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This paper is devoted to the generic parameters identifiability analysis for structured linear systems with unknown inputs. The
proposed method is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. Necessary
and sufficient conditions are expressed in graphical terms which ensure that a given set of unknown parameters characterizing the
model of the system are structurally identifiable using the available measurements, assuming that the inputs and initial conditions
are quite informative. Even if we are not interested in proposing identification schemes, these given conditions are necessary and
sufficient to the parameter identification whatever the used algorithms to determine numerically the parameters values. Finally,
note that the given conditions are quite easy to check because they are based on searching and comparing some specific paths
and cycles in a digraph. This makes our approach well suited to study large scale systems.
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1 Introduction

This paper deals with the analysis of a priori global identifiability of general structured linear dynam-
ical systems with unknown inputs. In such systems, the matrices have a number of fixed zero entries
while the rest of the entries are not numerically known. Following the definition of local identifiability
by Bellman and Aström (Bellman and Ästrom 1970) and later by Chapman and Godfrey (Chapman and
Godfrey 1985), a model is identifiable if error-free data lead to a finite number of solutions for all the
parameters in the model equations. A model is unidentifiable if at least one parameter is unidentifiable,
i.e. has an infinite number of possible values. Global identifiability concerns the possibility of uniquely
determining the model parameters from input-output data. There are at least two reasons for assessing
this property. First, the model parameters can have a physical meaning, and it can be interesting to know
whether it is possible to determine their values from experimental data. Second, numerical optimization
approaches will have difficulties when trying to estimate the parameters of a non-identifiable model.
A summary of existing research on structural identifiability analysis shows that in 1970s some techniques
were developed from control theories for linear models (Bellman and Ästrom 1970), especially compart-
mental models. A detailed review and discussion of the different ideas and terminology in the field of
linear identifiability can be found in the PhD thesis of Delforge (Delforge 1984). More recently, some
methods for testing the structural identifiability of non-linear models have been developed. In (Miao
et al. 2011), identifiability analysis methodologies are reviewed for nonlinear ODE models developed in
the past couple of decades, including structural identifiability analysis, practical identifiability analysis,
and sensitivity-based identifiability analysis. The main drawbacks of these methods are related to the
difficulty of assessing the observability condition and the complexity to solve linear inhomogeneous par-
tial differential equations for general non-linear dynamic systems. The more recently developed DAISY
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software (Bellu et al. 2007) enables its application to non-expert users. In line with this approach, the
implicit function theorem based method was proposed by Xia and Moog (Xia and Moog 2003). It is
based on computing the time derivatives of the outputs to eliminate unobserved states and determining
a finite number of equations consisting of known inputs/outputs and unknown parameters. These two
kinds of methods can be applied to small-scale systems effectively but, when dealing with medium or
large-scale systems, the calculations involved become intractable.
In this context, the aim of this paper is to propose a new graph-theoretic tool to provide necessary and
sufficient conditions that ensure that some desired parameters are identifiable according to the structure
of the system and the location of the measurements. Our approach is well-suited to treat large scale sys-
tems because it uses classical programming techniques and is free from numerical difficulties. Moreover,
the key feature of all of the results presented in this paper is that the global identifiability of structured
linear dynamical systems is scrutinizing with unknown inputs. To our knowledge, it is a challenging
problem that has received very little attention, the majority of recent studies mainly focus on general
non-linear dynamic models without unknown inputs.
To study the identifiability of structured systems, we consider models where the fixed zeros are con-
served while the non zero entries are replaced by free parameters to be determined. There is a huge
amount of interesting studies in the literature using this kind of models. The latter capture most of the
available structural information from physical laws. Their study requires a low computational burden,
which allows us to deal with large scale systems. Because of these characteristics, we think that struc-
tured systems are particularly well suited to study the identifiability.
The pioneering work of Reinschke (Reinschke 1985) showed that graph theoretical tools are useful tech-
niques to analyse basic properties of structured systems. In the context of parameter identifiability, the
work of Audoly and D’angiò (Audoly and D’angiò 1980) considers a directed graph-based approach to
deal with the problem of the a priori identifiability of compartmental systems from input-output exper-
iments. The problem of determining whether or not a particular parameter, or the entire compartmental
system, is structural identifiable can become extremely difficult if the number of unknown parameters
and the number of compartments is large. With the objective to consider large linear compartmental sys-
tems, Eisenfeld et al. in (Eisenfeld 1982) and (Eisenfeld and Grundy 1983) introduce new methods based
on some digraph properties and a subsystem decomposition in such a way that a parameter is structural
identifiable with respect to the large system if and only if it is structural identifiable with respect to the
subsystem in which it is contained. In (Eisenfeld and Grundy 1983), sufficient conditions are proposed
on the digraph of the system, which guarantee that the desired decomposition can be achieved. However,
none of these studies can be used to analyse generic parameter identifiability of structured linear systems
with unknown inputs. It is the aim of this paper.
Compared to existing works, the contribution of the presented approach lies mainly in three points :
Firstly, few works deal with the identifiability of systems with unknown inputs, representing distur-
bances, unmodeled dynamics or faults for example. Secondly, most part of identifiability studies use
algebraic or geometric approaches and so require more information than the proposed approach which
needs only the knowledge of the structure of the system. Moreover, the use of graph-theoretic approach
provides quite efficient and systematic analysis tool.
Finally, our approach allows us to address quite easily and immediately the problem of sensors location
to ensure the identifiability of a chosen set of parameters. This problem is very interesting from a con-
ception point.
The paper is organized with a Section 2 presenting the problem of the generic parameter identifiability
for structured linear systems with unknown inputs. In Section 3, some classical definitions and notations
in the graph-theory are given and a digraph for any structured linear system is defined. Section 4 presents
some general results on the existence of redundancy equations allowing the identification of unknown
parameters for systems with unknown inputs. These results allow to reduce the digraph of the system to
its useful part. In Section 5, some lemmas are provided which allow us to establish the necessary and
sufficient identifiability conditions in Section 6, which represent the main result of the paper. A brief
conclusions is given in Section 7.
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2 Problem statement

In this paper, we address numerically non-specified systems on the form:

ΣΛ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

where x ∈ Rn, u ∈ Rq and y ∈ Rp are respectively the state vector, the input vector and the output mea-
surement vector. Without loss of generality and for the sake of homogeneity, all the inputs are assumed
to be unknown. The control input signals, whose values are known, are considered to be measured i.e. a
virtual output equation of the form yk′ = uk is associated to these inputs.
A, B, C and D represent matrices which elements are either fixed to zero or assumed to be nonzero param-
eters noted λi. It is assumed that the entries of all these matrices, constituting vector (λ1, λ2, . . . , λh)T ∈

R
h, can take any value in Rh or equivalently that parameters λi are free. If all parameters λi are numeri-

cally fixed, a so-called admissible realization of structured system (ΣΛ) is obtained. A property is said to
be true generically (van der Woude 1999) if it is true for almost all the realizations of structured system
(ΣΛ). Here, “for almost all the realizations” is to be understood (Dion et al. 2003, van der Woude 1999)
as “for all parameter values ((λ1, λ2, . . . , λh)T ∈ Rh) except for those in some proper algebraic variety
in the parameter space”. The proper algebraic variety for which the property is not true is the zero set of
some non-trivial polynomial with real coefficients in the h system parameters λ1, λ2, . . . , λh or equiva-
lently it is an algebraic variety which has Lebesgue measure zero.
In this paper, we are interested in the generic identifiability of a subset of parameters denoted Θ =
{λi1 , λi2 , . . . , λikθ

} ⊆ {λ1, λ2, . . . , λh} = Λ, which may represent directly or not some physical parame-
ters of the system. The parameters to be identified are some of the entries of matrices A B, C and D. It is
assumed also that all the other parameters (Λ \Θ) are known even if the identifiability analysis does not
necessitates their numerical values.
Let’s recall briefly the definition of the generic parameter identifiability:

Definition 2.1: The unknown parameters of subset Θ of structured system (ΣΛ) are generically
identifiable iff, for almost all realizations of (ΣΛ), for some initial state x0 and for input function
u(t), y(t, x0, u(t),Θ0) = y(t, x0, u(t),Θ1) for t ≥ 0 implies Θ0 = Θ1, where y(t, x0, u(t),Θ0) (resp.
y(t, x0, u(t),Θ1)) represents the output related to system ΣΛ for the initial conditions x0, the input u(t)
and the unknown parameter values Θ = Θ0 (resp. Θ = Θ1). �

In other words, the unknown parameters of subset Θ are generically identifiable, if, when the initial
state and the input are quite informative, the measured trajectory allows to uniquely determine the values
of all the elements of Θ.
Therefore, to achieve the parameters identifiability, it is necessary and sufficient to have some algebraic
and differential equations linking some outputs , which allow to uniquely determine the exact values of
the parameters. Since we deal with linear systems, these equations, called redundancy equations, have
obviously the form:

y
(ℓ)
i
=
∑

s<ℓ

αi,sy
(s)
i
+
∑

yl∈Y\{yi}

n∑

s=0

αl,sy
(s)
l

(2)

where each αi,s can lead to an “identification” equation allowing the parameters estimation. The param-
eters identifiability is achieved if and only if there are sufficiently independent identification equations
issued from the redundancy algebraic relations, to express all the unknown parameters.
Note that the aim of the paper is not to find these identification equations neither to propose an identi-
fication algorithm but to analyse if yes or no, according to the structure of the system, it can be written
sufficiently independent and informative to ensure the unknown parameters identifiability.
To establish our result, which consists on graphical necessary and sufficient conditions for the generic
identifiability of the parameters belonging to Θ, we proceed with the following steps:
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Step 1: a digraph is associated to the considered system. This digraph and different notations are pre-
sented in Section 3.

Step 2: the graph is reduced to its useful part for the identifiability. This is done by establishing firstly
that in a certain easily computed part of the graph, it is not possible to exhibit algebraic redundancy
equations allowing the identification of the parameters (Lemma 4.2), and secondly that in the remaining
part there always exists an algebraic relation linking any output to the others (Lemmas 4.3 and 4.4).

Step 3: in the useful part of the graph, using the graphic characterization of the observability subspace
dimension (Lemma 4.6), the notion of eligible edge is defined. Then, it is shown that a necessary con-
dition to the parameter identifiability is that the associated edge of the considered parameter is eligible
(Lemma 5.1).

Step 4: the redundancy algebraic equations are characterized by defining the pairs of paths ¶A and of
path-cycle ¶C . Next, it is proven that all the algebraic equations use only the parameters associated to
the edges covered by these pairs. According to this fact, Lemma 5.2 provides necessary and sufficient
conditions to check if a parameter appears or not in a redundancy equation. Then, this result is extended
to a set of k unknown parameters in Lemma 5.3.

Step 5: a new bipartite graph is defined linking the unknown parameters to the pairs of paths and cy-
cles representing the identification equations. Using the DM-decomposition of this bipartite graph, the
sufficient (Lemma 5.5) and necessary (Lemma 5.6) condition are established to the generic parameter
identifiability.

Step 6: the final and main result is summarized in Proposition 6.1.

3 Graphical representation and some classical definitions

The digraph associated to (ΣΛ) is noted G(ΣΛ). It is constituted by a vertex set V and an edge set
E i.e. G(ΣΛ) = (V,E). The vertices are associated to the continuous state, the input and the output
components of (ΣΛ) and the directed edges represent links between these variables. More precisely,
V = X ∪ Y ∪ U, where X = {x1, . . . , xn} is the set of state vertices, Y =

{
y1, . . . , yp

}
is the set of

output vertices and U =
{
u1, . . . ,uq

}
is the set of unknown input vertices. The edge set is E = A-edges ∪

B-edges ∪ C-edges ∪ D-edges, with A-edges =
{
(xj, xi) | A(i, j) , 0

}
, B-edges =

{
(uj, xi) | B(i, j) , 0

}
,

C-edges =
{
(xj, yi) | C(i, j) , 0

}
, D-edges =

{
(uj, yi) | D(i, j) , 0

}
. Here, M(i, j) is the (i, j)th element

of matrix M and (v1, v2) denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V. Each edge is
associated to a free non-zero parameter of the system model called the weight of the edge.
Notation : The edges associated to the unknown parameters are represented in dashed lines. The

set of these edges is denoted Eθ and their number is kθ.

Example 3.1 To the system defined by the following matrices, it is associated the digraph depicted in

Figure 1.

A =



0 0 0 0 0 λ1
0 λ2 0 0 0 λ3
λ4 0 0 0 0 0
0 0 0 λ5 λ6 0
0 0 0 λ7 0 0
0 0 0 0 0 0


, B =



0
0
0
0
0
λ8


, C =

(
λ9 0 λ10 0 0 0
0 λ11 0 λ12 0 0

)
, D = 0.For this example, the unknown parame-

ters to be identified are Θ = {λ1, λ2, λ7, λ10}. We recall that all the other parameters Λ \Θ are assumed

to be known. �

Let’s now give some useful definitions and notations which are quite common in the graph-theory.
Definition 1: a path is simple when every vertex occurs only once in this path. The weight of a path is

the product of the weight of all the edges constituting this path.
Definition 2: a cycle is a path of the form vs0

→ vs1
→ . . . → vsi

→ vs0
, where vs0

, vs1
, . . . , vsi

are
distinct.

Definition 3: a path is a Y-topped path if its end vertex belongs to Y.
In the sequel, V1 and V2 represent two subsets of V. It is denoted by card(V1) the cardinality of V1
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Figure 1. The digraph associated to the system of Example 3.1

andV1 \ V2 is the set of elements inV1 which are not inV2.
Definition 4: a path is aV1-rooted path if its begin vertex belongs toV1.
Definition 5: denote by pred(V1) the set of all the predecessors of the vertices included inV1.
Definition 6: a path p = vs0

→ vs1
→ . . . → vsi

is said a V1-V2 path if vs0
∈ V1 and vsi

∈ V2.
Moreover, if the only vertex of p which belongs to V1 is vs0

and the only vertex of p which belongs to
V2 is vsi

, p is called a directV1-V2 path.
Definition 7: some paths are disjoint if they have no common vertex. ρ

(
V1,V2

)
is the maximal

number of disjoint V1-V2 paths. Moreover, a set of ρ
(
V1,V2

)
disjoint V1-V2 paths is called maximal

V1-V2 linking.
Definition 8: µ

(
V1,V2

)
denotes the minimal number of vertices of U∪X∪Y belonging to a maximal

V1-V2 linking.
Definition 9: Vess

(
V1,V2

)
is the vertex subset including the vertices present in all the maximal

V1-V2 linkings.
Definition 10: there exists a unique vertex subset noted S o(V1,V2

)
, called minimum output separator,

which is the set of begin vertices of all direct Vess

(
V1,V2

)
-V2 paths.

Example 3.1, continued: For the considered system, it can be seen that ρ
(
U,Y
)
= 1,

Vess

(
U,Y
)
= {u1, x6}, S o(U,Y) = {x6}. �

In order to express more easily the graphical necessary and sufficient conditions ensuring the param-
eters identifiability, a second kind of graphs called bipartite graphs will be used. Hereafter, some recalls
are given on this kind of graphs and particularly on the so-called Dulmage-Mendelsohn decomposition.
Consider any bipartite digraph noted B defined by the triplet (V+,V−,W), where V+ and V− are two ver-
tex subsets and W the set of edges linking theses two vertex subsets. Let’s recall some elements related
to the subdivision of such bipartite digraph into strongly connected components using the Dulmage-
Mendelsohn (DM) decomposition (Dulmage and Mendelsohn 1958, Murota 1987):
A matching in bipartite graph B is an edge set M ⊆ W such that all the edges of M are dis-
joint (have no common vertex). A matching is maximal if it has a maximal cardinality. It can be
associated to each maximal matching M a non bipartite digraph noted BM = (V+,V−,WM) where
(v1, v2) ∈ WM ⇔ (v1, v2) ∈ W or (v2, v1) ∈ M. The set of vertices in V+ (resp. in V−) covered by
the edges of M is denoted by ∂+M (resp. ∂−M). It is noted S+0 = V+ \ ∂+M and S−0 = V− \ ∂−M.
In BM, two vertices vi and vj are said to be strongly connected if it exists in BM a path from vi to vj and a
path from vj to vi. The relation “is strongly connected to” is an equivalence relation and its equivalence
classes can be defined. Each equivalent class is called a strongly connected component (Murota 1987).
Any bipartite digraph B can be decomposed uniquely into a certain number (defined here as ν + 2) of
partially ordered irreducible components denoted Ci(B) = (V+i (B),V−i (B),Wi(B)), i = 0, 1, . . . , ν, ∞,
using DM-decomposition described below to make the paper self-contained:
# Find a maximal matching M in B,
# Let V+0 (B) = S+0 ∪ {v ∈ V+, | ∃ a path in BM from S+0 to v}

