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Abstract

For a supercritical branching process (Zn) in a stationary and ergodic envi-
ronment ξ, we study the rate of convergence of the normalized population
Wn = Zn/E[Zn|ξ] to its limit W∞: we show a central limit theorem for W∞−Wn

with suitable normalization and derive a Berry-Esseen bound for the rate of con-
vergence in the central limit theorem when the environment is independent and
identically distributed. Similar results are also shown for Wn+k −Wn for each
fixed k ∈ N

∗.
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martingale, rate of convergence.
2000 MSC: 60J80, 60F05

1. Introduction

Galton-Watson processes have been studied by many authors, due to a wide
range of applications. See for example the books by Harris (1963) and Athreya
and Ney (1972). In a Galton-Watson process {Zn, n = 0, 1, ...}, particles behave
independently, each gives birth to a random number of particles of the next
generation with a fixed distribution {pk : k = 0, 1, ...}.

A branching process in a random environment is a natural and important ex-
tension of the Galton-Watson process. It is a class of non-homogeneous Galton-
Watson processes indexed by a time-environment ξ = (ξ0, ξ1, ξ2, ...), which is
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supposed to be stationary and ergodic; given the environment ξ, the particles of
n-th generation have offspring distribution {pk(ξn) : k ∈ N} depending on ξn.
For first important works on the subject, see Smith and Wilkinson (1969) and
Athreya and Karlin (1971a,b).

For a Galton-Waston process with Z0 = 1 and m = EZ1 ∈ (0,∞), it is well
known that {Wn = Zn/m

n : n = 0, 1, ...} forms a non-negative martingale, and
converges almost surely to a random variable W∞. For the convergence rate of
the martingale, Heyde (1971) and Bühler (1969) obtained respectively that if
Var(Z1) = σ2 < ∞, then conditioned on Zn > 0, the conditional laws of

(m2 −m)
1
2σ−1Zn

− 1
2mn(W∞ −Wn)

and

(

mk/(mk − 1)
)

1
2 (m2 −m)

1
2σ−1Zn

− 1
2mn(Wn+k −Wn) k ∈ N

∗

converge to the normal law N (0, 1); Heyde and Brown (1971) gave an estimation
of its convergence rate under a third moment condition.

The object of this paper is to extend the theorems of Bühler (1969), Heyde
(1971) and Heyde and Brown (1971) to a branching process in a random envi-
ronment. The main results are Theorems 2.1 and 2.2.

2. Main Results

As usual, we write N = {0, 1, 2, · · · }, N∗ = {1, 2, · · · } and R for the set of
real numbers.

Let us first recall the definition of a branching process in a random envi-
ronment. For reference on the subject, see for example Athreya and Karlin
(1971a,b), and Athreya and Ney (1972).

A random environment ξ = (ξn) is formulated as a stationary and ergodic
sequence of random variables taking values in some measurable space (Θ,F).
Each realization of ξn corresponds to a probability distribution p(ξn) = {pi(ξn) :
i ∈ N} where

pi(ξn) ≥ 0,

∞
∑

i=0

pi(ξn) = 1, 0 <

∞
∑

i=0

ipi(ξn) < ∞. (1)

Without loss of generality, we can take ξn as coordinate functions defined on the
product space (ΘN,F⊗N), equipped with a probability law τ , which is invari-
ant and ergodic under the usual shift transformation θ on ΘN: θ(ξ0, ξ1, · · · ) =
(ξ1, ξ2, · · · ) . A branching process (Zn)n≥0 in the random environment ξ is a
class of non-homogeneous branching processes indexed by ξ. By definition,

Z0 = 1, Zn+1 =

Zn
∑

i=1

Xn,i n ≥ 0, (2)
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where given ξ, {Xn,i : n ≥ 0, i ≥ 1} is a family of (conditionally) independent
random variables, each Xn,i has the common law p(ξn). Notice that when all
ξn are the same constant, (Zn) reduces to the classical Galton-Waston process.

