ∼ U(S
2) by a random variable W ′

0 uniformly distributed on the cone C2α. Since N is a geometric
random variable of parameter 1−ρ independent with the random walk S, this leads to equation (2.15).

Finally, the simulation of the sequence (Wi)i>1 is obtained as follows. The direction Wi of the
i-th step of the random walk is sampled relatively to the direction Wi−1. We sample the spherical
angles (Θi,Φi) between the two directions according to the Henyey-Greenstein phase function. Namely,
cos (Θi) = 〈Wi−1,Wi〉 owns the following invertible cumulative distribution function

F−1(y) =
1

2g

(
1 + g2 −

(
1− g2

1− g + 2gy

)2
)
, y ∈ [0, 1]

and Φi, the azimuth angle of Wi in the frame linked to Wi−1, is uniformly distributed on [0, 2π],
see (2.3). To recover the cartesian coordinates of the directions, we inductively apply appropriate
changes of frame. The corresponding formulas can be found in [19, p. 37].

Remark 11. Notice that SN does not depend on the voxel xk under consideration. This permits
to use a single sample of realizations of this random variable in order to estimate the right hand
side of (2.15) for all k ∈ {1, . . . ,K − 1} simultaneously. We call this improvement coupling, meaning
that the random variables related to the Monte Carlo evaluations at different voxels are completely
correlated.

3 Monte Carlo approach with variance reduction

In the last section, we have derived a probabilistic representation of L(xk) for every voxel Vk by means
of the arrival position of a random walk (Sn)n>1 stopped at a geometric time. This classically means
that L(xk) can be approximated by MC methods. We first derive the expression of the approximate
fluence by means of the basic MC method and then describe the variance reduction method that we
implemented.

8



Proposition 12. Let us consider a random walk S = (Sn)n≥1 and a geometric random variable
N as defined in Proposition 10. Let (Si, Ni)1≤i≤M be M independent copies of (S,N). Then, for
k = 1, . . . ,K − 1,

L̂MC(xk) :=
ρc (1− cosα)

2(1− ρ)M

M∑

i=1

1{

Si
Ni

∈Vk

} (3.1)

is an unbiased and strongly consistent estimator of L(xk).

Proof. This statement follows simply from the discussion of the previous section and the law of large
numbers (LNN).

In addition to this proposition, let us highlight the fact that central limit theorem provides
confidence intervals for the estimators L̂MC(xk). Furthermore, owing to Remark 11, the family
(Si, Ni)1≤i≤M enables to estimate the fluence L(xk) for all k = 1, . . . ,K − 1 at once.

The reader should be aware of the fact that the quantity 1 − ρ is small in general in biological
tissues, which means that the size of the ray will often be large. Typical values of the parameters
are provided in Table 1. Therefore, sampling a ray is relatively time consuming and it is necessary to
improve the basic Monte Carlo algorithm in order to reduce the variance of the estimates.

µs µa µ ρ g

healthy tissue 280 cm−1 0.57 cm−1 280.57 cm−1 0.998 0.9

tumor 73 cm−1 1.39 cm−1 74.39 cm−1 0.981 0.9

Table 1: Values given by [1] for the optical parameters in the rat brain for a wavelength λ = 632 nm
(red light).

Furthermore, because of the formulation (2.16), only the last point of each whole ray is used in the
estimation. It is however possible to take into account more points of the rays and still have unbiased
estimators. Finally, the angular symmetry of the problem, allows us to replicate observed rays by
applying rotation. We took these two considerations into account and named the resulting method
Monte Carlo with some points (MC-SOME). The idea is to firstly draw some random walks
which share the same initial direction and to pick a given number of points of each walk. Then, we
apply rotations to that set of points with respect to different initial directions. We finally count the
number of points in each voxel. This artificially increase the size of the samples and thus reduce the
variance of our estimation of L(xk). Specifically, the resulting estimator is given by :

Definition 13 (MC-SOME). Let M,Mpoints,Mrot ∈ N
∗ be the parameters of the method. Let us

assume that the following assertions holds:

• (W j
0 )1≤j≤Mrot are i.i.d. copies of W0 ∼ U(C

2α).

• N ℓ
i , 1 6 i 6 M , 1 6 ℓ 6 Mpoints, are i.i.d. copies of a geometric random variable with parame-

ter 1− ρ.

•
(
Si
n

)
n≥1

, 1 ≤ i ≤M , are i.i.d. copies of the random walk S defined in Proposition 10, all sharing

the same initial direction W 1
0 .

