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Abstract

One may ask whether the relations between energy and frequency and
between momentum and wave vector, introduced for matter waves
by de Broglie, are rigorously valid in the presence of gravity. In this
paper, we show this to be true for Dirac equations in a background
of gravitational and electromagnetic fields. We first transform any
Dirac equation into an equivalent canonical form, sometimes used in
particular cases to solve Dirac equations in a curved spacetime. This
canonical form is needed to apply the Whitham Lagrangian method.
The latter method, unlike the WKB method, places no restriction on
the magnitude of Planck’s constant to obtain wave packets, and fur-
thermore preserves the symmetries of the Dirac Lagrangian. We show
using canonical Dirac fields in a curved spacetime, that the probabil-
ity current has a Gordon decomposition into a convection current and
a spin current, and that the spin current vanishes in the Whitham
approximation, which explains the negligible effect of spin on wave
packet solutions, independent of the size of Planck’s constant. We fur-
ther discuss the classical-quantum correspondence in a curved space-
time based on both Lagrangian and Hamiltonian formulations of the
Whitham equations. We show that the generalized de Broglie rela-
tions in a curved spacetime are a direct consequence of Whitham’s
Lagrangian method, and not just a physical hypothesis as introduced
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by Einstein and de Broglie, and by many quantum mechanics text-
books.

PACS numbers: 03.65.Pm Relativistic wave equations
03.75. - b Matter waves
04.62. + v Quantum fields in curved spacetime

1 Introduction

Some might argue that quantum mechanics became a universal theory of mat-
ter when, at the last Einstein-Bohr debate at the Solvay Conference in 1930,
Einstein proposed a weight measurement to observe unobtrusively a particle
decay in order to contradict the Heisenberg energy-time uncertainty relation
[1]. After nearly being defeated by Einstein in the debate, Bohr surprisingly
countered with a general relativistic gravitational argument. Henceforth, the
relation between gravity and quantum mechanics was to become an impor-
tant question in fundamental physics.

It could also have been questioned whether the relations between energy
and frequency and between momentum and wave vector, introduced for mat-
ter waves six years earlier by de Broglie [1], were rigorously valid in a general
curved spacetime. This question can be shown to be equivalent to the ques-
tion of whether sufficiently small wave packets travel along classical paths
consistent with the de Broglie relations. Recall that a wave packet is a wave
whose amplitude, frequency, and wave vector vary slowly over a region of
spacetime comparable to a period or wave length. (E.g., for an electron trav-
eling at half the speed of light, the wave length is approximately 5 × 10−12

m, and a typical wave packet has dimensions 10−6 m [2].) The de Broglie
relations can be observed for such wave packets.

The well known WKB approximation is commonly used to derive wave
packet approximations in quantum mechanics (e.g., [3]). The WKB approx-
imation is based on taking the limit as a physical constant, namely Planck’s
constant ~, approaches zero. 1 However, the spin connection in the Dirac

1 More generally, a common conception is that classical physics emerges from quantum
mechanics in the limit as Planck’s constant ~ approaches zero. However, the limit ~ → 0
“is not well defined mathematically unless one specifies what quantities are to be held
constant during the limiting process” [4]. It is interesting to note that the most classical
behaving Gaussian wave functions, the coherent states of the ordinary harmonic oscillator,
whose expected position and momentum obey classical equations by Ehrenfest’s theorem,
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equation of a curved spacetime has no effect in the first WKB approximation
(i.e., the one retaining only the zero order term in ~) [3]. The assumption
that the spin connection can be neglected, as it would be in a first WKB
approximation, is unnecessary and is too strong for many applications in a
curved spacetime, or even in a Minkowski spacetime with arbitrary coordi-
nates. Note that throughout this paper, except for the brief description of a
post Newtonian approximation in Section 3, we may set both the speed of
light c and Planck’s constant ~ equal to one.

The Whitham approximation [9], which we adopt in this paper, places
no restriction on Planck’s constant. To implement the Whitham approxima-
tion and to show that it leads to propagation along classical paths, we will
first show in Section 2 that any Dirac equation in a curved spacetime can
be transformed into an equivalent canonical form known in the literature as
the “local representation” [6], [7]. In general, transformation to equivalent
canonical form is a necessary step to simplify a Dirac equation so that prop-
agation along classical paths can be derived. It will be evident in Theorem 1
of Section 2 that Planck’s constant ~ does not appear in the transformations
mapping Dirac equations to their equivalent canonical forms [6], [7]. Pre-
viously, these canonical forms, or “local representations” as they are called
in the literature, have only been discussed in the special case of orthogonal
coordinates [6], [7], [8].

Then in Section 3, with each Dirac equation transformed into equiva-
lent canonical form, we apply Whitham’s Lagrangian method [9] to derive
wave packets in general curved spacetimes. Whitham’s method preserves the
symmetries of the Lagrangian, and in particular, the Whitham wave packet
equations conserve the probability current. We also show that generalized de
Broglie relations, as well as COW and Sagnac type terms [10], emerge from
the Whitham equations. It will become clear in Sections 2 and 3 that for
every Dirac equation transformed into equivalent canonical form, the general-
ized de Broglie relations have no other meaning than the fact that sufficiently
small wave packets propagate along classical paths in a background of grav-
itational and electromagnetic fields. This is what is observed in experiments
2 and therefore more physically precise than the statement often made that

do not resemble wave packets in the limit ~ → 0 [5].
2 Note, however, that the electron’s magnetic moment, predicted by the Dirac equation,

is not contained in the wave packet approximation. Indeed, quoting from Ref. [11]: “The
uncertainty principle, together with the Lorentz force, prevents spin-up and spin-down
electrons from being separated by a macroscopic field of the Stern-Gerlach type.” In
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particles with a given energy and momentum possess a frequency and wave
vector given by the de Broglie relations. In fact, the generalized de Broglie
relations are a direct consequence of Whitham’s method applied to each Dirac
equation transformed into equivalent canonical form, and not just a physical
hypothesis as introduced by Einstein and de Broglie, and by many quantum
mechanics textbooks.

In the WKB approximation of the standard Dirac equation in a curved
spacetime, classical trajectories are derived from the Gordon decomposition
of the probability current Jµ = Jµ

c + Jµ
s into a convection current Jµ

c and
a spin current Jµ

s [3]. In Section 3, we also prove the existence of the Gor-
don decomposition for Dirac equations transformed into canonical form. We
further show that in the Whitham approximation, the spin current Jµ

s van-
ishes, which explains the negligible effect of spin on wave packet solutions,
independent of the size of Planck’s constant ~.