Let (Γ, Pξ) be the probability space under which the process is defined when
the environment ξ is given. As usual, Pξ is called quenched law. The total
probability space can be formulated as the product space (Γ × ΘN, P ), where
P = Pξ ⊗ τ in the sense that for all measurable and positive function g, we have

∫

gdP =

∫ ∫

g(ξ, y)dPξ(y)dτ(ξ), (3)

(recall that τ is the law of the environment ξ). The total probability P is
usually called annealed law. The quenched law Pξ may be considered to be the
conditional probability of the annealed law P given ξ. The expectation with
respect to Pξ (resp. P ) will be denoted Eξ (resp. E).

For n ≥ 0, define

mn(a) = m(ξn, a) =

∞
∑

i=1

iapi(ξn), a ∈ R, (4)

mn = mn(1), σ2
n = mn(2)−m2

n, (5)

π0 = 1 and πn = πn(ξ) = m0 · · ·mn−1 for n ≥ 1. (6)

Then πn = EξZn for n ≥ 0. It is well known that

Wn = Zn/πn (7)

is a martingale with respect to the filtration

F0 = {∅,Ω}, Fn = σ{ξ,Xj,i : j ≤ n− 1, i ≥ 1} (n ≥ 1), (8)

so that the limit
W∞ = lim

n→∞
Wn (9)

exists almost surely (a.s.) with EW ≤ 1 by Fatou’s lemma.
Throughout the paper, we always assume that

E lnm0 > 0 and E

(

Z1

m0
ln+ Z1

)

< ∞. (10)

The first assumption ensures that the process is supercritical (cf. Athreya and
Karlin (1971a)); the second one together with the first implies that EW∞ = 1;
moreover,

Pξ(W∞ > 0) = Pξ(Zn → ∞) = lim
n→∞

Pξ(Zn > 0) = 1− q(ξ) > 0 a.s., (11)

where q(ξ) = limn→∞ Pξ(Zn = 0) is the extinct probability.

3



In this paper, we search for central limit theorems on W∞−Wn and Wn+k−
Wn for fixed k ≥ 1 with an appropriate normalization. Assum that m0(2) < ∞
a.s., and let

∆2
k = ∆2

k(ξ) =
∑

0≤i<k

1

πi

σ2
i

m2
i

for k ∈ N
∗ ∪ {∞}.

Then for k ∈ N
∗, ∆2

k(ξ) is the variance of Wk under Pξ; ∆
2
∞(ξ) is the variance

of W∞ if the series converges (i.e. ∆2
∞(ξ) < ∞): see Lemma 3.2.

We can now formulate our first main result.

Theorem 2.1. Suppose that (10) holds and that m0(2) < ∞ a.s.. In the case
where k = ∞, assume additionally that E ln+(σ2

0/m
2
0) < ∞. Write

Un,k =
πn(Wn+k −Wn)√

Zn∆k(θnξ)
for k ∈ N

∗ ∪ {∞},

where by convention Wn+k = W∞ if k = ∞. Then for each k ∈ N
∗ ∪ {∞}, as

n → ∞,
sup
x∈R

|Pξ(Un,k ≤ x|Zn > 0)− Φ(x)| → 0 in L1, (12)

and
sup
x∈R

|P (Un,k ≤ x|Zn > 0)− Φ(x)| → 0. (13)

We believe that for each k ∈ N ∪ {∞}

lim
n→∞

sup
x∈R

|Pξ(Un,k ≤ x|Zn > 0)− Φ(x)| = 0 a.s..

We notice that in the classical Galton-Waston process, (13) reduces to the
results of Bühler (1969) and Heyde (1971). Our second main result concerns the
rate of convergence in the above central limit theorem for a branching process
with an independent and identically distributed environment.

Theorem 2.2. Let the environment {ξn} be independent and identically dis-
tributed. Assume that (10) holds and that m0(2) < ∞ a.s.. In the case where
k = ∞, assume additionally that E ln+(σ2

0/m
2
0) < ∞. For each k ∈ N

∗ ∪ {∞},
if E|Wk−1

∆k
|2+δ < ∞ for some δ ∈ (0, 1], then

sup
x∈R

|P (Un,k ≤ x|Zn > 0)− Φ(x)| ≤
Cδ

(

Em0(− δ
2 )
)n

E
∣

∣

∣

Wk−1
∆k

∣

∣

∣

2+δ

P (Zn > 0)
, (14)

where Un,k is defined in Theorem 2.1 and Cδ is the Berry-Esseen constant.

