
HAL Id: hal-00907142
https://hal.science/hal-00907142v1

Submitted on 22 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Scheduling of Two Communication Flows on
Multiple Disjoint Packet-Type Aware Paths

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Optimal Scheduling of Two Communication Flows on Mul-
tiple Disjoint Packet-Type Aware Paths. 10th IEEE International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC), Sep 2008, Timisoara, Romania. pp.137-144,
�10.1109/SYNASC.2008.61�. �hal-00907142�

https://hal.science/hal-00907142v1
https://hal.archives-ouvertes.fr

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Optimal Scheduling of Two Communication Flows on Multiple Disjoint Packet-

Type Aware Paths

Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Computer Science and Engineering Department

Politehnica University of Bucharest

Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract—Communication flows in distributed systems often present a poor performance, because they are unaware of each other

and end up competing for the same bottleneck resources. A solution to this problem consists of scheduling the communication flows

in order to optimize some performance metric. In this paper we study the scheduling of two communication flows over multiple

disjoint paths, such that the maximum completion time (makespan) is minimized. Each flow is composed of a large number of

identical packets of the same type. The paths are aware of the packet types and have different transmission times for each type. We

consider the objectives of minimizing the makespan and the weighted sum of completion times. We also consider some error-

correcting issues, as well as the possibility of dropping the packet ordering constraints.

Keywords-communication flows; scheduling; disjoint paths

I. INTRODUCTION

Communication performance in distributed systems may be quite poor when multiple communication flows use the
network simultaneously. Because they are not aware of each other, they end up trying to use the same bottleneck resources,
although other resources may be available in other places or at other times. A solution to this problem consists of scheduling
the communication flows in such a way that a performance metric is optimized. In this paper we are interested in optimally
scheduling two communication flows from the same sender to the same receiver, using multiple disjoint paths. Each flow i is
composed of a number of identical packets which need to be sent sequentially. The paths have different transmission times for
the two packet types. This kind of situation may occur when the two communication flows belong to distinct traffic classes (for
instance, multimedia and normal web traffic). Moreover, some paths may be more suitable for one of the two traffic types. We
show that, when the objective is to minimize the makespan, optimal schedules present very particular structures, considering
that the packet transmission is non-preemptive and that two packets cannot be in transit at the same time on the same path. We
also consider the objective of minimizing the sum of completion times and present dynamic programming algorithms for two
situations.

The rest of this paper is structured as follows. In Section II we define the makespan minimization problem. In Section III
we characterize the structure of minimum makespan schedules and in Section IV we present an algorithm for computing an
optimal schedule. In Section V we consider the problem of minimizing the sum of completion times. In Section VI we drop the
packet ordering constraints and in Section VII we consider error-correcting issues. In Section VIII we present related work and
in Section IX we conclude.

II. MINIMUM MAKESPAN SCHEDULING

We consider 2 communication flows, composed of np(i) identical packets (i=1,2). The packets of the communication flow i
are of type i and are identified by a pair of numbers (i,j), 1≤j≤np(i). The packets of the same type must be sent to the
destination sequentially, using P disjoint paths. Each path q (1≤q≤P) has 2 transmission times, ts(q,1) and ts(q,2). ts(q, i)
(i=1,2) is the time taken by a packet of type i to reach the destination using path q. A schedule consists of assigning to each
packet (i,j) a pair (path(i,j), tstart(i,j)), meaning that the packet is scheduled to be sent on path path(i,j), starting from time
tstart(i,j). Based on this pair, we also associate with each packet (i,j) a time interval [tstart(i,j), tfinish(i,j)), where
tfinish(i,j)=tstart(i,j)+ ts(path(i,j),i). During this interval, the packet (i,j) is in transit on path(i,j), so we will call it transit
interval. A schedule is valid if for any two packets (i,j(1)) and (i,j(2)), j(1)<j(2), we have tfinish(i,j(1))≤tstart(i,j(2)), and if any
two packets scheduled on the same path (disregarding their type) are assigned disjoint transit intervals. The first condition
makes sure that each flow’s packets are sent sequentially (in the order given by the starting time of the packets’ transit
intervals) and the second one makes sure that the packets scheduled on the same path are sent one at a time. The makespan
Cmax of the schedule is the maximum time at which a packet’s transmission ends and we want to find a schedule which
minimizes Cmax:

))}(,({max
2,1

max inpitfinishC
i=

= . (1)

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

III. PROPERTIES OF OPTIMAL SCHEDULES

In this section we show that an optimal schedule (which minimizes the makespan) must have a particular structure,
chosen from a small set of such structures. As a first step, we show that in an optimal schedule, each flow’s packets are
scheduled on at most 3 distinct paths. In order to do this, we will present and prove several theorems. The main technique
lying at the basis of all the proofs is choosing an arbitrary valid schedule and changing it into a schedule which is not worse,
but has all the properties mentioned by the theorem. For each flow i, we define an ordering of the paths: po(i,1), po(i,2), …,
po(i,P), such that ts(po(i,1),i)≤ ts(po(i,2),i)≤…≤ts(po(i,P),i). In the proofs of the following theorems we will frequently
reassign a packet from a path po(i,q(1)) to a path po(i,q(2)), with q(2)<q(1). Such a reassignment does not change the starting
time of the packet, but may decrease its ending time. The makespan of the schedule will not increase as a result of these
operations.

Theorem 1. Let k be the first position where the path orderings of the two flows differ, i.e. po(1,q)=po(2,q), for 1≤q<k and
po(1,k)≠po(2,k). If such a position exists, then in an optimal schedule, no packets are sent on any of the paths po(i,q) (i=1,2),
with q>k.

