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Abstract—Communication flows in distributed systems often present a poor performance, because they are unaware of each other 

and end up competing for the same bottleneck resources. A solution to this problem consists of scheduling the communication flows 

in order to optimize some performance metric. In this paper we study the scheduling of two communication flows over multiple 

disjoint paths, such that the maximum completion time (makespan) is minimized. Each flow is composed of a large number of 

identical packets of the same type. The paths are aware of the packet types and have different transmission times for each type. We 

consider the objectives of minimizing the makespan and the weighted sum of completion times. We also consider some error-

correcting issues, as well as the possibility of dropping the packet ordering constraints. 

Keywords-communication flows; scheduling; disjoint paths  

I.  INTRODUCTION 

Communication performance in distributed systems may be quite poor when multiple communication flows use the 
network simultaneously. Because they are not aware of each other, they end up trying to use the same bottleneck resources, 
although other resources may be available in other places or at other times. A solution to this problem consists of scheduling 
the communication flows in such a way that a performance metric is optimized. In this paper we are interested in optimally 
scheduling two communication flows from the same sender to the same receiver, using multiple disjoint paths. Each flow i is 
composed of a number of identical packets which need to be sent sequentially. The paths have different transmission times for 
the two packet types. This kind of situation may occur when the two communication flows belong to distinct traffic classes (for 
instance, multimedia and normal web traffic). Moreover, some paths may be more suitable for one of the two traffic types. We 
show that, when the objective is to minimize the makespan, optimal schedules present very particular structures, considering 
that the packet transmission is non-preemptive and that two packets cannot be in transit at the same time on the same path. We 
also consider the objective of minimizing the sum of completion times and present dynamic programming algorithms for two 
situations. 

The rest of this paper is structured as follows. In Section II we define the makespan minimization problem. In Section III 
we characterize the structure of minimum makespan schedules and in Section IV we present an algorithm for computing an 
optimal schedule. In Section V we consider the problem of minimizing the sum of completion times. In Section VI we drop the 
packet ordering constraints and in Section VII we consider error-correcting issues. In Section VIII we present related work and 
in Section IX we conclude. 

II. MINIMUM MAKESPAN SCHEDULING 

We consider 2 communication flows, composed of np(i) identical packets (i=1,2). The packets of the communication flow i 
are of type i and are identified by a pair of numbers (i,j), 1≤j≤np(i). The packets of the same type must be sent to the 
destination sequentially, using P disjoint paths. Each path q (1≤q≤P) has 2 transmission times, ts(q,1) and ts(q,2). ts(q, i) 
(i=1,2) is the time taken by a packet of type i to reach the destination using path q. A schedule consists of assigning to each 
packet (i,j) a pair (path(i,j), tstart(i,j)), meaning that the packet is scheduled to be sent on path path(i,j), starting from time 
tstart(i,j). Based on this pair, we also associate with each packet (i,j) a time interval [tstart(i,j), tfinish(i,j)), where 
tfinish(i,j)=tstart(i,j)+ ts(path(i,j),i). During this interval, the packet (i,j) is in transit on path(i,j), so we will call it transit 
interval. A schedule is valid if for any two packets (i,j(1)) and (i,j(2)), j(1)<j(2), we have tfinish(i,j(1))≤tstart(i,j(2)), and if any 
two packets scheduled on the same path (disregarding their type) are assigned disjoint transit intervals. The first condition 
makes sure that each flow’s packets are sent sequentially (in the order given by the starting time of the packets’ transit 
intervals) and the second one makes sure that the packets scheduled on the same path are sent one at a time. The makespan 
Cmax of the schedule is the maximum time at which a packet’s transmission ends and we want to find a schedule which 
minimizes Cmax: 

       ))}(,({max
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III. PROPERTIES OF OPTIMAL SCHEDULES 

In this section we show that an optimal schedule (which minimizes the makespan) must have a particular structure, 
chosen from a small set of such structures. As a first step, we show that in an optimal schedule, each flow’s packets are 
scheduled on at most 3 distinct paths. In order to do this, we will present and prove several theorems. The main technique 
lying at the basis of all the proofs is choosing an arbitrary valid schedule and changing it into a schedule which is not worse, 
but has all the properties mentioned by the theorem. For each flow i, we define an ordering of the paths: po(i,1), po(i,2), …, 
po(i,P), such that ts(po(i,1),i)≤ ts(po(i,2),i)≤…≤ts(po(i,P),i). In the proofs of the following theorems we will frequently 
reassign a packet from a path po(i,q(1)) to a path po(i,q(2)), with q(2)<q(1). Such a reassignment does not change the starting 
time of the packet, but may decrease its ending time. The makespan of the schedule will not increase as a result of these 
operations. 

Theorem 1. Let k be the first position where the path orderings of the two flows differ, i.e. po(1,q)=po(2,q), for 1≤q<k and 
po(1,k)≠po(2,k). If such a position exists, then in an optimal schedule, no packets are sent on any of the paths po(i,q) (i=1,2), 
with q>k. 

Proof. We will choose an arbitrary valid schedule. All the packets (i,j) which are assigned to paths path(i,j) such that 
path(i,j)=po(i,q), q>k, will be reassigned to path po(i,k). After this reassignment, we obtain a new schedule. We will analyze 
the validity of this new schedule. The reassignment does not change the starting time of any packet, only the finish time, 
which may decrease. Therefore, the transit intervals of packets of the same type do not overlap. Let’s see if the transit 
intervals of two packets scheduled on the same path might intersect. If the two packets are of the same type, we showed 
previously that this cannot happen, because their transit intervals are disjoint. Let’s assume that the transit intervals of two 
packets of different types, (1,j(1)) and (2,j(2)), scheduled on the same path p, intersect. This path cannot be one of the first k-
1 paths (for any of the two flows), because no packet was reassigned to such a path. So path p must be the k

th
 path of one of 

the flows. W.l.o.g., we will assume that p=po(1,k). But no type 2 packet is assigned to path po(1,k), thus invalidating our 
initial assumption. In conclusion, the new schedule is valid and this holds for any valid schedule, including the optimal one. 