Remark 2.3. It maybe useful to notice that if

E(Z1/m0)
2+δ

< ∞, Em0
−(1+δ) < 1 and m0(2)/m

2
0 ≥ A
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for some constant A > 1, then E
∣

∣

∣

W∞−1
∆∞

∣

∣

∣

2+δ

< +∞. In fact by Theorem 3 of

Guivarc’h and Liu (2001), the first two conditions imply that E|W∞ − 1|2+δ <
∞, while the last one implies that ∆2

∞ ≥ A− 1 > 0.
For the classical Galton-Watson process with δ = 1, Theorem 2.2 reduces to

Theorem 2 of (Heyde and Brown, 1971, p.272).

3. Proof of Theorem 2.1

In this section, we consider a central limit theorem under a second moment
condition in proving Theorem 2.1. We first give some lemmas.

Lemma 3.1 (Grincevičjus (1974)). Let {(αn, βn), n = 0, 1, 2, · · · } be a station-
ary and ergodic sequence of random variables with values in R

2. If

E ln |α0| < 0 and E ln+ |β0| < ∞,

then
∞
∑

n=0

|α0α1 · · ·αn−1βn| < ∞ a.s.

In fact, the result is a direct consequence of the ergodic theorem and Cauchy’s
criterion for the convergence of series.

Using the above lemma, we can easily obtain the following result.

Lemma 3.2. Under the assumptions in Theorem 2.1, for each k ∈ N
∗ ∪ {∞},

Varξ(Wk) = ∆2
k(ξ) =

∑

0≤i<k

1

πi

σ2
i

m2
i

. (15)

This has been known for branching processes in varying environment, see
e.g. (Jagers, 1974, p.175) in a slightly different form. For reader’s convenience,
we present a proof in the following.

Proof of Lemma 3.2. By (2) and the definition of Wn, we have

Wn+1 −Wn =
1

πn

Zn
∑

j=1

(
Xn,j

mn

− 1).

Recall that under Pξ, the random variables {Xn,j} are independent of each other
and have the common distribution p(ξn) with expectation mn. Hence a direct
calculation shows that

Eξ((Wn+1 −Wn)
2
) = Eξ

(

Eξ((Wn+1 −Wn)
2|Fn)

)

= Eξ

(

Zn

πn
2

σ2
n

m2
n

)

=
1

πn

σ2
n

m2
n

.
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As {Wn} is a martingale, it follows that

EξW
2
k = EξW

2
0 +

k−1
∑

i=0

E((Wi+1 −Wi)
2
) = 1 +

k−1
∑

i=0

1

πi

σ2
i

m2
i

.

Therefore for each fixed integer k,

Varξ(Wk) = Eξ(W
2
k )− 1 =

k−1
∑

i=0

1

πi

σ2
i

m2
i

.

Now we turn to the calculation of Varξ(W∞). By Lemma 3.1, when E lnm0 > 0

and E ln+
σ2
i

m2
i

< ∞,

sup
n

Eξ(W
2
n) = 1 +

∞
∑

i=0

1

πi

σ2
i

m2
i

< ∞ a.s.

So Wn converges to W∞ in L2 under Pξ and

Eξ(W
2
∞) = lim

k→∞
Eξ(W

2
k ) = 1 +

∞
∑

i=0

1

πi

σ2
i

m2
i

.

It follows that

Varξ(W∞) = Eξ(W
2
∞)− 1 = ∆2

∞(ξ) =

∞
∑

i=0

1

πi

σ2
i

m2
i

< ∞ a.s.

To give our next lemma, we will need some notations, which will also be
used in the proof of the main theorems. By definition,

Zn+k =

Zn
∑

j=1

Zk(n, j), (16)

where Zk(n, j) denotes the number of descendants in the (n+ k)-th generation
of the j-th particle among the Zn particles in n-th generation.