Proof. We will choose an arbitrary valid schedule. All the packets (i,j) which are assigned to paths path(i,j) such that
path(i,j)=po(i,q), q>k, will be reassigned to path po(i,k). After this reassignment, we obtain a new schedule. We will analyze
the validity of this new schedule. The reassignment does not change the starting time of any packet, only the finish time,
which may decrease. Therefore, the transit intervals of packets of the same type do not overlap. Let’s see if the transit
intervals of two packets scheduled on the same path might intersect. If the two packets are of the same type, we showed
previously that this cannot happen, because their transit intervals are disjoint. Let’s assume that the transit intervals of two
packets of different types, (1,j(1)) and (2,j(2)), scheduled on the same path p, intersect. This path cannot be one of the first k-
1 paths (for any of the two flows), because no packet was reassigned to such a path. So path p must be the k

th
 path of one of

the flows. W.l.o.g., we will assume that p=po(1,k). But no type 2 packet is assigned to path po(1,k), thus invalidating our
initial assumption. In conclusion, the new schedule is valid and this holds for any valid schedule, including the optimal one.

Theorem 2. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>4.

Proof. We will choose an arbitrary valid schedule, where at least one packet (i(1),j) is scheduled on a path po(i(1),q), with
q>4 (using Theorem 1, we also have q≤k, if k exists). The packets of the other type i(2) can be classified into 3 categories,
according to the relationship between their transit interval and packet (i(1),j)’s transit interval:

• category 1: their transit interval is included inside [tstart(i(1),j), tfinish(i(1),j)).

• category 2: their transit interval intersects [tstart(i(1),j), tfinish(i(1),j)), but is not included in it.

• category 3: their transit interval does not intersect [tstart(i(1),j), tfinish(i(1),j)).
All the category 1 packets can be reassigned to path po(i(2),1), because no other packet of type i(1) is scheduled on that

path during the interval [tstart(i(1),j), tfinish(i(1),j)). The transit intervals of these packets do not increase. Category 2 packets
cannot be reassigned to a different path, because they might be in conflict with other type i(1) packets. However, it is easy to
see that there can be at most two packets belonging to category 2. One of the packets may cross [tstart(i(1),j), tfinish(i(1),j))
at the left end and the other one at the right end. Category 3 packets are of no interest. After performing the reassignment of
category 1 packets, the packet (i(1),j)’s transit interval intersects with the transit intervals of packets scheduled on at most
three distinct paths. So the packet (i(1),j) can be reassigned to at least one of the paths po(i(1),1), …, po(i(1),4), without
increasing the makespan and without breaking the validity of the schedule. By using this reassignment method repeatedly, all
the packets (i(1),j) assigned to some path po(i(1),q), q>4, will be reassigned to some path po(i(1), q(1)), 1≤q(1)≤4. Thus, any
valid schedule can be turned into another schedule, where no packet is assigned to a path po(i,q), q>4. This holds for an
optimal schedule, too.

Theorem 3. In an optimal schedule, no packet (i,j) is sent on a path po(i,q), with q>3.

Proof. We will choose an arbitrary valid schedule. We first use Theorem 2 in order to obtain a valid schedule with a
makespan which is not worse that the initial schedule and in which no packet is sent on a path po(i,q), with q>4. Let’s
assume that a packet (i(1),j) is assigned to the path po(i(1), 4). From Theorem 1, we must have k≥4. We will classify the type
i(2)(≠i(1)) packets in the same three categories as in Theorem 2’s proof and perform the same reassignments. If there are less
than two packets in category 2 or if the two packets in category 2 are assigned to the same path or if one of them is assigned
to path po(i(2),1) or to path po(i(2),4) then packet (i(1),j)’s transit interval intersects the transit intervals of packets scheduled
on at most two distinct paths from the set {po(i(1),1), po(i(1),2), po(i(1),3)}, which allows us to reassign packet (i(1),j) to one
of the paths in the set. The more difficult case occurs when there are two packets belonging to category 2, one of them
assigned to the path po(i(2),2) and the other one to the path po(i(2),3) (see Fig. 1). In Fig. 1, w.l.o.g., we chose to place the
type i(2) packet assigned to path po(i(2),2) on the left. Because each flow’s schedule begins at time 0 and ends at time Cmax,
we can always choose to interpret time as moving from Cmax towards 0, so left and right are interchangeable. We will name
(i(2),j(2)) and (i(2),j(3)) the two type i(2) packets assigned to paths po(i(2),2) and po(i(2),3). All the type i(1) packets whose
transit intervals start after the finish time of packet (i(1),j) and finish before the finish time of (i(2),j(3)), or finish before the
starting time of (i(1),j) and start after the starting time of (i(2),j(2)) can be reassigned to path po(i(1), 1). Packet (i(2),j(3))’s
transit interval must intersect with that of a packet of type i(1) assigned to path po(i(1),2); otherwise, packet (i(2),j(3)) could

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

be reassigned to path po(i(2),2) and then packet (i(1),j) could be reassigned to path po(i(1),3). We define the interval [t1,t2),
where t1 is the starting time of the first type i(1) packet (re)assigned to path po(i(1),1) whose transit interval is fully included
inside that of packet (i(2),j(2)) (or, if no such interval exists, the starting time of packet (i(1),j)) and t2 is the starting time of
the first type i(1) packet assigned to po(i(1),2) whose transit interval intersects that of the packet (i(2),j(3)). We also define t3
as the finish time of the transit interval of packet (i(2), j(3)). We define l(i(1),1) the total length of the transit intervals
included in [t1,t2) of all the type i(1) packets

Figure 1. Type i(1) packets (first row) and type i(2) packets (second row). The left and right side of the packets are aligned with their starting and finish

time. The numbers inside the packets are the positions of the assigned paths in the corresponding path ordering.

Figure 2. The case l(i(2),3)+l(i(2),1)≤ t3-t2+l(i(1),4). The rearrangement of packets. No path reassignment has been performed, yet.

Figure 3. The new schedule in the case l(i(2),3)+l(i(2),1)≤ t3-t2+l(i(1),4). The schedule is valid and the makespan did not increase.

Figure 4. The case l(i(2),1)+l(i(2),3)> t3-t2+l(i(1),4). The rearrangement of packets. No path reassignment has been performed, yet.

Figure 5. Rearrangement of packets for the case k=2, P≥2.

Figure 6. The case k=3, P≥4. Packet rearrangement when l1,1+l1,2≤l2,2+l2,3. No path reassignment has been performed, yet.