It is also clear that the canonical forms (or “local representations”) of the
Dirac equations, while not unique, are the preferred representations to un-
derstand certain phenomena associated with the Dirac equations in a curved
spacetime, particularly, the emergence of classical physics and its conserva-
tion laws in a quantum world. Section 4 concludes this paper with a discus-
sion of the classical-quantum correspondence in a curved spacetime based on
both Lagrangian and Hamiltonian formulations of the Whitham equations.
In this section we also include results from a previous analysis of the classical-
quantum correspondence [12], which can be applied to the canonical forms
of Dirac equations in a curved spacetime considered in this paper.

practice, wave packet splitting in Stern-Gerlach experiments is only observed using neutral
atoms or molecules, which are undisturbed by the Lorentz force [4]. In Section 3, the wave
packet approximation is expressed by neglecting in the Lagrangian the variation in the
amplitude of the wave function as compared to the variation of its phase. This leads to
wave packet equations which do not involve the electron’s magnetic moment.
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2 New Representations of the Dirac Equa-

tion in a Curved Spacetime and their Equiv-

alent Canonical Forms

Shortly after Dirac discovered his celebrated four component wave equation:

γµ∂µΨ = −imc

~
Ψ, (1)

together with its conserved probability current:

Jµ = cΨ+AγµΨ, (2)

his equation was studied in its widest representations for a Minkowski space-
time [13], [14].

In Eq. (1), the Dirac field Ψ is a four component complex function of
spacetime coordinates xµ, µ = 0, 1, 2, 3, whose partial derivatives with respect
to xµ are denoted as ∂µΨ. The Dirac gamma matrices γµ, acting on Ψ, satisfy
the anticommutation formula:

γµγν + γνγµ = 2ηµν14, (3)

where ηµν is the inverse of the Minkowski metric tensor ηµν , and 14 denotes
the identity matrix acting on the Dirac field Ψ. The mass, the speed of light,
and Planck’s constant are denoted by m, c, and ~, respectively. Repeated
indices are summed.

In Eq. (2), Ψ+ denotes the complex conjugate transpose (Hermitian
conjugate) of the Dirac field Ψ, and A is a hermitizing matrix for the Dirac
gamma matrices γµ. That is, [13], [14]:

A+ = A,

γµ+ = AγµA−1,
(4)

where γµ+ and A+ denote the Hermitian conjugates of the matrices γµ and
A, respectively. The hermitizing matrix A is uniquely determined by the
matrices γµ up to a nonzero real scalar multiple [13].

For a Minkowski spacetime, assuming that (γµ, A) are chosen to be con-
stant matrices satisfying Eqs. (3) and (4), every solution of Eq. (1) satisfies
the Klein-Gordon equation, and the probability current Jµ in Eq. (2) is then

5



also conserved. That is, Eqs. (3) and (4) are the only conditions that the
constant matrices (γµ, A) need satisfy.

The “coefficient matrices” (γµ, A) in Eqs. (1) and (2) are far from unique.
Given a Dirac field Ψ, and any set of constant coefficient matrices (γµ, A) sat-
isfying Eqs. (3) and (4), they may be transformed by any constant complex
4× 4 matrix S as follows:

Ψ̃ = S−1Ψ,

γ̃µ = S−1γµS,

Ã = S+AS.

(5)

Such a transformation S is called a “similarity transformation” or a “spin-
base transformation”, the latter referring to simply a change of basis for the
four components of the Dirac field Ψ. It is straightforward to see that Eqs. (1)
− (4) are invariant under all similarity transformations S by Eq. (5). Thus,
in the widest sense no restriction to a smaller group of transformations was
deemed necessary in the early development of the Dirac equation [13], [14].
Nevertheless, further choices were necessary when the Poincaré group of co-
ordinate transformations of the Dirac equation was considered. At least three
possibilities have been considered for Poincaré coordinate transformations in
a Minkowski spacetime as follows:

• A) The Dirac field Ψ transforms as a quadruplet of complex scalars
under a coordinate transformation. [15], [16], [17], [18]

• B) The Dirac field Ψ transforms as a complex four-vector Ψµ under a
coordinate transformation. [19]

• C) The Dirac field Ψ transforms as a quadruplet of complex scalars
under a coordinate transformation, which is then followed by a similar-
ity transformation. (The combined transformation leaves the constant
coefficient matrices (γµ, A) invariant.) [13]

For a Minkowski spacetime with Poincaré coordinate transformations, all
three possibilities may be considered. However, with general coordinate
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transformations, as required for a curved spacetime, only the first two pos-
sibilities (A) and (B) exist. Since in a general spacetime, the possibility (C)
does not exist, it was replaced by the possibility (A) in what has become the
standard Dirac equation, which was proposed independently by Weyl [15]
and by Fock [16], hereafter called the “Dirac-Fock-Weyl” (DFW) equation.
See Refs. [17] and [18]. Possibility (B) was investigated recently [19], which
became the impetus for a more general study of Dirac equations [20], [21],
[22].

General Dirac fields of type (A) will be said to belong to the Quadruplet
Representation of the Dirac theory (or QRD theory). General Dirac fields
of type (B) will be said to belong to the Tensor Representation of the Dirac
theory (or TRD theory). It was recently shown that in an open neighborhood
of each spacetime point, every TRD equation is in fact equivalent to a QRD
equation and vice versa [20]. Since TRD equations are locally equivalent to
QRD equations, we will only consider QRD equations in this paper. Note
that there are QRD equations in a curved spacetime that are not locally
equivalent to any DFW equation [20].

In a further evolution of the Dirac equation, which applies also to a
Minkowski spacetime, the partial derivatives in the Dirac equation (1) were
replaced by covariant derivatives Dµ = ∂µ + Γµ where Γµ are four 4 × 4
complex matrices 3 , called “spin connection matrices”, acting on the four
components of the Dirac field Ψ. At the same time, the Dirac equation was
generalized by substituting a general metric gµν of Lorentz signature and
determinant g for the Minkowski metric ηµν in the anticommutation formula
(3) for the Dirac gamma matrices:

γµγν + γνγµ = 2gµν14. (6)

For the results in this paper, mild restrictions must be placed on the metric
components gµν , namely that g00 > 0 and the components gjk for j, k = 1, 2, 3
form a negative definite 3 × 3 matrix. Even though these mild conditions
hold for almost all spacetime metrics gµν of interest, the Gödel metric is a
notable exception [23], [24].

For this generalization, the coefficient matrices (γµ, A) defining the Dirac
equation are augmented to become “coefficient fields” (γµ, A,Γµ), which now

3 In the case of a Majorana representation of the Dirac field, the coefficient matrices
(γµ, A) are pure imaginary, and the Dirac equation is real. In this case the spin connection
matrices Γµ are real.
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may vary with the spacetime point. Then, in order that the Dirac equation
(1) be invariant, the transformation equations (5) are augmented with the
transformation of the spin connection matrices Γµ under “local similarity
transformations” S (i.e., similarity transformations S that may also vary
with the spacetime point 4 ) as follows: [18]

Γ̃µ = S−1ΓµS + S−1∂µS

= S−1 (∂µ + Γµ)S.

(7)

Indeed, for this type of transformation, we have the covariant derivatives
transforming as: D̃µ = S−1 ◦Dµ ◦ S. Transformations of the kind given by
Eqs. (5) and (7) we will call local similarity transformations “of the first
kind”.