Writing Wk(n, j) =
Zk(n,j)
πk(θnξ) and using (16), we obtain the following decom-

position:

πn(Wn+k −Wn) =

Zn
∑

j=1

(Wk(n, j)− 1). (17)

Letting k → ∞, it follows that

πn(W∞ −Wn) =

Zn
∑

j=1

(W∞(n, j)− 1), (18)
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where under Pξ, the random variables {W∞(n, j)}j are independent of each
other and have the common conditional distribution

Pξ(W∞(n, j) ∈ ·) = Pθnξ(W∞ ∈ ·).

Lemma 3.3. Suppose that the assumptions of Theorem 2.1 hold. Let rn ∈ N

with rn → ∞. For k ∈ N
∗ ∪ {∞}, define

Yk,n =
1√
rn

rn
∑

j=1

Wk(n, j)− 1

∆k(θnξ)
.

Fix k ∈ N
∗ ∪ {∞}. Then for each subsequence {n′} of N with n′ → ∞, there is

a subsequence {n′′} of {n′} with n′′ → ∞ such that for a.e. ξ and all x ∈ R, as
n′′ → ∞,

Pξ(Yk,n′′ ≤ x) → Φ(x).

Proof. Fix k ∈ N
∗ ∪ {∞}. In order to use Lindeberg’s theorem, for n ∈ N and

ǫ > 0, we consider the quantity

Lk(ξ, ǫ, n) =
1

rn

rn
∑

j=1

Eξ

(

(

Wk(n, j)− 1

∆k(θnξ)

)2

;

∣

∣

∣

∣

Wk(n, j)− 1

∆k(θnξ)
√
rn

∣

∣

∣

∣

> ǫ

)

,

where for a set A, we write Eξ(x;A) for Eξ(X1A), 1A denoting the indicator
function of A. By the stationarity and ergodicity of the environment, for all
ǫ > 0, as n → ∞,

ELk(ξ, ǫ, n) = E

[

(

Wk − 1

∆k

)2

;

∣

∣

∣

∣

Wk − 1

∆k

∣

∣

∣

∣

>
√
rnǫ

]

→ 0. (19)

Let {n′} be a subsequence of N. Notice that from (19), we can choose a subse-
quence {n′′} for which Lk(ξ, ε, n

′′) → 0 a.s., but this sequence may depend of
ǫ. We will use a diagonal argument to select a subsequence {n′′} of {n′} such

that a.s. Lk(ξ, ε, n
′′)

n′′→∞−−−−→ 0 for all ǫ > 0. Set

ǫm = 1/m for m ≥ 1.

Let {n0,i} = {n′}. Because of (19), there is a subsequence {n1,i} of {n0,i} and
a set Λ1 with τ(Λ1) = 1 such that ∀ξ ∈ Λ1,

lim
i→∞

Lk(ξ, ǫ1, n1,i) = 0.

Inductively for m ≥ 1, when Λm and {nm,i} are defined such that τ(Λm) = 1
and ∀ξ ∈ Λm, Lk(ξ, ǫm, nm,i) → 0, there is a subsequence {nm+1,i} ⊂ {nm,i}
and a set Λm+1 with τ(Λm+1) = 1 such that ∀ξ ∈ Λm+1,

lim
i→∞

Lk(ξ, ǫm+1, nm+1,i) = 0.
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We now consider the diagonal sequence {ni.i}i≥1 and Λ =
⋂∞

j=1 Λj . For each

fixed ǫ > 0, let m ≥ 1
ǫ
. Then ǫm ≤ ǫ and by the monoticity of Lk(ξ, ǫ, n) in ǫ,

we see that ∀ξ ∈ Λ,

Lk(ξ, ǫ, nm,i) ≤ Lk(ξ, ǫm, nm,i) → 0 as i → ∞.

