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Abstract. Starting to develop what sketchily and synoptically planned in the preprint (Iurato 
2013), in this place we would like to carry out a first deeper historical study of some questions 
there outlined. To be precise, we here simply focus on some first historiographical details 
regarding the early key moments in the history of the entire function factorization theorem.  

 
1. Introduction 
 
In his celebrated unique 1959 number theory paper on distribution of prime numbers1, Riemann 
stated the following function 
 

(1)                                                                              , 
 
later called Riemann  -function. It is an entire function. Riemann conjectured that                  , that is to say, the famous Riemann hypothesis (RH), as it will be called later. 
Whereupon, he stated that 
 

  «This function      is finite for all finite values of  , and allows itself to be developed in 
powers of    as a very rapidly converging series. Since, for a value of   whose real part is 
greater than  ,                      remains finite, and since the same holds for the 
logarithms of the other factors of     , it follows that the function      can only vanish if the 
imaginary part of   lies between     and     . The number of roots of       , whose real 

parts lie between   and   is approximately               ; because the integral          , taken in a positive sense around the region consisting of the values of   whose 
imaginary parts lie between     and      and whose real parts lie between   and  , is (up to 

a fraction of the order of magnitude of the quantity    ) equal to             ; this 

integral however is equal to the number of roots of        lying within in this region, 
multiplied by    . One now finds indeed approximately this number of real roots within these 
limits, and it is very probable that all roots are real. Certainly one would wish for a stricter 
proof here; I have meanwhile temporarily put aside the search for this after some fleeting 
futile attempts, as it appears unnecessary for the next objective of my investigation. 
  If one denotes by   all the roots of the equation       , one can express         as 
 

(2)                                                                       
                                                           

1 This paper was presented by Riemann, after his nomination as full professor in July 1859, to the Berlin Academy for 
his election as a corresponding member. To be precise, following (Bottazzini 2003), due to this election, Riemann and 
Dedekind visited Berlin where they met E.E. Kummer, L. Kronecker and Weierstrass: according to Dedekind (1876), 
very likely, it was just from this meeting that sprung out of the celebrated 1859 Riemann number theory paper which, 
amongst other, was then sent to Weierstrass himself for submission to the Berlin Academy. Therefore, Weierstrass was 
aware of this Riemann work since the late 1850s. 
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for, since the density of the roots of the quantity   grows with   only as        , it follows that 

this expression converges and becomes for an infinite   only infinite as      ; thus it differs 
from         by a function of   , that for a finite   remains continuous and finite and, when 
divided by   , becomes infinitely small for infinite  . This difference is consequently a 
constant, whose value can be determined through setting      . With the assistance of these 
methods, the number of prime numbers that are smaller than x can now be determined». 

 
So, in his celebrated 1859 paper, Riemann himself already used an infinite product factorization of     , namely the (2), which can be equivalently written as follows 
 

(3)                                                                         

 

from which it follows                   . Therefore, questions related to entire function 

factorizations had already played a certain notable role in Riemann works. Well, in this second 
paper, we wish to outline the main points concerning the very early history of entire function 
factorization theorems, having taken the 1859 Riemann paper as a occasional starting point of this 
historical question, in which, inter alia, a particular entire function factorization – i.e. the (3) – has 
been used. In short, this 1859 Riemann paper has been a precious        to begin to undertake one 
of the many study’s branch which may depart from this milestone of the history of mathematics, to 
be precise that branch concerning entire function theory, which, however, as delineated in the 
previous preprint (Iurato 2013), runs parallel to certain aspects of the theory of Riemann zeta 
function.  
  Edwards (1974, Chapter 1, Sections 1.8-1.19) affirms that the parts concerned with (2) are the 
most difficult portion of 1859 Riemann’s paper. Their goal is essentially to prove that      can be 
expressed as an infinite product, stating that 
 

  «[…] any polynomial      can be expanded as a finite product                    

where   ranges over the roots of the equation        [except that the product formula for      is slightly different if         ]; hence the product formula (3) states that      is like a 
polynomial of infinite degree. Similarly, Euler thought of       as a ‘’polynomial of infinite 

degree’’ when he conjectured, and finally proved, the formula                      . 