Local similarity transformations “of the second kind” are defined by set-
ting:

Γ̃µ = Γµ. (8)

For this second kind of transformation, given by Eqs. (5) and (8), we have

the covariant derivatives transforming as: D̃µ = Dµ.
Two Dirac equations will be said to be “equivalent” or “classically equiv-

alent” if there exists a local similarity transformation Ψ → S−1Ψ of any kind
that transforms the solutions of one Dirac equation into the solutions of the
other. 5 From Eqs. (2) and (5), the conserved probability currents for two
equivalent Dirac equations are equal. Hence in any spacetime, scattering ex-
periments will give the same results regardless of the representation of a given
Dirac equation. However, in a first quantized theory, which is our concern
in this paper, a local similarity transformation S may not intertwine with
the quantum mechanical operators. In that case, the operators correspond-
ing to a given observable generally will not have the same eigenvalues before
and after the transformation S. This has been shown for the Hamiltonian
(or energy) operator in previous work [25]. Thus, two Dirac equations that
are equivalent as partial differential equations via a local similarity transfor-
mation S, need not be equivalent with respect to all quantum mechanical

4 Because S depends on the spacetime point, Schlütert, Wietschorke, and Greiner call
S a “local transformation” [6], [7].

5 The notion of equivalence here is somewhat different than the notion used in Ref.
[25], where equivalence was applied only to classify the coefficient fields (γµ, A) without
requiring the existence of a map Ψ → S−1Ψ between the solutions of two Dirac equations.
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operators [25], [26], [27].

The standard “Dirac Lagrangian” applies to the DFW equation [17] and
has to be extended to include the coefficient field A in the exact place of the
constant hermitizing matrix valid for DFW [25]:

L = L (Ψ, ∂µΨ, xµ)

=
√−g i~c

2
[Ψ+Aγµ (DµΨ)− (DµΨ)+ AγµΨ+ 2mc

~
iΨ+AΨ].

(9)

Note that the Lagrangian (9) is the local expression of a global Dirac La-
grangian based on a general Dirac operator 6D acting on the cross-sections of
a spinor bundle E over the spacetime. 6 Thus, the Lagrangian (9) gives a
generalized formulation of the Dirac theory for a general Dirac operator 6D on
a curved spacetime. We will see in Theorem 1 that the equivalent canonical
forms of DFW equations require such a generalization.

The Euler-Lagrange equations for the Lagrangian (9) give the following
generalized Dirac equation [20], [21]:

γµDµΨ+
1

2
A−1Dµ (Aγ

µ)Ψ = −imc

~
Ψ, (11)

where
DµΨ ≡ ∂µΨ+ ΓµΨ

Dµγ
ν ≡ ∇µγ

ν + Γµγ
ν − γνΓµ

DµA ≡ ∂µA− Γ+
µA− AΓµ,

(12)

and we define the Levi-Civita covariant derivatives ∇µ acting on the Dirac
field Ψ and the coefficient fields (γµ, A) as follows:

6 A globally defined generalized Dirac Lagrangian has the form:

L =
i

2
[(ψ, 6Dψ)− (6Dψ, ψ) + 2im(ψ, ψ)] . (10)

where 6D is a Dirac operator acting on the cross-sections ψ of a spinor bundle E over the
spacetime, and ( , ) denotes a hermitizing metric on the fibers of E. See Ref. [20], Sect.
2.1 and the references therein for the precise definitions. Once any coordinate chart of the
spacetime and any frame field on the spinor bundle have been chosen, one gets the local
expression of the global generalized Lagrangian as Eq. (9). In particular, in Eq. (9) and
in the rest of this paper, Ψ is the column vector made with the components of ψ in the
chosen frame field on E. See Ref. [20], Sect. 2.2.
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∇µΨ ≡ ∂µΨ

∇µγ
ν ≡ ∂µγ

ν +
{
ν
ρ µ

}
γρ

∇µA ≡ ∂µA

(13)

where
{
ν
ρ µ

}
are the Christoffel symbols belonging to the Levi-Civita connec-

tion. The covariant derivatives Dµ extend to Ψ+ by the formula DµΨ
+ =

(DµΨ)+, and similarly ∇µΨ
+ = (∇µΨ)+. As usual, covariant derivatives

extend to products of fields via Leibniz’s rule for differentiating products.
If Dµ (Aγ

µ) = 0, then the generalized Dirac equation (11) reduces to
normal form:

γµDµΨ = −imc

~
Ψ. (14)

Normal Dirac equations generalize the DFW property that the coefficient
fields (γµ, A) be covariantly constant: Dµγ

ν = 0 andDµA = 0. One can show
that the weaker normality condition Dµ (Aγ

µ) = 0 is preserved under all local
similarity transformations of the first kind [20]. The normality condition is
also preserved under all coordinate transformations.

Thus we have several invariant classes of Dirac equations. First, we have
the class of Dirac equations for which the coefficient fields (γµ, A) are covari-
antly constant − that is, Dµγ

ν = 0 and DµA = 0. This class contains the
DFW equations as a proper subset. Second, we have the class of Dirac equa-
tions for which Dµ (Aγ

µ) = 0. This is the class of normal Dirac equations
(14) which contains the first class as a proper subset. Finally, we have the
class of generalized Dirac equations (11) which contains the other two classes.
Each of these classes is invariant under all coordinate transformations and
also under all local similarity transformations of the first kind [20].

A non-invariant class of Dirac equations that we will discuss in this paper
is the class of the QRD–0 equations, in which the contracted spin connection
matrix Γ ≡ γµΓµ = 0. See Ref. [20], Sect. 3.2.1. Equations in the QRD–0
class (with Γ = 0) are generalized Dirac equations which may be written as
follows:

γµ∂µΨ+
1

2
A−1∇µ (Aγ

µ) Ψ = −imc

~
Ψ, (15)

with the Levi-Civita covariant derivatives ∇µ acting on the coefficient fields
(γµ, A) as previously defined in Eq. (13). If ∇µ (Aγ

µ) = 0, then the QRD–0
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equation (15) reduces to the simpler normal form:

γµ∂µΨ = −imc

~
Ψ. (16)

Note that a QRD–0 equation which is both normal as in Eq. (16) and
equivalent to a DFW equation is called a “local representation” of the DFW
equation by other authors [6], [7], [8]. Finding a “local representation” for a
DFW equation often simplifies the process of deriving its solutions. Previ-
ously, this “local representation” of the DFW equation in a curved spacetime
in the form of Eq. (16) has only been discussed in the special case of orthog-
onal coordinates [6], [7], [8].

Given any normal Dirac equation (14), one can construct an equivalent
normal QRD–0 equation (16) in terms of a basis of solutions of the massless
equation associated with (14):

γµDµΨ = γµ (∂µ + Γµ) Ψ = 0. (17)

This is useful when solutions to the massless equation (17) are known, for
which there are many examples in general relativity, including all diagonal
metrics and Gödel type metrics [28] − [32]. Indeed, consider a local similarity

transformation S which takes the Dirac field Ψ to Ψ̃ and the coefficient fields
(γµ, A,Γµ) to

(
γ̃µ, Ã, Γ̃µ

)
, according to Eqs. (5) and (7). Recall that the

contracted spin connection matrix Γ̃ ≡ γ̃µΓ̃µ = 0 if the transformed equation
is a QRD–0 equation. Then from Eqs. (5) and (7), we get:

γµ (∂µ + Γµ)S = 0, (18)

whereby any four linearly independent solutions to the massless equation
(17) can be used to form the columns of the matrix-valued field S. In this
case, an equivalent normal QRD–0 equation can be explicitly and globally
constructed.