As {ni,i} is a subsequence of {nm,i} whenever i > m, this implies that

lim
i→∞

Lk(ξ, ǫ, ni,i) = 0. (20)

Since τ(Λ) = 1, we have shown that for all ǫ > 0, (20) holds a.s.. It follows
that a.s. (20) holds for all rational ǫ > 0, and therefore for all real ǫ > 0 by the
monoticity of Lk(ξ, ǫ, nii) in ǫ. So by Lindeberg’s theorem, it is a.s. that for all
x ∈ R, as i → ∞,

Pξ(Yk,ni,i
≤ x) → Φ(x).

Thus the lemma has been proved with {n′′} = {ni,i}.

Proof of Theorem 2.1. We shall only deal with the case where k = ∞, as the
case where k ∈ N

∗ can be treated similarly.
We first prove the following assertion: for each sequence {n′} of N with

n′ → ∞, there exist a subsequence {n′′} of {n′} with n′′ → ∞ such that for a.e.
ξ and all x, as n′′ → ∞,

Pξ(Un′′,∞ ≤ x|Zn′′ > 0) → Φ(x). (21)

By the definition of Un,∞ and the relation (18), we get :

Un,∞ =
πn(W∞ −Wn)√

Zn∆∞(θnξ)
=

1√
Zn

Zn
∑

j=1

W∞(n, j)− 1

∆∞(θnξ)
,

where we recall that under Pξ, {W∞(n, j), j ≥ 1} is a family of random variables
independent of each other and independent of Zn, each has the same law as W∞

under Pθnξ. Set

un(r, x) = Pξ





1√
r

r
∑

j=1

W∞(n, j)− 1

∆∞(θnξ)
≤ x



 , r ∈ N
∗, x ∈ R.

Then

Pξ(Un,∞ ≤ x|Zn > 0) = [Pξ(Zn > 0)]−1
∞
∑

r=1

Pξ(Un,∞ ≤ x, Zn = r)

=
∞
∑

r=1

un(r, x)
Pξ(Zn = r)

Pξ(Zn > 0)
. (22)
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To show the main idea, let us first consider the special case where q(ξ) = 0
a.s., i.e. for a.e. ξ,

Zn → ∞ P ∗
ξ -a.s..

In this case, the relation (22) becomes

Pξ(Un,∞ ≤ x) =

∞
∑

r=1

un(r, x)Pξ(Zn = r) = Eξun(Zn, x).

By Lemma 3.3, for each subsequence {n′} of N with n′ → ∞, there exist a
subsequence {n′′} of {n′} with n′′ → ∞ such that for a.e. ξ and all x, as
n′′ → ∞,

un′′(Zn′′ , x) → Φ(x).

By the dominated convergence theorem, for a.e. ξ and all x, as n′′ → ∞,

Pξ(Un′′,∞ ≤ x) = Eξ[un′′(Zn′′ , x)] → Φ(x).

So we have proved (21) when q(ξ) = 0 a.s..
We now consider the general case where 0 ≤ q(ξ) < 1 a.s..
For each ξ ∈ ΘN, let Z∗

n be random variables defined on some probability
space (Γ∗,P∗

ξ) with law

P ∗
ξ (Z

∗
n = r) =

Pξ(Zn = r)

Pξ(Zn > 0)
, r ∈ N

∗.

Then
Pξ(Un,∞ ≤ x|Zn > 0) = E∗

ξun(Z
∗
n, x),

where E∗
ξ denotes the expectation with respect to P ∗

ξ .
Let {n′} be a sequence of N with n′ → ∞. If for a.e. ξ,

Z∗
n′ → ∞ P ∗

ξ -a.s.,

then as above we can use Lemma 3.3 and the dominated convergence theorem
to show that there is a sequence {n′′} of {n′} with n′′ → ∞ such that for all x,
as n′′ → ∞,

E∗
ξun′′(Z∗

n′′ , x) → Φ(x).