• The sequences
(
N ℓ

i

)
i,ℓ

and
(
W

j
0 , S

i
n

)
i,j

are independent.

Let S
i,j

Nℓ
i

denotes the N ℓ
i -th point of the i-th random walk

(
Si
n

)
n≥1

after a rotation corresponding to

the j-th initial direction W0 = W
j
0 .
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Then, for k ∈ {1, . . . ,K − 1}, the MC-Some estimate of L(xk) is defined by

L̂MC-SOME(xk) =
ρc (1− cosα)

2(1− ρ)MrotMpointsM

M∑

i=1

Mpoints∑

ℓ=1

Mrot∑

j=1

1{

Si,j

Nℓ
i

∈Vk

} . (3.2)

This estimator is unbiased and strongly consistent. Its construction is illustrated in Figure 2 and
it will be compared to Wang’s algorithm estimator in Section 5.

s
ss

sss
s

s

0
0 r

r

Figure 2: Description of MC-SOME method. In this example, the grey path is a rotation of the black
one with respect to its initial direction ω

j+1
0 and M = 4.

4 A Metropolis-Hastings algorithm for light propagation

Inspired by results in computer graphics, see [14, 23, 25], we implemented a Metropolis Hastings
algorithm which is a Markov chain Monte Carlo method (MCMC) by random walk [12, 21]. We shall
first discuss general principles and then practical implementation issues.

For simplicity reasons, by slightly abusing the notations, we identify the stopped random walk
S = (Si)16i6N of Proposition 10 with a ray and consider that S is a A-valued random variable
distributed according to ν in (2.9), with γW0 = U(C2α) in (2.10). A realization of the walk S

stopped at N = n will be indifferently referred to by (S1, . . . , Sn), by (ω0, r1, . . . , rn, ω1, . . . , ωn) or by
(θ0, ϕ0, r1, θ1, ϕ1, . . . , rn, θn, ϕn) where (θ0, ϕ0) are the spherical coordinates of ω0 and for 1 6 i 6 n,
cos(θi) = 〈ωi−1, ωi〉 and ϕi is the azimuth angle of ωi in the frame linked to ωi−1.

4.1 General principle

For a given ω0 ∈ C2α and for 1 6 k 6 K − 1, we are willing to estimate the conditional probability
P (SN ∈ Vk |W0 = ω0) by generating a Markov chain whose steady-state measure is the conditional
distribution ν|W0=ω0

and by applying LNN for ergodic Markov chains. We then combined this estima-
tion with the classical LNN sampling the initial direction W0 in C2α to obtain an estimate of L(xk)
viewed as in (2.15).

An overview of the MCMC dynamics in this context is the following: Let ω0 ∈ C2α be a fixed
initial direction. The Markov chain starts at time t = 1 in the state S(1) ∈ A with W0 = ω0. At each
time t ∈ N

∗, a move (mutation) is proposed from the current state S(t) to the state S′(t) according to
a proposal density q(r, s) and such that the initial direction of S′(t) is still ω0. The chain then jumps
to S′(t) with acceptance probability α(S(t), S′(t)) or stay in S(t) with probability 1 − α(S(t), S′(t)).
This is described in pseudo-code in Algorithm 1. The MCMC simulation generates a Markov chain
{S(t); t > 1} on the space of rays A whose steady-state measure is the desired distribution ν|W0=ω0

(see [24, §2.3.1]).
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Algorithm 1 Metropolis-Hastings algorithm for light propagation

Initialization:
draw ω0 uniformly on C2α,
draw S(1) according to ν|W0=ω0

for t = 1 to T − 1 do
S′(t) ∼ q(S(t), ·)

α(S(t), S′(t))← min

{
1,

ν|W0=ω0 (S
′(t)) q(S′(t), S(t))

ν|W0=ω0
(S(t)) q(S(t), S′(t))

}

if Rand()< α(S(t), S′(t)) then
S(t+ 1)← S′(t)

else
S(t+ 1)← S(t)

end if
end for

If the ray S(t) = (S1(t), . . . , SNt
(t)) denotes the position of the chain at a given time t, then, for