We can show that any generalized Dirac equation (11), with very minor
conditions imposed on the spacetime metric gµν , is equivalent to a normal
QRD–0 equation (16), in an open neighborhood of each spacetime point, by
applying local similarity transformations of the first and second kind to the
Dirac field Ψ. Previously, this so called “local representation” of the DFW
equation in a curved spacetime has only been discussed in the special case
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of orthogonal coordinates [6], [7], [8]. Here we generalize it to essentially all
Dirac equations:

THEOREM 1. Let U be any open subset of a spacetime on which lo-
cal coordinates are defined. Suppose that the metric components gµν for
µ, ν = 0, 1, 2, 3 in U satisfy g00 > 0 and the components gjk for j, k = 1, 2, 3
form a negative definite 3× 3 matrix. Then, for any choice of smooth coeffi-
cient fields (γµ, A) and any choice of covariant derivatives Dµ = ∂µ+Γµ acting
on smooth Dirac fields Ψ defined on U, there exists a smooth local similarity
transformation S of the first kind, composed with a smooth local similarity
transformation T of the second kind, taking Ψ → (T ◦ S)−1Ψ, which trans-
forms the generalized Dirac equation with smooth coefficient fields (γµ, A,Γµ)
into an equivalent normal QRD–0 equation, in an open neighborhood of each
point X0 ∈ U.

Thus, we may regard the normal QRD–0 equations (16) as canonical forms for
all generalized Dirac equations (11), in open neighborhoods of each spacetime
point.

The proof of Theorem 1 relies heavily on the theory of linear hyperbolic
partial differential equations [20], [33], [34]. Since it is not particularly en-
lightening beyond the explicit construction given above for the normal case,
we will postpone writing out the full proof of Theorem 1 until the Appendix.

Note that every DFW equation has the normal form (14). By Theorem
1, every DFW equation is equivalent to a normal QRD–0 equation (called a
“local representation” of the DFW equation by Schlüter, Wietschorke, and
Greiner) which generally is not a DFW equation [6], [7], [8]. Conversely, we
can show that not every normal QRD–0 equation is equivalent to a DFW
equation, so that DFW equations are in fact equivalent to only a proper
subset of the possible normal QRD–0 equations.

EXAMPLE. Consider the flat metric gµν on R4 whose line element ds in
rotating cylindrical coordinates (t, r, φ, z) has the form:

ds2 = (c dt)2 − dr2 − r2 (dφ+ ω dt)2 − dz2. (19)

Using the orthonormal tetrad [35] as indicated by the parsing of the metric
in Eq. (19), the DFW equation is given by:

γµDµΨ = γµ∂µΨ+
1

2r
γ1Ψ = −i

mc

~
Ψ. (20)
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A simple local similarity transformation of the first kind:

S−1 : Ψ 7→ Ψ′ =
√
rΨ (21)

which is independent of Planck’s constant, time independent, and also is
independent of the rotation rate ω, transforms the DFW equation (20) into
a Dirac equation of the canonical form (16). Note that the canonical Dirac
equation (16) does not have the Mashhoon term [36], [10], whose presence
or absence thus depends on the chosen representation of the Dirac field. See
also Ryder [37].

3 Whitham’s Lagrangian Method— TheMain

Theorem

In this section we apply Whitham’s Lagrangian method [9] to derive wave
packets for Dirac equations in general curved spacetimes. Whitham’s method
preserves the symmetries of the Lagrangian, and in particular, the Whitham
wave packet equations conserve the probability current. We show in this
section that generalized de Broglie relations, as well as COW and Sagnac
type terms [10], emerge from the Whitham equations after transforming each
Dirac equation into an equivalent canonical form. Thus, the normal QRD–0
representations (or canonical forms) of the Dirac equations are the preferred
representations to express the generalized de Broglie relations in a curved
spacetime.

It is noteworthy that the Whitham approximation places no restriction
on Planck’s constant ~. Indeed, the transformation which takes the Dirac
equation to its canonical form, is independent of Planck’s constant ~. This is
obvious in the example above, as seen in Eq. (21). In fact, this independence
is a general fact that follows from Eqs. (82) and (84) used in the proof
of Theorem 1 in the Appendix. Thus, the Whitham approximation is not
equivalent to the WKB approximation, since the latter does not require any
transformation of variables. 7

7 As stated in Section 2, two Dirac equations that are classically equivalent, need not
be equivalent with respect to their quantum mechanical energy-momentum operators [25],
[26], [27]. Clearly, the Whitham approximation also distinguishes them. A striking ex-
ample is a Dirac equation with a Mashhoon term [10], [36], [37]. Applying the Whitham
approximation directly to a Dirac equation with a Mashhoon term, without first trans-
forming the Dirac field Ψ, does not produce wave packet motion along classical paths.
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Including both gravitational and electromagnetic external fields, the gen-
eralized Lagrangian (9) for the Dirac equation can be written as follows:

L = L (Ψ, ∂µΨ, xµ)

=
√−g i~c

2
[Ψ+Aγµ (DµΨ)− (DµΨ)+ AγµΨ+ 2mc

~
iΨ+AΨ],

(22)

with the covariant derivatives Dµ defined by:

Dµ = ∂µ + Γµ +
ie

~c
Vµ, (23)

where Vµ are electromagnetic gauge potentials and e is the electric charge.
We can display the interaction terms of the Lagrangian (22) more explicitly
by expressing the Lagrangian (22) as a sum of a free and an interaction part
as follows:

L =
√−g i~c

2
[Ψ+Aγµ (∂µΨ)− (∂µΨ)+ AγµΨ+ 2mc

~
iΨ+AΨ]

+
√−g [ i~c

2
Ψ+ (AΓ− Γ+A) Ψ− e

c
JµVµ],

(24)

where Jµ ≡ cΨ+AγµΨ is the probability current, and Γ ≡ γµΓµ is the con-
tracted spin connection matrix, and also noting that since A is a Hermitizing
matrix for the Dirac matrices γµ, we have from Eq. (4):

Γ+A = Γ+
µ γ

µ+A = Γ+
µAγ

µ. (25)

Since we can first transform any Dirac equation into a normal QRD-0 equa-
tion (or canonical form) as stated in Theorem 1 of Section 2, we can transform
the fields in this Lagrangian so that ∇µ (Aγ

µ) = 0 and Γ ≡ γµΓµ = 0. Thus,
instead of the Lagrangian (22), we may substitute an equivalent canonical
Dirac Lagrangian:

L =
√−g i~c

2
[Ψ+Aγµ (∂µΨ)− (∂µΨ)+ AγµΨ+ 2mc

~
iΨ+AΨ]

−√−g e
c
JµVµ,

(26)

Clearly, the normal QRD-0 equation (16) is derived from the Euler-Lagrange
equations of the Lagrangian (26) by setting the electromagnetic gauge po-
tentials Vµ equal to zero and using the normality condition: ∇µ (Aγ

µ) = 0.
For Whitham’s method, we set Ψ = χeiθ where χ = χ (X) is also a

complex wave function with four components, and θ = θ (X) is a real phase at

14



each point X in the spacetime. Whitham’s method assumes that χ is slowly
changing compared to the rapidly changing phase θ, so that we may obtain
approximate wave packet solutions to the Dirac equations by neglecting ∂µχ
with respect to (∂µθ)χ in the Lagrangian. Substituting the wave function
Ψ = χeiθ into the Lagrangian (26) and using this approximation, we get:

L = c
√−g

[(
−~∂µθ −

e

c
Vµ

)
χ+Aγµχ−mcχ+Aχ

]
. (27)

In Whitham’s method, this Lagrangian governs the wave packet motion.
Clearly the Lagrangian (27) is invariant under the global gauge symmetry
θ → θ + τ , where τ is a real constant. This leads by Noether’s theorem to
the conservation of a current. In Section 3.3 we will derive explicitly the
conservation of the probability current for this Lagrangian. Thus, our goal
in this section is to derive the Euler-Lagrange equations for the Lagrangian
(27), which by change of field variables leads to the following main theorem
of this paper.