Theorem 2. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>4. 

Proof. We will choose an arbitrary valid schedule, where at least one packet (i(1),j) is scheduled on a path po(i(1),q), with 
q>4 (using Theorem 1, we also have q≤k, if k exists). The packets of the other type i(2) can be classified into 3 categories, 
according to the relationship between their transit interval and packet (i(1),j)’s transit interval: 

• category 1: their transit interval is included inside [tstart(i(1),j), tfinish(i(1),j)). 

• category 2: their transit interval intersects [tstart(i(1),j), tfinish(i(1),j)), but is not included in it. 

• category 3: their transit interval does not intersect [tstart(i(1),j), tfinish(i(1),j)). 
All the category 1 packets can be reassigned to path po(i(2),1), because no other packet of type i(1) is scheduled on that 

path during the interval [tstart(i(1),j), tfinish(i(1),j)). The transit intervals of these packets do not increase. Category 2 packets 
cannot be reassigned to a different path, because they might be in conflict with other type i(1) packets. However, it is easy to 
see that there can be at most two packets belonging to category 2. One of the packets may cross [tstart(i(1),j), tfinish(i(1),j)) 
at the left end and the other one at the right end. Category 3 packets are of no interest. After performing the reassignment of 
category 1 packets, the packet (i(1),j)’s transit interval intersects with the transit intervals of packets scheduled on at most 
three distinct paths. So the packet (i(1),j) can be reassigned to at least one of the paths po(i(1),1), …, po(i(1),4), without 
increasing the makespan and without breaking the validity of the schedule. By using this reassignment method repeatedly, all 
the packets (i(1),j) assigned to some path po(i(1),q), q>4, will be reassigned to some path po(i(1), q(1)), 1≤q(1)≤4. Thus, any 
valid schedule can be turned into another schedule, where no packet is assigned to a path po(i,q), q>4. This holds for an 
optimal schedule, too. 

Theorem 3. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>3. 

Proof. We will choose an arbitrary valid schedule. We first use Theorem 2 in order to obtain a valid schedule with a 
makespan which is not worse that the initial schedule and in which no packet is sent on a path po(i,q), with q>4. Let’s 
assume that a packet (i(1),j) is assigned to the path po(i(1), 4). From Theorem 1, we must have k≥4. We will classify the type 
i(2)(≠i(1)) packets in the same three categories as in Theorem 2’s proof and perform the same reassignments. If there are less 
than two packets in category 2 or if the two packets in category 2 are assigned to the same path or if one of them is assigned 
to path po(i(2),1) or to path po(i(2),4) then packet (i(1),j)’s transit interval intersects the transit intervals of packets scheduled 
on at most two distinct paths from the set {po(i(1),1), po(i(1),2), po(i(1),3)}, which allows us to reassign packet (i(1),j) to one 
of the paths in the set. The more difficult case occurs when there are two packets belonging to category 2, one of them 
assigned to the path po(i(2),2) and the other one to the path po(i(2),3) (see Fig. 1). In Fig. 1, w.l.o.g., we chose to place the 
type i(2) packet assigned to path po(i(2),2) on the left. Because each flow’s schedule begins at time 0 and ends at time Cmax, 
we can always choose to interpret time as moving from Cmax towards 0, so left and right are interchangeable. We will name 
(i(2),j(2)) and (i(2),j(3)) the two type i(2) packets assigned to paths po(i(2),2) and po(i(2),3). All the type i(1) packets whose 
transit intervals start after the finish time of packet (i(1),j) and finish before the finish time of (i(2),j(3)), or finish before the 
starting time of (i(1),j) and start after the starting time of (i(2),j(2)) can be reassigned to path po(i(1), 1). Packet (i(2),j(3))’s 
transit interval must intersect with that of a packet of type i(1) assigned to path po(i(1),2); otherwise, packet (i(2),j(3)) could 
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be reassigned to path po(i(2),2) and then packet (i(1),j) could be reassigned to path po(i(1),3). We define the interval [t1,t2), 
where t1 is the starting time of the first type i(1) packet (re)assigned to path po(i(1),1) whose transit interval is fully included 
inside that of packet (i(2),j(2)) (or, if no such interval exists, the starting time of packet (i(1),j)) and t2 is the starting time of 
the first type i(1) packet assigned to po(i(1),2) whose transit interval intersects that of the packet (i(2),j(3)). We also define t3 
as the finish time of the transit interval of packet (i(2), j(3)). We define l(i(1),1) the total length of the transit intervals   
included  in   [t1,t2)  of  all  the  type  i(1)  packets 

 
Figure 1.  Type i(1) packets (first row) and type i(2) packets (second row). The left and right side of the packets are aligned with their starting and finish 

time. The numbers inside the packets are the positions of the assigned paths in the corresponding path ordering. 

 
Figure 2.  The case l(i(2),3)+l(i(2),1)≤ t3-t2+l(i(1),4). The rearrangement of packets. No path reassignment has been performed, yet. 

 
Figure 3.  The new schedule in the case l(i(2),3)+l(i(2),1)≤ t3-t2+l(i(1),4). The schedule is valid and the makespan did not increase. 

 
Figure 4.  The case l(i(2),1)+l(i(2),3)> t3-t2+l(i(1),4). The rearrangement of packets. No path reassignment has been performed, yet. 

 

Figure 5.  Rearrangement of packets for the case k=2, P≥2. 

 

Figure 6.  The case k=3, P≥4. Packet rearrangement when l1,1+l1,2≤l2,2+l2,3. No path reassignment has been performed, yet. 