(re)assigned to path po(i(1),1) and l(i(1),4) the length of the transit interval of the packet (i(1),j). Similarly, we define l(i(2),1)
the total length of the transit intervals included in [t1,t2) of all the type i(2) packets (re)assigned to path po(i(2),1), l(i(2),2) the

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

length of the transit interval of the packet (i(2),j(2)) and l(i(2),3) the length of the transit interval of the packet (i(2),j(3)). All
the packets whose transit intervals are included inside [t1,t2) will be rearranged in such a way that the makespan will not
increase and that it will be possible to reassign packet (i(1),j) to one of the paths po(i(1),1),…,po(i(1),3).

If l(i(2),3)+l(i(2),1)≤t3-t2+l(i(1),4), then the packets can be rearranged like in Fig. 2. Packet (i(1),j) is placed such that its
finish time is equal to t2. Then, all the other type i(1) packets whose transit intervals were included in [t1,t2) will be placed
somewhere inside the interval [t1,t2-l(i(1),4)). This is obviously possible, because l(i(1),1)≤t2-t1-l(i(1),4). After that, the packet
(i(2),j(3)) will be reassigned to path po(i(2), 1). This is now possible, because the only two packets whose transit intervals
intersect the transit interval of packet (i(2),j(3)) are assigned to the paths po(i(1),2) and po(i(1),4). After packet (i(2),j(3)) is
reassigned to path po(i(1),1), packet (i(1),j) can be reassigned to path po(i(1),3). The final arrangement is shown in Fig. 3.

The case l(i(2),3)+l(i(2),1)>t3-t2+l(i(1),4) is handled in a similar manner. The type i(1) packets whose transit interval is
included inside [t1,t2) are placed like in the previous case. The type i(2) packets (re)assigned to path po(i(1),1) whose transit
intervals are included inside [t1,t2) are rescheduled consecutively, such that the last one finishes at time t3. Because
l(i(2),1)<l(i(1),4) (initially, all of these packets’ intervals were included inside packet (i(1),j)’s transit interval), the new
starting time of the first of these packets, tnewstart=t3-l(i(2),1), will be greater than the new starting time of the packet (i(1),j).
The packet (i(2),j(3)) will be rescheduled such that its finish time is equal to tnewstart. Because l(i(2),1)+l(i(2),3)>t3-
t2+l(i(1),4), the starting time of the packet (i(2),j(3)) will be smaller than the starting time of packet (i(1),j). Fig. 4 shows the
new arrangement. The new transit interval of packet (i(1),j) intersects only type i(2) packets assigned to the paths po(i(2),1)
and po(i(2),3), so packet (i(1),j) can be reassigned to path po(i(1),2). This was the last case to be considered. In every case,
packet (i(1),j) could be reassigned to a path po(i(1),q(1)), with 1≤q(1)≤3, without assigning any packet to a path located on a
larger position in the corresponding path ordering and without increasing the makespan. Thus, any valid schedule (including
an optimal one) can be changed into another valid schedule where no packet is assigned to a path po(i,q), q>3.

We will characterize next all the cases of interest that may occur, according to the total number of paths P and the
parameter k defined in Theorem 1. We will use A div B to denote the integer division of A and B, i.e. the integer number C,
such that C·B≤A<(C+1)·B. A and B do not necessarily have to be integer numbers.

A. k=1, P≥1

If po(1,1)≠po(2,1), then all the type 1 packets will be scheduled on path po(1,1) and all the type 2 packets on the path
po(2,1). The makespan will be:

)}2),1,2(()2(),1),1,1(()1(max{max potsnppotsnpC ⋅⋅= . (2)

B. k does not exist, P=1

If P=1 and po(1,1)=po(2,1), then all the packets of both types will be scheduled on the first (and only) path. The makespan
will be

)2,1()2()1,1()1(max tsnptsnpC ⋅+⋅= . (3)

C. k=2, P≥2

We choose an arbitrary valid schedule and denote its makespan by C. We denote by li,j the total length of the transit
intervals of type i packets scheduled on path po(i,j) (1≤j≤2) and by twi the total waiting time twi=C-li,1-li,2.

We have that l1,1≤l2,2+tw2, because each transit interval of a type 1 packet scheduled on the path po(1,1) overlaps some
part of a type 2 packet scheduled on path po(2,2) or some part of the waiting time tw2. Because of this, the schedule can be
changed such that all the type 1 packets assigned to path po(1,1) are scheduled first, followed by the waiting time tw1 and
then by all the type 1 packets scheduled on path po(1,2). For the 2

nd
 flow, all the packets assigned to path po(2,2) are

scheduled first, followed by the waiting time tw2 and by the packets assigned to path po(2,1). Fig. 5 presents the transformed
schedule.

No transit interval of a type 1 packet scheduled on path po(1,1) overlaps with the transit interval of a type 2 packet
scheduled on path po(2,1). The schedule can be further refined by moving part of the waiting time tw2 at the end and moving
the type 2 packets assigned to path po(2,1) forward, so that their starting time is max{l1,1, l2,2}. Similarly, part of tw1 can be
moved at the end, so that type 1 packets assigned to path po(1,2) are sent starting from max{l1,1, l2,2}. Obviously, the new
schedule is valid and its makespan is not larger than that of the original schedule.

An optimal schedule is properly defined by the number u of type 1 packets assigned to path po(1,1). For the type 1
packets, the schedule can be written as 1

u
,2

np(1)-u
, meaning that the first u packets are assigned to path po(1,1) and the last

np(1)-u packets are assigned to path po(1,2) (a term of the form a
b
 in the schedule of flow i represents b consecutive type i

packets sent on path po(i,a)). If the number u of packets is fixed, the schedule for the type 2 packets has one of the following
two forms:

• 2
v
,tw,1

np(2)-v
, where v=min{(l1,1 div ts(po(2,2),2)), np(2)} and tw=l1,1-v·ts(po(2,2),2). This means that the first v packets of

type 2 are sent consecutively on the path po(2,2), then a waiting time tw follows and then the last np(2)-v type 2 packets
are sent on the path po(2,1).

• 2
v
,1

np(2)-v
, where v=min{np(2),(l1,1 div ts(po(2,2),2))+1}

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

In order to find the optimal schedule, we need to find the value of u which minimizes the makespan.