THEOREM 2. Define a four-vector field uµ and a scalar field J , related to
the amplitude χ and phase θ of the wave function Ψ = χeiθ as follows:

uµ ≡ − ~

mc
∂µθ − e

mc2
Vµ,

uµ ≡ gµνuν ,

J ≡ cχ+Aχ.

(28)

i) Then the Euler-Lagrange equations for the Whitham Lagrangian (27) im-
ply the following equations for the fields uµ and J in a curved spacetime:

gµνu
µuν = 1,

∇µ (Ju
µ) = 0,

uµ = gµνu
ν ,

∇µuν −∇νuµ = − e
mc2

Fµν ,

(29)

where Fµν ≡ ∇µVν −∇νVµ is the electromagnetic field tensor.
ii) The four-vector field uµ is a unit velocity field, such that Jµ = Juµ is a
conserved probability current.
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iii) The integral curves xµ (s) of the four-vector field uµ, parameterized by
arc-length s, are given by the classical equations:

dxµ

ds
= uµ,

duµ

ds
+
{

µ
ν ρ

}
uνuρ = e

mc2
F µ

νu
ν , (30)

along which the scalar field J satisfies:

dJ

ds
= −J∇µu

µ. (31)

The proof and interpretation of Theorem 2 will occupy the rest of Section 3.

3.1 Euler-Lagrange Equations for the Wave Packet La-

grangian

The Euler-Lagrange equations for the amplitude χ = χ (X) and phase θ =
θ (X) can be derived from the wave packet Lagrangian L in Eq. (27) as
follows. First we have from Eq. (27):

∂L
∂χ+ = c

√−g
[(
−~ ∂µθ − e

c
Vµ

)
Aγµχ−mcAχ

]
,

∂L
∂(∂µθ)

= −~c
√−gχ+Aγµχ.

(32)

Then, since no derivatives of χ+ and only derivatives of θ occur in the La-
grangian (27), we set equal to zero, using Eq. (32), the following expressions:

0 = δL
δχ+ = ∂L

∂χ+= c
√−g

[(
−~∂µθ − e

c
Vµ

)
Aγµχ−mcAχ

]
,

0 = δL
δθ

= ∂µ

(
∂L

∂(∂µθ)

)
= ∂µ (−~c

√−gχ+Aγµχ) ,

(33)

which then gives the following Euler-Lagrange equations:

(
−~ ∂µθ − e

c
Vµ

)
Aγµχ= mcAχ,

∂µ (c
√−g χ+Aγµχ) = 0.

(34)

For the wave function Ψ = χeiθ, with phase θ, the wave covector is Kµ ≡ ∂µθ.
Thus ω ≡ −K0 = −∂0θ is the angular frequency of the wave. We define a
four-vector field pµ as follows:

16



pµ ≡ −~ ∂µθ = −~Kµ. (35)

It will be shown in Section 4 that pµ = −Pµ, where Pµ are canonical momen-
tum variables.

Eq. (35) expresses the generalized de Broglie relations Pµ = ~Kµ between
the canonical momentum variables Pµ and the wave covector Kµ. We also
define a four-vector velocity field uµ from the usual classical equation with
kinetic and potential terms as follows:

pµ = mcuµ +
e

c
V µ. (36)

From Eq. (35) we have ∂µpν = ∂νpµ. Substituting Ψ = χeiθ into Eq. (2) we
have Jµ = cχ+Aγµχ. We denote γ (u) ≡ uµγ

µ. Then, Eqs. (34) become:

γ (u)χ = χ, (37)

∂µ
(√

−gJµ
)

= 0, (38)

∂µpν − ∂νpµ = 0. (39)

The first equation (37) is an algebraic eigenvalue equation. The second equa-
tion (38) can be written as the covariant conservation of the probability cur-
rent, ∇µJ

µ = 0, where ∇µ denotes the Levi-Civita covariant derivatives.
Since pµ = −~∂µθ, the third equation (39) expresses the equality of mixed
partial derivatives of θ. Furthermore, since the left-hand side of the third
equation (39) is an antisymmetric tensor, the partial derivatives ∂µ can be
replaced by Levi-Civita covariant derivatives ∇µ. Thus, Eqs. (37)–(39) be-
come the following covariant equations:

γ (u)χ = χ, (40)

∇µJ
µ = 0, (41)

∇µpν −∇νpµ = 0. (42)

We will show below that these equations, taken together, reduce to a set
of quasi-linear partial differential equations describing a scalar density J =
cχ+Aχ and the four-vector velocity field uµ, whose integral curves are classi-
cal relativistic trajectories. We will further show that certain of these equa-
tions give rise to initial conditions, and of the rest, only four equations are
independent. First, let us derive a dispersion relation from the algebraic
equation (40).
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3.2 Dispersion Relation

From the algebraic equation (40), and the anticommutation relation of Dirac
gamma matrices (6), we have:

(gµνuµuν)χ = γ (u)2 χ = γ (u)χ = χ. (43)

Equation (43) implies that at any spacetime point where the wave function
χ is not zero, the four-vector velocity field uµ satisfies uµuµ = 1. From Eq.
(36), this gives the dispersion relation:

gµν
(
pµ −

e

c
Vµ

)(
pν −

e

c
Vν

)
−m2c2 = 0. (44)

Since p0 = ε/c, where ε is the energy and Pj = −pj for j = 1, 2, 3 are
momentum variables, Eq. (44) is a quadratic equation for the energy ε.

Let us consider the dispersion relation (44) in the absence of the electro-
magnetic potentials Vµ. We have:

gµνpµpν = g00
(ε
c

)2

+ 2g0jpj

(ε
c

)
+ gjkpjpk = m2c2. (45)

That is,

ε =
cg0jpj ± c

√
(g0jpj)

2 − g00 (gjkpjpk −m2c2)

g00
. (46)

Choosing positive energy ε > 0 and setting:

g00 = 1− 2φ

c2
, g0j =

φj

c
, gjk = −δjk − 2φjk

c2
, (47)

where φ, φj, and φjk are gravitational potentials, and δjk is the Kronecker
delta, equal to one if j = k and equal to zero otherwise, then we have for a
non-relativistic approximation, i.e., taking the limit of ε−mc2 as the speed
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of light c goes to infinity in Eq. (46):

ε−mc2 =
cg0jpj+

√
g00m2c4+(cg0jpj)

2
−c2g00gjkpjpk

g00
−mc2

=
cg0jpj+

√
g00mc2

√

1+
(cg0jpj)

2

g00m2c4
−

gjkpjpk

m2c2

g00
−mc2

≈
cg0jpj+

√
g00mc2



1+
(cg0jpj)

2

2g00m2c4
−

gjkpjpk

2m2c2





g00
−mc2

= c g
0j

g00
pj +

1√
g00

(
mc2 +

(cg0jpj)
2

2g00mc2
− gjkpjpk

2m

)
−mc2

≈ 1
2m

δjkpjpk +mφ+ φjpj .