(re)assigned to path po(i(1),1) and l(i(1),4) the length of the transit interval of the packet (i(1),j). Similarly, we define l(i(2),1) 
the total length of the transit intervals included in [t1,t2) of all the type i(2) packets (re)assigned to path po(i(2),1), l(i(2),2) the 
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length of the transit interval of the packet (i(2),j(2)) and l(i(2),3) the length of the transit interval of the packet (i(2),j(3)). All 
the packets whose transit intervals are included inside [t1,t2) will be rearranged in such a way that the makespan will not 
increase and that it will be possible to reassign packet (i(1),j) to one of the paths po(i(1),1),…,po(i(1),3). 

If l(i(2),3)+l(i(2),1)≤t3-t2+l(i(1),4), then the packets can be rearranged like in Fig. 2. Packet (i(1),j) is placed such that its 
finish time is equal to t2. Then, all the other type i(1) packets whose transit intervals were included in [t1,t2) will be placed 
somewhere inside the interval [t1,t2-l(i(1),4)). This is obviously possible, because l(i(1),1)≤t2-t1-l(i(1),4). After that, the packet 
(i(2),j(3)) will be reassigned to path po(i(2), 1). This is now possible, because the only two packets whose transit intervals 
intersect the transit interval of packet (i(2),j(3)) are assigned to the paths po(i(1),2) and po(i(1),4). After packet (i(2),j(3)) is 
reassigned to path po(i(1),1), packet (i(1),j) can be reassigned to path po(i(1),3). The final arrangement is shown in Fig. 3. 

The case l(i(2),3)+l(i(2),1)>t3-t2+l(i(1),4) is handled in a similar manner. The type i(1) packets whose transit interval is 
included inside [t1,t2) are placed like in the previous case. The type i(2) packets (re)assigned to path po(i(1),1) whose transit 
intervals are included inside [t1,t2) are rescheduled consecutively, such that the last one finishes at time t3. Because 
l(i(2),1)<l(i(1),4) (initially, all of these packets’ intervals were included inside packet (i(1),j)’s transit interval), the new 
starting time of the first of these packets, tnewstart=t3-l(i(2),1), will be greater than the new starting time of the packet (i(1),j). 
The packet (i(2),j(3)) will be rescheduled such that its finish time is equal to tnewstart. Because l(i(2),1)+l(i(2),3)>t3-
t2+l(i(1),4), the starting time of the packet (i(2),j(3)) will be smaller than the starting time of packet (i(1),j). Fig. 4 shows the 
new arrangement. The new transit interval of packet (i(1),j) intersects only type i(2) packets assigned to the paths po(i(2),1) 
and po(i(2),3), so packet (i(1),j) can be reassigned to path po(i(1),2). This was the last case to be considered. In every case, 
packet (i(1),j) could be reassigned to a path po(i(1),q(1)), with 1≤q(1)≤3, without assigning any packet to a path located on a 
larger position in the corresponding path ordering and without increasing the makespan. Thus, any valid schedule (including 
an optimal one) can be changed into another valid schedule where no packet is assigned to a path po(i,q), q>3. 

We will characterize next all the cases of interest that may occur, according to the total number of paths P and the 
parameter k defined in Theorem 1. We will use A div B to denote the integer division of A and B, i.e. the integer number C, 
such that C·B≤A<(C+1)·B. A and B do not necessarily have to be integer numbers. 

A. k=1, P≥1 

If po(1,1)≠po(2,1), then all the type 1 packets will be scheduled on path po(1,1) and all the type 2 packets on the path 
po(2,1). The makespan will be: 

)}2),1,2(()2(),1),1,1(()1(max{max potsnppotsnpC ⋅⋅= . (2) 

B. k does not exist, P=1 

If P=1 and po(1,1)=po(2,1), then all the packets of both types will be scheduled on the first (and only) path. The makespan 
will be 

)2,1()2()1,1()1(max tsnptsnpC ⋅+⋅= .                    (3) 

C. k=2, P≥2 

We choose an arbitrary valid schedule and denote its makespan by C. We denote by li,j the total length of the transit 
intervals of type i packets scheduled on path po(i,j) (1≤j≤2) and by twi the total waiting time twi=C-li,1-li,2. 

We have that l1,1≤l2,2+tw2, because each transit interval of a type 1 packet scheduled on the path po(1,1) overlaps some 
part of a type 2 packet scheduled on path po(2,2) or some part of the waiting time tw2. Because of this, the schedule can be 
changed such that all the type 1 packets assigned to path po(1,1) are scheduled first, followed by the waiting time tw1 and 
then by all the type 1 packets scheduled on path po(1,2). For the 2

nd
 flow, all the packets assigned to path po(2,2) are 

scheduled first, followed by the waiting time tw2 and by the packets assigned to path po(2,1). Fig. 5 presents the transformed 
schedule. 

No transit interval of a type 1 packet scheduled on path po(1,1) overlaps with the transit interval of a type 2 packet 
scheduled on path po(2,1). The schedule can be further refined by moving part of the waiting time tw2 at the end and moving 
the type 2 packets assigned to path po(2,1) forward, so that their starting time is max{l1,1, l2,2}. Similarly, part of tw1 can be 
moved at the end, so that type 1 packets assigned to path po(1,2) are sent starting from max{l1,1, l2,2}. Obviously, the new 
schedule is valid and its makespan is not larger than that of the original schedule. 

An optimal schedule is properly defined by the number u of type 1 packets assigned to path po(1,1). For the type 1 
packets, the schedule can be written as 1

u
,2

np(1)-u
, meaning that the first u packets are assigned to path po(1,1) and the last 

np(1)-u packets are assigned to path po(1,2) (a term of the form a
b
 in the schedule of flow i represents b consecutive type i 

packets sent on path po(i,a)). If the number u of packets is fixed, the schedule for the type 2 packets has one of the following 
two forms: 

• 2
v
,tw,1

np(2)-v
, where v=min{(l1,1 div ts(po(2,2),2)), np(2)} and tw=l1,1-v·ts(po(2,2),2). This means that the first v packets of 

type 2 are sent consecutively on the path po(2,2), then a waiting time tw follows and then the last np(2)-v type 2 packets 
are sent on the path po(2,1). 