On other hand, […]      is like a polynomial of infinite degree2, of which a finite number of 
its terms gives a very good approximation in any finite part of the plane. […] Hadamard (in 
1893) proved necessary and sufficient conditions for the validity of the product formula                   but the steps of the argument by which Riemann went from the one to 

the other are obscure, to say the very least». 
 
The last sentence of this Edwards’ quotation is historically quite interesting and deserves further 
attention and investigation. Furthermore, Edwards states that «a recurrent theme in Riemann’s work 
is the global characterization of analytic functions by their singularities. See, for example, the 
Inauguraldissertation, especially Article 20 of Riemann’s Werke (pp. 37-39) or Part 3 of the 
introduction to the Riemann article ‘’Theorie der Abel’schen Functionen’’, which is entitled 
‘’Determination of a function of a complex variable by boundary values and singularities’’. See 

                                                           
2 Following (Bottazzini & Gray 2013, Section 8.5.1), amongst the functions that behave very like a polynomial, is the 
Riemann   function. In this regards, see also what said in (Iurato 2013) about Lee-Yang theorems and, in general, the 
theory concerning the location of the zeros of polynomials.  
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also Riemann’s introduction to Paper XI of the his collected works, where he writes about ‘’ […] 
our method, which is based on the determination of functions by means of their singularities 
(Umtetigkeiten und Unendlichwerden) […] ’’. Finally, see the textbook of Ahlfors (1979), namely 
the section 4.5 of Chapter 8, entitled ‘’Riemann’s Point of View’’», according to which Riemann 
was a strong proponent of the idea that an analytic function can be defined by its singularities and 
general properties, just as well as or perhaps better than through an explicit expression, in this 
regards showing, with Riemann, as the solutions of a hypergeometric differential equation can be 
characterized by properties of this nature. In short, all this strongly suggests the need for a deeper 
re-analysis of Riemann œuvre concerning these last arguments, as well as a historical search of the 
mathematical background which lay at the origins of his celebrated 1859 number theory paper. 
From what has just been said, it turns out clear that a look at the history of entire function theory, 
within the general and wider complex function theory framework, is needed to clarify some of the 
historical aspects of this influential seminal paper which, as Riemann himself recognized, presented 
some obscure points. In this regards, also Gabriele Torelli (1901, Chapter VIII, Sections 60-64) 
claimed upon this last aspect, pointing out, in particular, on the Riemann’s ansatz according to 
which the entire function      is equal, via (3), to the Weierstrass’ infinite product of primary 
factors without any exponential factor. As is known, this basic question will be brilliantly solved by 
J. Hadamard in his famous 1892 paper that, inter alia, will mark a crucial moment in the history of 
entire function theory – see (Maz’ya & Shaposhnikova 1998, Chapter 9, Section 9.2). 
 