# V−0 (B) = {v ∈ V−, | ∃ a path in BM from S+0 to v}.



October 28, 2013 12:24 International Journal of Control IdentifiabiliteRev6

7

# W0(B)
de f
= {edges linking V+0 (B) to V−0 (B)}.

# Let V+∞(B) = {v ∈ V+, | ∃ a path in BM from v to S−0 }

# V−∞(B) = S−0 ∪ {v ∈ V−, | ∃ a path in BM from v to S−0 }.

# W∞(B)
de f
= {edges linking V+∞(B) to V−∞(B)}.

# For i = 1, . . . , ν, let Ci(B) be the strongly connected component of the graph obtained from BM

after deleting the vertices and the edges of C0(B) and C∞(B).
# A partial order relation is defined on the strongly connected components, denoted “4” as follows:
Ci(B) 4 Cj(B)⇔ there exists a path starting from the vertices of Cj(B) to the ones of Ci(B) in BM.
It is important to note that the obtained subsets V+i (B) and V−i (B) , for i = 0, 1, . . . , ν, ∞, are the same
whatever the choice of the maximal matching M is (Dulmage and Mendelsohn 1958, Murota 1987).
C0(B) is called the minimal inconsistent part of B and C∞(B) is the maximal inconsistent part of B.
The union of all the strongly components Ci(B), i = 1, . . . , ν is called the consistent part of B.

4 Preliminaries and specific definitions

The identifiability of a set of parameters depends on the existence of some algebraic relations linking
the output and their derivatives and, which are sensitive to these parameters. Therefore, it is important
to characterize the existence and the number of algebraic relations linking the different output compo-
nents and their derivatives. Knowing that the identifiability of the parameters depends on the existence
of enough redundancy output equations sensitive to the unknown parameters, the method follows three
main steps :

Step 1: A reduction of the digraph by the elimination of the part where there is no redundancy equa-
tions. This gives also a necessary identifiability condition

Step 2: A graphical characterization of the redundancy equations sensitive to the unknown parameters.
Step 3: A graphical test to know if the existing redundancy output equations allows the identifiability

of all the unknown parameters.
Almost all the technical aspects of method turn around the graphical characterization of the existence
and the independence of output redundancy equations. And this is strongly linked to the observability
subspaces dimensions and so the existence and the length of some particular paths and cycles in the
digraph associated to the system.
The existence of an algebraic equation linking some output components is equivalent to the fact that
two generated observability subspaces are not disjoint, which can be characterized by some dimension
calculations.
Our aim, hereafter, is to characterize the generic dimension of the observability subspace of the system
or more exactly of the part of the system where it is possible to write redundancy output equations use-
ful for the identification. To do so, the system is first subdivided into two parts from the observability
point of view: the first one is the maximal over-determined part and the second one is related to the
square part and the under-determined part. The parameters identifiability can be achieved only in the
over-determined part. This subdivision is provided in (van der Woude 1999) and is equivalent to the
DM-decomposition when representing the system by a bipartite digraph.

Definition 4.1: (Boukhobza et al. 2007) In digraph G(ΣΛ), it can be defined:

• X1

de f
=
{
xi | ρ
(
U ∪ {xi},Y

)
> ρ
(
U,Y
)}

;

• Y0

de f
= Y ∩ Vess

(
U,Y
)
;

• Y1

de f
= Y \ Y0;

• U0

de f
=
{
ui | there is no edge from ui to X1 ∪ Y1};

• U1

de f
= U \ U0;

• Xs

de f
= S o(U0,Y

)
∩ X;

• X0

de f
= X \

(
X1 ∪ Xs

)
. �
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The aim of this decomposition is to simplify the digraph of the system and to reduce it to its useful part
for the identifiability study. This decomposition is also used the observability context (van der Woude
1999, Boukhobza et al. 2007, Boukhobza and Hamelin 2013). Mainly, due to the presence of unknown
inputs in the systems, from the observability point of view, any system can be divided into three parts:
under-determined part, exactly-determined part and over-determined part. The two first parts are here
regrouped to form the subsystem (Σ0). The over-determined part of the system constitutes the subsystem
(Σ1). The only part containing redundancy output equations leading to the identification of unknown
parameters are the over-determined part. This is why, only this part is kept and the study can be reduced
to (Σ1) the over-determined part and the rest of the digraph is removed from the study. Moreover, if an
unknown parameter appears in the under-determined part or in the exactly determined part of the system,
then it won’t be identifiable. More precisely, the decomposition leads to two subsystems:

Subsystem (Σ1) which has as input U1∪Xs, state X1 and output Y1. This subsystem represents, from the
observability point of view, the over-determined part of the system. Indeed, it is proven in (Boukhobza
et al. 2007, van der Woude 1999) that this part remains left invertible even if any one of its measurements
is removed. This is due to the fact that, by definition, no output vertex is essential in an input-output
linking and all the state vertices constituting this subsystem can reach an output vertex independently
from the input-output paths. It has necessarily more outputs (measurements) than inputs.

Subsystem (Σ0) which has as input U0, state X0 ∪ Xs and output Y0. This subsystem represents the
square and under-determined parts of the system.
In fact, if it is denote by X0, Xs, X1, U0, U1, Y0 and Y1 the state, the unknown input and the output
associated to vertex subsets X0, Xs, X1, U0, U1, Y0 and Y1 respectively, system (ΣΛ) can be written as
given in (Boukhobza et al. 2007):



Ẋ0 = A0,0X0 + A0,sXs + A0,1X1 + B0,0U0 + B0,1U1

Ẋs = As,0X0 + As,sXs + As,1X1 + Bs,0U0 + Bs,1U1

Ẋ1 = A1,sXs + A1,1X1 + B1,1U1

Y0 = C0,0X0 +C0,sXs +C0,1X1 + D0,0U0 + D0,1U1

Y1 = C1,sXs +C1,1X1 + D1,1U1

(3)

The proposed subdivision of the system into two subsystems is summarized in Figure 2. As it can be
seen through equations (3), X0 and U0 does not intervene on the dynamics of X1 and neither on the
output Y1. Thus, system (Σ1) can be seen as having U1 and Xs as input vectors, X1 as state vector and
Y1 as output vector. This system is over-determined and has more outputs than inputs (Boukhobza and
Hamelin 2009). System (Σ0), has more inputs than outputs and is under-determined. It can be considered
that this system interacts with subsystem (Σ1) as U1 and X1 can be present in the dynamics of X0 and Xs

as well in the output equation Y0.

Figure 2. System subdivision for parameters identifiability

Example 3.1, continued: For this example, we have X1 = {x1, x2, x3, x4, x5}, X0 = ∅, Y0 = ∅, Y1 =

{y1, y2}, U0 = {u1}, U1 = ∅ and Xs = {x6}. �

Remark: When all the inputs are known, or equivalently measured, then subsystem (Σ0) contains only

the state vertices which are not connected to the measurements.

Some important results proven in (Boukhobza and Hamelin 2009, 2011) are summarized in the following
lemmas:
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Lemma 4.2: There cannot exist a relation linking only the output components of square subsystem

(Σ0). �

Proof: See Appendix A.
Using this lemma result, the studied graph can be reduced to keep only its useful part i.e. only the vertices
related to subsystem (Σ1): U1∪Xs∪X1∪Y1 and the edges linking these vertices. Note that the elimination
of subsystem (Σ0) does not correspond to the elimination of a subsystem, where there is no unknown
parameter to identify. Indeed, if there are some parameters to identify related to some edges in (Σ0), then
these parameters are not identifiable and it can be concluded that the considered subset of parameters is
not identifiable. Therefore, from now, only the over-determined part is considered i.e. in the sequel,

our study is reduced only to the part (Σ1).
Example 3.1, continued: For the system of Example 3.1, the reduced useful digraph is depicted in

Figure 3. �

Figure 3. The reduced useful digraph for Example 1

Lemma 4.3: For subsystem (Σ1), for each Yu = {yi1 , yi2 , . . . , yik} ⊂ Y1 such that ρ
(
U1 ∪ Xs,Yu

)
=

card(U1 ∪ Xs), there exist generically a matrix G, a function ϕ and an integer ν ≤ n1 such that(
XT

s , UT
1

)T
= ϕ(Yu, Ẏu, . . . , Y (ν)

u ) +GX1, where Yu
(ν) = (y(ν)

i1
, y

(ν)
i2
, . . . , y

(ν)
ik

)T . �

Proof: This lemma has been proved in (Boukhobza and Hamelin 2011).
As a corollary of this lemma, we have:

Lemma 4.4: For each yi ∈ Y1, there exists an output algebraic relation linking it to other measure-

ments of Y1. �

Proof: See Appendix B.