• 2
v
,1

np(2)-v
, where v=min{np(2),(l1,1 div ts(po(2,2),2))+1} 
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In order to find the optimal schedule, we need to find the value of u which minimizes the makespan. 

D. k does not exist, P=2 

This case is similar to the previous one. We will use the same notations as before. We have that l1,1≤l2,2+tw2 and  
l2,2≤l1,1+tw1 (by the same argument). Therefore, the schedule shown in Fig. 5 is valid in this case, too. Like in the previous 
case, an optimal schedule is properly defined by the number u of type 1 packets assigned to path po(1,1). These packets will be 
sent first. In parallel, we will send as many type 2 packets as possible on path po(2,2); we have two choices: 

• send v=min{(l1,1 div ts(po(2,2),2)),np(2)} type 2 packets on path po(2,2), then wait a duration tw=l1,1-v·ts(po(2,2),2) and 
then send the remaining type 2 packets on path po(2,1). The type 1 packets assigned to path po(1,2) will be sent starting 
from time l1,1. The schedule for the type 1 packets is 1

u
,2

np(1)-u
 and the schedule for type 2 packets is 2

v
,tw,1

np(2)-v
. 

• send v=min{(l1,1 div ts(po(2,2),2))+1,np(2)} type 2 packets on path po(2,2), then send immediately the remaining type 2 
packets on path po(2,1). The type 1 packets assigned to path po(1,2) will have to wait a duration tw=max{v·ts(po(2,2),2)-
l1,1,0} before starting to send them. The schedule for the type 1 packets is 1

u
,tw,2

np(1)-u
 and the one for type 2 packets is 

2
v
,1

np(2)-v
. In this case, it would be better to choose the value of v and derive the value of u based on v. 

Like in the previous case, finding the optimal schedule means finding the value of u which minimizes the makespan. 

E. k=3, P≥4 

If no packet (i,j) is assigned to the path po(i,3), then this case is identical to the previous one. So we will restrict our 
attention to the case in which at least one packet (i,j) is assigned to the path po(i,3). We will choose an arbitrary valid 
schedule with makespan C. We will define l1,1, l1,2, l2,1, l2,2 as before. Furthermore, we define li,3 the total length of the transit 
intervals of the type i packets assigned to path po(i,3) (1≤i≤2). The waiting times are now equal to twi=C-li,1-li,2-li,3. If 
l1,1+l1,2≤l2,2+l2,3, the packets can be rearranged like in Fig. 6 (temporarily, packets of both types sent on the path 
po(1,2)=po(2,2) may intersect). All type 1 packets assigned to path po(1,1) will be sent first, followed by all the type 1 
packets assigned to path po(1,2) and by all the type 1 packets assigned to path po(1,3). In parallel, we will send all the type 2 
packets assigned to path po(2,2), followed by all the type 2 packets assigned to path po(2,3) and then followed by those 
assigned to path po(2,1). The waiting times are moved at the end of the schedule. 

The type 1 packets assigned to path po(1,2) will be reassigned to path po(1,1). The type 2 packets assigned to path po(2,3) 
will be reassigned to path po(2,2). At this point, the type 1 packets are assigned only to the paths po(1,1) and po(1,3) and the 
type 2 packets are assigned only to the paths po(2,1) and po(2,2). However, more reassignments are possible. All type 1 
packets assigned to path po(1,3) whose finish time is smaller than or equal to l2,2+l2,3 can be reassigned to path po(1,1). All 
type 1 packets assigned to path po(1,3) whose starting time is greater than or equal to l2,2+l2,3 can be reassigned to path 
po(1,2). All these reassignments do not increase the lengths of the transit intervals, so they do not increase the makespan. In 
the end, there will be at most one type 1 packet assigned to path po(1,3) and no type 2 packet assigned to path po(2,3). The 
schedule for the type 1 packets has the form 1

u
,3

1
,2

np(1)-u-1
 and the one for type 2 packets has the form 2

v
,1

np(2)-v
. 

If l1,1+l1,2>l2,2+l2,3 and l1,1≥l2,2+l2,3, we can change the schedule in a similar manner. We will send the first type 1 packets 
assigned to path po(1,1), followed by the type 1 packets assigned to path po(1,2) and then po(1,3). In parallel, the type 2 
packets assigned to path po(2,2) will be sent, followed immediately by the packets assigned to path po(2,3). Because we have 
l1,1≤l2,2+l2,3+tw2 (since any transit interval of a type 1 packet assigned to path po(1,1) overlaps parts of transit intervals of 
type 2 packets assigned to paths po(2,2) or po(2,3), or parts of tw2), we can insert the waiting time tw2 before sending the type 
2 packets assigned to path po(2,1). This way, the makespan does not increase and the schedule remains valid. Further 
reassignments are possible. All type 2 packets assigned to path po(2,3) will be reassigned to path po(2,2) and all type 1 
packets assigned to path po(1,3) will be reassigned to path po(1,2). This way, no packet (i,j) remains assigned to the path 
po(i,3), so we are in the case presented in the previous subsection. If l1,1+l1,2>l2,2+l2,3 and l1,1<l2,2+l2,3, we need to make a 
difference between the following subcases: l1,1≥l2,2 and l1,1<l2,2. 
Subcase 1: l1,1≥l2,2. The packets will be rearranged the same way as before: for type 1 - the packets assigned to the path 
po(1,1), then those assigned to path po(1,2) and then those assigned to path po(1,3); for type 2 - the packets assigned to path 
po(2,2), then those assigned to path po(2,3) and then those assigned to path po(2,1). Because l1,1≥l2,2, the transit interval of no 
type 1 packet assigned to paths po(1,2) or po(1,3) overlaps the transit interval of a type 2 packet assigned to path po(2,2). 
Thus, all the type 1 packets assigned to path po(1,3) can be reassigned to path po(1,2) and the schedule is valid. The type 2 
packets assigned to path po(2,3) whose finish time is smaller than or equal to l1,1 will be reassigned to path po(2,2) and those 
whose starting time is greater than or equal to l1,1, will be reassigned to path po(2,1). This leaves at most one type 2 packet 
still assigned to path po(2,3). The schedule for the type 1 packets has the form 1

u
,2

np(1)-u
 and the one for type 2 packets has the 

form 2
v
,3

1
,1

np(2)-v-1
. 

