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For a supercritical branching process (Z n ) in a stationary and ergodic environment ξ, we study the rate of convergence of the normalized population W n = Z n /E[Z n |ξ] to its limit W ∞ : we show a central limit theorem for W ∞ -W n with suitable normalization and derive a Berry-Esseen bound for the rate of convergence in the central limit theorem when the environment is independent and identically distributed. Similar results are also shown for W n+k -W n for each fixed k ∈ N * .

Introduction

Galton-Watson processes have been studied by many authors, due to a wide range of applications. See for example the books by [START_REF] Harris | The theory of branching processes[END_REF] and [START_REF] Athreya | Branching processes[END_REF]. In a Galton-Watson process {Z n , n = 0, 1, ...}, particles behave independently, each gives birth to a random number of particles of the next generation with a fixed distribution {p k : k = 0, 1, ...}.

A branching process in a random environment is a natural and important extension of the Galton-Watson process. It is a class of non-homogeneous Galton-Watson processes indexed by a time-environment ξ = (ξ 0 , ξ 1 , ξ 2 , ...), which is supposed to be stationary and ergodic; given the environment ξ, the particles of n-th generation have offspring distribution {p k (ξ n ) : k ∈ N} depending on ξ n . For first important works on the subject, see [START_REF] Smith | On branching processes in random environments[END_REF] and Athreya and Karlin (1971a,b).

For a Galton-Waston process with Z 0 = 1 and m = EZ 1 ∈ (0, ∞), it is well known that {W n = Z n /m n : n = 0, 1, ...} forms a non-negative martingale, and converges almost surely to a random variable W ∞ . For the convergence rate of the martingale, [START_REF] Heyde | Some central limit analogues for supercritical Galton-Watson processes[END_REF] and [START_REF] Bühler | Ein zentraler Grenzwertsatz für Verzweigungsprozesse[END_REF] obtained respectively that if Var(Z 1 ) = σ 2 < ∞, then conditioned on Z n > 0, the conditional laws of (m 2m)

1 2 σ -1 Z n -1 2 m n (W ∞ -W n ) and m k /(m k -1) 1 2 (m 2 -m) 1 2 σ -1 Z n -1 2 m n (W n+k -W n ) k ∈ N *
converge to the normal law N (0, 1); [START_REF] Heyde | An invariance principle and some convergence rate results for branching processes[END_REF] gave an estimation of its convergence rate under a third moment condition. The object of this paper is to extend the theorems of [START_REF] Bühler | Ein zentraler Grenzwertsatz für Verzweigungsprozesse[END_REF], [START_REF] Heyde | Some central limit analogues for supercritical Galton-Watson processes[END_REF] and [START_REF] Heyde | An invariance principle and some convergence rate results for branching processes[END_REF] to a branching process in a random environment. The main results are Theorems 2.1 and 2.2.

Main Results

As usual, we write

N = {0, 1, 2, • • • }, N * = {1, 2, • • • } and R for the set of real numbers.
Let us first recall the definition of a branching process in a random environment. For reference on the subject, see for example Athreya and Karlin (1971a,b), and [START_REF] Athreya | Branching processes[END_REF].

A random environment ξ = (ξ n ) is formulated as a stationary and ergodic sequence of random variables taking values in some measurable space (Θ, F). Each realization of ξ n corresponds to a probability distribution p(ξ

n ) = {p i (ξ n ) : i ∈ N} where p i (ξ n ) ≥ 0, ∞ i=0 p i (ξ n ) = 1, 0 < ∞ i=0 ip i (ξ n ) < ∞.
(1)

Without loss of generality, we can take ξ n as coordinate functions defined on the product space (Θ N , F ⊗N ), equipped with a probability law τ , which is invariant and ergodic under the usual shift transformation θ on

Θ N : θ(ξ 0 , ξ 1 , • • • ) = (ξ 1 , ξ 2 , • • • ) . A branching process (Z n ) n≥0
in the random environment ξ is a class of non-homogeneous branching processes indexed by ξ. By definition,

Z 0 = 1, Z n+1 = Zn i=1 X n,i n ≥ 0, (2) 
where given ξ, {X n,i : n ≥ 0, i ≥ 1} is a family of (conditionally) independent random variables, each X n,i has the common law p(ξ n ). Notice that when all ξ n are the same constant, (Z n ) reduces to the classical Galton-Waston process.