2. On the history of entire function factorization theorem, I 
 

In this section, we wish to preliminarily follow the basic textbook on complex analysis of Giulio 
Vivanti (1859-1949), an Italian mathematician whose main research field was into complex 
analysis, becoming an expert on entire functions. He wrote some notable treatises on entire, 
modular and polyhedral analytic functions: a first edition of a prominent treatise on analytic 
functions appeared in 1901, under the title Teoria delle funzioni analitiche, published by Ulrico 
Hoepli in Milan, where the first elements of the theory of analytic functions, worked out in the late 
19th-century quarter, are masterfully exposed into three main parts, giving a certain load to the 
Weierstrass’ approach respect to the Cauchy’s and Riemann’s ones. The importance of this work 
immediately arose, so that a German edition was carried out, in collaboration with A. Gutzmer, and 
published in 1906 by B.G. Teubner in Leipzig, under the title Theorie der eindeutigen analytischen 
funktionen. Umarbeitung unter mitwirkung des verfassers deutsch herausgegeben von A. Gutzmer, 
which had to be considered as a kind of second enlarged and revised edition of the 1901 first Italian 
edition according to what Vivanti himself said in the preface to the 1928 second Italian edition, 
entitled  Elementi della teoria delle funzioni analitiche e delle trascendenti intere, again published 
by Ulrico Hoepli in Milan, and that was written following the above German edition in which many 
new and further arguments and results were added, amongst other things, as regards entire 
functions. Almost all the Vivanti’s treatises are characterized by the presence of a detailed and 
complete bibliographical account of the related literature, this showing the great historical attention 
that he always put in his works. Therefore, he also was a valid historian of mathematics besides to 
be an able researcher (see (Janovitz & Mercanti 2008, Chapter 1) and references therein), so that his 
works are precious sources for historical studies, in our case, as concerns entire functions. The 
above mentioned Vivanti’s textbook on complex analysis has been one of the most influential 
Italian treatise on the argument. It has also had wide fame thanks to its German edition. 
  Roughly speaking, the transcendental entire functions may be formally considered as a 
generalization, in the complex field, of polynomial functions. Following (Vivanti 1928, Sections 
134-135) (and also (Markuševič 1988, Capitolo VII) as well as (Pierpont 1914, Chapter VIII, 
Sections 127 and 140)), the great analogy subsisting between these two last function classes 
suggested the search for an equal formal analogy between the corresponding main properties. To be 
precise, the main properties of polynomials concerned either with the existence of zeros (Gauss’ 
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theorem) and the linear factor decomposition of a polynomial, so that it was quite obvious trying to 
see whether these could be, in a certain way, extended to entire functions. As regards the Gauss’ 
theorem, it was immediately realized that it couldn’t subsist because of the simple counterexample 
given by the fundamental elementary transcendental function    which does not have any zero in 
the whole of complex plane. On the other hand, just this last function will provide the basis for 
building up the most general entire function which is never zero, which has the general form      , 
where      is an arbitrary entire function, and is said to be an exponential factor. Whereupon, the 
next problem consisted in finding those entire functions having zeros and then how it is possible to 
build up them from their zero set. In this regards, it is well-known that, if      is an arbitrary non-
zero polynomial with zeros   , …,         , having       as a zero with multiplicity   
(supposing     if         ), then we have the following finite product factorization3 
 

(4)                                                                            

 
where         is a constant, so that a polynomial, except a constant factor, may be determined by 
its zeros. For transcendental entire functions, this last property is much more articulated respect to 
the polynomials: indeed, whilst the indeterminacy for polynomials is given by a constant C, for 
transcendental entire functions it is larger  and related to the presence of an exponential factor 
which is need to be added to warrant the convergence of infinite product development. A great part 
of history of the approach and resolution of this last problem is the history of entire function 
factorization. 
  Following (Vivanti 1928, Sections 135-141), the rise of the first formulation of the entire function 
factorization theorem by K. Weierstrass in 1876 (see (Weierstrass 1876)), was mainly motivated by 
the purpose to give a solution to the latter formal problem, concerning the convergence of the 
infinite product development of a transcendental entire function      having an infinite number of 
zeros, namely      , with multiplicity  , and           such that                                   trying to extend the case of a finite number of zeros        , in which such a 
factorization is given by 
 

(5)                                                                                 

 
to the case of infinite zeros, reasoning, by analogy, as follows. The set of infinite zeros    is a 
countable set having only one accumulation point, that at infinite. Therefore, for every infinite 
increasing natural number sequence        , it will be always possible to arrange the zeros    
according to their modulus in such a manner to have the following non-decreasing sequence             with             . In such a case, if one wants, by analogy, to extend (5) as 
follows  
 

(6)                                                                                 

 
then it will not be possible to fully avoid divergence’s problems inherent to the related infinite 
product. The first hint towards a possible overcoming of these difficulties, was suggested to 
Weierstrass (see (Weierstrass 1856a)) by looking at the form of the inverse of the Euler integral of 
the second kind – that is to say, the gamma function – and given by 