Subcase 2: l1,1<l2,2. The type 2 packets will be rearranged just like in the previous subcase. Furthermore, all the type 2 packets 
assigned to path po(2,3) will be reassigned to path po(2,1). The type 1 packets assigned to path po(1,1) will be sent first, 
followed by the type 1 packets assigned to path po(1,3). Because l1,1+l1,3+tw1≥l2,2, we can insert the waiting time tw1 before 
sending the type 1 packets assigned to path po(1,2). After the reassignments, the schedule is valid and its makespan did not 
increase. Furthermore, the type 1 packets assigned to path po(1,3) whose finish time is smaller than or equal to l2,2 will be 
reassigned to path po(1,1) and those whose starting time is greater than or equal to l2,2 will be reassigned to path po(1,2), 
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leaving at most one type 1 packet still assigned to path po(1,3). The schedule for the type 1 packets has the form 1
u
,3

1
,2

np(1)-u
 or 

1
u
,tw,2

np(1)-u
 and the one for type 2 packets has the form 2

v
,1

np(2)-v
. 

F. k does not exist, P=3 

Any valid schedule for this case is also a valid schedule for the previous one. Therefore, we can use the same arguments 
and transformations. The only problem we might encounter is that the schedule obtained after performing the transformations 
of the previous case might contain two packets (1,j(1)) and (2,j(2)), with overlapping transit intervals and assigned to the same 
path po(1,3)=po(2,3). However, we can see that this is not the case, because any schedule obtained in the previous case 
contains at most one packet (i,j) assigned to a path po(i,3) (either po(1,3) or po(2,3)). 

G. k>3 or non-existent, P>3 

According to Theorem 3, no packet (i,j) is sent on a path po(i,q), q>3. Thus, we can limit the value of P to 3 and the case 
becomes identical to the previous one. 

 
In this section we characterized the structure of optimal schedules. There are five kinds of non-trivial structures: 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,tw,1

np(2)-v
 for flow 2, where v=min{np(2), ((ts(po(1,1),1)·u) div ts(po(2,2),2))} and 

tw=u·ts(po(1,1),1)-v·ts(po(2,2),2). 

• 1
u
,tw,2

np(1)-u
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1), ((ts(po(2,2),2)·v) div ts(po(1,1),1))} and 

tw=v·ts(po(2,2),2)-u·ts(po(1,1),1). 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v+1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1, ((ts(po(1,1),1)·u) div ts(po(2,2),2))}. 

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,3

1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1,((ts(po(1,1),1)·u) div ts(po(2,2),2))}. 

• 1
u
,3

1
,2

np(1)-u-1
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1)-1,((ts(po(2,2),2)·v) div ts(po(1,1),1))}. 

IV. A MAKESPAN MINIMIZATION ALGORITHM 

We will present an algorithm with time complexity O(np(i)) which determines the optimal schedule for any of the five 
kinds of non-trivial structures presented in the previous section. The algorithm has time complexity O(log(np(i))) on three of 
the schedule structures, but two structures are more difficult and we were unable to develop an equally efficient algorithm for 
them. We will not include in this section the trivial cases k=1 and P=1, which can easily be solved in O(1) time using 
equations (2) and (3). 

A. Case 1: 1
u
,2

np(1)-u
 and 2

v
,3

1
,1

np(2)-v-1
 

We chose to handle first the case 1
u
,2

np(1)-u
 and 2

v
,3

1
,1

np(2)-v-1
, because it is easier to solve than the cases where waiting times 

are involved. We will define two functions, C1(u) and C2(u) representing the completion time of flow 1 and flow 2, 
respectively, if there are u packets of type 1 assigned to the path po(1,1). Their definitions are: 

C1(u)=u·ts(po(1,1),1)+(np(1)-u)·ts(po(1,2),1)  (4) 

C2(u)=v·ts(po(2,2),2)+ts(po(2,3),2)+(np(2)-v-1)· 

ts(po(2,1),2) , with v=min{(ts(po(1,1),1)·u) div 

ts(po(2,2),2) , np(2)-1} 

(5) 

The first function is decreasing for )]1(,0[ npu ∈ . The difference C1(x+1)-C1(x)=ts(po(1,1),1)-ts(po(1,2),1) is constant. 

The values of the second function are increasing, but not necessarily strictly increasing. This is easily noticeable, because as u 
increases, so does v. Whenever v increases, the number of packets assigned to path po(2,2) increases and the number of 

packets assigned to path po(2,1) decreases, so the overall value increases. In order to find the value )]1(,0[ npuopt ∈  for 

which max{C1(uopt), C2(uopt)} is minimum we have the following three subcases: 

• Subcase 1: C1(0)≤C2(0). In this case, max{C1(u), C2(u)}=C2(u) and the minimum value of C2(u) is C2(0). So uopt=0. 

• Subcase 2: C1(np(1))≥C2(np(1)). In this case, max{C1(u), C2(u)}=C1(u) and the minimum value of C1(u) is C1(np(1)). So 
uopt=np(1). 

• Subcase 3: C1(w)≥C2(w), for 0≤w≤wm and C1(w)<C2(w) for wm<w≤np(1). We can find the value of wm using binary 
search. The value of uopt is either wm or wm+1. 

The time complexity of the algorithm is O(log(npi)). The cases ((1
u
,3

1
,2

np(1)-u-1
), (2

v
,1

np(2)-v
)) and ((1

u
,2

np(1)-u
), (2

v+1
,1

np(2)-v-1
)) 

are similar. We define the two functions C1(v) and C2(v) having the same meaning, which are decreasing, respectively strictly 
increasing. We have the same three situations and use binary search to find the optimal value uopt in the third situation. 