Let (Γ, P ξ ) be the probability space under which the process is defined when the environment ξ is given. As usual, P ξ is called quenched law. The total probability space can be formulated as the product space (Γ × Θ N , P ), where P = P ξ ⊗ τ in the sense that for all measurable and positive function g, we have

gdP = g(ξ, y)dP ξ (y)dτ (ξ), (3) 
(recall that τ is the law of the environment ξ). The total probability P is usually called annealed law. The quenched law P ξ may be considered to be the conditional probability of the annealed law P given ξ. The expectation with respect to P ξ (resp. P ) will be denoted E ξ (resp. E).

For n ≥ 0, define

m n (a) = m(ξ n , a) = ∞ i=1 i a p i (ξ n ), a ∈ R, (4) 
m n = m n (1), σ 2 n = m n (2) -m 2 n , (5) 
π 0 = 1 and π n = π n (ξ) = m 0 • • • m n-1 for n ≥ 1. (6) 
Then

π n = E ξ Z n for n ≥ 0. It is well known that W n = Z n /π n (7)
is a martingale with respect to the filtration

F 0 = {∅, Ω}, F n = σ{ξ, X j,i : j ≤ n -1, i ≥ 1} (n ≥ 1), (8) 
so that the limit

W ∞ = lim n→∞ W n (9) 
exists almost surely (a.s.) with EW ≤ 1 by Fatou's lemma.

Throughout the paper, we always assume that

E ln m 0 > 0 and E Z 1 m 0 ln + Z 1 < ∞. ( 10 
)
The first assumption ensures that the process is supercritical (cf. Athreya and Karlin (1971a)); the second one together with the first implies that EW ∞ = 1; moreover, s., (11) where q(ξ) = lim n→∞ P ξ (Z n = 0) is the extinct probability.

P ξ (W ∞ > 0) = P ξ (Z n → ∞) = lim n→∞ P ξ (Z n > 0) = 1 -q(ξ) > 0 a.
In this paper, we search for central limit theorems on W ∞ -W n and W n+k -W n for fixed k ≥ 1 with an appropriate normalization. Assum that m 0 (2) < ∞ a.s., and let

∆ 2 k = ∆ 2 k (ξ) = 0≤i<k 1 π i σ 2 i m 2 i for k ∈ N * ∪ {∞}. Then for k ∈ N * , ∆ 2 k (ξ) is the variance of W k under P ξ ; ∆ 2 ∞ (ξ) is the variance of W ∞ if the series converges (i.e. ∆ 2 ∞ (ξ) < ∞): see Lemma 3.2.
We can now formulate our first main result.

Theorem 2.1. Suppose that ( 10) holds and that m 0 (2) < ∞ a.s.. In the case where k = ∞, assume additionally that

E ln + (σ 2 0 /m 2 0 ) < ∞. Write U n,k = π n (W n+k -W n ) √ Z n ∆ k (θ n ξ) f or k ∈ N * ∪ {∞},
where by convention

W n+k = W ∞ if k = ∞. Then for each k ∈ N * ∪ {∞}, as n → ∞, sup x∈R |P ξ (U n,k ≤ x|Z n > 0) -Φ(x)| → 0 in L 1 , (12) 
and

sup x∈R |P (U n,k ≤ x|Z n > 0) -Φ(x)| → 0. (13) 
We believe that for each k ∈ N ∪ {∞}

lim n→∞ sup x∈R |P ξ (U n,k ≤ x|Z n > 0) -Φ(x)| = 0 a.s..
We notice that in the classical Galton-Waston process, (13) reduces to the results of [START_REF] Bühler | Ein zentraler Grenzwertsatz für Verzweigungsprozesse[END_REF] and [START_REF] Heyde | Some central limit analogues for supercritical Galton-Watson processes[END_REF]. Our second main result concerns the rate of convergence in the above central limit theorem for a branching process with an independent and identically distributed environment.