By the fact that Z∗
n → ∞ in probability under P ∗

ξ , we can choose a subsequence
for which Z∗

n → ∞ P ∗
ξ -a.s.. But to apply Lemma 3.3, we need that the sequence

does not depend on ξ. We therefore pass to the probability P ∗ to overcome this
difficulty, where P ∗ = P ∗

ξ ⊗ τ is defined on the product space Γ∗ × ΘN just as

P was defined on Γ×ΘN.
Notice that for each r ∈ N

∗, as n → ∞,

P ∗
ξ (Z

∗
n = r) =

Pξ(Zn = r)

Pξ(Zn > 0)
→ 0,

9



where the last step holds as Zn → ∞ a.s. on the survival event S = {Zn >
0, ∀n ≥ 1} (see (11) or Tanny (1977) for this fact). Then Z∗

n → +∞ in prob-
ability under P ∗

ξ . By the dominated convergence theorem, this implies that
Z∗
n → +∞ in probability under P ∗. Therefore for each subsequence {n′} of

N with n′ → ∞, there is a subsequence {ñ} ⊂ {n′} with ñ → ∞ such that
Z∗
ñ → +∞ a.s. under P ∗. This implies that for a.e. ξ, as ñ → ∞,

Z∗
ñ → +∞ P ∗

ξ -a.s.

Now by Lemma 3.3, there exists a subsequence {n′′} of {ñ} such that for
a.e. ξ and all x, as n′′ → ∞,

un′′(Z∗
n′′ , x) → Φ(x).

By the dominated convergence theorem, for almost every ξ and each x, as
n′′ → ∞,

Pξ(Un′′,∞ ≤ x|Zn′′ > 0) = Eξun′′(Z∗
n′′ , x) → Φ(x). (23)

So combining the above two cases, we have proved (21).
Since Pξ(Un′′,∞ ≤ x|Zn′′ > 0) are distribution functions and Φ(x) is a

continuous distribution function, by Dini’s Theorem we see that for a.e. ξ, as
n′′ → ∞,

sup
x

|Pξ(Un′′,∞ ≤ x|Zn′′ > 0)− Φ(x)| → 0. (24)

By the dominated convergence theorem, (24) implies that as n′′ → ∞,

E sup
x

|Pξ(Un′′,∞ ≤ x|Zn′′ > 0)− Φ(x)| → 0. (25)

Therefore we have proved that for each sequence {n′} of N with n′ → ∞, there
is a subsequence {n′′} of {n′} with n′′ → ∞ such that (25) holds. Hence

E sup
x

|Pξ(Un,∞ ≤ x|Zn > 0)− Φ(x)| → 0.

This gives (12) for k = ∞. The proof for k ∈ N
∗ is similar.

We now begin to prove (13).
As we have proved that for each subsequence {n′} of N, there is a subsequence

{n′′} so that (24) holds, which implies: for a.e. ξ and all x ∈ R, as n′′ → ∞,

|Pξ(Un′′,∞ ≤ x|Zn′′ > 0)− Φ(x)| → 0.

It follows that for a.e. ξ and all x ∈ R,

|Pξ(Un′′,∞ ≤ x, Zn′′ > 0)− Pξ(Zn′′ > 0)Φ(x)| → 0.

So by the dominated convergence theorem, we see that for each x ∈ R, as
n′′ → ∞,

|P (Un′′,∞ ≤ x, Zn′′ > 0)− P (Zn′′ > 0)Φ(x)| → 0,

10



and hence
P (Un′′,∞ ≤ x|Zn′′ > 0) → Φ(x).

By Dini’s Theorem, it follows that

sup
x

|P (Un′′,∞ ≤ x|Zn′′ > 0)− Φ(x)| → 0. (26)

Therefore we have proved that for each sequence {n′} of N, there is a subse-
quence {n′′} of {n′} with n′′ → ∞ such that (26) holds. Hence

sup
x

|P (Un,∞ ≤ x|Zn > 0)− Φ(x)| → 0.

Thus the proof is completed.

4. Proof of Theorem 2.2

In this section, we consider the rate of convergence in the central limit the-
orem under a moment condition of order 2 + δ, in proving Theorem 2.2.

Notice that by the definition (4) of mn(a), we have

mn(a) = EξX
a
n,i if a > 0, mn(a) = EξX

a
n,i1{Xn,i>0} if a ≤ 0, (27)

where Xn,i is as in (2). For a > 0, define

Rn = [m0(−a) · · ·mn−1(−a)]
−1

Z−a
n 1{Zn>0}, n ≥ 0.