B. Case 2: 1
u
,2

np(1)-u
 and 2

v
,tw,1

np(2)-v
 

We will define the two functions C1(u) and C2(u), representing the completion time of the first, respectively, second flow, 
if u packets of type 1 are assigned to path po(1,1). C1 is defined as before, while C2’s definition is: 

C2(u)=u·ts(po(1,1),1)+(np(2)-v)·ts(po(2,1),2) , with 
v=min{(ts(po(1,1),1)·u) div ts(po(2,2),2), np(2)} 

(6) 



© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 

This case is more difficult, because although C1 is strictly decreasing, C2’s values are not increasing. The only algorithm we 
could find was to try out all the np(1) possible values of u and choose the one which minimizes the makespan. A similar 
situation occurs for the case ((1

u
,tw,2

np(1)-u
) , (2

v
,1

np(2)-v
)). 

V. MINIMUM WEIGHTED SUM OF COMPLETION TIMES 

In this section we consider the objective of minimizing the weighted sum of completion times (given a weight w(i) for each 
flow i=1,2): 

  ))2(,2()2())1(,1()1( nptfinishwnptfinishwST ⋅+⋅= .     (7) 

The techniques we used for determining the structure of minimum makespan schedules cannot be used here anymore. 
Despite this, we conjecture that the schedules which minimize the sum of completion times have the same structure as those 
minimizing the makespan and, thus, similar O(np(i)) optimization algorithms can be used. This is obvious for the simple cases 
(k=1, P≥1) (where ST=w(1)·np(1)·ts(po(1,1),1)+w(2)·np(2)·ts(po(2,1),2)) and (k does not exist, P=1) (where 
ST=w(1)·np(1)·ts(1,1)+w(2)· np(2)·ts(1,2) + min{w(2)·np(1)·ts(1,1), w(1)·np(2)·ts(1,2)}). We will consider two constrained 
versions of the problem, for which we provide dynamic programming algorithms. 

A. Fixed Path for each Packet of Both Flows 

We consider that the path on which each packet (i,j) will be sent is fixed. In this case, the minimum (weighted) sum of 
completion times is at least equal to: 

∑∑
==

⋅+⋅=
)2(

1

)1(

1
)2),,2(()2()1),,1(()1(

np

j

np

jlow jpathtswjpathtswST . (8) 

All we need to do is minimize the total weighted waiting time of the packets - caused by pairs of packets (1,j(1)) and 
(2,j(2)) scheduled on the same path and whose transit intervals might overlap. We will compute a table Twait(a,b)=the 
minimum total weighted waiting time required for sending the first a packets of the first flow, the first b packets of the 
second flow and the packets (1,a+1) and (2,b+1) are scheduled to be sent at the same time moment. Initially, we have 
Twait(0,0)=0 and Twait(a,b)=+∞ (for a>0 or b>0). We will use a forward type of dynamic programming. The pairs (a,b) 
(0≤a<np(1), 0≤b<np(2)) will be traversed in lexicographic order. If Twait(a,b)<+∞, then we will perform the following 
actions: we will advance forward in time, until all the packets of one of the two flows are sent or until a conflict occurs 
(packets a’>a and b’>b are scheduled on the same path and during overlapping time intervals). In the first situation, we will 
consider updating the minimum weighted sum of completion times by the value STlow+Twait(a,b). In the second case, we will 
update the values Twait(a’-1,b’) and Twait(a’,b’-1). 

MinimumWST-FixedPathsBothFlows(): 
ST=+∞ ; compute STlow ; initialize Twait(*,*) 
for a=0 to np(1)-1 do 
  for b=0 to np(2)-1 do 
    if (Twait(a,b)<+∞) then 
      a’=a+1; b’=b+1 
      tsa’=0; tsb’=0 
      while ((a’≤np(1)) and (b’≤np(2))) do 
        if (path(1,a’)=path(2,b’)) then break 
        if (tsa’+ts(path(1,a’),1)<tsb’+ts(path(2,b’),2)) then 
          tsa’= tsa’+ts(path(1,a’),1) ; a’=a’+1 
        else if (tsa’+ts(path(1,a’),1)>tsb’+ts(path(2,b’),2)) then 
          tsb’=tsb’+ts(path(2,b’),2) ; b’=b’+1 

        else 
          tsa’= tsa’+ts(path(1,a’),1) ; a’=a’+1 
          tsb’=tsb’+ts(path(2,b’),2) ; b’=b’+1 
      if ((a’>np(1)) or (b’>np(2)))then ST=min{ST,STlow+Twait(a,b)} 
      else 

  Twait(a’-1,b’)=min{ Twait(a’-1,b’), Twait(a,b)+w(1)·  
                                                      (tsb’+ts(path(2,b’),2)-tsa’)} 
  Twait(a’,b’-1)=min{ Twait(a’,b’-1), Twait(a,b)+w(2)· 
                                                      (tsa’+ts(path(1,a’),1)-tsb’)} 

The time complexity is O(np(1)·np(2)·(np(1)+np(2))). 