Theorem 2.2. Let the environment {ξ n } be independent and identically distributed. Assume that (10) holds and that m 0 (2) < ∞ a.s.. In the case where k = ∞, assume additionally that

E ln + (σ 2 0 /m 2 0 ) < ∞. For each k ∈ N * ∪ {∞}, if E| W k -1 ∆ k | 2+δ < ∞ for some δ ∈ (0, 1], then sup x∈R |P (U n,k ≤ x|Z n > 0) -Φ(x)| ≤ C δ Em 0 (-δ 2 ) n E W k -1 ∆ k 2+δ P (Z n > 0) , ( 14 
)
where U n,k is defined in Theorem 2.1 and C δ is the Berry-Esseen constant.

Remark 2.3. It maybe useful to notice that if

E(Z 1 /m 0 ) 2+δ < ∞, Em 0 -(1+δ) < 1 and m 0 (2)/m 2 0 ≥ A for some constant A > 1, then E W∞-1 ∆∞ 2+δ
< +∞. In fact by Theorem 3 of [START_REF] Guivarc'h | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF], the first two conditions imply that E|W ∞ -1| 2+δ < ∞, while the last one implies that ∆ 2 ∞ ≥ A -1 > 0. For the classical Galton-Watson process with δ = 1, Theorem 2.2 reduces to Theorem 2 of (Heyde and Brown, 1971, p.272).

Proof of Theorem 2.1

In this section, we consider a central limit theorem under a second moment condition in proving Theorem 2.1. We first give some lemmas.

Lemma 3.1 (Grincevičjus (1974)). Let {(α n , β n ), n = 0, 1, 2, • • • } be a station- ary and ergodic sequence of random variables with values in R 2 . If E ln |α 0 | < 0 and E ln + |β 0 | < ∞, then ∞ n=0 |α 0 α 1 • • • α n-1 β n | < ∞ a.s.
In fact, the result is a direct consequence of the ergodic theorem and Cauchy's criterion for the convergence of series.

Using the above lemma, we can easily obtain the following result.

Lemma 3.2. Under the assumptions in Theorem 2.1, for each k ∈ N * ∪ {∞},

Var ξ (W k ) = ∆ 2 k (ξ) = 0≤i<k 1 π i σ 2 i m 2 i . ( 15 
)
This has been known for branching processes in varying environment, see e.g. (Jagers, 1974, p.175) in a slightly different form. For reader's convenience, we present a proof in the following.

Proof of Lemma 3.2. By (2) and the definition of W n , we have

W n+1 -W n = 1 π n Zn j=1 ( X n,j m n -1).
Recall that under P ξ , the random variables {X n,j } are independent of each other and have the common distribution p(ξ n ) with expectation m n . Hence a direct calculation shows that

E ξ ((W n+1 -W n ) 2 ) = E ξ E ξ ((W n+1 -W n ) 2 |F n ) = E ξ Z n π n 2 σ 2 n m 2 n = 1 π n σ 2 n m 2 n .
As {W n } is a martingale, it follows that

E ξ W 2 k = E ξ W 2 0 + k-1 i=0 E((W i+1 -W i ) 2 ) = 1 + k-1 i=0 1 π i σ 2 i m 2 i .
Therefore for each fixed integer k,

Var ξ (W k ) = E ξ (W 2 k ) -1 = k-1 i=0 1 π i σ 2 i m 2 i .
Now we turn to the calculation of Var ξ (W ∞ ). By Lemma 3.1, when E ln m 0 > 0

and E ln + σ 2 i m 2 i < ∞, sup n E ξ (W 2 n ) = 1 + ∞ i=0 1 π i σ 2 i m 2 i < ∞ a.s. So W n converges to W ∞ in L 2 under P ξ and E ξ (W 2 ∞ ) = lim k→∞ E ξ (W 2 k ) = 1 + ∞ i=0 1 π i σ 2 i m 2 i . It follows that Var ξ (W ∞ ) = E ξ (W 2 ∞ ) -1 = ∆ 2 ∞ (ξ) = ∞ i=0 1 π i σ 2 i m 2 i < ∞ a.s.
To give our next lemma, we will need some notations, which will also be used in the proof of the main theorems. By definition,