1 6 k 6 K − 1, then, almost surely,

lim
T→∞

1

T

T∑

t=1

1{SNt
(t)∈Vk} = P (SN ∈ Vk |W0 = ω0) , (4.1)

on condition that the chain {S(t); t > 1} is Harris positive with respect to ν|W0=ω0
. Indeed, this

statement relies on LLN for Harris recurrent ergodic chains, see [17, Theorem 17.0.1].
We can then sample the law of W0 to recover an estimate of P (SN ∈ Vk). Let (ω1

0 , . . . , ω
Mrot
0 ),

Mrot ∈ N
∗ be a sample of i.i.d. initial directions drawn according to U

(
C2α

)
and for i = 1, . . . ,Mrot,

t = 1, . . . , T , let S(i)(t) denote the rotation of the random walk S(t) with respect to the initial direction
ωi
0, see Fig. 2. For k ∈ {1, . . . ,K − 1}, our Metropolis-Hastings estimator of L(xk) is defined by

L̂MH(xk) =
ρc (1− cosα)

2(1− ρ)Mrot T

Mrot∑

i=1

T∑

t=1

1{

S
(i)
Nt

(t)∈Vk

} . (4.2)

This estimator is strongly consistent on condition that the proposal density q of Algorithm 1 provides
a Harris recurrent chain.

4.2 Mutation strategies

One of the delicate issues in the implementation of MCMC methods is the choice of a convenient
proposal q. In our case, we have tested a mixture of mutations of three types for the Metropolis-
Hastings algorithm. In order to describe them, let us introduce some notation: first, we have made use
of a perturbed phase function. Namely, let ǫ ∈ [−1, 1]. Then the perturbed phase function is defined
by a function f

ǫg
HG, with ǫg as anisotropic coefficient instead of g. We shall also define some length

change by two coprime integers 1 6 j < J , which denote respectively the small and the big size of a
length change.

Remark 14. We have chosen two coprime numbers j and J in order to produce paths of arbitrary
length with our successive length changes.

Definition 15 (Mutation rules). Let us assume that, at time t ∈ N
∗, the current ray is given by

S(t) = (θ0, ϕ0, r1, θ1, ϕ1, . . . , rnt
, θnt

, ϕnt
). Our proposition for the next move from S(t) to S(t+ 1) is

the following.

(i) With probability 1
2 , the mutation is a rotation:

• Choose an index i uniformly over {1, . . . , nt}.

• Draw a new angle θnewi according to f
ǫg
HG.
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Figure 3: Metropolis-Hastings algorithm. Example of a mutation by rotation.

• Draw a new angle ϕnew
i uniformly on [0, 2π].

If nt > 1, then

• The proposed path is S′(t) = (θ0, ϕ0, r1, θ1, ϕ1, . . . , ri, θ
new
i , ϕnew

i , . . . , rnt
, θnt

, ϕnt
), see Fig. 3.

If nt = 1, then

• Draw a new edge length rnew1 according to E(µ).

• The proposed path is S′(t) = (θ0, ϕ0, r
new
1 , θnew1 , ϕnew

1 ).

(ii) With probability 1
2 , the mutation is of type deletion-addition: Let ∆(nt) be a random function of

the size of the current ray, defined by

∆(n) ∼





U ({−J,−j, j, J}) , if n > J + 1,

U ({−j, j, J}) , if j + 1 6 n 6 J,

U ({j, J}) , if 1 6 n 6 j.

Then:

• If ∆(nt) < 0, we delete |∆(nt)| edges of S(t) and the proposed path is

S′(t) =
(
θ0, ϕ0, r1, θ1, ϕ1, . . . , rnt−∆(nt), θnt−∆(nt), ϕnt−∆(nt)

)
.

• If ∆(nt) > 0, then add ∆(nt) edges at the end of S(t) such that

-
(
rnewnt+1, . . . , r

new
nt+∆(nt)

)
are i.i.d. according to E(µ).

-
(
θnewnt+1, . . . , θ

new
nt+∆(nt)

)
are i.i.d. according to f

ǫg
HG.

-
(
ϕnew
nt+1, . . . , ϕ

new
nt+∆(nt)

)
are i.i.d. uniformly on [0, 2π].

then

S′(t) = (θ0, ϕ0, r1, θ1, ϕ1, . . . , rnt
, θnt

, ϕnt
, rnewnt+1, θ

new
nt+1, ϕ

new
nt+1, . . . , r

new
nt+∆(nt)

, θnewnt+∆(nt)
, ϕnew

nt+∆(nt)
).