                                                           
3 It is noteworthy the historical fact pointed out by Giuseppe Bagnera (1927, Chapter III, Section 12, Number 73) 
according to which already Cauchy himself had considered first forms of infinite product developments, after Euler 
work. The author himself, then, quotes too Betti. 
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(7)                                
                                                   

  
from which he descried the possible utility of the exponential factors there involved to, as say, force 
the convergence of the infinite product of the second last equality; these his ideas concretized only 
in 1876 with the explicit formulation of his celebrated theorem on entire function factorization.  
  Weierstrass (1856a) attributes, however, the infinite product expansion (7) to Gauss, but some next 
historical studies attribute to Euler this formula, that he gave in the famous 1748 Introductio in 
Analysin Infinitorum. Nevertheless, Ullrich (1989, Section 3.5) says that the real motivation to this 
Weierstrass’ results about entire function factorization were mainly due to attempts to characterize 
the factorization of quotients of meromorphic functions on the basis of their zero sets, rather than to 
solve the above problem. Furthermore, Ullrich (1989, Section 3.5) observes too that other 
mathematicians dealt with questions concerning entire function factorization methods, amongst 
whom Enrico Betti and Bernard Riemann in whose important 1861 sommersemester lectures on 
analytic functions he argued upon the construction of particular complex functions with simple 
zeros, even if, all in all, he didn’t give, according to Ullrich, nothing more what Euler done about 
gamma function through 1729 to his celebrated 1748 treatise on infinitesimal analysis4. Instead, 
Laugwitz (2008, Chapter 1, Section 1.1.6) states that Riemann’s work on meromorphic functions 
was ahead of the Weierstrass’ one, having been carried out with originality and simplicity. To this 
point, for our purposes, it would be of a certain importance to deepen the possible relationships 
between Riemann and Weierstrass: for instance, in this regards, Laugwitz (2008, Chapter 1, Section 
1.1.5) says that Riemann was aware of the Weierstrass’ works until 1856-57, in connection with the 
composition of his own paper on Abelian functions. Again according to (Laugwitz 2008, Chapter 1, 
Section 1.1.6), one of the key themes of Riemann’s work on complex function theory is the 
determination of a function from its singularities which, in turn, implies the approach of another 
problem, the one concerning the determination of a function from its zeros. In this regards, Riemann 
limited himself to consider the question to determine a function with infinitely many zeroes whose 
only point of accumulation is  . What he is after is the product representation later named after 
Weierstrass. Riemann uses a special case to explain the general procedure. He does it in such a way 
that by following his direction one could immediately give a proof of the Weierstrass product 
theorem. Therefore, it would be hoped a deeper study of these 1861 Riemann’s lectures to 
historically clarify this last question which is inside the wider historical framework concerning the 
work of Riemann in complex function theory. 
 
4. On the history of gamma function: a first flash out 
 
To this point, it doesn’t seem irrelevant to further highlight, although in a sketchily manner, some of 
the main aspects of the history of gamma function. To this end, we follow the as many notable work 
of Reinhold Remmert (1998) which, besides to mainly be an important textbook on some advanced 
complex analysis topics, it is also a very valuable historical source on the subject, which seems to 
remember the style of the above mentioned Vivanti’s textbook whose German edition, on the other 
hand, has always been a constant reference point in drawing up the Remmert’s textbook itself. 
Following (Remmert 1998, Chapter 2), the early origins of gamma function should be search into 
the attempts to extend the function    to real arguments. Euler was the first one to approach this 
problem since 1729, giving a first expression of this function, in a letter to Goldbach (see 
(Whittaker & Watson 1927, Chapter XII, Section 12.1)), providing a first infinite product 
expression of this new function, but only for real values. Gauss, who did not know Euler work, 
taking also into account Newton’s work on interpolation (see (Schering 1881, Sections XI and 

                                                           
4 Following (Lunts 1950), (Markuševič 1988, Capitolo VII) and references therein, Lobačevskij too, since 1830s, made 
some notable studies on gamma function which pre-empted times. 



6 
 

XII)), in 1811 considered as well complex values, denoting such a new function with  , while it 
was Legendre, in 1814, to introduce a unified notation both for Euler and Gauss functions, denoting 
these last with      and speaking, since then, of the gamma function. Afterwards, in 1854, 
Weierstrass began to consider an Euler infinite product expansion of the function       , that he 

denoted with       and is given by                           , where   is the Euler-

Mascheroni constant5, from which he recognized, for the first time, the importance of the use of 
exponential factors as infinite product convergence-producing elements. However, according to 
(Whittaker & Watson 1927, Chapter XII, Section 12.1), the formula (7) had already been obtained 
by F.W. Newman (1848) starting from Euler’s expression of gamma function given by (7).  
 