D. k does not exist, P=2

This case is similar to the previous one. We will use the same notations as before. We have that l1,1≤l2,2+tw2 and
l2,2≤l1,1+tw1 (by the same argument). Therefore, the schedule shown in Fig. 5 is valid in this case, too. Like in the previous
case, an optimal schedule is properly defined by the number u of type 1 packets assigned to path po(1,1). These packets will be
sent first. In parallel, we will send as many type 2 packets as possible on path po(2,2); we have two choices:

• send v=min{(l1,1 div ts(po(2,2),2)),np(2)} type 2 packets on path po(2,2), then wait a duration tw=l1,1-v·ts(po(2,2),2) and
then send the remaining type 2 packets on path po(2,1). The type 1 packets assigned to path po(1,2) will be sent starting
from time l1,1. The schedule for the type 1 packets is 1

u
,2

np(1)-u
 and the schedule for type 2 packets is 2

v
,tw,1

np(2)-v
.

• send v=min{(l1,1 div ts(po(2,2),2))+1,np(2)} type 2 packets on path po(2,2), then send immediately the remaining type 2
packets on path po(2,1). The type 1 packets assigned to path po(1,2) will have to wait a duration tw=max{v·ts(po(2,2),2)-
l1,1,0} before starting to send them. The schedule for the type 1 packets is 1

u
,tw,2

np(1)-u
 and the one for type 2 packets is

2
v
,1

np(2)-v
. In this case, it would be better to choose the value of v and derive the value of u based on v.

Like in the previous case, finding the optimal schedule means finding the value of u which minimizes the makespan.

E. k=3, P≥4

If no packet (i,j) is assigned to the path po(i,3), then this case is identical to the previous one. So we will restrict our
attention to the case in which at least one packet (i,j) is assigned to the path po(i,3). We will choose an arbitrary valid
schedule with makespan C. We will define l1,1, l1,2, l2,1, l2,2 as before. Furthermore, we define li,3 the total length of the transit
intervals of the type i packets assigned to path po(i,3) (1≤i≤2). The waiting times are now equal to twi=C-li,1-li,2-li,3. If
l1,1+l1,2≤l2,2+l2,3, the packets can be rearranged like in Fig. 6 (temporarily, packets of both types sent on the path
po(1,2)=po(2,2) may intersect). All type 1 packets assigned to path po(1,1) will be sent first, followed by all the type 1
packets assigned to path po(1,2) and by all the type 1 packets assigned to path po(1,3). In parallel, we will send all the type 2
packets assigned to path po(2,2), followed by all the type 2 packets assigned to path po(2,3) and then followed by those
assigned to path po(2,1). The waiting times are moved at the end of the schedule.

The type 1 packets assigned to path po(1,2) will be reassigned to path po(1,1). The type 2 packets assigned to path po(2,3)
will be reassigned to path po(2,2). At this point, the type 1 packets are assigned only to the paths po(1,1) and po(1,3) and the
type 2 packets are assigned only to the paths po(2,1) and po(2,2). However, more reassignments are possible. All type 1
packets assigned to path po(1,3) whose finish time is smaller than or equal to l2,2+l2,3 can be reassigned to path po(1,1). All
type 1 packets assigned to path po(1,3) whose starting time is greater than or equal to l2,2+l2,3 can be reassigned to path
po(1,2). All these reassignments do not increase the lengths of the transit intervals, so they do not increase the makespan. In
the end, there will be at most one type 1 packet assigned to path po(1,3) and no type 2 packet assigned to path po(2,3). The
schedule for the type 1 packets has the form 1

u
,3

1
,2

np(1)-u-1
 and the one for type 2 packets has the form 2

v
,1

np(2)-v
.

If l1,1+l1,2>l2,2+l2,3 and l1,1≥l2,2+l2,3, we can change the schedule in a similar manner. We will send the first type 1 packets
assigned to path po(1,1), followed by the type 1 packets assigned to path po(1,2) and then po(1,3). In parallel, the type 2
packets assigned to path po(2,2) will be sent, followed immediately by the packets assigned to path po(2,3). Because we have
l1,1≤l2,2+l2,3+tw2 (since any transit interval of a type 1 packet assigned to path po(1,1) overlaps parts of transit intervals of
type 2 packets assigned to paths po(2,2) or po(2,3), or parts of tw2), we can insert the waiting time tw2 before sending the type
2 packets assigned to path po(2,1). This way, the makespan does not increase and the schedule remains valid. Further
reassignments are possible. All type 2 packets assigned to path po(2,3) will be reassigned to path po(2,2) and all type 1
packets assigned to path po(1,3) will be reassigned to path po(1,2). This way, no packet (i,j) remains assigned to the path
po(i,3), so we are in the case presented in the previous subsection. If l1,1+l1,2>l2,2+l2,3 and l1,1<l2,2+l2,3, we need to make a
difference between the following subcases: l1,1≥l2,2 and l1,1<l2,2.
Subcase 1: l1,1≥l2,2. The packets will be rearranged the same way as before: for type 1 - the packets assigned to the path
po(1,1), then those assigned to path po(1,2) and then those assigned to path po(1,3); for type 2 - the packets assigned to path
po(2,2), then those assigned to path po(2,3) and then those assigned to path po(2,1). Because l1,1≥l2,2, the transit interval of no
type 1 packet assigned to paths po(1,2) or po(1,3) overlaps the transit interval of a type 2 packet assigned to path po(2,2).
Thus, all the type 1 packets assigned to path po(1,3) can be reassigned to path po(1,2) and the schedule is valid. The type 2
packets assigned to path po(2,3) whose finish time is smaller than or equal to l1,1 will be reassigned to path po(2,2) and those
whose starting time is greater than or equal to l1,1, will be reassigned to path po(2,1). This leaves at most one type 2 packet
still assigned to path po(2,3). The schedule for the type 1 packets has the form 1

u
,2

np(1)-u
 and the one for type 2 packets has the

form 2
v
,3

1
,1

np(2)-v-1
.