Definition 4.5: Consider structured linear system (ΣΛ) associated to digraphG(ΣΛ). The positive num-
ber β1 is defined as the maximal number of vertices of X1 ∪ U1 ∪ Xs covered by a disjoint union of:
• a
(
U1 ∪ Xs

)
→ Y1 linking of maximal size;

• Y1-topped paths;
• cycles covering only the elements of X1. �

Lemma 4.6: Consider structured linear system (ΣΛ) represented by digraph G(ΣΛ), the number β1 is

equal to the generic dimension of the observable subspace of the over-determined part (Σ1) of the system

in the extended state and input space. �

Proof: This lemma has been proved in (Boukhobza 2010).
To achieve the parameter identifiability analysis, it is necessary to have enough independent output
algebraic relations linking some outputs and their derivatives, which are sensitive to the parameters to
be identified. When several output components appear in this equation, it means that for some order
ki, y

(ki)
i

can be written as a linear combination of y
(k)
i

, k < ki, and of other output components with
their derivatives. In this case, the intersection of observability subspace generated by yi and the other
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components is not empty. This can be characterized by the generic dimension of such subspaces.
Definition 11: for each output yi ∈ Y1,

∆i = {xi ∈ X1, such that xi is covered by a direct S o(U1 ∪ Xs,Y1 \ {yi}
)
→ Y1 \ {yi} path }

Definition 12: integer β1,ī is the sum of :

• µ
(
U1 ∪ Xs, S

o(U1 ∪ Xs,Y1 \ {yi}
))

• the maximal number of vertices of ∆i ∪ S o(U1 ∪ Xs,Y1 \ {yi}
)

covered by a disjoint union of:
⋄ a S o(U1 ∪ Xs,Y1 \ {yi}

)
} - Y1 \ {yi} linking of maximal size;

⋄ Y1 \ {yi}-topped paths;
⋄ cycles covering only the elements of ∆i.

Definition 13: d(yi) = β1 − β1,ī.
β1,ī represents the dimension of the observability subspace of subsystem (Σ1) when removing the output

yi Boukhobza (2010). Obviously, for all k > d(yi), y
(k)
i

can be written as a linear combination of y
( j)
i

, with
j ≤ d(yi), and other output components with their derivatives.

Definition 14: a path p is said eligible if it covers only the vertices included in U1 ∪Xs ∪X1 ∪Y1 and
if it verifies one of the following conditions:
• p is a simple U1 ∪ Xs-Y1 path.
• p is a Y-topped path and its length is strictly greater than d(yi), where yi is its end vertex.
• p is a cycle covering only vertices in X1.

Definition 15: an edge is eligible if it belongs to an eligible path.
Example 3.1, continued: For the system of Example 1 reduced to its over-determined part,

β1({y1, y2}) = 6 and as β1,ī = β1,ī = 2, then d({y1}) = d({y2}) = 4. The eligible paths are then all

the {u1}-Y simple paths and all the cycles covering x1, x2, x3, x4 and x5. The eligible edges of the system

of Example 3.1 are depicted in Figure 4. �

Figure 4. Eligible edges for Example 1

5 Intermediate results for the identifiability study

Using the previous definitions, the following lemma is stated:

Lemma 5.1: Let’s consider structured linear system (ΣΛ) represented by graph G(ΣΛ). An unknown

parameter λe corresponding to an edge e ∈ Eθ is structurally identifiable only if e is eligible. �

Proof: The proof is provided in Appendix C.
Now, the following sets are defined in G(ΣΛ) and an equivalence relation R between some specific paths
is introduced:

Definition 15: Γd =
{
vi covered by an eligible path such that S o(vi,Y1

)
= {vi} when considering the

subgraph constituted only by the eligible edges
}
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Definition 16: Γc = {xi ∈ X1, | xi is covered by a cycle}
Definition 17: in the set of eligible Γd-Γd direct and simple paths, relation R1 is defined as follows :

p1R1 p2 if p1 and p2 are two paths having the same begin and end vertices and the same length.
Definition 18: ¶A is the set of pairs of eligible Γd-Γd direct and simple paths {p1, p2} such that p1✓R1 p2.

In ¶A, relation Rp is defined as follows : {p1, p2}Rp{p3, p4} if one of these two conditions holds:
• p1R1 p3 and p2R1 p4

• p1R1 p4 and p2R1 p3

Definition 19: ¶C is the set of pairs of paths {C1, p
′
1} such that:

• C1 is a cycle covering elements of Γc,
• p′1 is a simple direct Γc-Γd path, and
• C1 and p′1 have the same begin vertex.

In ¶C , relation Rc is defined as follows : {C1, p′1}Rc{C2, p′2} if C1 and C2 have the same length and p′1
and p′2 have the same end-vertex.
Example 3.1, continued: For this example, Γd = {x6} and Γc = {x2, x4, x5}.

Furthermore, it can be seen that x6 → x1 → y1✓R1x6 → x1 → x3 → y1, x6 → x2 → y2✓R1x6 → x1 →

x3 → y1 and x6 → x1 → y1✓R1x6 → x2 → y2. For relation Rp, three equivalent classes have to be

considered. The first class includes {x6 → x1 → y1, x6 → x1 → x3 → y1}, the second one includes

{x6 → x1 → y1, x6 → x2 → y2} and the last one includes {x6 → x2 → y2, x6 → x1 → x3 → y1}.

Moreover, {x2 → x2, x2 → y2}Rc{x4 → x4, x4 → y2} and {x2 → x2, x2 → y2}✓Rc{x4 → x5 →

x4, x4 → y2}. �

Lemma 5.2: Let’s consider structured linear system (ΣΛ) represented by graph G(ΣΛ). An unknown

parameter corresponding to an edge e ∈ Eθ belongs to a redundancy algebraic equation iff it is covered

by a path belonging to a pair of ¶A or by a cycle belonging to a pair of ¶C . �

Proof: The proof is provided in Appendix D.
The following identifiability necessary conditions can be stated:

Lemma 5.3: Let’s consider structured linear system (ΣΛ) represented by digraph G(ΣΛ). k unknown

parameters corresponding respectively to k edges belonging to Eθ are structurally identifiable only if

they are covered by paths belonging to pairs of ¶A or by cycles belonging to pairs of ¶C , where all these

pairs belong to k distinct equivalence classes w.r.t. relations Rp and Rc. �

Proof: The proof is provided in Appendix E.
It is defined now the bipartite digraph linking the parameters to the paths which allows to write the
identifiability equations:

Definition 5.4: Considering edge subset Eθ, which corresponds to the unknown parameters and
a union of pairs F =

{
{p1,1, p1,2}, {p2,1, p2,2}, . . . , {pk,1, pk,2}, {c1, p′1}, {c2, p′2}, . . . , {cℓ, p′ℓ}

}
, a bipar-

tite digraph BI(F ) called “identifiability bipartite digraph related to F ”can be defined , such that:
BI(F ) = (V+,V−,W), where V+ = Θ, V− = F and
W =

{
(λ j, {pi,1, pi,2}), if the edge associated to λ j is covered by a path p j,1 or p j,2 of a pair {p j,1, p j,2} ∈

[{pi,1, pi,2}]Rp

}
∪
{
(e j, {ci, p

′
i}), if the edge associated to λ j is covered by a cycle c j of a pair {c j, p

′
j} ∈

[{ci, p
′
i}]Rc

}
. �

The two following lemmas establish the necessary and sufficient identifiability conditions using the
bipartite graph defined above.

Lemma 5.5: Let’s consider a union of pairs F ⊆ ¶A ∪ ¶C , where all the pairs belong to distinct

equivalence classes w.r.t. relations Rp and Rc. If all the parameters associated to elements of Eθ are

covered in BI(F ) by an exactly determined DM-component of cardinality equal to one, then they are

structurally identifiable, assuming that all the other parameters of the model are known. �

Proof: The Proof is provided in Appendix F.

Lemma 5.6: All the parameters associated to Eθ are structurally identifiable, assuming that all the
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other parameters of the model are known, only if there exists a union of pairs F ⊆ ¶A ∪ ¶C belonging to

distinct equivalence classes w.r.t. relations Rp and Rc, such that each element of Eθ is covered in BI(F )
by an exactly determined DM-component of cardinality equal to one. �

Proof: The Proof is provided in Appendix G.