B. Fixed Path for each Packet of Flow 1 

In this case only the paths of the packets of the first flow are fixed. We need to minimize the sum of weighted waiting 
times plus the sum of weighted sending times of the packets of the second flow. We will use dynamic programming in a 
similar manner to the previous case and compute a table Tmin(a,b)=the minimum total weighted time required for sending all 
the packets of the first flow, the first b packets of the second flow and the packets (1,a+1) and (2,b+1) are scheduled to be 
sent at the same time. We have Tmin(0,0)= w(1)·(ts(path(1,1),1)+ts(path(1,2),1)+…+ts(path(1,np(1)),1)). For the other pairs 
(a,b), we initially have Tmin(a,b)=+∞. For each pair (a,b) with Tmin(a,b)<+∞, in lexicographic order, we will generate the 



© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 

longest possible schedule (up to (a’,b’), a’≥a, b’≥b), by scheduling the next type 2 packet on the fastest path which does not 
generate any conflicts. At each step, we also consider scheduling the type 2 packets on faster paths, thus obtaining conflicts – 
in this case, we try to update values like Tmin(a’’,b’-1) and Tmin(a’’-1,b’), a’’≥a’: 

MinimumWST-FixedPathsFlow1(Pmax(≤P)): 
ST=+∞; Tmin(0,0)=w(1)·(ts(path(1,1),1)+…+ts(path(1,np(1)),1)) 

for a=0 to np(1)-1 do 

for b=0 to np(2)-1 do 

  if (Tmin(a,b)<+ ∞) then 

    a’=a+1; b’=b+1 

      tsa’=0; tsb’=0 

      while ((a’≤np(1)) and (b’≤np(2))) do 

        bestp=uninitialized  

        for p=1 to Pmax do 

          a’’=a’; tsa’’=tsa’; noconflict=true 

          while ((a’’≤np(1)) and (tsa’’<tsb’+ts(po(2,p),2)) do 

            if (path(1,a’’)=p) then 

              Tmin(a’’,b’-1)=min{Tmin(a’’,b’-1), Tmin(a,b)+w(2)· 

                                                                 (tsa’’+ts(path(1,a’’),1))} 

              Tmin(a’’-1,b’)=min{Tmin(a’’-1,b’), Tmin(a,b)+w(1)· 

                   (tsb’+ts(po(2,p),2)-tsa’’)+w(2)·(tsb’+ts(po(2,p),2))} 

              noconflict=false; break 

            else 

              tsa’’=tsa’’+ts(path(1,a’’),1); a’’=a’’+1 

          if ((bestp=uninitialized)and(noconflict=true)) then bestp=p 

        if (bestp≠unintialized) then 

          tsb’=tsb’+ts(po(2,bestp),2); b’=b’+1 

          while ((a’≤np(1)) and (tsa’+ts(path(1,a’),1)≤tsb’)) do 

            tsa’=tsa’+ts(path(1,a’),1); a’=a’+1 

        else break 
      if (a’>np(1)) then Tmin(np(1),b’-1)=min{Tmin(np(1),b’-1), 

                                                                       Tmin(a,b)+w(2)·tsb’} 

      if (b’>np(2)) then Tmin(a’-1,np(2))=min{Tmin(a’-1,np(2)), 

                                                                       Tmin(a,b)+w(2)·tsb’} 

for a=0 to np(1) do ST=min{ST,Tmin(a,np(2))} 

for b=0 to np(2) do 

  ST=min{ST,Tmin(np(1),b)+ w(2)·(np(2)-b)·ts(po(2,1),2)} 

The time complexity of the algorithm is O(np(1)·np(2)· (np(1)+np(2))·P·np(1)). By computing the minimum of the runs of 
this algorithm (with Pmax=4) over all the 4

np(1)
 possible paths for the packets of the first flow, we obtain an exponential solution 

for the (unconstrained) minimum weighted sum of completion times problem. We notice that, in this case, the proof of 
Theorem 2 holds and we can consider only the best 4 paths for the packets of the 1

st
 flow.  

VI. MINIMIZING MAKESPAN WITHOUT PACKET ORDERING CONSTRAINTS 

In this section we remove the packet ordering constraints for the packets of the same flow, i.e. we can send several 
packets of the same type in parallel, on distinct paths. We are interested in scheduling the np(1)+np(2) packets on the P paths 
in such a way that the the makespan is minimized. 

We will binary search the value Cmax of the makespan and perform a feasibility test for each candidate value. The 
feasibility test first computes for each path k the maximum number of packets of type 1 that can be sent on it during the time 
interval [0,Cmax], pf1(k)=int(Cmax/ts(k,1)) (i.e. integer division). We will now present a pseudo-polynomial algorithm, similar 
in nature to the classical solution to the knapsack problem. Each path k will correspond to several items with weight q 
(0≤q≤pf1(k)) and profit pr(k,q)=int((Cmax-q·ts(k,1))/ts(k,2)). We will compute a table Prmax(k, w)=the maximum profit of a 
subset of items whose total weight is w, considering only the first k paths. The feasibility test is described below: 

KnapsackFeasibilityTest(Cmax, np(1), np(2)): 
for k=1 to P do pf1(k)=int(Cmax/ts(k,1)) 

for w=0 to np(1) do Prmax(0,w)=0 

for k=1 to P do 

for w=0 to np(1) do 

  Prmax(k,w)=Prmax(k-1,w) 

    for q=0 to min{pf1(k), w} do 

      pr(k,q)=int((Cmax-q·ts(k,1))/ts(k,2)) 

      if (Prmax(k-1, w-q)+pr(k,q)>Prmax(k,w)) then 
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        Prmax(k,w)=Prmax(k-1, w-q)+pr(k,q) 

if (Prmax(P,np(1))≥np(2)) then return “passed” 

else return “failed” 