Subcase 2: l1,1<l2,2. The type 2 packets will be rearranged just like in the previous subcase. Furthermore, all the type 2 packets
assigned to path po(2,3) will be reassigned to path po(2,1). The type 1 packets assigned to path po(1,1) will be sent first,
followed by the type 1 packets assigned to path po(1,3). Because l1,1+l1,3+tw1≥l2,2, we can insert the waiting time tw1 before
sending the type 1 packets assigned to path po(1,2). After the reassignments, the schedule is valid and its makespan did not
increase. Furthermore, the type 1 packets assigned to path po(1,3) whose finish time is smaller than or equal to l2,2 will be
reassigned to path po(1,1) and those whose starting time is greater than or equal to l2,2 will be reassigned to path po(1,2),

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

leaving at most one type 1 packet still assigned to path po(1,3). The schedule for the type 1 packets has the form 1
u
,3

1
,2

np(1)-u
 or

1
u
,tw,2

np(1)-u
 and the one for type 2 packets has the form 2

v
,1

np(2)-v
.

F. k does not exist, P=3

Any valid schedule for this case is also a valid schedule for the previous one. Therefore, we can use the same arguments
and transformations. The only problem we might encounter is that the schedule obtained after performing the transformations
of the previous case might contain two packets (1,j(1)) and (2,j(2)), with overlapping transit intervals and assigned to the same
path po(1,3)=po(2,3). However, we can see that this is not the case, because any schedule obtained in the previous case
contains at most one packet (i,j) assigned to a path po(i,3) (either po(1,3) or po(2,3)).

G. k>3 or non-existent, P>3

According to Theorem 3, no packet (i,j) is sent on a path po(i,q), q>3. Thus, we can limit the value of P to 3 and the case
becomes identical to the previous one.

In this section we characterized the structure of optimal schedules. There are five kinds of non-trivial structures:

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,tw,1

np(2)-v
 for flow 2, where v=min{np(2), ((ts(po(1,1),1)·u) div ts(po(2,2),2))} and

tw=u·ts(po(1,1),1)-v·ts(po(2,2),2).

• 1
u
,tw,2

np(1)-u
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1), ((ts(po(2,2),2)·v) div ts(po(1,1),1))} and

tw=v·ts(po(2,2),2)-u·ts(po(1,1),1).

• 1
u
,2

np(1)-u
 for flow 1 and 2

v+1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1, ((ts(po(1,1),1)·u) div ts(po(2,2),2))}.

• 1
u
,2

np(1)-u
 for flow 1 and 2

v
,3

1
,1

np(2)-v-1
 for flow 2, where v=min{np(2)-1,((ts(po(1,1),1)·u) div ts(po(2,2),2))}.

• 1
u
,3

1
,2

np(1)-u-1
 for flow 1 and 2

v
,1

np(2)-v
 for flow 2, where u=min{np(1)-1,((ts(po(2,2),2)·v) div ts(po(1,1),1))}.

IV. A MAKESPAN MINIMIZATION ALGORITHM

We will present an algorithm with time complexity O(np(i)) which determines the optimal schedule for any of the five
kinds of non-trivial structures presented in the previous section. The algorithm has time complexity O(log(np(i))) on three of
the schedule structures, but two structures are more difficult and we were unable to develop an equally efficient algorithm for
them. We will not include in this section the trivial cases k=1 and P=1, which can easily be solved in O(1) time using
equations (2) and (3).

A. Case 1: 1
u
,2

np(1)-u
 and 2

v
,3

1
,1

np(2)-v-1

We chose to handle first the case 1
u
,2

np(1)-u
 and 2

v
,3

1
,1

np(2)-v-1
, because it is easier to solve than the cases where waiting times

are involved. We will define two functions, C1(u) and C2(u) representing the completion time of flow 1 and flow 2,
respectively, if there are u packets of type 1 assigned to the path po(1,1). Their definitions are:

C1(u)=u·ts(po(1,1),1)+(np(1)-u)·ts(po(1,2),1) (4)

C2(u)=v·ts(po(2,2),2)+ts(po(2,3),2)+(np(2)-v-1)·

ts(po(2,1),2) , with v=min{(ts(po(1,1),1)·u) div

ts(po(2,2),2) , np(2)-1}

(5)

The first function is decreasing for)]1(,0[npu ∈ . The difference C1(x+1)-C1(x)=ts(po(1,1),1)-ts(po(1,2),1) is constant.

The values of the second function are increasing, but not necessarily strictly increasing. This is easily noticeable, because as u
increases, so does v. Whenever v increases, the number of packets assigned to path po(2,2) increases and the number of

packets assigned to path po(2,1) decreases, so the overall value increases. In order to find the value)]1(,0[npuopt ∈ for

which max{C1(uopt), C2(uopt)} is minimum we have the following three subcases:

• Subcase 1: C1(0)≤C2(0). In this case, max{C1(u), C2(u)}=C2(u) and the minimum value of C2(u) is C2(0). So uopt=0.

• Subcase 2: C1(np(1))≥C2(np(1)). In this case, max{C1(u), C2(u)}=C1(u) and the minimum value of C1(u) is C1(np(1)). So
uopt=np(1).

• Subcase 3: C1(w)≥C2(w), for 0≤w≤wm and C1(w)<C2(w) for wm<w≤np(1). We can find the value of wm using binary
search. The value of uopt is either wm or wm+1.

The time complexity of the algorithm is O(log(npi)). The cases ((1
u
,3

1
,2

np(1)-u-1
), (2

v
,1

np(2)-v
)) and ((1

u
,2

np(1)-u
), (2

v+1
,1

np(2)-v-1
))

are similar. We define the two functions C1(v) and C2(v) having the same meaning, which are decreasing, respectively strictly
increasing. We have the same three situations and use binary search to find the optimal value uopt in the third situation.

B. Case 2: 1
u
,2

np(1)-u
 and 2

v
,tw,1

np(2)-v

We will define the two functions C1(u) and C2(u), representing the completion time of the first, respectively, second flow,
if u packets of type 1 are assigned to path po(1,1). C1 is defined as before, while C2’s definition is:

C2(u)=u·ts(po(1,1),1)+(np(2)-v)·ts(po(2,1),2) , with
v=min{(ts(po(1,1),1)·u) div ts(po(2,2),2), np(2)}

(6)

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

This case is more difficult, because although C1 is strictly decreasing, C2’s values are not increasing. The only algorithm we
could find was to try out all the np(1) possible values of u and choose the one which minimizes the makespan. A similar
situation occurs for the case ((1

u
,tw,2

np(1)-u
) , (2

v
,1

np(2)-v
)).