The proposal density q(S, ·) of this mutation rule is easy to compute. For m ∈ N
∗, let

ζ(m) =





1
2

1
4 = 1

8 , if m > J + 1,
1
2

1
3 = 1

6 , if j + 1 6 m 6 J,
1
2

1
2 = 1

4 , if 1 6 m 6 j.

Assume that S′ is a mutation of S, denote by n′ and n their respective length and set ∆ = n′−n. We
have
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• if ∆ = 0 and n > 1, then q(S, S′) = 1
2

1
n

1
2π f

ǫg
HG (θ′i);

• if ∆ = 0 and n = 1, then q(S, S′) = 1
2 e

−µr′1 1
2π f

ǫg
HG (θ′i);

• if ∆ < 0, then q(S, S′) = ζ(n);

• if ∆ > 0, then q(S, S′) = ζ(n)e−µ
∑∆

i=1 r′
n′+i

(
µ
2π

)∆∏∆
i=1 f

ǫg
HG

(
θ′n′+i

)
,

where r′i and θ′i denote respectively the i-th edge length and angle of S′. From these formulas, it is
straightforward to recover the acceptance probability.

The idea behind this mixture of mutations is to find a compromise between large jumping size
of the Markov chain which implies a lot of “burnt” samples, and smaller jumps which provide more
correlated samples, hence a worse convergence. The rotations lead to a good exploration of the domain
at low cost, whereas the addition-deletion mutations ensure the visit of the whole state space A with
W0 = ω0. The use of a perturbed phase function decreases the acceptance probability of the mutations
and thus, increases the number of samples needed in order to converge to the invariant measure. But,
it allows a better exploration of the domain and this why the parameter ǫ, as well as the sizes j, J ,
need to be adapted on a case by case basis. Finally, we can prove that, with this rules of mutations,
Algorithm 1 produces a Markov chain that satisfies the LLN. This guarantees the convergence of the
estimator defined in (4.2).

Proposition 16. If the chain (S(t))t∈N∗ is obtained by Algorithm 1 with the mutation rule given in

Definition 15, then it is Harris positive with respect to the measure ν|W0=ω0
and the estimator L̂MH(xk)

defined in (4.2) is strongly consistent for all 1 6 k 6 K − 1.

Proof. The fact that ν|W0=ω0
is an invariant measure of (S(t))t∈N∗ is an inherent property of Metropolis-

Hastings algorithm ([22, 24]). The Harris recurrence is then obtained by checking that the chain is
irreducible with respect to ν|W0=ω0 , see [24, Corollary 2]. Let τA = inf {t ∈ N

∗ : S(t) ∈ A} denote
the hitting time of any A ⊂ A such that ν|W0=ω0

(A) > 0. We must demonstrate that (S(t))t∈N∗ is
irreducible with respect to ν|W0=ω0

, that is,

Ps (τA < +∞) > 0, for all s ∈ A, (4.3)

where Ps(S(1) = s) = 1. Furthermore, notice that it is sufficient to check this property for subsets A
of the type

A = {ω0} ×

n∏

i=1

(Ii × Si) , (4.4)

where n ∈ N
∗ and where for all 1 6 i 6 n, the sets Ii ⊂ R+ and Si ⊂ S

2 are all sets of positive
Lebesgue measure.

In order to prove relation (4.3) for sets of the form (4.4), consider the conditional measure νn|W0=ω0

using (2.10). This measure is equivalent to the Lebesgue measure on Mn and so ν|W0=ω0
(A) > 0.

Now, notice that by the Markov property, if τA and τI1×S1
denote respectively the time for the chain

to be in A, resp. in {ω0} × (I1 × S1), then we have

Ps (τA < +∞) > Ps (τI1×S1
< +∞)PI1×S1

(τA < +∞) .

Now we can lower bound the right hand side of this relation in the following way:
(i) We have that Ps (τI1×S1

< +∞) is greater than the probability of deleting all the edges of s except
(r1, ω1) and of modifying this edge so that (r′1, ω

′
1) ∈ I1 × S1. This probability is strictly positive, as

well as its acceptance. Indeed, we use here the fact that j and J are coprime (through Bezout’s lemma)
plus elementary relations for uniform distributions to assert that the probability of deleting all the
edges is strictly positive. The positivity of acceptance is due to some absolute continuity properties of
q.
(ii) The same kind of argument works in order to estimate PI1×S1

(τA < +∞) from below. Namely,
this quantity is greater than the probability to construct directly a ray s ∈ A, which is itself strictly
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positive. Indeed, since j and J are mutually prime, it is possible to construct a ray of any desired
length. Moreover, at each step, the probability of adding an edge (ri, ωi) ∈ Ii × Si, as well as its
acceptance are always strictly positive.
We have thus obtained that Ps (τI1×S1

< +∞)PI1×S1
(τA < +∞) > 0, which concludes the proof.