(48)

That is, the non-relativistic approximation gives the energy as follows;

ε−mc2 ≈ 1

2m
δjkpjpk +mφ + φjpj. (49)

It is straightforward to identify the three energy terms on the right hand
side of Eq. (49) as the kinetic energy, a COW potential energy, and a Sagnac
potential energy, respectively.

3.3 Probability Current and Classical Trajectories

Recall that for Whitham’s method, we set the wave function Ψ = χeiθ where
χ = χ (X) is also a wave function and θ = θ (X) is a real phase at each point
X in the spacetime. Then the probability current Jµ and scalar field J are
given by:

Jµ ≡ cΨ+AγµΨ = cχ+Aγµχ,

J ≡ cΨ+AΨ = cχ+Aχ. (50)

From Eq. (40), χ is a solution of the equation γ (u)χ = χ, where uµ is a
unit four-vector field satisfying uµuµ = 1 and where γ(u) ≡ uµγ

µ. From the
anticommutation relation of the Dirac gamma matrices in Eq. (3), we have:

uµ = gµνuν =
1

2
(γµγν + γνγµ)uν =

1

2
[γµγ(u) + γ(u)γµ] . (51)
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Moreover, using again the definition γ(u) ≡ uµγ
µ, it follows easily from the

properties of the hermitizing matrix A [Eq. (4)] that χ+Aγ(u) = [γ(u)χ]+A.
We get thus from Eqs. (40), (50) and (51):

Juµ =
c

2
χ+A [γµγ(u) + γ(u)γµ]χ

=
c

2
χ+Aγµ [γ(u)χ] +

c

2
[γ(u)χ]+Aγµχ

=
c

2
χ+Aγµχ+

c

2
χ+Aγµχ

= Jµ. (52)

That is, Jµ = Juµ. Using Eqs. (36) and (44) together with this result, Eqs.
(40)–(42) can be written as:

gµνu
µuν = 1, (53)

uµ = gµνu
ν , (54)

∇µ (Ju
µ) = 0, (55)

∇µuν −∇νuµ = − e

mc2
Fµν , (56)

where Fµν ≡ ∇µVν − ∇νVµ is the electromagnetic field tensor. Multiply by
uν and contract the index ν on both sides of Eq. (56). Then, using Eq. (53)
to set uν (∇µuν) = 0, and finally raising the index µ, we get:

(uν∇ν) u
µ =

e

mc2
F µ

νu
ν . (57)

Consider the integral curves xµ (s) of the four-vector velocity field uµ (X).
Since the four-vector velocity field consists of unit vectors by Eq. (53), the
integral curves xµ (s) are parameterized by arc-length s. That is, from Eqs.
(53) and (57):

dxµ

ds
= uµ,

duµ

ds
+
{

µ
ν ρ

}
uνuρ = e

mc2
F µ

νu
ν . (58)

Note that Eqs. (58) are precisely the classical relativistic equations of a parti-
cle of mass m and electric charge e in a gravitational field gµν in the presence
of an electromagnetic field Fµν . Thus, the integral curves of the four-vector
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velocity field uµ (X), describing the motion of wave packets, coincide with
the trajectories of classical relativistic particles. Note that in the absence of
the electromagnetic field Fµν , the classical trajectories (58) are geodesics of
the spacetime.

Finally, we note from Eq. (55) that along the integral curves of uµ (X)
we have:

dJ

ds
= −J∇µu

µ. (59)

This completes the proof of Theorem 2.
Note that the wave packet equations (29) describe a certain congruence

of classical trajectories (30) together with a scalar density J that on each
classical trajectory in the congruence satisfies Eq. (31). This congruence
satisfies certain initial conditions on a spatial submanifold M discussed in
the next subsection.

3.4 Mathematical Structure of the Wave Packet Equa-

tions

Eq. (53)–(56) can be written as follows:

gµνu
µuν = 1, (60)

uµ = gµνu
ν , (61)

∂

∂xµ

(√
−gJuµ

)
= 0, (62)

∂u0

∂xj
− ∂uj

∂x0
=

e

mc2
F0j (j = 1, 2, 3), (63)

∂uj

∂xk
− ∂uk

∂xj
=

e

mc2
Fjk (j, k = 1, 2, 3). (64)

Eqs. (60) and (61) allow us to solve algebraically for u0, u0, and uj in terms
of uj where j = 1, 2, 3. We will show below that Eq. (64) gives merely a set
of initial conditions. Thus, we are left with only four real quasi-linear partial
differential equations contained in Eqs. (62) and (63), for the four real fields
uj and J . Indeed, from Eq. (36), we have that (63) and (64) are equivalent
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to:

∂pj
∂x0

=
∂p0
∂xj

, (65)

∂pj
∂xk

=
∂pk
∂xj

. (66)

It follows from Eq. (65) that Eq. (66) remains true for all time if and only
if it is true at an initial time. That is because from Eq. (65), we derive:

∂

∂x0

(
∂pj
∂xk

)
=

∂2p0
∂xj∂xk

=
∂

∂x0

(
∂pk
∂xj

)
. (67)

It follows that Eq. (64) gives a set of initial conditions. Thus, provided
that the initial conditions (64) are satisfied at any initial time — i.e., on
a spatial submanifold M— the wave packet equations (60)–(64) give rise
to well-defined solutions. As previously stated these solutions comprise a
congruence of classical trajectories together with a scalar density.

3.5 Gordon Decomposition for Dirac Equations in Canon-

ical Form

In the WKB approximation of the DFW equation in a curved spacetime,
classical trajectories are derived from the Gordon decomposition of the prob-
ability current Jµ = Jµ

c + Jµ
s into a convection current Jµ

c and a spin current
Jµ
s [3]. In this subsection, we will prove the existence of the Gordon decom-

position for all normal Dirac equations, noting that both DFW and canonical
equations are normal. We will further show that in the Whitham approxima-
tion, the spin current Jµ

s vanishes, which explains the negligible effect of spin
on wave packet solutions. More specifically, we will show that wave packet
solutions of the form Ψ = χeiθ, where χ is slowly changing compared to a
rapidly changing phase θ, can only exist if the spin current Jµ

s is negligible.
As discussed above, this definition of wave packet is independent of the size
of Planck’s constant ~. Indeed, no assumption will be made in this subsec-
tion regarding the size of Planck’s constant ~ or the speed of light c, both of
which we will set equal to one, ~ = c = 1.