The feasibility test computes the maximum number of flow 2 packets that can be scheduled on the P paths, after scheduling 
the np(1) packets of the first communication flow. Once the optimal value of the makespan was determined, we can run the 
feasibility test again and use the Prmax(*,w) values in order to determine the actual schedule (the number of packets of each 
flow which are scheduled on each path). From an implementation point of view, we notice that the feasibility test can use only 
O(np(1)) memory, instead of O(P·np(1)) for the Prmax table. This is because at any time we only require the last two rows of 
the Prmax matrix (Prmax(k) and Prmax(k-1)) – all the previous rows can be discarded; thus, we can use only two arrays. In order to 
compute the actual schedule, however, we may require all the O(P·np(1)) entries of the matrix. In order to avoid O(P·np(1)) 
memory storage, we propose a scheme which uses only O((g+P/g)·np(1)) memory, where g is a parameter. When computing 
the Prmax(*,*) entries, we only store the rows of the matrix which are divisible by g (rows 0, g, 2·g, …) plus the last row P. 
Thus, O(P/g) rows will be stored. These rows will be used as checkpoints. When determining the solution, we need to move 
back from row P down to row 0. This procedure is rather standard; however, it assumes that the previous row is accessible in 
memory. Let’s assume that we are currently at some row r which is stored in memory and we require the values on the row r-1, 
which is not stored in memory. We will find the largest row q<r such that row q is stored in memory and generate all the rows 
q+1, q+2, …, r-1 (using the same dynamic programming algorithm). All the generated rows (at most g) will be stored in 
memory. Now we will be able to move from row r all the way down to row q, which will be the next row whose previous row 
(q-1) is not stored in memory. We will discard all the previously generated rows (q+1,…,r-1), find the largest row q’<q which 
is stored in memory and generate the rows q’+1, q’+2, …, q’-1 (at most g). We repeat the procedure until we reach row 0. At 
any moment, there will be O(g+P/g) rows in memory, at the expense of doubling the running time of the algorithm (because 
every row will be generated twice overall). By choosing g=sqrt(P) (sqrt(P)=the square root of P), we obtain O(sqrt(P)·np(1)) 
memory used. 

VII. ERROR-CORRECTING INFORMATION 

In this section we consider an optimization problem regarding the carrying of error-correcting information in the context of 
a single communication flow. We are given a flow composed of n packets which are sent sequentially, in increasing order of 
their numbers (1,2,…,n), and a cost c(i) for each packet i, representing the amount of extra error-correcting information which 
needs to be added to the packet, if the packet is selected for this purpose. We consider that the flow is secure if there are at 
least k packets containing error-correcting information among any m consecutive packets (2≤k≤m≤n). We want to determine a 
subset of packets which are selected for carrying error-correcting information, such that the flow is secure and the total cost of 
the selected packets is minimum. 

We will use dynamic programming and compute the values Cmin(i,d(1), …, d(k-1)) (0<d(1)<…<d(k-1)<m), representing 
the minimum total cost of a subset of selected packets, such that the flow consisting only of the packets 1, …, i is secure, 
packet i is selected and the previous k-1 selected packets are located at some positions p(1), … , p(k-1), such that i-p(j)≤d(j) 
(1≤j≤k-1). We add m+1 fictitious, additional packets: m at the beginning, which we number by -m+1, -m+2, …, 0, and one 
packet at the end, numbered by n+1. Each of the additional packets has cost 0. We have Cmin(1,*,…,*)=c(1). For i>1, we first 
consider every sequence (d(1), …, d(k-1)): if i-d(1)≤0, then Cmin(i, d(1), …, d(k-1))=c(i); otherwise, we set Cmin(i, d(1), …, d(k-
1))=c(i)+Cmin(i-d(1), d(2)-d(1), …, d(k-1)-d(1), m-d(1)). After this step, we consider every sequence (d(1), …, d(k-1)) in 
increasing lexicographic order and set Cmin(i, d(1), …, d(k-1))=min{Cmin(i, d(1), …, d(k-1)), Cmin(i, d(1)-1, …, d(k-1)), Cmin(i, 
d(1), d(2)-1, …, d(k-1)), …, Cmin(i, d(1), …, d(k-1)-1)} (we consider Cmin(i, d(1), …, d(k-1))=+∞, if d(1)=0 or d(j)=d(j+1) for 
some 1≤j≤k-2). The minimum total cost of a subset of selected packets is Cmin(n+1, m-k+1, …, m-1). 

The time complexity is O(n·m
k-1

). For k=1 the previous algorithm does not work, but we can use a simpler approach. We 
compute Cmin(i)=the minimum total cost of a subset of selected packets, such that the flow restricted to the packets 1,…,i is 
secure and packet i is selected. If i≤m, Cmin(i)=c(i). Otherwise, Cmin(i)=c(i)+min{Cmin(j)|i-j≤m}. We have several approaches 
here. We can test every value of j, obtaining an O(n·m) time complexity, or we can use a segment tree [7] over the sequence of 
packets. Each leaf of the segment tree corresponds to a packet. The value of each leaf is initially +∞. After computing Cmin(i), 
we set the value of the corresponding leaf to Cmin(i) and update the aggregate values stored in the leaf's ancestors (by setting 
them to the minimum value among their left and right sons). Computing Cmin(i) (i>m) requires a range query over the interval 
[i-m,i-1], which computes the minimum value of a leaf corresponding to a packet in this interval. It is well-known that we can 
perform updates and range queries in O(log(n)) time. An even better approach is to maintain a sorted double-ended queue 
(deque) with the Cmin(i) values contained in the interval [i-m,i-1]. When we move to the next vertex i+1, the interval slides one 
position to the right. With this approach [8], we can compute all the values in O(n) time overall. 

VIII. RELATED WORK 

The problems we discussed in this paper are related to the flexible job shop scheduling problem [1,2], where there are 
several jobs, each of which is composed of a number of operations and the operations of a single job must be executed 
sequentially on the m available machines. Algorithms for minimizing the makespan of file (packet) transfers were presented in 
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[3,4], but they considered very different situations (e.g. divisible file sizes, identical or uniform paths). The objective of 
minimizing the sum of completion times of jobs or file transfers is very important and was considered in [5,6]. 

IX. CONCLUSIONS AND FUTURE WORK 

In this paper we discussed the problem of scheduling the transfer of packets belonging to two communication flows on 
multiple disjoint packet-type aware paths, with the objective of minimizing the makespan. We identified the set of special 
structures an optimal schedule may have and presented a packet scheduling algorithm. We also considered the objective of 
minimizing the weighted sum of completion times and presented dynamic programming algorithms for two situations. The 
results presented in this paper are mostly of theoretical interest, but the patterns we observed could be extended and used in a 
practical setting. As future work, we intend to find a makespan minimization scheduling algorithm which can handle 
efficiently all the sub-cases involving waiting times. An O(log(np(i))) time complexity would be highly desirable, but any 
sublinear algorithm would be an improvement. 
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