Z n+k = Zn j=1 Z k (n, j), (16) 
where Z k (n, j) denotes the number of descendants in the (n + k)-th generation of the j-th particle among the Z n particles in n-th generation.

Writing W k (n, j) = Z k (n,j) π k (θ n ξ) and using ( 16), we obtain the following decomposition:

π n (W n+k -W n ) = Zn j=1 (W k (n, j) -1). (17) Letting k → ∞, it follows that π n (W ∞ -W n ) = Zn j=1 (W ∞ (n, j) -1), (18) 
where under P ξ , the random variables {W ∞ (n, j)} j are independent of each other and have the common conditional distribution

P ξ (W ∞ (n, j) ∈ •) = P θ n ξ (W ∞ ∈ •).
Lemma 3.3. Suppose that the assumptions of Theorem 2.1 hold. Let

r n ∈ N with r n → ∞. For k ∈ N * ∪ {∞}, define Y k,n = 1 √ r n rn j=1 W k (n, j) -1 ∆ k (θ n ξ) .
Fix k ∈ N * ∪ {∞}. Then for each subsequence {n ′ } of N with n ′ → ∞, there is a subsequence {n ′′ } of {n ′ } with n ′′ → ∞ such that for a.e. ξ and all x ∈ R, as

n ′′ → ∞, P ξ (Y k,n ′′ ≤ x) → Φ(x).
Proof. Fix k ∈ N * ∪ {∞}. In order to use Lindeberg's theorem, for n ∈ N and ǫ > 0, we consider the quantity

L k (ξ, ǫ, n) = 1 r n rn j=1 E ξ W k (n, j) -1 ∆ k (θ n ξ) 2 ; W k (n, j) -1 ∆ k (θ n ξ) √ r n > ǫ ,
where for a set A, we write E ξ (x; A) for E ξ (X1 A ), 1 A denoting the indicator function of A. By the stationarity and ergodicity of the environment, for all ǫ > 0, as n → ∞,

EL k (ξ, ǫ, n) = E W k -1 ∆ k 2 ; W k -1 ∆ k > √ r n ǫ → 0. ( 19 
)
Let {n ′ } be a subsequence of N. Notice that from (19), we can choose a subsequence {n ′′ } for which L k (ξ, ε, n ′′ ) → 0 a.s., but this sequence may depend of ǫ. We will use a diagonal argument to select a subsequence {n ′′ } of {n ′ } such that a.s. L k (ξ, ε, n ′′ )

n ′′ →∞ ----→ 0 for all ǫ > 0. Set ǫ m = 1/m for m ≥ 1.
Let {n 0,i } = {n ′ }. Because of ( 19), there is a subsequence {n 1,i } of {n 0,i } and a set Λ 1 with τ (Λ 1 ) = 1 such that ∀ξ ∈ Λ 1 ,

lim i→∞ L k (ξ, ǫ 1 , n 1,i ) = 0.
Inductively for m ≥ 1, when Λ m and {n m,i } are defined such that τ (Λ m ) = 1 and ∀ξ ∈ Λ m , L k (ξ, ǫ m , n m,i ) → 0, there is a subsequence {n m+1,i } ⊂ {n m,i } and a set Λ m+1 with τ (Λ m+1 ) = 1 such that ∀ξ ∈ Λ m+1 ,

lim i→∞ L k (ξ, ǫ m+1 , n m+1,i ) = 0.
We now consider the diagonal sequence {n i.i } i≥1 and Λ = ∞ j=1 Λ j . For each fixed ǫ > 0, let m ≥ 1 ǫ . Then ǫ m ≤ ǫ and by the monoticity of L k (ξ, ǫ, n) in ǫ, we see that ∀ξ ∈ Λ,