V. MINIMUM WEIGHTED SUM OF COMPLETION TIMES

In this section we consider the objective of minimizing the weighted sum of completion times (given a weight w(i) for each
flow i=1,2):

))2(,2()2())1(,1()1(nptfinishwnptfinishwST ⋅+⋅= . (7)

The techniques we used for determining the structure of minimum makespan schedules cannot be used here anymore.
Despite this, we conjecture that the schedules which minimize the sum of completion times have the same structure as those
minimizing the makespan and, thus, similar O(np(i)) optimization algorithms can be used. This is obvious for the simple cases
(k=1, P≥1) (where ST=w(1)·np(1)·ts(po(1,1),1)+w(2)·np(2)·ts(po(2,1),2)) and (k does not exist, P=1) (where
ST=w(1)·np(1)·ts(1,1)+w(2)· np(2)·ts(1,2) + min{w(2)·np(1)·ts(1,1), w(1)·np(2)·ts(1,2)}). We will consider two constrained
versions of the problem, for which we provide dynamic programming algorithms.

A. Fixed Path for each Packet of Both Flows

We consider that the path on which each packet (i,j) will be sent is fixed. In this case, the minimum (weighted) sum of
completion times is at least equal to:

∑∑
==

⋅+⋅=
)2(

1

)1(

1
)2),,2(()2()1),,1(()1(

np

j

np

jlow jpathtswjpathtswST . (8)

All we need to do is minimize the total weighted waiting time of the packets - caused by pairs of packets (1,j(1)) and
(2,j(2)) scheduled on the same path and whose transit intervals might overlap. We will compute a table Twait(a,b)=the
minimum total weighted waiting time required for sending the first a packets of the first flow, the first b packets of the
second flow and the packets (1,a+1) and (2,b+1) are scheduled to be sent at the same time moment. Initially, we have
Twait(0,0)=0 and Twait(a,b)=+∞ (for a>0 or b>0). We will use a forward type of dynamic programming. The pairs (a,b)
(0≤a<np(1), 0≤b<np(2)) will be traversed in lexicographic order. If Twait(a,b)<+∞, then we will perform the following
actions: we will advance forward in time, until all the packets of one of the two flows are sent or until a conflict occurs
(packets a’>a and b’>b are scheduled on the same path and during overlapping time intervals). In the first situation, we will
consider updating the minimum weighted sum of completion times by the value STlow+Twait(a,b). In the second case, we will
update the values Twait(a’-1,b’) and Twait(a’,b’-1).

MinimumWST-FixedPathsBothFlows():
ST=+∞ ; compute STlow ; initialize Twait(*,*)
for a=0 to np(1)-1 do
 for b=0 to np(2)-1 do
 if (Twait(a,b)<+∞) then
 a’=a+1; b’=b+1
 tsa’=0; tsb’=0
 while ((a’≤np(1)) and (b’≤np(2))) do
 if (path(1,a’)=path(2,b’)) then break
 if (tsa’+ts(path(1,a’),1)<tsb’+ts(path(2,b’),2)) then
 tsa’= tsa’+ts(path(1,a’),1) ; a’=a’+1
 else if (tsa’+ts(path(1,a’),1)>tsb’+ts(path(2,b’),2)) then
 tsb’=tsb’+ts(path(2,b’),2) ; b’=b’+1

 else
 tsa’= tsa’+ts(path(1,a’),1) ; a’=a’+1
 tsb’=tsb’+ts(path(2,b’),2) ; b’=b’+1
 if ((a’>np(1)) or (b’>np(2)))then ST=min{ST,STlow+Twait(a,b)}
 else

 Twait(a’-1,b’)=min{ Twait(a’-1,b’), Twait(a,b)+w(1)·
 (tsb’+ts(path(2,b’),2)-tsa’)}
 Twait(a’,b’-1)=min{ Twait(a’,b’-1), Twait(a,b)+w(2)·
 (tsa’+ts(path(1,a’),1)-tsb’)}

The time complexity is O(np(1)·np(2)·(np(1)+np(2))).

B. Fixed Path for each Packet of Flow 1

In this case only the paths of the packets of the first flow are fixed. We need to minimize the sum of weighted waiting
times plus the sum of weighted sending times of the packets of the second flow. We will use dynamic programming in a
similar manner to the previous case and compute a table Tmin(a,b)=the minimum total weighted time required for sending all
the packets of the first flow, the first b packets of the second flow and the packets (1,a+1) and (2,b+1) are scheduled to be
sent at the same time. We have Tmin(0,0)= w(1)·(ts(path(1,1),1)+ts(path(1,2),1)+…+ts(path(1,np(1)),1)). For the other pairs
(a,b), we initially have Tmin(a,b)=+∞. For each pair (a,b) with Tmin(a,b)<+∞, in lexicographic order, we will generate the

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

longest possible schedule (up to (a’,b’), a’≥a, b’≥b), by scheduling the next type 2 packet on the fastest path which does not
generate any conflicts. At each step, we also consider scheduling the type 2 packets on faster paths, thus obtaining conflicts –
in this case, we try to update values like Tmin(a’’,b’-1) and Tmin(a’’-1,b’), a’’≥a’:

MinimumWST-FixedPathsFlow1(Pmax(≤P)):
ST=+∞; Tmin(0,0)=w(1)·(ts(path(1,1),1)+…+ts(path(1,np(1)),1))

for a=0 to np(1)-1 do

for b=0 to np(2)-1 do

 if (Tmin(a,b)<+ ∞) then

 a’=a+1; b’=b+1

 tsa’=0; tsb’=0

 while ((a’≤np(1)) and (b’≤np(2))) do

 bestp=uninitialized

 for p=1 to Pmax do

 a’’=a’; tsa’’=tsa’; noconflict=true

 while ((a’’≤np(1)) and (tsa’’<tsb’+ts(po(2,p),2)) do

 if (path(1,a’’)=p) then

 Tmin(a’’,b’-1)=min{Tmin(a’’,b’-1), Tmin(a,b)+w(2)·

 (tsa’’+ts(path(1,a’’),1))}

 Tmin(a’’-1,b’)=min{Tmin(a’’-1,b’), Tmin(a,b)+w(1)·

 (tsb’+ts(po(2,p),2)-tsa’’)+w(2)·(tsb’+ts(po(2,p),2))}

 noconflict=false; break

 else

 tsa’’=tsa’’+ts(path(1,a’’),1); a’’=a’’+1

 if ((bestp=uninitialized)and(noconflict=true)) then bestp=p

 if (bestp≠unintialized) then

 tsb’=tsb’+ts(po(2,bestp),2); b’=b’+1

 while ((a’≤np(1)) and (tsa’+ts(path(1,a’),1)≤tsb’)) do

 tsa’=tsa’+ts(path(1,a’),1); a’=a’+1

 else break
 if (a’>np(1)) then Tmin(np(1),b’-1)=min{Tmin(np(1),b’-1),

 Tmin(a,b)+w(2)·tsb’}

 if (b’>np(2)) then Tmin(a’-1,np(2))=min{Tmin(a’-1,np(2)),

 Tmin(a,b)+w(2)·tsb’}

for a=0 to np(1) do ST=min{ST,Tmin(a,np(2))}

for b=0 to np(2) do

 ST=min{ST,Tmin(np(1),b)+ w(2)·(np(2)-b)·ts(po(2,1),2)}

The time complexity of the algorithm is O(np(1)·np(2)· (np(1)+np(2))·P·np(1)). By computing the minimum of the runs of
this algorithm (with Pmax=4) over all the 4

np(1)
 possible paths for the packets of the first flow, we obtain an exponential solution

for the (unconstrained) minimum weighted sum of completion times problem. We notice that, in this case, the proof of
Theorem 2 holds and we can consider only the best 4 paths for the packets of the 1

st
 flow.

VI. MINIMIZING MAKESPAN WITHOUT PACKET ORDERING CONSTRAINTS

In this section we remove the packet ordering constraints for the packets of the same flow, i.e. we can send several
packets of the same type in parallel, on distinct paths. We are interested in scheduling the np(1)+np(2) packets on the P paths
in such a way that the the makespan is minimized.

We will binary search the value Cmax of the makespan and perform a feasibility test for each candidate value. The
feasibility test first computes for each path k the maximum number of packets of type 1 that can be sent on it during the time
interval [0,Cmax], pf1(k)=int(Cmax/ts(k,1)) (i.e. integer division). We will now present a pseudo-polynomial algorithm, similar
in nature to the classical solution to the knapsack problem. Each path k will correspond to several items with weight q
(0≤q≤pf1(k)) and profit pr(k,q)=int((Cmax-q·ts(k,1))/ts(k,2)). We will compute a table Prmax(k, w)=the maximum profit of a
subset of items whose total weight is w, considering only the first k paths. The feasibility test is described below:

KnapsackFeasibilityTest(Cmax, np(1), np(2)):
for k=1 to P do pf1(k)=int(Cmax/ts(k,1))

for w=0 to np(1) do Prmax(0,w)=0

for k=1 to P do

for w=0 to np(1) do

 Prmax(k,w)=Prmax(k-1,w)

 for q=0 to min{pf1(k), w} do

 pr(k,q)=int((Cmax-q·ts(k,1))/ts(k,2))

 if (Prmax(k-1, w-q)+pr(k,q)>Prmax(k,w)) then

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

 Prmax(k,w)=Prmax(k-1, w-q)+pr(k,q)

if (Prmax(P,np(1))≥np(2)) then return “passed”

else return “failed”

The feasibility test computes the maximum number of flow 2 packets that can be scheduled on the P paths, after scheduling
the np(1) packets of the first communication flow. Once the optimal value of the makespan was determined, we can run the
feasibility test again and use the Prmax(*,w) values in order to determine the actual schedule (the number of packets of each
flow which are scheduled on each path). From an implementation point of view, we notice that the feasibility test can use only
O(np(1)) memory, instead of O(P·np(1)) for the Prmax table. This is because at any time we only require the last two rows of
the Prmax matrix (Prmax(k) and Prmax(k-1)) – all the previous rows can be discarded; thus, we can use only two arrays. In order to
compute the actual schedule, however, we may require all the O(P·np(1)) entries of the matrix. In order to avoid O(P·np(1))
memory storage, we propose a scheme which uses only O((g+P/g)·np(1)) memory, where g is a parameter. When computing
the Prmax(*,*) entries, we only store the rows of the matrix which are divisible by g (rows 0, g, 2·g, …) plus the last row P.
Thus, O(P/g) rows will be stored. These rows will be used as checkpoints. When determining the solution, we need to move
back from row P down to row 0. This procedure is rather standard; however, it assumes that the previous row is accessible in
memory. Let’s assume that we are currently at some row r which is stored in memory and we require the values on the row r-1,
which is not stored in memory. We will find the largest row q<r such that row q is stored in memory and generate all the rows
q+1, q+2, …, r-1 (using the same dynamic programming algorithm). All the generated rows (at most g) will be stored in
memory. Now we will be able to move from row r all the way down to row q, which will be the next row whose previous row
(q-1) is not stored in memory. We will discard all the previously generated rows (q+1,…,r-1), find the largest row q’<q which
is stored in memory and generate the rows q’+1, q’+2, …, q’-1 (at most g). We repeat the procedure until we reach row 0. At
any moment, there will be O(g+P/g) rows in memory, at the expense of doubling the running time of the algorithm (because
every row will be generated twice overall). By choosing g=sqrt(P) (sqrt(P)=the square root of P), we obtain O(sqrt(P)·np(1))
memory used.