6 Main result : parameter identifiability characterisation

Using the previous definitions and results, it can enounced now the main result of the paper characteri-
zing exactly the parameters identifiability:

Proposition 6.1: Let’s consider structured linear system (ΣΛ) represented by graph G(ΣΛ).
The unknown parameters corresponding to the edge subset Eθ are structurally identifiable, as-

suming that all the other parameters of the model are known, iff there exists a family F ={
{p1,1, p1,2}, {p2,1, p2,2}, . . . , {pk,1, pk,2}, {c1, p′1}, {c2, p′2}, . . . , {cℓ, p′ℓ}

}
of pairs included in ¶A ∪¶C such

that:

- All the edges of Eθ are covered by paths pi, j, i = 1, . . . , k, j = 1, 2 or by cycles cr, r = 1, . . . , ℓ,
- All the pairs {pi,1, pi,2}, i = 1, . . . , k, belong to distinct equivalent classes w.r.t. Rp,

- All the pairs {cr, p
′
r}, r = 1, . . . , ℓ, belong to distinct equivalent classes w.r.t. Rc,

- All the D-M components of the identifiability bipartite digraph associated to F are in the exactly deter-

mined part and each of them contains exactly one element ofΘ (the vertex set associated to the unknown

parameters). �

Proof:

Sufficiency: According to lemma 5.5, the existence of family F satisfying conditions of Proposition 6.1,
which are similar to the conditions of Lemma 5.5, and covering all the edges corresponding to unknown
parameters, is sufficient to establish the identifiability of all the unknown parameters.
Necessity: The necessity is immediate according to Lemma 5.6. △

Example 3.1, continued: For the system of Example 3.1, four parameters have to be identified

{λ1, λ2, λ7, λ10}. Let’s take the following notations for the paths and cycles: p1 = x6 → x2 → y2,

p2 = x6 → x1 → x3 → y1, p3 = x6 → x1 → y1, c1 = x2 → x2, c2 = x4 → x5 → x4, p′1 = x2 → y2

and p′2 = x4 → y2.

All the elements of familyF =
{
{p1, p3}, {p2, p3}, {c1, p′1}, {c2, p′2}

}
belong to distinct equivalent classes

w.r.t. Rp and Rc. Moreover, each of the unknown parameters is covered by at least one path p1 or p2

or one cycle c1 or c2. Figure 5 depicts identifiability bipartite digraph associated to F . It can be seen

that all the DM-components contain only one element because edge (λ1, {p2, p3}) does not belong to any

maximal matching in this bipartite digraph. Therefore, the four parameters are generically identifiable.

Indeed, when writing the redundancy algebraic equation linking y1 and their derivatives to y2, when the

equation is normalized in order to obtain the coefficient multiplying y
(6)
2 equal to one, it can be seen

that the coefficient multiplying y
(6)
1 depends on known parameters and λ1 that allows to identify λ1; the

coefficient multiplying y
(5)
1 depends on known parameters, λ1 and λ10 that allows to identify λ10; the

coefficient multiplying y
(5)
2 depends on known parameters, λ2 and λ10 that allows to identify λ2; finally,

the coefficient multiplying y
(4)
2 depends on λ2, λ7 and λ10 that allows to identify λ7. Note that, if λ9 was

unknown, λ1 and λ10 won’t be identifiable since they would belong to the same DM-component. In this

case, to recover the identifiability of these parameters, a measure has to be added on x6, x1 or x3. �

7 Conclusion

In this paper, a graph-theoretic tool is proposed to analyse generic parameter identifiability for struc-
tured linear systems with unknown inputs. More precisely, new necessary and sufficient conditions are
provided that ensure that the redundancy equations generated by the output measurements allow the
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Figure 5. Identifiability bipartite digraph associated to F for Example 1

parameter identifiability. Obviously, in this structural study, the different constraints on the inputs and
initial conditions are not considered. It is just assumed that they are sufficiently informative and can take
any desired values which allow the practical identification of the parameters. Our approach uses classi-
cal programming techniques and is free from numerical difficulties. This makes our proposed method
well-suited to treat large scale systems. In future works, the graph-theoretic approach can be used when
the proposed identifiability conditions are not satisfied, to determine the location of additional sensors in
order to recover them.
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Appendix A: Proof of Lemma 4.2

Using results shown in (van der Woude 1999) (Theorem 5.1) concerning the case of square systems, the
generic number of invariant zeros of the pencil matrix of system (Σ0) is equal to card(X0) + card(Xs) +
card(U0)−

(
µ
(
U0,Xs ∪ Y0

)
− ρ
(
U0,Xs ∪ Y0

)
+ card(Xs)

)
. Thus, the dimension of the strongly observable

subspace and so the number of possible independent observation equations is equal to µ
(
U0,Xs ∪ Y0

)
−

ρ
(
U0,Xs∪Y0

)
. Moreover, the cardinality of U0∪X0 representing the unknown variables for this system,

is at least equal to µ
(
U0,Xs∪Y0

)
−ρ
(
U0,Xs∪Y0

)
because all the linkings between U0 and Xs∪Y0 cover

the vertices of U0 ∪ X0. Since, (Σ0) cannot partitioned in smaller independent rectangular and square
subsystems, in the best case, the number of independent observation equations is equal to the number
of unknown variables. Thus, unknown variables cannot be eliminated from any equations to obtain a
relation linking only Y0 and Xs and their derivatives. △

Appendix B: Proof of Lemma 4.4

yi < Vess

(
U1 ∪ Xs,Y1

)
implies that there exists necessarily a subset Yu ⊂ Y1 \ {yi} such that ρ

(
U1 ∪

Xs,Yu

)
= card(U1 ∪ Xs). Using the previous lemma, there exist a function ϕ and an integer ν ≥ 0 such

that,
(
XT

s , UT
1

)T
= ϕ(Yu, Ẏu, . . . , Y

(ν)
u ) +GX1. Substituting this in subsystem (Σ1), we have:



Ẋ1 =
(
A1,1 + (A1,s B1,1)G

)
X1 + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

de f
= ÃX1 + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1 =
(
C1,1 + (C1,s, D1,1)G

)
X1 + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

de f
= C̃X1 + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

(B1)

Consider then that the characteristic equation of matrix Ã has the form Ãn1+. . .+akÃk+. . .+a1Ã+a0Ã0 =

0, where n1 = card(X1). Multiplying this equation by C̃i where C̃i is the line of matrix C̃ related to output
yi in (B1), an equation of the following form is obtained:

(
C̃iÃ

n1 + . . . + akC̃iÃ
k + . . . + a0C̃i

)
X1 = 0 (B2)

Since yi is an output of (Σ1), at least a term C̃iÃ
k of the latter equation is not zero and depends on yi.

Then, (B2) leads to an output algebraic equation where some derivatives of yi intervene. △

Appendix C: Proof of Lemma 5.1

Every algebraic redundancy equation consists in expressing the kth derivative of an output component
yi according to the other output components and/or the lower yi derivatives. So, it is of the form y

(k)
i
=
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k−1∑

s=0

αi,sy
(s)
i
+
∑

l | yl∈Y

n1∑

s=0

αl,sy
(s)
l

.

If all the coefficients αl,s with l , i are equal to zero, this implies that the considered redundancy equation
is necessarily issued form the polynomial characteristic of matrix A. In this case, according to the results
proved in (Murota 1987), coefficients αi,s are all issued from the cycles constituting the graph. If at
least one of the coefficients αl,s, l , i is non zero, this implies that, for all ℓ ≥ k, yℓi can be expressed
using the k − 1 first derivatives of yi and the other output derivatives. In this case, from the observability
subspaces dimensions, we have equivalently d(yi) ≤ k. This implies that the only paths which traduce
the kth derivative of yi with k ≥ d(yi) can be associated to a redundancy equation. As y

(k)
i

is represented

by yi-topped paths of length k, y
(k)
i

is not sensitive to the coefficients representing the weight of the paths
which are not U ∪ Xs-rooted paths and are shorter than d(yi). Thus, when an edge is not eligible, its
associated parameter cannot belong to a redundancy equation and then is not identifiable. △

Appendix D: Proof of Lemma 5.2

Let’s denote by e ∈ Eθ the edge associated to the unknown parameter denoted λe.
Sufficiency:

First case: If e is covered by a cycle belonging to a pair of ¶C then it is also covered by a cycle C in (Σ1).
Let’s denote by xi the begin vertex of e. Since this vertex belongs to X1(Y), there exist a xi → yj path,
where yj ∈ Y1 and a subset Yu ⊂ Y1\{yj}with ρ

(
U1∪Xs,Yu

)
= card(U1∪Xs) < ρ

(
U1∪Xs∪{xi},Yu∪{yj}

)
.