Remark 17. The process (Nt)t>1 that gives the length of the ray S(t) at time t behaves like a
birth-death process with time inhomogeneous rates. If there exists an invariant measure of the process
(Nt)t>1, then it must coincide with the geometric distribution of parameter 1−ρ that drives the length
of a path S ∼ ν. This provides an easy criterium in order to check that the chain has already mixed,
for example with a chi-squared test on the empirical distribution of (Nt)t>1.

5 Simulation and comparison of the methods

In this section, we compare the estimates of the fluence L(xk) provided by three methods: Monte
Carlo with Wang-Prahl algorithm (denoted by WANG, see [19, 26]), MC-SOME (see (3.2)) and the
Metropolis-Hastings (MH) (see (4.2)) with the mutation rules given in Definition 15. We tested the
methods in different settings. Here, we present results in a framework corresponding to a healthy
homogeneous rat brain tissue. We chose to follow [1] for the values of the optical parameters (see
Table 1). Other values for rat or human brain can be found in [4, 8, 15]. The volume of the cube V

equals 8 cm3, that is V = [−1, 1]3. It is discretized into K = 503 voxels so that the volume of each

voxel is (0.04)
3
cm3. The half-opening angle of the optical fiber was set to α = π

10 and the constant c
in (2.14) was set c = 1.

We chose simulation parameters for the three methods so that they need the same amount of
computational time. Those are

WANG: M = 5000 photons trajectory.

MC-SOME: M = 40000 rays, Mpoints = 50 points chosen in each ray and Mrot = 30 rotations with
respect to the initial direction.

MH j = 10, J = 21, ǫ = 0.9, T = 2 · 105 steps of the chain and Mrot = 30 rotations with respect to
the initial direction,

In Fig. 4, we picture a contour plot of the estimates on the plane x = 0 of each methods. The
shape of the contour lines are similar. However, we can notice that MH appears more noisy and that
its halo is more spread-out than those of WANG and MC-SOME.
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Figure 4: Contour plots of the estimates of the fluence rate in the plane x = 0 for WANG, MC-SOME
and MH. Notice that we zoomed into the volume V .

In Fig. 6, we compare the estimates along several lines (ℓi)i=1,...,6 of voxels parallel to the y-axis
and passes through the points (0, 0,−0.04), (0, 0,−0.08), (0, 0,−0.12), (0, 0,−0.4), (0, 0,−0.48) and
(0, 0,−0.6) respectively (see Fig. 5). Close to the light source, the three methods give similar estimates.
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Further below the light source, we notice that MC-SOME gives much smoother estimates than the
two other algorithms. Moreover, it seems that this running of MH undervalued the fluence far from
the light source. Perhaps because it had not converged yet.

Figure 5: Choice of six particular voxels and position of the lines (ℓi)i=1,...,6 in the cube V .
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Figure 6: Estimates of the fluence rate along the lines (ℓi)i=1,...,6 with WANG, MC-SOME and MH.
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Let us conclude this section by studying the accuracy of the methods by mean of 50 independent
replicates of these estimates. In Fig. 7, the boxplots compare the dispersion of the 50 estimates of each
method in six voxels (vi)i=1,...,6 such that (see Fig. 5)

(0, 0.2, 0) ∈ v1, (0, 0.6, 0) ∈ v2, (0, 0,−0.2) ∈ v3,

(0, 0,−0.6) ∈ v4, (0, 0.2,−0.2) ∈ v5, (0, 0.6,−0.6) ∈ v6. (5.1)

On one hand, we see that MC-SOME is much more consistent than WANG, because of the variance
reduction that we use in MC-SOME. On the other hand, MH is comparable to WANG concerning the
dispersion of the estimates. This is quantified in Table 2 where we provide the mean of the estimates
and their mean square error in each of the 6 voxels.