L k (ξ, ǫ, n m,i ) ≤ L k (ξ, ǫ m , n m,i ) → 0 as i → ∞.
As {n i,i } is a subsequence of {n m,i } whenever i > m, this implies that

lim i→∞ L k (ξ, ǫ, n i,i ) = 0. ( 20 
)
Since τ (Λ) = 1, we have shown that for all ǫ > 0, (20) holds a.s.. It follows that a.s. ( 20) holds for all rational ǫ > 0, and therefore for all real ǫ > 0 by the monoticity of L k (ξ, ǫ, n ii ) in ǫ. So by Lindeberg's theorem, it is a.s. that for all

x ∈ R, as i → ∞, P ξ (Y k,ni,i ≤ x) → Φ(x).
Thus the lemma has been proved with {n ′′ } = {n i,i }.

Proof of Theorem 2.1. We shall only deal with the case where k = ∞, as the case where k ∈ N * can be treated similarly. We first prove the following assertion: for each sequence {n ′ } of N with n ′ → ∞, there exist a subsequence {n ′′ } of {n ′ } with n ′′ → ∞ such that for a.e. ξ and all x, as n ′′ → ∞,

P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) → Φ(x). ( 21 
)
By the definition of U n,∞ and the relation ( 18), we get :

U n,∞ = π n (W ∞ -W n ) √ Z n ∆ ∞ (θ n ξ) = 1 √ Z n Zn j=1 W ∞ (n, j) -1 ∆ ∞ (θ n ξ) ,
where we recall that under P ξ , {W ∞ (n, j), j ≥ 1} is a family of random variables independent of each other and independent of Z n , each has the same law as W ∞ under P θ n ξ . Set

u n (r, x) = P ξ   1 √ r r j=1 W ∞ (n, j) -1 ∆ ∞ (θ n ξ) ≤ x   , r ∈ N * , x ∈ R. Then P ξ (U n,∞ ≤ x|Z n > 0) = [P ξ (Z n > 0)] -1 ∞ r=1 P ξ (U n,∞ ≤ x, Z n = r) = ∞ r=1 u n (r, x) P ξ (Z n = r) P ξ (Z n > 0) . ( 22 
)
To show the main idea, let us first consider the special case where q(ξ) = 0 a.s., i.e. for a.e. ξ, Z n → ∞ P * ξ -a.s.. In this case, the relation ( 22) becomes

P ξ (U n,∞ ≤ x) = ∞ r=1 u n (r, x)P ξ (Z n = r) = E ξ u n (Z n , x).
By Lemma 3.3, for each subsequence {n ′ } of N with n ′ → ∞, there exist a subsequence {n ′′ } of {n ′ } with n ′′ → ∞ such that for a.e. ξ and all x, as n ′′ → ∞,

u n ′′ (Z n ′′ , x) → Φ(x).
By the dominated convergence theorem, for a.e. ξ and all x, as n ′′ → ∞,

P ξ (U n ′′ ,∞ ≤ x) = E ξ [u n ′′ (Z n ′′ , x)] → Φ(x).
So we have proved (21) when q(ξ) = 0 a.s.. We now consider the general case where 0 ≤ q(ξ) < 1 a.s.. For each ξ ∈ Θ N , let Z * n be random variables defined on some probability space (Γ * , P * ξ ) with law

P * ξ (Z * n = r) = P ξ (Z n = r) P ξ (Z n > 0) , r ∈ N * . Then P ξ (U n,∞ ≤ x|Z n > 0) = E * ξ u n (Z * n , x)
, where E * ξ denotes the expectation with respect to P * ξ . Let {n ′ } be a sequence of N with n ′ → ∞. If for a.e. ξ,