From Lemma 4.3, there exist a matrix G, a function ϕ and an integer ν ≥ 0 such that
(
XT

s , UT
1

)T
=

ϕ(Yu, Ẏu, . . . , Y
(ν)
u ) +GX1. Substituting this in subsystem (Σ1) and using notations of (B1), we obtain:



Ẋ1 =
(
A1,1 + [A1,s B1,1]G

)
X1 +

(
A1,s B1,1

)
ϕ(Yu, Ẏu, . . . , Y

(ν)
u )

de f
= ÃX1 + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1 =
(
C1,1 + [C1,s D1,1]G

)
X1 +

(
C1,s D1,1

)
ϕ(Yu, Ẏu, . . . , Y

(ν)
u )

de f
= C̃X1 + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

(D1)

Since the elements of G are represented by the edges belonging to Yu-topped paths, they are independent
from the elements of Ã associated to cycle C. Thus, the digraph representation of (D1) contains also C.
Therefore, from (Reinschke 1988) (Theorem 21.1), the characteristic equation of matrix Ã has the form
Ãn1 + . . . + akÃk + . . . + a1Ã + a0Ã0 = 0, where n1 = card(X1). It contains a term an1−k̄Ãn1−k̄, where k̄ is
the length of C and an1−k̄ depends on the product of the weights of the edges constituting C and so, on
the specific entry λe of matrix A according to the fact that edge e belongs to C. Thus,

(
C̃ jÃ

n1 + . . . + akC̃ jÃ
k + . . . + a1C̃ jÃ + a0C̃ j

)
X1 = 0 (D2)

where C̃ j is the line of matrix C̃ related to output y j in (D1) i.e. y j = C̃ jX1 + ϕy, j(Yu, Ẏu, . . . , Y
(ν)
u ). On

the one hand, since xi belongs to a cycle and as there exists a xi-yj path, if ℓ > 0 denotes the length of

this path then, ∀k ≥ ℓ − 1, C̃ jÃ
k
, 0. Furthermore, since ℓ + k̄ ≤ n1, then term an1−k̄C̃ jÃ

n1−k̄
, 0. On the

other hand, due to expression (D1), for all k ≥ 0 C̃ jÃ
kX1 = y

(k)
j
+ ϕy(Yu, Ẏu, . . . , Y (ν+k)

u ). Thus, (D2) leads
to an equation of the form:

y
(n1+1)
j

+ . . . + aky
(k)
j
+ . . . + a0y j + υ(Yu, . . . ,Y

(2n1)
u ) = 0 (D3)

where υ is a function depending on functions ϕy and ϕx. Therefore, as an1−k̄ depends on λe, the latter
intervenes in the redundancy algebraic equation (D2).
Second case: If e is covered by a Γd-Γd path belonging to a pair of ¶A, and as all these paths are eligible,
two possibilities have to be considered: 1) e is covered by a U1 ∪ Xs-Y1 path or 2) e is covered by a
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yi-topped path, which length is strictly greater than d(yi). In the first case, we denote by vi the vertex of
U1 ∪Xs from which there is a direct Xs ∪U1-Y1 path p of length ℓ. Since vi belongs to U1 ∪Xs, it exists
a subset Yu = {yi1 , yi2 , . . . , yik} ⊂ Y1 \ {yi} such that ρ

(
U1∪Xs,Yu

)
= card(U1∪Xs) without using edges

and vertices of p. From Lemma 4.3, there exist a matrix G, a function ϕ and an integer ν ≤ n1 such that
the dynamics equation of subsystem (Σ1) is in the form of (D1). Since the elements of G are represented
by edges belonging to Yu-topped paths, they are independent from the elements of Ã. From the char-
acteristic equation of matrix Ã, an equation as (D2) can be written where also C̃ j is the line of matrix

C̃ related to output y j in (D1) i.e. y j = C̃ jX1 + ϕy, j(Yu, Ẏu, . . . , Y
(ν)
u ). Using equations of (D1), we have

C̃ jÃ
kX1 = y

(k)
j
−C̃ j

(
ϕ(k−1)

x (Yu, Ẏu, . . . , Yu
(ν))+ Ãϕ(k−2)

x (Yu, Ẏu, . . . , Yu
(ν))+. . .+ Ãk−2ϕ̇x(Yu, Ẏu, . . . , Yu

(ν))
)
−

ϕ
(k)
y, j

(Yu, Ẏu, . . . , Y
(ν)
u ). Since there exists a path of length ℓ from vi to yj containing an edge e, C jÃ

ℓ−1 is

not zero, for all k ≥ ℓ, and depends on the element λe of A. Moreover, ϕ(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)) is not
zero for all k ≥ ℓ, because there exists a path between vi and an element of Yu, as by definition of Yu,
ρ
(
U1∪Xs,Yu

)
= card(U1∪Xs). This implies that, C jÃ

ℓ−1ϕ(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)) is not zero for all k ≥ ℓ

and depends on λe. In particular, this implies that term C̃ jÃ
n1 in relation (D2) is not zero and depends

on λe. Thus, substituting term C̃ jÃ
kX1 by y

(k)
j
− C̃ j

(
ϕ(k−1)

x (Yu, Ẏu, . . . , Yu
(ν))+ Ãϕ(k−2)

x (Yu, Ẏu, . . . , Yu
(ν))+

. . . + Ãk−2ϕ̇x(Yu, Ẏu, . . . , Yu
(ν))
)
− ϕ

(k)
y, j

(Yu, Ẏu, . . . , Y
(ν)
u ) in relation (D2), an output algebraic relation is

obtained knowing that term C jÃ
ℓ−1ϕ(k−ℓ)

x (Yu, Ẏu, . . . , Yu
(ν)) depends on λe.

The second possibility is when e is covered by a yi-topped path which length is strictly greater than
d(yi). As e is also covered by a Γd-yi path, this implies that there exists a yi-topped path p of length
strictly greater than d(yi) which covers e and such that xℓ belongs to a direct S o({vP},Y1

)
-yi path, where

vP = xj is the begin vertex of the eligible path p. yi belongs to Y1 implies that there exists a vertex subset
Yu ⊆ Y1 \ {yi} such that ρ

(
U1 ∪ Xs,Yu

)
= card(U1 ∪ Xs). From Lemma 4.3, this implies that there exist

a matrix G, a function ϕ and an integer ν ≤ n1 such that the dynamics equation of subsystem (Σ1) can be
put under the form of (D1). Moreover, by definition of d(yi), the dimension of the observability subspace
is equal to d(yi) plus the dimension of the observability subspace without yi. This means that the (d(yi))

th

derivative of yi can be expressed using the other output components and the lower derivatives of yi. Thus,
∀k ≥ d(yi), there exists a minimal subset Ỹ ⊆ Y1 \ (Yu ∪ {yi}) such that y

(k)
i

is a linear combination of the

first derivatives of y
(s)
i

, with s = 0, . . . , k − 1 and all the possible derivatives (until the dimension of the
under-determined part) of components yl of Ỹ. Thus, there exist some constant real parameters denoted
αi,s and αl,s and a function υ such that:

y
(k)
i
=
∑

s<k̃i

αi,sy
(s)
i
+
∑

l | yl∈Ỹ

n1∑

s=0

αl,sy
(s)
l
+ υ(Yu, . . . ,Y

(2n1)
u ) (D4)

where n1 = card(X1). Using the system equations described in (D1), it can be deduced that for each s

and l, y
(s)
i
= C̃iÃ

sX1 + υi,s(Yu, . . . ,Y
(n1+s)
u ) and y

(s)
l
= C̃lÃ

sX1 + υl,s(Yu, . . . ,Y
(n1+s)
u ), where C̃i (resp.C̃l) is

the row of C̃ corresponding to output yi (resp. yl). Substituting the latter equalities in (D4), all functions
of Yu and its derivatives can be simplified as they are independent from the considered elements of X1

and (D4) can be written as:

C̃iÃ
kX1 =

∑

s<d(yi)

αi,sC̃iÃ
sX1 +

∑

l|yl∈Ỹ

n1∑

s=0

αl,sC̃lÃ
sX1 (D5)

Since subset Ỹ is minimal i.e. ∀yj ∈ Ỹ, the difference of dimensions the observability subspaces when
considering respectively Yu ∪ Ỹ ∪ {yi} \ {yj} and Yu ∪ Ỹ \ {yj} as output components is strictly greater

than k̃i, then in relation (D5), all the components of Ỹ intervene. Let’s denote by e j the jth Euclidean
vector. As this relation is valid whatever state vector X1 is, it can be removed and by post-multiplying
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relation (D5) by e j, it comes:

C̃iÃ
ke j =

( ∑

s<d(yi)

αi,sC̃iÃ
s +
∑

l|yl∈Ỹ

n1∑

s=0

αl,sC̃lÃ
s
)
e j (D6)

where each non-zero component of C̃lÃ
s is associated to the paths arriving to yl ∈ Ỹ of length s + 1.