For a normal Dirac equation, define the probability current Jµ, the spin
current Jµ

s , and the convection current Jµ
c as follows:
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Jµ ≡ Ψ+AγµΨ,

Jµ
s ≡ 1

2m

[
Ψ+Aσµν(DνΨ) + (DνΨ)+AσµνΨ

]
,

Jµ
c ≡ i

2m
gµν

[
Ψ+A(DνΨ)− (DνΨ)+AΨ

]
, (68)

where σµν ≡ i
2
(γµγν − γνγµ) are the Dirac spin matrices. Substituting the

normal Dirac equation (14) written in the following form:

Ψ =
i

m
γµDµΨ (69)

into the formula for Jµ in Eq. (68), using the gamma matrix formula γµγν =
gµν − iσµν , and noting the asymmetry σµν = −σνµ, we get from Eqs. (68)
and (69):

Jµ ≡ Ψ+AγµΨ =
i

2m

[
Ψ+Aγµγν(DνΨ)− (DνΨ)+AγνγµΨ

]

=
i

2m

[
Ψ+A (gµν − iσµν) (DνΨ)− (DνΨ)+A (gµν + iσµν)Ψ

]

= Jµ
c + Jµ

s . (70)

That is, Jµ = Jµ
c + Jµ

s , which proves the Gordon decomposition for normal
Dirac equations.

Note that the probability current Jµ = Jµ
c + Jµ

s is covariantly conserved.
Consequently, the probability density current

√−gJµ is conserved. In gen-
eral, the currents Jµ

c and Jµ
s are not separately covariantly conserved, unless

the coefficient fields (γµ, A) are covariantly constant. However, it is worthy
to note that for Dirac equations transformed into canonical form, we may re-
place the covariant derivatives Dµ, including electromagnetic field potentials
Vµ as in Eq. (23), with the Levi-Civita covariant derivatives ∇µ + ieVµ.

8

Then the spin current Jµ
s and the convection current Jµ

c become:

Jµ
s =

1

2m

[
Ψ+Aσµν(∂νΨ) + (∂νΨ)+AσµνΨ

]
,

Jµ
c =

i

2m
gµν

[
Ψ+A(∂ν + ieVν)Ψ− ((∂ν + ieVν)Ψ)+AΨ

]
. (71)

8 Note that the probability current Jµ = Ψ+AγµΨ is invariant under local similarity
transformations S defined in Eq. (5), so that when transforming a Dirac equation into
canonical form, it is only Jµ

s
and Jµ

c
which change their form.

23



Note that the convection current Jµ
c in Eq. (71) closely resembles the spin

zero current of the Klein-Gordon equation in the presence of both gravi-
tational and electromagnetic external fields [35], whereas the spin motion
resides in the spin current Jµ

s [3]. Recall that we are using Whitham’s ap-
proximation, for which we set Ψ = χeiθ and neglect ∂µχ with respect to
(∂µθ)χ [see before Eq. (27)]. Using the definitions in Eq. (28), this gives us

(∂ν + ieVν)Ψ ≈ i(∂νθ + eVν)Ψ = −imuνΨ. (72)

Then we use the definitions in Eq. (28) together with Eqs. (71) and (72) to
obtain the following formulas for the spin current and the convection current:

Jµ
s ≈ − i

2

[
Ψ+AσµνuνΨ−Ψ+AσµνuνΨ

]
= 0,

Jµ
c ≈ 1

2
gµνuν

[
Ψ+AΨ+Ψ+AΨ

]
= Juµ. (73)

Thus, in the Whitham approximation, the spin current Jµ
s vanishes and the

convection current Jµ
c = Juµ. Therefore, the probability current Jµ equals

the convection current Jµ
c .

4 The Classical-Quantum Correspondence

We proved in Theorem 2 that the solutions of the Whitham approximation to
the Dirac equation, Eq. (29), consist of a four-velocity vector field uµ whose
integral curves are classical trajectories, and a scalar field J representing
a conserved particle density − see Eqs. (30) and (31). From Whitham’s
approximation of the Dirac equation, we have derived the dispersion relation
(44), the motion of wave packets along classical trajectories (30), conservation
of the probability current (31), as well as the generalized de Broglie relations
Pµ = ~Kµ in Eqs. (35) and (36).

We will conclude this paper by summarizing results from a previous anal-
ysis of the “classical-quantum correspondence” based on the dispersion re-
lation (44) alone, which can be applied to the Dirac equation [12]. We will
interpret the fact that the integral curves of the four-velocity field uµ are
classical trajectories as a “geometrical optics limit” of the Dirac equation.
However, as we have seen, unlike the WKB limit, this “geometrical optics
limit” is one that places no restriction on Planck’s constant. Whitham’s
Lagrangian method, applied to the Dirac Lagrangian (22) transformed into
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equivalent canonical form (26), has also many advantages over using the
dispersion relation (44) alone as the starting point for a wave packet approx-
imation [9]. Whitham’s method preserves the conservation laws inherent in
the starting Lagrangian (26), and in particular, the Whitham wave packet
equations conserve the probability current Jµ = Juµ.

To any linear partial differential equation for scalar wave functions Ψ, of
the form:

a (X)Ψ +

d∑

n=1

a
µ
1
······µn

(X)
∂nΨ

∂xµ1 ......∂xµn
= 0 (74)

(summing over coordinate indices µr = 0, 1, 2, 3 for r = 1, 2, 3, · · · , n and over
the index n = 1, 2, 3, · · · , d) where the coefficient fields a (X) and a

µ
1
······µn

(X)
depend on the spacetime point X− one may associate its dispersion polyno-
mial ΠX (K). That is to say, a polynomial function of covector fields Kµ at
each fixed spacetime point X is given by:

ΠX (K) = a (X) +

d∑

n=1

ina
µ1······µn

(X)Kµ1
......Kµn

. (75)

The dispersion relation is thereby obtained from the polynomial equation
ΠX (K) = 0 at each fixed spacetime point X by solving for the time com-
ponent K0. Applications of this one-to-one correspondence are discussed in
Ref. [12].

This applies also if the wave functions Ψ have m components and the
coefficient fields a (X) and a

µ
1
······µn

(X) are m × m matrices, as is the case
for the Dirac equation [19], [38]. Note that in the matrix case, the dispersion
relation is obtained from the scalar polynomial equation detΠX (K) = 0.
Consider a dispersion polynomial (75) where a (X) and a

µ
1
······µn

(X) are m×
m matrices. By solving detΠX (K) = 0 for the component K0 we get a
dispersion relation:

ω = W (k,x,t) (76)

expressing the angular frequency ω ≡ −cK0 as a function of the spatial wave
covector k = (K 1, K2, K3), the spatial coordinates x = (x1, x2, x3), and time
t, together with the auxiliary equations [9], [12]:
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∂Kj

∂t
+

∂ω

∂xj
= 0,

∂Kj

∂xk
− ∂Kk

∂xj
= 0, (77)

for j, k = 1, 2, 3. In general, none or multiple such dispersion relations (76)
can be derived as distinct real roots of the polynomial equation det ΠX (ω,k) =
0 when solving for ω. Assuming at least one real root, let us choose one of
them to be ω = W (k,x,t). Then from Eqs. (76) and (77) one derives the
Hamiltonian system as in Ref. [12], Sect. 2.2:

dKj

dt
= −∂W

∂xj
,

dxj

dt
=

∂W

∂Kj

. (78)