Mean Mean Square Error

Wang MC-SOME M-H Wang MC-SOME M-H

v1 0.1902 0.1855 0.1957 0.4699 · 10−3 0.5151 · 10−4 0.6915 · 10−3

v2 0.0040 0.0037 0.0014 0.0023 · 10−3 0.0034 · 10−4 0.0028 · 10−3

v3 0.1751 0.1722 0.1807 0.2822 · 10−3 0.3160 · 10−4 0.5232 · 10−3

v4 0.0037 0.0034 0.0022 0.0020 · 10−3 0.0008 · 10−4 0.0037 · 10−3

v5 0.0774 0.0758 0.0707 0.1129 · 10−3 0.0658 · 10−4 0.1926 · 10−3

v6 0.0004 0.0004 0.0003 0.0001 · 10−3 0.0001 · 10−4 0.0001 · 10−3

Table 2: Mean and mean square error of the 50 estimates of the fluence rate in 6 voxels for WANG,
MC-SOME and MH.

6 Inverse problem and sensitivity

Good estimates for the optical coefficients of the tissue under consideration are of considerable practical
importance for biologists. This will be numerically solved thanks to our probabilistic representation
(2.14), and we first proceed to a sensibility analysis with respect to the parameters g, µs and µa in
order to get an intuition on the meaning of our estimations.

6.1 Sensitivity of the measurements

As a preliminary step towards a good resolution of the inverse problem, we first observe how the
measurements vary with respect to the optical parameters. To this aim, we built a database of
simulations for different values of g, µs and µa and then compared the estimated fluence. The estimates
are computed by resorting to MC-SOME, which is the best performing method among the three we
have implemented according to Section 5.

Our experiments are developed in the following way: we choose a reference simulation obtained for
the reference parameters (g∗, µ∗

a, µ
∗
s) and pick some voxels centered at (xki

)i=1,...,n and in which we
simulate the fluence

mi = L̂(xki
; g∗, µ∗

a, µ
∗
s), i = 1, . . . , n,

where we recall that L(xki
) is defined by (2.13) with γW0

= σ and where we stress the dependence

on the optical coefficients by writing L̂(xki
; g∗, µ∗

a, µ
∗
s) ≡ L̂(xki

). Now for each possible triplet of
parameters (g, µa, µs), we compute the normalized quadratic error (or evaluation error)

J(µa, µs, g) =
1

2

n∑

i=1

(
L̂(xki

; g, µa, µs)−mi

mi

)2

. (6.1)
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Figure 7: Boxplots of 50 estimates of the fluence for WANG, MC-SOME and MH in the voxels
(vi)i=1,...,6.
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For the dataset of simulations, we use the same settings as in Section 5 (|V | = 8 cm3, the volume

of a voxel is (0.04)
3
cm3 and α = π

10 ). The variable parameters are: g, µa and µs. Their values are
given in Table 3. This choice is motivated by [1, 4, 8, 15]. The anisotropy parameter g does not
vary a lot between tissue type (healthy or tumorous) and it is often even hidden in a reduction of the
scattering coefficient µ′

s = µs(1 − g). For this reason, we chose only three values in a small range of
common values. Concerning the other parameters, we chose five values in intervals covering values
corresponding to healthy and tumorous brain tissues according to [1, 15].

g 0.85 0.90 0.95

µa in cm−1 0.5 0.75 1 1.25 1.5

µs in cm−1 75 90 105 120 135

Table 3: Values of the optical parameters for the study of sensitivity.

Figures 8 to 11 give different representation of the variation of the error J(µa, µs, g) with respect to
the optical parameters. The real values are (µ∗

a, µ
∗
s, g

∗) = (0.75, 105, 0.9) and we set n = 3, xk1
∈ v2,

xk2
∈ v4, xk3

∈ v6 respectively (see Fig. 5). We see that the sensitivity in the parameters µs and g

is very low compared to the sensitivity in µa. In Fig. 11, we see that a wrong value of µa has strong
effects on the error function and that it becomes then almost impossible to see any tendency for the
anisotropy parameter g. Notice also that an undervaluation of µa is worse than an overvaluation in
terms of the error.

µ s

µ
a

Quadratic error J ( ·, ·, g = 0.85)

 

 

75 90 105 120 135

0.5

0.75

1

1.25

1.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

µ s

µ
a

Quadratic error J ( ·, ·, g ∗)

 

 

75 90 105 120 135

0.5

0.75

1

1.25

1.5 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

µ s

µ
a

Quadratic error J ( ·, ·, g = 0.95)

 

 

75 90 105 120 135

0.5

0.75

1

1.25

1.5

1

2

3

4

5

6

Figure 8: Colormap of the quadratic error (µa, µs) 7→ J(µa, µs, g) for three values of g, where µs is
displayed on the x axis and µa on the y axis.
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Figure 11: Quadratic error g 7→ J(µa, µs, g) for three values of µs.