Since all the {xj}-Ỹ ∪ {yi} paths starting from xj cover by definition S o({xj}, Ỹ ∪ {yi}
)

denoted in the
sequel xr, then there exist kr and k′ such that kr + k′ = k and C̃iÃ

ke j = C̃iÃ
kr∆rÃk′e j where ∆r is

a diagonal matrix having only one non-zero element ∆r(r, r) = 1. The same reasoning can be done
for each term C̃lÃ

se j and so there exist sr and s′ such that sr + s′ = s and C̃lÃ
se j = C̃lÃ

sr∆rÃs′e j.
The fact that e belongs to a S o(vP, Ỹ ∪ {yi}

)
-Ỹ ∪ {yi} path means that edge e appears in only some of

S o(vP, Ỹ ∪ {yi}
)
-Ỹ ∪ {yi} paths. Thus, some terms C̃iÃ

kr and C̃lÃ
sr , but not all of them, contain the non-

zero parameter λe corresponding to edge e. Denoting by Cr = eT
r , where er is the rth Euclidean vector,

we have that C̃iÃ
ke j = C̃iÃ

kr∆rÃk′e j = α
′
i,kCrÃk′e j and C̃lÃ

se j = C̃lÃ
sr∆rÃs′e j = α

′
l,sCrÃs′e j, where

α′l,s
de f
= (C̃lÃ

sr∆r)(CrC
T
r )−1 = C̃lÃ

sr∆r. Thus, after substitution of the previous terms in relation (D6), it
comes:

α′i,kCrÃk′e j =
( ∑

sr≤s<d(yi)

α′i,sαi,sCrÃs−sr +
∑

l | yl∈Ỹ

n1∑

s=sr

α′l,sαl,sCrÃs−sr

)
e j (D7)

where some, but not all coefficients α′i,k, α′i,s and α′l,s depend on λe. This weight cannot be factorized and

simplified because all the coefficients do not depend on it (some S o(vP, Ỹ ∪ {yi}
)
-Ỹ ∪ {yi} paths do not

contain edge e). Therefore, (D7) is valid only if some of the coefficients α′i,k, αi,s and αl,s depend also
on the weight λe of e. Thus, by means of equation (D4) containing coefficients αi,s and αl,s, an output
algebraic relation depending on λe is obtained.
Necessity: Firstly, when edge e is not covered by an eligible cycle or by a U1 ∪ Xs-Y1 path, it has been
shown in Lemma 5.1 that it is not possible to obtain an output algebraic relation achieving the parameter
identifiability from the characteristic equation of any matrix Ã in (D1) whatever Yu is.
Moreover, when e is not covered by an eligible cycle or by a U1 ∪Xs-Y1 path, for any possible choice of
Yu, ϕy(Yu, Ẏu, . . . , Y

(ν)
u ) and ϕx(Yu, Ẏu, . . . , Y

(ν)
u ) do not depend on the specific parameter associated to

e. Furthermore, any output relation can be put on the form of (D4) for some integer k, output component
yi and a set of output components Ỹ, which does not include yi and are disjoint from Yu. Thus, the only
way to have an identification of unknown parameter λe is that there exists at least one coefficient αi,s

or αl,s of (D4) depending on λe. Without loss of generality, it can be assumed that Ỹ is minimal and
so that in the output algebraic relations all the components of Ỹ appear. If it is not the case, they are
removed from Ỹ. Relation (D4) implies that the observable subspace obtained using outputs {yi} ∪ Yu

and the one generated by Ỹ ∪ Yu have non zero intersection. Defining k̃i as the difference between the
dimension of the observability subspace when considering as outputs Ỹ ∪ {yi} ∪ Yu and the dimension
of the observability subspace considering as outputs Ỹ ∪Yu). Obviously, k̃i ≥ d(yi, relation (D4) cannot
be satisfied for some k ≤ k̃i − 1. Thus, in output algebraic relation (D4), k ≥ k̃i. Furthermore, as Ỹ is

minimal, it is not possible to express y
˜(ki)

i
using only a part of Ỹ . To guarantee identifiability of λe, there

must exist at least one yi-topped path p, of length greater or equal to k̃i + 1 and so of length strictly
greater than d(yi), associated to this relation which covers λe. Let’s denote by xj the begin vertex of p (it
cannot be a U1 ∪ Xs-Y1 path when the Lemma is not satisfied) and e j the jth Euclidean vector. When e

is not covered by an eligible U1 ∪ Xs-Y1 path, in Equation (D4), υ(Yu, Ẏu, . . . , Y
(n)
u ) does not depend on

λe. Then, (D4) can be rewritten as relation (D6) i.e.

C̃iÃ
ke j =

( ∑

s<d(yi)

αi,sC̃iÃ
s +
∑

yl∈Ỹ

n1∑

s=0

αl,sC̃lÃ
s
)
e j (D8)
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where C̃lÃ
s is associated to yl-topped paths and yl ∈ Ỹ is of length s+1. All the {xj}-Ỹ∪{yi} paths cover

xr = S o(xj, Ỹ ∪ {yi}
)
. So, if e is not covered by a path belonging to a pair of ¶A or by a cycle belonging

to a pair of ¶C , then it is neither covered by a cycle, nor by a U1 ∪ Xs-Y1 path nor by a S o({vp},Y1

)
-yi

path. Then, the paths starting from xr to Y do not contain e. Thus, all the redundancy equations can be
written similarly to (D7):

α′CrÃk′e j =
( ∑

sr≤s<d(yi)

α′i,sαi,sCrÃs−sr +
∑

l | yl∈Ỹ

n1∑

s=sr

α′l,sαl,sCrÃs−sr

)
e j (D9)

where α′ and α′l,s do not depend on λe. Equation (D9) implies that there exists an output algebraic relation
with the use of only virtual output Cr x in addition to Yu. This relation can be due to the characteristic
equation of matrix Ã, which includes only the terms related to cycles in the digraph. When e does not
belong to an eligible cycle, also all α′ and α′l,s do not depend on λe and it is also the case for coefficients
αi,s and αl,s in equation (D4). So, all the existing relations of the form (D4) do not contain λe. The same
reasoning can be done for all Yu ⊆ Y1 s.t. ρ

(
U1∪Xs,Yu

)
= card(U1∪Xs) and so λe cannot be identified.

△

Appendix E: Proof of Lemma 4.6

According to Lemma 5.2, k unknown parameters corresponding respectively to k edges belonging to
Eθ are structurally identifiable only if they are all covered by paths belonging to pairs of ¶A or by a
cycle belonging to a pair of ¶C . Therefore, to prove Lemma 5.3, it has to be shown that two parameters
are structurally identifiable only if the associated edges are covered by two paths, parts of elements of
¶A∪¶C belonging to distinct equivalence classes w.r.t. relations Rp and Rc. Assume that it is not the case
i.e. there are two parameters λr1 and λr2 associated to two edges e1 and e2, which are covered by two
elements of ¶A ∪ ¶C belonging to the same equivalence classes w.r.t. relations Rp or Rc. There are four
possibilities to this fact:
- e1 and e2 are covered by elements of ¶A belonging to the same equivalent class w.r.t. relation Rp and
these two edges can be covered by the same Γd-Γd direct path or equivalently by the same Γd-Y path.
Let’s denote xj the begin and yi the end vertices of this Γd-Y path. In this case, redundancy equation (D4)
where yi intervenes can also be written on the form (D6) where the only term depending on λr1 and λr2 is
C̃iÃ

ke j. However, since e1 and e2 are covered by the same path, then C̃lÃ
s depends on the product λr1λr2 .