Noting in Eq. (76) that W ≡ −cK0, and recalling the generalized de Broglie
relations Pµ ≡ −pµ = ~Kµ derived from wave packet motion in Eqs. (35)
and (36), we see that Eq. (78) leads us to define the Hamiltonian H ≡ ~W
and the momentum variables Pj ≡ ~Kj for j = 1, 2, 3, whereby a system of
classical point particle trajectories emerges as follows: Indeed, solving the
dispersion equation (44) for the energy ε = H (p,x,t) where p = (P1, P2, P3)
is equivalent to solving it for the angular frequency ω = W (k,x, t) as in Eq.
(76). Then Eq. (78) is equivalent to:

dPj

dt
= −∂H

∂xj
,

dxj

dt
=

∂H

∂Pj

. (79)

One can show that the trajectories associated with the Hamiltonian H , that
is, the solution trajectories of the Hamiltonian equations (79), are identical
to the solution trajectories of the Euler-Lagrange equations deduced from
the well known Lagrangian for classical point particles in a background of
electromagnetic and gravitational fields, which is given by [39], [40]:

ℓ = −mc

√
gµν

dxµ

dξ

dxν

dξ
− e

c
Vµ

dxµ

dξ
, (80)

where ξ is an arbitrary parameter for the classical trajectory xµ (ξ). To show
this one first applies an inverse Legendre transformation 9 to the Hamiltonian

9 The Legendre transformation is its own inverse [40], pages 563-565. Thus, an inverse
Legendre transformation is also a Legendre transformation.
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H = H (p,x,t) to obtain a traditional Lagrangian L
(
x, dx

dt
, t
)
and then, as

in Ref. [40], pages 267-271, one generalizes the trajectory parameter to be
an arbitrary parameter ξ, instead of the coordinate time t. It is straightfor-
ward to check that the equations for the classical trajectories (30) are the
Euler−Lagrange equations for the Lagrangian (80). Thus, the dispersion re-
lation (76) and the auxiliary equations (77) give rise to the classical point
particle trajectory equations (30), as is also the case for the integral curves
of the Whitham equations (29).

Similar to the previous analysis of the classical-quantum correspondence
([12], Sect. 2.3), it is in the “geometrical optics limit” that the solutions of
each Dirac equation transformed into equivalent canonical form satisfy the
dispersion equation (44). Indeed, Whitham’s approximation: ∂µχ ≪ (∂µθ)χ,
which we applied in Section 3 to the Dirac Lagrangian (26), is one way of
defining precisely this limit. However, the classical Hamiltonian equations
(79), which are based solely on the dispersion relation, give only part of the
Whitham equations (29). In addition to providing equations (30) equivalent
to the Hamiltonian equations (79), the Whitham equations (29) preserve the
symmetries of the Dirac Lagrangian (26), and provide for the conservation
of the probability current Jµ = Juµ, which is a property inherited from the
exact Dirac equations in a curved spacetime.

A Appendix: Proof of Theorem 1

To prove Theorem 1 of Section 2 we will use the following corollary of a deep
theorem of linear hyperbolic partial differential equations:

THEOREM 0. LetM1,M2, · · · ,Mn be complex d×d matrix functions that
depend smoothly on n+1 independent real variables t, x1, x2, · · · , xn in a slab
−T ≤ t ≤ T , x ∈ Rn, denoted as I×Rn. Suppose that M0,M1,M2, · · · ,Mn

are Hermitian matrices, and furthermore assume that M0 is positive definite.
Let F = F (S) be a homogeneous linear function of complex d×d matrices S,
as well as having explicit dependence on t, x1, x2, · · · , xn. Then the complex
linear hyperbolic system:

M0
∂S

∂t
+

n∑

j=1

Mj

∂S

∂xj

= F (S) (81)

has a smooth d × d complex matrix valued solution S:I × Rn → M (C ,d)
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which equals the identity matrix at t = 0, as its prescribed smooth initial
data.

Proof: Theorem 0 is Corollary 3 in Ref. [20], Sect. 6, which is based on a
theorem of Lax [33] (see also Ref. [34]).

Proof of Theorem 1 of Section 2.

First note from Eq. (4) that the matrices Bµ ≡ Aγµ are Hermitian matrices.
Then, note that the conditions stated in Theorem 1 for the metric compo-
nents gµν imply that B0 ≡ Aγ0 is a positive definite matrix by Theorem 6
of Ref. [22], Appendix B. By Theorem 3 of Ref. [21], Sect. 3.4, Eq. (54),
a local similarity transformation T of the second kind, takes a generalized
Dirac equation of the form (11) into a Dirac equation of the normal form
(14), if and only if T satisfies the following partial differential equation:

BµDµT = −1

2
(DµB

µ)T. (82)

If we can solve Eq. (82) for such a local similarity transformation T , then
the transformed coefficient fields will be as in Eqs. (5) and (8):

γ̃µ = T−1γµT,

Ã = T+AT,

Γ̃µ = Γµ.

(83)

Now from Eq. (18), a local similarity transformation S of the first kind, takes
a Dirac equation of the normal form (14) into a normal QRD–0 equation (16),
if and only if S satisfies the following partial differential equation:

B̃µ∂µS = −B̃µΓ̃µS, (84)

where B̃µ ≡ Ãγ̃µ. The matrices Bµ and B̃µ are Hermitian, and moreover,
the matrices B0 and B̃0 are positive definite. Thus, the two systems (82) and
(84) have same form as the complex linear hyperbolic system in Eq. (81).

Let χ:U → R×R3, mapping X → (t,x), be the coordinate chart that we
assume to be defined on U. Then, consider the projection map π:R×R3 →
R taking (t,x) → t. Let X0 ∈ U and let t0 = π ◦ χ (X0) ∈ R. Let
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M = (π ◦ χ)−1 (t0). Note that X0 ∈ M ⊂ U. It will suffice to prove that
there exist nonsingular solutions T and S of the systems (82) and (84) that

are both defined in a common open neighborhood W̃ of X0 ∈ U.
By Theorem 0, the Cauchy problem for (82) with the smooth initial data

T |M = 14 has a smooth solution T in an open neighborhood W# of X0.
Denote by W the open subset of W# in which T is a nonsingular matrix so
that T−1 exists. Note that X0 ∈ W since X0 ∈ M and T |M = 14. Thus, W
is an open neighborhood of X0 such that the local similarity transformation
T (and its inverse T−1) is well defined on W, and hence, from Eq. (83), the
complex linear hyperbolic system (84) is well defined on W.

By Theorem 0, the Cauchy problem for (84) with the smooth initial data

S|M⋂

W = 14 has a smooth solution S in an open neighborhood W̃# ⊂ W of

X0. Denote by W̃ the open subset of W̃# in which S is a nonsingular matrix
so that S−1 exists. Note thatX0 ∈ W̃ since X0 ∈ M

⋂
W and S|M⋂

W = 14.

Thus, W̃ ⊂ W̃# ⊂ W is an open neighborhood of X0 such that both the
local similarity transformation S and the local similarity transformation T
(and their inverses S−1 and T−1) are well defined on W̃, and therefore the
local similarity transformation T ◦ S (and its inverse S−1 ◦ T−1) is also well

defined on W̃. Q. E. D.
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