6.2 Parameter estimation

This section is only devoted to an estimate of the parameters µa and µs. Indeed, we have seen in
the last section that the sensitivity of the fluence with respect to the anisotropic parameter g is low.
Moreover, our simulations do not show any monotonicity or tendency in the error for this parameter
because, in our settings, the Monte Carlo error prevails over the evaluation error. In addition, for
our purpose, the uncertainty about g is small in front of the uncertainty of the two other parameters
(see [1]). We shall thus suppose in the sequel that g is known.

With these preliminary considerations in mind, our goal is to solve the following nonlinear least
square minimization problem: Find (µs, µa) in order to minimize

J(µs, µa) =
1

2

n∑

i=1

(
L(xki

;µs, µa)−mi

mi

)2

, (6.2)

where (mi)i=1,...,n are the measurements in n different voxels whose center points are (xki
)i=1,...,n.

The optimization method that we use then in order to approximate the minimum of the score J is
based on the Levenberg-Marquardt algorithm (see [10]). This gradient descent algorithm also involves
the computation of the gradient, as well as the Hessian matrix of J . The algorithm is described in
pseudo-code in Algorithm 2. In this description, for k > 0 we have set Hk = Hess(J)(µk

s , µ
k
a), Diag(Hk)

is the diagonal matrix of Hk, λk is the damping factor which may be either constant or corrected at
each step and τk ∈ R+ controls the step size.

Let us highlight the fact that the form of the objective function in (6.2) allows to express the term
on the right hand side of line 3 in Algorithm 2 explicitly as a function of the partial derivatives of L.
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Algorithm 2 Gradient descent algorithm for the estimation of µa and µs

Input: measurements (mi)i=1,...,n, initial couple (µ0
s, µ

0
a), precision ǫ > 0.

1: k ← 0
2: while J(µk

s , µ
k
a) > ǫ do

3: (µk+1
s , µk+1

a )← (µk
s , µ

k
a)− τk [Hk + λk Diag(Hk)]

−1
∇J(µk

s , µ
k
a)

4: k ← k + 1
5: end while

Output: an approximation (µk
s , µ

k
a) of the real parameters (µ∗

s, µ
∗
a)

Indeed, the gradient of J is given by

∇J(·) =

n∑

i=1

L(xki
; ·)−mi

m2
i

∇L(xki
; ·), (6.3)

and its Hessian matrix is given by

Hess(J)(·) =

n∑

i=1

(
L(xki

; ·)−mi

m2
i

Hess(L)(xi; ·) +
1

m2
i

∇L(xki
; ·)∇tL(xki

; ·)

)
. (6.4)

Moreover, as stated in the following proposition, the formal representation in Proposition 4 allow
to also use the Monte Carlo method MC-SOME in order to estimate the first order and the second
order partial derivatives of L which can be expressed similarly to (2.16).

Proposition 18. The partial derivatives of L(xki
;µs, µa) can be expressed as the expectation of fully

simulable random variables. Using the same notations as in (2.15), they are given by

∂L

∂µa
(xki

;µs, µa) = −
µs

µa
c̃Eµs,µa

(
1{SN∈Vki}

N∑

k=1

rk

)
, (6.5)

∂L

∂µs
(xki

;µs, µa) =
µs

µa
c̃Eµs,µa

(
1{SN∈Vki}

(
N

µs
−

N∑

k=1

rk

))
, (6.6)

with c̃ = c 1−cosα
2 and µs

µa
= ρ

1−ρ .

Proof. We start by differentiating term-by-term the Neumann series of Corollary 3. For n > 1, we
have by definition of Tn in (2.4), that

∂ (Tµs,µa)
n

∂µa
Le(x, ω0) = µn

s

∫

Rn
+

dr1 · · · drn


−

n∑

j=1

rj


 exp


−(µs + µa)

n∑

j=1

rj




∫

S2n

dσ⊗n(ω1, . . . , ωn)

n−1∏

j=0

fHG (ωj , ωj+1) Le

(
x−

n−1∑

k=0

ωkrk+1, ωn

)
.

