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Abstract—The computation of scattering by an infinite periodic
structure by an integral equation technique is accelerated by the
use of a the ACA method. This compression technique has the
advantage to be applied before the building of the matrix. As
a result, both assembly and solution phases benefit from the
acceleration of computation times. Numerical results assess the
efficacy on a problem with a simple periodic surface.

Index Terms—Integral Equations, H-Matrix, ACA

I. Introduction

Many applications in science and engineering are formu-

lated in terms of scattering by periodic structures. This is

especially true in electromagnetics, where periodicity plays

an important role in the design of structures. Due to the

development of nanotechnology, the importance of periodic

boundary value problem is further increased. The development

of broadband absorbers, the study of sea surface scattering,

the design of uniform antennas arrays, microwave lenses,

and artificial dielectric media or photonic cristals are a few

examples.

For the analysis of such periodic structures, it usual to

solve the problem with numerical method such as Finite

Difference Method, Finite Element Method, or Boundary

Element Method (BEM). Because of the computation cost

of such simulations, it may also be possible to simplify the

model by considering as infinite the periodic structures. This

is particularly true for BEM for which an appropriate Green

function enables to take into account the periodicity. However

the a priori complexity in O(N2) restricts BEM to relatively

coarse grids. It is then required to propose a method to improve

this complexity.

In this work, we consider scattering problems by a perfectly

conducting periodic surface Γ in the E-polarization (u = Ez)

as shown in Fig. 1.

The involved boundary-value problem to solve is then the

Helmholtz equation with a Dirichlet condition and a radiation

condition at infinity.

II. Integral equation

The scattering problem can be formulated as an integral

equation [1] with a single layer potential,
∫

Γ

G(x, xs) j(xs)dγ(xs) = −Einc(x), ∀x on Γ, (1)

where Einc is the incident electric field, j the sought density

current and G the Green function. In free space, we usually
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Figure 1: A periodic surface.

consider

G(x, xs) =
1

4i
H

(2)

0
(k|x − xs|) (2)

where i is the imaginary unit, k the wave number and H
(2)

0
the

Hankel function of second kind. This definition is replaced in

the case of a periodic surface by

G(x, xs) =

+∞
∑

n=−∞

1

2iγnL
e−iγn |y−ys | eiαn(x−xs) (3)

where L is the period of the surface, αn = 2πn/L + kθinc with

θinc the incident angle and γn =
√

k2 − α2
n.

Integral equation (1) is discretized using a Galerkin method

with a current density constant per element. It leads a priori

to a full matrix that should be compressed for memory and

computational time efficiency.

III. Matrix compression

A. Hierarchical Matrix

It has been proved that some matrices issued from the

discretization of integral equation, as these coming from

diffusion problems, can be efficiently represented by a data-

sparse format called hierarchical matrices often denoted H-

matrices [2].



This kind of matrix is constructed on a hierarchical matrix

block partition of the original matrix. This partition is related

to the geometric positions of the degrees of freedom (dofs)

of the discretization; it can be for instance a recursive binary

partitioning of this set of dofs. Some blocks of the partition

satisfy an admissibility condition and can to compressed.

They mainly represent far-field interactions between sets of

degrees of freedom. Other non-admissible block has to be fully

assembled and they represent near-field interactions.

In order to compress the admissible block, several strategies

can be considered as multipole expansion, panel clustering

[3]. Here we prefer to focus a purely algebraic approach, the

adaptive cross approximation because it is straightforward to

implement and multipole expansion for periodic kernel is not

yet very efficient [4].

B. Adaptative Cross Approximation

A compression technique (QR algorithm) has been conside-

red for the admissible matrix blocks in a previous work [5],

for the same application. Unfortunately this method is limited

by the fact that the compression is performed a posteriori and

consequently it is necessary to assemble the whole matrix.

In this work, we perform an Adaptive Cross Approximation

(ACA) [6] which can be applied a priori. It is an iterative

process that computes at each iteration one row and one

column (a cross) of the matrix block and an estimate of the

error to approximate the block (adaptivity). Thus only selected

entries of the matrix block have to be computed.

IV. Numerical Results

We consider here the case of scattering by a sinus surface

y = h sin

(

2πx

d

)

(4)

where h = 1cm and d = 2cm and we observe the effect of ACA

compression (for a given precision) when the number of degree

of freedom increase. The given result is the compression rate

(memory storage of the compressed matrix relatively to the

full matrix) at various frequencies (1Ghz to 1Thz).

This result shows that the method works with the expected

asymptotic behavior. As a result, the H-Matrices are known

to expect (whatever is the compression technique) an increase

of the memory storage in N log(N), which is obtained here.

In terms of computation time, the improvement is not fully

observed because of an important cost of the assembly of

diagonal uncompressed blocks, see Fig. 3.

Nevertheless a gain of factor 2 to 5 is obtained for 12800

unknowns (comparatively to compression rate 1% to 3%). At

higher size, direct assembly is possible to conjecture improved

gains. This work is yet under studie, a specific improvement

of the diagonal assembly being necessary to obtain all the

performances of the method.

Note : for this application, the solution of linear system by

an iterative solver is fast comparative to the assembly. It has

then not be studied in details yet. It will be useful to improve

it when the size of the system will increased and the diagonal

assembly will be fully improve.
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Figure 2: Compression rate vs the number of degrees of

freedom (dofs).
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Figure 3: Computation times.
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