Lemma 4.1. (Rn,Fn)n≥0 is a supermartingale, where Fn were defined in (8).

Proof. Using the decomposition (2) of Zn+1, we have

Z−a
n+11{Zn+1>0} =

[

Zn
∑

i=1

Xn,i

]−a

1{Zn>0}1{Zn+1>0}

= Z−a
n

[

1

Zn

Zn
∑

i=1

Xn,i1{Xn,i}>0

]−a

1{Zn>0}1{Zn+1>0}

≤ Zn
−a 1

Zn

Zn
∑

i=1

(Xn,i1{Xn,i}>0)
−a

1{Zn>0}1{Zn+1>0},

where the last inequality is due to the convexity property of the function x−a(a >
0).

Taking conditional expectation with respect to Fn and Pξ on both sides of
the above inequality, we obtain that

Eξ(Z
−a
n+11{Zn+1>0}|Fn) ≤ Z−a

n 1{Zn>0}mn(−a), (28)

which gives the desired result.
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Since Z0 = 1, by (28), we immediate obtain the following

Lemma 4.2. For a > 0, we have

EξZ
−a
n 1{Zn>0} ≤ m0(−a) · · ·mn−1(−a) (29)

If the environment sequence {ξn} is independent and identically distributed, then

EZ−a
n 1{Zn>0} ≤ (Em0(−a))n. (30)

Now we give the proof of Theorem 2.2.

Proof of Theorem 2.2. We shall only deal with the case k = ∞, as the case
where k ∈ N

∗ can be treated similarly.
Consider the probability space (Γ∗ × ΘN, P ∗) and define random variables

Z∗
n as in the proof of Theorem 2.1. By definition,

un(Z
∗
n, x) = Pξ





1
√

Z∗
n

Z∗

n
∑

j=1

W∞(n, j)− 1

∆∞(θnξ)
≤ x



 .

By our hypothesis and the Berry-Esseen theorem (see e.g. Theorem 6 of (Petrov,
1995, p.115)), we have

|un(Z
∗
n, x)− Φ(x)| ≤ Cδ

(Z∗
n)

1+ δ
2

Z∗

n
∑

j=1

Eξ

∣

∣

∣

∣

W∞(n, j)− 1

∆∞(θnξ)

∣

∣

∣

∣

2+δ

= Cδ(Z
∗
n)

− δ
2Eθnξ

∣

∣

∣

∣

W∞ − 1

∆∞

∣

∣

∣

∣

2+δ

,

where Cδ is the Berry-Esseen constant. Using this evaluation, we can derive
that

|Pξ(Un,∞ ≤ x|Zn > 0)− Φ(x)| ≤ E∗
ξ |un(Z

∗
n, x)− Φ(x)|

≤ CδE
∗
ξ (Z

∗
n)

− δ
2Eθnξ

∣

∣

∣

∣

W∞ − 1

∆∞

∣

∣

∣

∣

2+δ

.

By the definition of Z∗
n, this implies that

|Pξ(Un,∞ ≤ x, Zn > 0)− Pξ(Zn > 0)Φ(x)|

≤ CδEξ

(

Z
− δ

2
n I{Zn>0}

)

Eθnξ

∣

∣

∣

∣

W∞ − 1

∆∞

∣

∣

∣

∣

2+δ

. (31)

Using (31) and the fact that the sequence {ξn} is independent and identically
distributed, we get

|P (Un,∞ ≤ x, Zn > 0)− P (Zn > 0)Φ(x)|
≤ E|Pξ(Un,∞ ≤ x, Zn > 0)− Pξ(Zn > 0)Φ(x)|

≤ CδE
(

Z
− δ

2
n I{Zn>0}

)

E

∣

∣

∣

∣

W∞ − 1

∆∞

∣

∣

∣

∣

2+δ

.
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Together with (30), we obtain that

|P (Un,∞ ≤ x|Zn > 0)− Φ(x)| ≤
Cδ(Em0(− δ

2 ))
nE|W∞−1

∆∞

|2+δ

P (Zn > 0)
.

Then the proof is completed.
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