Looking back at Section 2.3 and using the same notations, we deduce that

∞∑

n=0

∂ (Tµs,µa)
n

∂µa
Le(x, ω0) = −

∫

A

dν(ω0, r,ω)Gx(ω0, r,ω)

|r|∑

i=1

ri,

where we recall that |r| stands for the size of r. Assuming that the left-hand side coincides with
the partial derivative ∂L

∂µa
, then (6.5) is found just like (2.15) and the same arguments provide (6.6),

considering that
∂ (Tµs,µa)

n

∂µs
=

n

µs
(Tµs,µa)

n
+

∂ (Tµs,µa)
n

∂µa
.
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To conclude the proof, notice that the match between the partial derivatives and the term-by-term
differentiation of the Neumann series is ensured by the fact that the operator (Tµs,µa)

n
is infinitely

continuously differentiable for all n and by the uniform convergence of the corresponding sequences of
truncated sums

sm =

m∑

n=0

∂ (Tµs,µa)
n

∂µs
Le(x, ω0), m > 1.

Remark 19. Similar formula to (6.5) and (6.6) can be easily found for the second order derivatives
∂2L
∂µ2

s
and ∂2L

∂µ2
a
.

The probabilistic representation of L(xki
;µs, µa) in (2.16) and its partial derivatives allows us

to estimate the score J(µs, µa), its gradient and its Hessian matrix by Monte Carlo methods. A
sole sample (y1, . . . , yn) ∈ A

n of n observations of the random ray Y can be used to estimate the
expectations in L, ∇L(xki

; ·) and Hess(L)(xi; ·) at the same time. We denote these estimates by

L̂, ∇̂L(xki
; ·) and Ĥess(L)(xi; ·) and the corresponding score by Ĵ . The updating rule at line 3 in

Algorithm 2 becomes then

(µk+1
s , µk+1

a ) = (µk
s , µ

k
a)− τk

[
Ĥk + λk Diag(Ĥk)

]−1

∇̂J(µk
s , µ

k
a). (6.7)

The noise coming from the Monte Carlo estimation of the score, of its gradient and of its Hessian
matrix during the run of the algorithm, makes a precise estimate of the real values of (µ∗

a, µ
∗
s) difficult.

Far from the real value, the eigenvalues of the Hessian matrix are very small and we have experienced
that their sign can vary a lot because of the noise of the Monte Carlo estimation. Conversely, near the
real value of the parameters, the estimation of the Hessian matrix is more robust and its eigenvalues are
almost always both positive, which legitimates the quadratic approximation of Levenberg-Marquardt.
For this reason, we implemented a hybrid algorithm between a classic steepest gradient descent and
the Levenberg-Marquard descent. At each step, we test the sign of the eigenvalues of Hk. If they
are both positive, one moves to the next point following (6.7), else one makes a move in the direction
−∇J(µk

s , µ
k
a). In order to test the algorithm, we ran it in the same settings as in the previous section.

The damping parameter λ has been chosen as fixed and in order to prevent the descent to make too
large steps, we forced the step size to be a given decreasing sequence ak−b with a > 0 and 0 < b < 1,
by setting

τk = ak−b

∥∥∥∥
[
Ĥk + λk Diag(Ĥk)

]−1

∇̂J(µk
s , µ

k
a)

∥∥∥∥
−1

.

As we shall see, the descent goes rapidly in a neighborhood of the real couple. A satisfying
approximate of µ∗

a comes up easily, whereas µ∗
s is more difficult to find. This is consistent with what

we have seen in the study of sensitivity of the parameters in the previous section. In Figure 12, we can
see a first example of the descent that we obtain with this algorithm. Notice the oscillations around
the real value µ∗

a = 1, once we are close to it. Those descent zigzags near the real value of µa are also
apparent in a second descent illustrated in Figure 13. The sequence τk we chose for the size step is
proportional to k−

3
4 in both examples.
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Figure 12: Parameter estimation with an adaptation of Levenberg-Marquardt descent algorithm. The
real value of (µ∗

a, µ
∗
s) is (1, 70). The starting point is (2, 80). For a precision ǫ = 2 ·10−3, the algorithm

stopped at (1.02, 67.15) with a score equals to J = 0.0018.
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Figure 13: Parameter estimation with an adaptation of Levenberg-Marquardt descent algorithm. The
real value of (µ∗
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s) is (2, 75). The starting point is (3, 120). For a precision ǫ = 5 ·10−3, the algorithm

stopped at (1.998, 77.64) with a score equals to J = 0.0041.
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