5. On the history of entire function factorization theorem, II 
 
Following (Vivanti 1928, Section 135-141), (Remmert 1998, Chapter 3) and, above all, (Bottazzini 
& Gray 2013, Section 6.7), Weierstrass extended the product (5) in such a manner to try to avoid 
divergence problems with the ad hoc introduction, into the product expansion, of certain forcing 
convergence factors. This attempt was successfully attended, since 1874, as a solution to a 
particular question – the one which may be roughly summarized as the attempt to build up an entire 
transcendental function with prescribed zeros – which arose within the general Weierstrass’ intent 
to solve the wider problem to find a representation for a single-valued function as a quotient of two 
convergent power series. To be precise, he reached, amongst other things, to the following main 
result:  
 

  «Given a countable set of non-zero complex points           such that               
with             , then it is possible to find, in infinite manners, a non-decreasing 

sequence of natural numbers         such that the series                 be convergent for 
every finite value of  , in such a manner that the most general entire function which is zero, 
with their own multiplicity, in the points           and has a zero of order   in the origin, is 
given by6  
 

(8)                                                                            

 
where                        for     and                 being an arbitrary 
entire function, and the infinite product is absolutely convergent for each finite value of    ». 

 
The factors       will be later called Weierstrass’ factors, whilst the numbers    will be called 
convergence exponents. The sequence             plays a very fundamental role in the Weierstrass’ 
theorem: from the equation  
 

(9)                                                                           
 
Weierstrass obtained the formula                      in proving convergence properties 
which, on the other hand, would have been easier obtained by means of the following estimates  

                                                           
5 See (Pepe 2012) for a contextual brief history of the Euler-Mascheroni constant.  
6 Historically, in relation to (8), the function      was usually denoted, d’après Weierstrass, by     , whilst                     was named canonical (or primitive) function – see (Sansone 1972, Chapter IV, Section 3), 

where there are too many interesting historical notes. 
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(10)                                                                      
 
that have been proved only later. Amongst the first ones to have made this, seems there being L. 
Fejér (see (Hille 1959, Section 8.7)), but the argument appears as early as 1903 in a paper of 
Luciano Orlando7 (1903) which starts from Weierstrass’ theorem as treated by Borel’s monograph 
on entire functions. As has already been said above, Weierstrass was led to develop his theory by 
the chief objective to establish the general expression for all analytic functions meromorphic in   
excepts at finitely many points, reaching the scope only in 1876 (see (Weierstrass 1876a)), after a 
series of previous futile attempts, with notable results concerning the class of transcendental entire 
functions. But what was new and sensational in Weierstrass’ construction was the introduction and 
application of the so-called convergence-producing factors (or primary factors or Weierstrass’ 
factors) which have no influence on the behavior and distribution of the zeros. In the Weierstrass’ 
necrology, Poincaré (1899, 6.) said that Weierstrass’ major contribution to the development of 
function theory has just been the discovery of primary factors. Also Hermite was, in a certain sense, 
astonished and intrigued from the introduction of this new Weierstrass’ notion of prime factor, 
which he considered of capital importance in analysis and making later notable studies in this 
direction; he also suggested to Èmile Picard a French translation of the original 1876 Weierstrass’ 
work, so opening a French research trend on this area. En passant, we also point out on the fact that, 
from the notion of prime factor and from the convergence of the infinite product             , 
representing an entire transcendental function vanishing, in a prescribed way, in each   , Hilbert 
drawn inspiration to formulate his valuable algebraic notion of prime ideal8.  
 