Z * n ′ → ∞ P * ξ -a.s.,
then as above we can use Lemma 3.3 and the dominated convergence theorem to show that there is a sequence {n ′′ } of {n ′ } with n ′′ → ∞ such that for all x, as n ′′ → ∞,

E * ξ u n ′′ (Z * n ′′ , x) → Φ(x)
. By the fact that Z * n → ∞ in probability under P * ξ , we can choose a subsequence for which Z * n → ∞ P * ξ -a.s.. But to apply Lemma 3.3, we need that the sequence does not depend on ξ. We therefore pass to the probability P * to overcome this difficulty, where P * = P * ξ ⊗ τ is defined on the product space Γ * × Θ N just as P was defined on Γ × Θ N .

Notice that for each r ∈ N * , as n → ∞,

P * ξ (Z * n = r) = P ξ (Z n = r) P ξ (Z n > 0) → 0,
where the last step holds as Z n → ∞ a.s. on the survival event S = {Z n > 0, ∀n ≥ 1} (see (11) or [START_REF] Tanny | Limit theorems for branching processes in a random environment[END_REF] for this fact). Then Z * n → +∞ in probability under P * ξ . By the dominated convergence theorem, this implies that Z * n → +∞ in probability under P * . Therefore for each subsequence {n ′ } of N with n ′ → ∞, there is a subsequence {ñ} ⊂ {n ′ } with ñ → ∞ such that Z * ñ → +∞ a.s. under P * . This implies that for a.e. ξ, as ñ → ∞,

Z * ñ → +∞ P * ξ -a.s.
Now by Lemma 3.3, there exists a subsequence {n ′′ } of {ñ} such that for a.e. ξ and all x, as n ′′ → ∞,

u n ′′ (Z * n ′′ , x) → Φ(x).
By the dominated convergence theorem, for almost every ξ and each x, as

n ′′ → ∞, P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) = E ξ u n ′′ (Z * n ′′ , x) → Φ(x). (23) 
So combining the above two cases, we have proved ( 21). Since P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) are distribution functions and Φ(x) is a continuous distribution function, by Dini's Theorem we see that for a.e. ξ, as

n ′′ → ∞, sup x |P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) -Φ(x)| → 0. (24) 
By the dominated convergence theorem, (24) implies that as n ′′ → ∞,

E sup x |P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) -Φ(x)| → 0. ( 25 
)
Therefore we have proved that for each sequence {n ′ } of N with n ′ → ∞, there is a subsequence {n ′′ } of {n ′ } with n ′′ → ∞ such that (25) holds. Hence

E sup x |P ξ (U n,∞ ≤ x|Z n > 0) -Φ(x)| → 0.
This gives (12) for k = ∞. The proof for k ∈ N * is similar. We now begin to prove (13).

As we have proved that for each subsequence {n ′ } of N, there is a subsequence {n ′′ } so that (24) holds, which implies: for a.e. ξ and all x ∈ R, as

n ′′ → ∞, |P ξ (U n ′′ ,∞ ≤ x|Z n ′′ > 0) -Φ(x)| → 0.
It follows that for a.e. ξ and all x ∈ R,

|P ξ (U n ′′ ,∞ ≤ x, Z n ′′ > 0) -P ξ (Z n ′′ > 0)Φ(x)| → 0.
So by the dominated convergence theorem, we see that for each x ∈ R, as

n ′′ → ∞, |P (U n ′′ ,∞ ≤ x, Z n ′′ > 0) -P (Z n ′′ > 0)Φ(x)| → 0,
and hence

P (U n ′′ ,∞ ≤ x|Z n ′′ > 0) → Φ(x).
By Dini's Theorem, it follows that

sup x |P (U n ′′ ,∞ ≤ x|Z n ′′ > 0) -Φ(x)| → 0. (26) 
Therefore we have proved that for each sequence {n ′ } of N, there is a subsequence {n ′′ } of {n ′ } with n ′′ → ∞ such that (26) holds. Hence

sup x |P (U n,∞ ≤ x|Z n > 0) -Φ(x)| → 0.
Thus the proof is completed.