VII. ERROR-CORRECTING INFORMATION

In this section we consider an optimization problem regarding the carrying of error-correcting information in the context of
a single communication flow. We are given a flow composed of n packets which are sent sequentially, in increasing order of
their numbers (1,2,…,n), and a cost c(i) for each packet i, representing the amount of extra error-correcting information which
needs to be added to the packet, if the packet is selected for this purpose. We consider that the flow is secure if there are at
least k packets containing error-correcting information among any m consecutive packets (2≤k≤m≤n). We want to determine a
subset of packets which are selected for carrying error-correcting information, such that the flow is secure and the total cost of
the selected packets is minimum.

We will use dynamic programming and compute the values Cmin(i,d(1), …, d(k-1)) (0<d(1)<…<d(k-1)<m), representing
the minimum total cost of a subset of selected packets, such that the flow consisting only of the packets 1, …, i is secure,
packet i is selected and the previous k-1 selected packets are located at some positions p(1), … , p(k-1), such that i-p(j)≤d(j)
(1≤j≤k-1). We add m+1 fictitious, additional packets: m at the beginning, which we number by -m+1, -m+2, …, 0, and one
packet at the end, numbered by n+1. Each of the additional packets has cost 0. We have Cmin(1,*,…,*)=c(1). For i>1, we first
consider every sequence (d(1), …, d(k-1)): if i-d(1)≤0, then Cmin(i, d(1), …, d(k-1))=c(i); otherwise, we set Cmin(i, d(1), …, d(k-
1))=c(i)+Cmin(i-d(1), d(2)-d(1), …, d(k-1)-d(1), m-d(1)). After this step, we consider every sequence (d(1), …, d(k-1)) in
increasing lexicographic order and set Cmin(i, d(1), …, d(k-1))=min{Cmin(i, d(1), …, d(k-1)), Cmin(i, d(1)-1, …, d(k-1)), Cmin(i,
d(1), d(2)-1, …, d(k-1)), …, Cmin(i, d(1), …, d(k-1)-1)} (we consider Cmin(i, d(1), …, d(k-1))=+∞, if d(1)=0 or d(j)=d(j+1) for
some 1≤j≤k-2). The minimum total cost of a subset of selected packets is Cmin(n+1, m-k+1, …, m-1).

The time complexity is O(n·m
k-1

). For k=1 the previous algorithm does not work, but we can use a simpler approach. We
compute Cmin(i)=the minimum total cost of a subset of selected packets, such that the flow restricted to the packets 1,…,i is
secure and packet i is selected. If i≤m, Cmin(i)=c(i). Otherwise, Cmin(i)=c(i)+min{Cmin(j)|i-j≤m}. We have several approaches
here. We can test every value of j, obtaining an O(n·m) time complexity, or we can use a segment tree [7] over the sequence of
packets. Each leaf of the segment tree corresponds to a packet. The value of each leaf is initially +∞. After computing Cmin(i),
we set the value of the corresponding leaf to Cmin(i) and update the aggregate values stored in the leaf's ancestors (by setting
them to the minimum value among their left and right sons). Computing Cmin(i) (i>m) requires a range query over the interval
[i-m,i-1], which computes the minimum value of a leaf corresponding to a packet in this interval. It is well-known that we can
perform updates and range queries in O(log(n)) time. An even better approach is to maintain a sorted double-ended queue
(deque) with the Cmin(i) values contained in the interval [i-m,i-1]. When we move to the next vertex i+1, the interval slides one
position to the right. With this approach [8], we can compute all the values in O(n) time overall.

VIII. RELATED WORK

The problems we discussed in this paper are related to the flexible job shop scheduling problem [1,2], where there are
several jobs, each of which is composed of a number of operations and the operations of a single job must be executed
sequentially on the m available machines. Algorithms for minimizing the makespan of file (packet) transfers were presented in

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

[3,4], but they considered very different situations (e.g. divisible file sizes, identical or uniform paths). The objective of
minimizing the sum of completion times of jobs or file transfers is very important and was considered in [5,6].

IX. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the problem of scheduling the transfer of packets belonging to two communication flows on
multiple disjoint packet-type aware paths, with the objective of minimizing the makespan. We identified the set of special
structures an optimal schedule may have and presented a packet scheduling algorithm. We also considered the objective of
minimizing the weighted sum of completion times and presented dynamic programming algorithms for two situations. The
results presented in this paper are mostly of theoretical interest, but the patterns we observed could be extended and used in a
practical setting. As future work, we intend to find a makespan minimization scheduling algorithm which can handle
efficiently all the sub-cases involving waiting times. An O(log(np(i))) time complexity would be highly desirable, but any
sublinear algorithm would be an improvement.

REFERENCES

[1] K. Jansen, M. Mastrolilli, and R. Solis-Oba, "Approximation Algorithms for Flexible Job Shop Problems," Proc. of Latin American Theoretical
Informatics, LNCS vol. 1776, 2000, pp. 68-77.

[2] S. Reza Hejazi and S. Saghafian, “Flowshop-scheduling problems with makespan criterion: a review,” International Journal of Production Research,
vol. 43, 2005, pp. 2895-2929.

[3] M. I. Andreica and N. Țăpuș, “High Multiplicity Scheduling of File Transfers with Divisible Sizes,” Proc. of the IEEE International Symposium on
Consumer Electronics, IEEE Press, 2008.

[4] E. Coffman, Jr., M. Garey, D. Johnson, and A. Lapaugh, “Scheduling file transfers,” SIAM J. Comput., vol. 14 (3), 1985, pp. 744-780.

[5] J. Y.-T. Leung and H. Zhao, “Minimizing Sum of Completion Times and Makespan in Master-Slave Systems,” IEEE Transaction on Computers, vol.
55 (8), 2006, pp. 985-999.

[6] X. Lu, R. A. Sitters, and L. Stougie, “A class of on-line scheduling algorithms to minimize total completion time,” Operations Research Letters, vol. 31
(3), 2003, pp. 232-236.

[7] M. I. Andreica and N. Ţăpuş, “Optimal Offline TCP Sender Buffer Management Strategy,” Proc. of the International Conf. on Comm. Theory,
Reliability, and Quality of Service (CTRQ), 2008, pp. 41-46.

[8] P. Berman, et al., “Fast Optimal Genome Tiling with Applications to Microarray Design and Homology Search,” J. Comput. Biol., vol. 11, 2004, pp.
766-785.