6. On the history of entire function factorization theorem, III 
 
Following (Pincherle 1922, Chapter IX, Section 137), (Vivanti 1928, Section 136), (Burckel 1979, 
Chapter XI), (Remmert 1998, Chapters 3 and 6), (Ullrich 1989, Section 3.5) and (Bottazzini & Gray 
2013, Sections 5.11.5 and 6.7), since the late 1850s, Enrico Betti had reached to notable results, 
about convergence properties of infinite products of the type (6), very near to the Weierstrass’ ones 
related to the resolution of a fundamental problem of entire function theory, the so-called 
Weierstrass’ problem9 (see (Pincherle 1922, Chapter IX, Section 137)). Betti exposed these 
outcomes in his celebrated advanced analysis 1859-60 Pisa lectures La teorica delle funzioni 
ellittiche (see (Betti 1903-1913, Tomo I, XXII)), published into the Tomes III and IV of the Annali 
di matematica pura ed applicata, Serie I, after having published, into the Tomo II of these last, an 
Italian translation of the celebrated 1851 Riemann’s inaugural dissertation on complex function 
theory, which can be considered as an introduction to his lectures on elliptic functions. Indeed, in 
the latter, Betti before places an Introduzione on the general principles on complex functions, 
essentially based on these 1859 Riemann lectures. From the point 3. onwards of this introduction, 
Betti argues on entire functions, their finite and infinite zeroes (there called roots), as well as on 

                                                           
7 Luciano Orlando (1887-1915) was an Italian mathematician prematurely died in the First World War – see the very 
brief obituary (Marcolongo 1918). His supervisors were G. Bagnera and R. Marcolongo who led him to make algebraic, 
integral equation theory and mathematical physics researches.      
8 Usually, the notion of prime ideal of commutative algebra, with related operations, would want to be stemmed from 
the factorization of natural numbers.  
9 According to (Forsyth 1918, Chapter V, Section 50) (see also (Bottazzini & Gray 2013, Section 4.2.3.2)), in relation to 
the infinite product expression of an entire transcendental function, prior to 1876 Weierstrass’ paper, attention should be 
also paid to a previous 1845 work of A. Cayley on doubly periodic elliptic functions. Furthermore, according to 
(Tannery & Molk 1893, Section 85), already in some previous 1847 works of G. Eisenstein on elliptic functions, some 
notable problems having to do with the construction of analytic functions with prescribed zeros as a quotient of entire 
functions with the involvement of certain transcendental entire functions of exponential type (similar to the Weierstrass 

problem as historically related to meromorphic functions), had been considered. See also certain function’s quotients 
stemmed from the developments of certain determinants given in (Gordan 1874). 
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possible quotients between them. In particular, taking into account (Briot & Bouquet 1859), he 

reached to the consideration of  infinite products of the type         , where   are the zeros of 

an entire function, hence to the introduction of a factor of the type   , where   is an arbitrary entire 
function, to make convergent this infinite product. Furthermore, Betti dealt with these types of 
infinite products beginning to consider infinite product representations of the following particular 

function                          , which satisfies some functional equations and verifies 

the relation             . Therefore, as Weierstrass too will do later, Betti started from the 
consideration of the infinite product expansion of the inverse of gamma function, in studying the 
factorization of entire functions. Afterwards, Betti proved some theorems which can be considered 
as particular cases of Weierstrass’ result, concluding affirming that 
 

  «Da questi teoremi si deduce che le funzioni intere potranno decomporsi in un numero 
infinito di fattori di primo grado ed esponenziali, e qui comparisce una prima divisione delle 
funzioni intere. Quelle che hanno gl’indici delle radici in linea retta, e quelle che le hanno 
disposte comunque nel piano; le prime, che sono espresse da un prodotto semplicemente 
infinito, le chiameremo di prima classe, le seconde, che sono espresse da un prodotto 
doppiamente infinito, le diremo di seconda classe. Le funzioni di prima classe si dividono 
anch’esse in due specie, la prima, che comprende quelle che hanno gl’indici delle radici 
disposti simmetricamente rispetto a un punto, e che possono esprimersi per un prodotto 
infinito di fattori di primo grado, le altre, che hanno gl’indici delle radici disposti comunque 
sopra la retta, le quali si decomporranno in fattori di primo grado ed esponenziali. Ogni 
funzione intera di prima classe della prima specie potrà decomporsi nel prodotto di più 
funzioni intere della stessa classe di seconda specie, e data una funzione della seconda specie 
se ne potrà sempre trovare un’altra che moltiplicata per la medesima dia per prodotto una 
funzione della prima specie. Le funzioni di seconda classe si dividono anch’esse in due 
specie; la prima comprenderà quelle che hanno gl’indici delle radici disposti egualmente nei 
quattro angoli di due assi ortogonali, in modo che facendo una rotazione intorno all’origine 
di un quarto di circolo, gl’indici di tutte le radici vengano a sovrapporsi, le quali funzioni 
possono esprimersi per un prodotto doppiamente infinito di fattori di primo grado; la 
seconda comprenderà quelle che hanno gl’indici disposti comunque, e si decompongono in un 
prodotto doppiamente infinito di fattori di primo grado e di fattori esponenziali. Data una 
funzione della seconda specie se ne potrà sempre trovare un’altra che moltiplicata per quella 
dia una funzione della prima specie». 