Proof of Theorem 2.2

In this section, we consider the rate of convergence in the central limit theorem under a moment condition of order 2 + δ, in proving Theorem 2.2.

Notice that by the definition (4) of m n (a), we have

m n (a) = E ξ X a n,i if a > 0, m n (a) = E ξ X a n,i 1 {Xn,i>0} if a ≤ 0, (27) 
where X n,i is as in (2). For a > 0, define

R n = [m 0 (-a) • • • m n-1 (-a)] -1 Z -a n 1 {Zn>0} , n ≥ 0.
Lemma 4.1. (R n , F n ) n≥0 is a supermartingale, where F n were defined in (8).

Proof. Using the decomposition (2) of Z n+1 , we have

Z -a n+1 1 {Zn+1>0} = Zn i=1 X n,i -a 1 {Zn>0} 1 {Zn+1>0} = Z -a n 1 Z n Zn i=1 X n,i 1 {Xn,i}>0 -a 1 {Zn>0} 1 {Zn+1>0} ≤ Z n -a 1 Z n Zn i=1 (X n,i 1 {Xn,i}>0 ) -a 1 {Zn>0} 1 {Zn+1>0} ,
where the last inequality is due to the convexity property of the function x -a (a > 0).

Taking conditional expectation with respect to F n and P ξ on both sides of the above inequality, we obtain that

E ξ (Z -a n+1 1 {Zn+1>0} |F n ) ≤ Z -a n 1 {Zn>0} m n (-a), (28) 
which gives the desired result.

Since Z 0 = 1, by (28), we immediate obtain the following Lemma 4.2. For a > 0, we have

E ξ Z -a n 1 {Zn>0} ≤ m 0 (-a) • • • m n-1 (-a) ( 29 
)
If the environment sequence {ξ n } is independent and identically distributed, then

EZ -a n 1 {Zn>0} ≤ (Em 0 (-a)) n . ( 30 
)
Now we give the proof of Theorem 2.2.

Proof of Theorem 2.2. We shall only deal with the case k = ∞, as the case where k ∈ N * can be treated similarly.

Consider the probability space (Γ * × Θ N , P * ) and define random variables Z * n as in the proof of Theorem 2.1. By definition,

u n (Z * n , x) = P ξ   1 Z * n Z * n j=1 W ∞ (n, j) -1 ∆ ∞ (θ n ξ) ≤ x   .
By our hypothesis and the Berry-Esseen theorem (see e.g. Theorem 6 of (Petrov, 1995, p.115)), we have

|u n (Z * n , x) -Φ(x)| ≤ C δ (Z * n ) 1+ δ 2 Z * n j=1 E ξ W ∞ (n, j) -1 ∆ ∞ (θ n ξ) 2+δ = C δ (Z * n ) -δ 2 E θ n ξ W ∞ -1 ∆ ∞ 2+δ
, where C δ is the Berry-Esseen constant. Using this evaluation, we can derive that

|P ξ (U n,∞ ≤ x|Z n > 0) -Φ(x)| ≤ E * ξ |u n (Z * n , x) -Φ(x)| ≤ C δ E * ξ (Z * n ) -δ 2 E θ n ξ W ∞ -1 ∆ ∞ 2+δ
.

By the definition of Z * n , this implies that

|P ξ (U n,∞ ≤ x, Z n > 0) -P ξ (Z n > 0)Φ(x)| ≤ C δ E ξ Z -δ 2 n I {Zn>0} E θ n ξ W ∞ -1 ∆ ∞ 2+δ . (31) 
Using ( 31) and the fact that the sequence {ξ n } is independent and identically distributed, we get

|P (U n,∞ ≤ x, Z n > 0) -P (Z n > 0)Φ(x)| ≤ E|P ξ (U n,∞ ≤ x, Z n > 0) -P ξ (Z n > 0)Φ(x)| ≤ C δ E Z -δ 2 n I {Zn>0} E W ∞ -1 ∆ ∞ 2+δ
.
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Together with (30), we obtain that

.

Then the proof is completed.