Thus, the redundancy equation may allow the identifiability of the product λr1λr2 but not of λr1 and λr2

separately.
- e1 and e2 are covered by elements of ¶A belonging to the same equivalent class w.r.t. relation Rp and
these two edges can be covered by two different Γd-Γd direct paths having the same begin and end
vertices or equivalently by two different Γd-Y paths having the same begin and end vertices. Let’s denote
xj the begin and yi the end vertices of this Γd-Y path. In this case, redundancy equation (D4) where yi

intervenes can also be written on the form (D6) where the only term on the form C̃lÃ
s depending on

λr1 and λr2 is C̃iÃ
ke j because e1 and e2 are covered by two paths of same length. More precisely, C̃lÃ

s

depends on a combination of λr1 and λr2 . Thus, the redundancy equation may allow the identifiability of
this combination but not of λr1 and λr2 separately.
- e1 and e2 are covered by elements of ¶C belonging to the same equivalent class w.r.t. relation Rc

and these two edges can be covered by the same cycle noted C. In this case, the redundancy algebraic
equation, where λr1 and λr2 appear, is issued from the polynomial characteristic of matrix Ã (D1). From
(Reinschke 1988) (Theorem 21.1), the characteristic equation of matrix Ã has the form Ãn1 + . . .+akÃk+

. . .+a1Ã+a0Ã0 = 0, where n1 = card(X1), coefficients ak =
∑

ci,| ciis a loop covering k vertices

(−1)nk weight(ci) and
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nk is the number of loops1 covering k vertices. Here, since e1 and e2 are covered by the same cycle, in all
the coefficients ak where appear λr1 and λr2 , the weights of the loops depend on the product λr1λr2 . Thus,
multiplying the characteristic equation by Ci, an algebraic redundancy equation as (D2) is obtained,
which makes possible the identifiability of the product λr1λr2 but not of λr1 and λr2 separately.
- e1 and e2 are covered by elements of ¶C belonging to the same equivalent class w.r.t. relation Rc

and these two edges can be covered by different cycles of the same length and connected to the same
vertex of Γd. Here also, the redundancy algebraic equation, where λr1 and λr2 appear, is issued from the
polynomial characteristic of matrix Ã of system (D1). But all the coefficients of such polynomial depend
on the products of the weight of different cycles or on the sum of the weights of cycles having the same
length. Therefore, multiplying the characteristic equation by Ci, an algebraic redundancy equation as
(D2) is obtained, where it is not possible to distinguish the value of λr1 and the value of λr2 . Thus these
two values are not identifiable even if their sum and their product are known.
Consequently, if two parameters λr1 and λr2 are not identifiable when they associated to two edges e1

and e2 covered by two elements of ¶A ∪ ¶C belonging to the same equivalence classes w.r.t. relations Rp

or Rc and the lemma follows. △

Appendix F: Proof of Lemma 5.5

If all the DM-component cardinalities are equal to one in BI(F ) and if each element of F can be associ-
ated to an equation making possible the identification of its linked parameters in BI(F ), then using the
DM-decomposition properties, these equations constitute a triangular system. In this case, all the param-
eters are obviously structurally identifiable. Consequently, to establish the lemma, it has to be proven
that each element of F can be associated to an equation making possible the identification of its linked
parameters in BI(F ).
Consider first that for an element {c1, p′1} ∈ ¶C , c1 covers a set of parameters λr1 , . . . , λrk

. Since this
cycle is connected to an element of Γd by p′1 and since all the vertices of Γd are linked to at least one
output vertex, then the considered cycle is linked to at least one output vertex. Let’s denote by yi one
of these outputs. The redundancy algebraic equations, where λr1 ,. . . , λrk

appear, are issued from the
polynomial characteristic of matrix Ã (D1). From (Reinschke 1988) (Theorem 21.1), the characteristic
equation of matrix Ã has the form Ãn1 + . . . + akÃk + . . . + a1Ã + a0Ã0 = 0, where n1 = card(X1),

coefficients ak =
∑

cia loop covering k vertices

(−1)nk weight(ci) and nk is the number of loops covering k vertices.

This equation can be multiplied by Ci to obtain redundancy algebraic equation of the form (D2). One
identification equation can be written for each coefficient ak of this redundancy algebraic equation. From
this equation, for each length of cycle and so for each equivalent class w.r.t. relation Rc, an identifiability
equation can be deduced. Therefore, the obtained equation (noted Eqc1) related to {c1, p′1} has then as
unknown variables the sum of products of weights of all the cycles belonging to the pairs included in the
same equivalent class than {c1, p′1} w.r.t. relation Rc.
Consider now the case where an element {pi,1, pi,2} ∈ ¶A, c1 covers a set of parameters λr1 , . . . , λrk

in
BI(F ). This element corresponds to Γd-Γd paths, and so, as all the elements of Γd are linked to vertices of
Y1, this element corresponds also to Γd-Y1 paths having distinct end vertices. Let’s denote yi1 and yi2 the
output end vertices of these paths and ℓ1, ℓ2 the length of these paths. It has been shown, in Lemma 5.2,
that these paths can be associated to a redundancy algebraic equation on the form of Equation (D4) when
terms αi1,k1y

(k1)
i1

and αi2,k2y
(k2)
i2

appear, with k1 ≥ ℓ1 and k2 ≥ ℓ2. From this equation, containing K parame-
ters, it can be deduced K identification equations for each coefficient. Using the same arguments than in
the proof of Lemma 5.2, coefficients αi1,k1 and αi2,k2 are respectively sensitive (inversely proportional) to
the sum of the weights of all the paths belonging to the pairs included in the same equivalent class than
{pi,1, pi,2} w.r.t. relation Rp. Therefore, the obtained equation (noted Eqp1) related to {pi,1, pi,2} has then
as unknown variables the sum of products of weights of all the cycles belonging to the pairs included in

1A loop is a collection of disjoint cycles
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the same equivalent class than {pi,1, pi,2} w.r.t. relation Rp. △

Appendix G: Proof of Lemma 5.6

From Lemma 5.2, only edges covered by eligible Γd-rooted paths or eligible cycles can lead to redun-
dancy equations. Thus, a parameter which is associated to an edge not covered by such paths is not
identifiable. Moreover, from Lemma 5.3, the kθ unknown parameters are identifiable only if they are
covered by kθ paths and cycles belonging respectively to pairs of ¶A and to pairs of ¶C and where all
these pairs belong to kθ distinct equivalence classes w.r.t. relations Rp and Rc. This implies that the pa-
rameters are identifiable only if there exists a maximal matching of size kθ in BI(F ), where F denotes
such union of kθ pairs, and then there is no under-determined or over-determined DM-component in this
bipartite digraph.
Assume that there exists in such bipartite digraph a DM-component of cardinality strictly greater than
one. In this case, at least two redundancy algebraic equations depend at least on two unknown param-
eters. Let’s denote these two parameters λr1 and λr2 . An equation issued from an element of ¶A or ¶C
depending on these two parameters means that an identifiability equation depends on the product λr1λr2

or on one of ratios
λr1

λr2

or
λr2

λr1

(which are equivalent). Then, three cases have to be considered for these

equations:
1. The two equations depend on the product λr1λr2 . In this case, neither λr1 nor λr2 are identifiable.

2. The same conclusion is drawn when the two equations depend on the ratios
λr1

λr2

or
λr2

λr1

.

3. One equation depends on the product λr1λr2 and the other on the ratio
λr1

λr2

. In this case, the parameters

are identifiable. However, the first equation means that edges e1 and e2 associated respectively to λr1 and
λr2 belong to cycle part c1 of an element of ¶C and the second implies that these two edges belong to
two direct paths p1 and p2 constituting the elements of ¶A. In this case, there exists necessarily a vertex
v1 in Γd covered by cycle c1 such that a pair (p′1, p

′
2) ∈ ¶A covers only λr1 if e1 is after e2 in c1 or λr2 if

e2 is after e1 in c1. Thus, in F , pair (p1, p2) can be substitued by (p′1, p
′
2) and we obtain in the bipartite

digraph associated to this disjoint union that e1 and e2 belong to two distinct DM-components. The same
reasoning can be done for all the DM-components containing more than one element. Thus, if the pa-
rameters are identifiable then there always exists a union of pairs F ⊆ ¶A∪¶C , where all the pairs belong
to distinct equivalence classes w.r.t. relations Rp and Rc, such that elements of Eθ are each covered in
BI(F ) by an exactly determined DM-component of cardinality equal to one and the lemma follows. △