 
Then, Betti goes on with entire function treatment in the Parte Prima of his lessons on elliptic 
functions, followed by the Parte Seconda devoted to quotients of functions, mentioning twice 
Weierstrass in relation either to (Weierstrass 1856a) and to (Weierstrass 1856b). Therefore, Betti 
work on entire function factorization was very forerunner of the Weierstrass’ one a fortiori for what 
will now be said. Indeed, following Francesco Cecioni comments to some works of Ulisse Dini 
(1953-59, Volume II), it turns out that Betti’s work could easily reach, only with very slight 
modifications, the same generality and abstraction of Weierstrass’ one, as Dini explicitly proved in 
(Dini 1881); furthermore, Dini proved too that Betti’s work could be able to give a particular case, 
given in the years 1876-77, of the general Gösta Mittag-Leffler theorem – see (Mittag-Leffler 
1884), (Vivanti 1928, Section 145) and (Bottazzini & Gray 2013, Section 6.7.6) – independently of 
what Weierstrass himself was doing in the same period, in regards to these arguments. Cecioni says 
that this Dini’s work had already been worked out since 1880, whilst the Weierstrass’ theorem was 
published in 1876 – see (Weierstrass 1876). Much before, namely in 1860, Betti had proved, as we 
have already said, a particular but important case of this theorem, albeit he didn’t go beyond, 
because the results achieved by him were enough to his pragmatic scopes concerning Abelian and 
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elliptic functions10; nevertheless, as again Pincherle (1922, Chapter IX, Section 135) claimed later, 
the Weierstrass’ method will be essentially the same of the Betti’s one with slight modifications. In 
the years 1876-77, also G. Mittag-Leffler proved a particular case of a theorem that himself will 
give later, to be precise in 1884, after a long series of previous works in which he gradually, 
through particular cases, reached to the general form of his theorem as we know it nowadays. In the 
meanwhile, Weierstrass reconsidered Mittag-Leffler’s works in the early 1880s, in relation to his 
previous ones, whilst Casorati (1880-82) had too some interesting ideas similar to the Mittag-
Leffler ones. Almost at the same time, amongst others, Ernst Schering (1881), Charles Hermite 
(1881), Émile Picard (1881), Felice Casorati (1882), Ulisse Dini (1881), Paolo Cazzaniga11 (1882) 
and Claude Guichard (1884) achieved notable results about the general problem to build up a 
complex function with prescribed singularities, although related to a generality degree less than the 
Mittag-Leffler results. Thus, the history of Mittag-Leffler theorem makes too its awesome 
appearance within the general history of meromorphic functions, a part of which may be retraced in 
the same Mittag-Leffler 1884 paper in which, amongst others, also this work of Ulisse Dini is 
quoted. However, both Schering (1881, Section XVI) and Casorati (1880-82, p. 269, footnote (***) ), 
in discussing the above mentioned Mittag-Leffler results, quote Betti’s work about Weierstrass’ 
theorem; in particular, the former speaks of Betti’s convergence factors and the latter states that 
 

  «Anche il sig. Dini, nella sua Nota sopra citata, dimostra questo teorema, riducendo lo 
studio del prodotto infinito a quello della serie dei logaritmi dei fattori; riduzione di cui s’era 
già valso felicemente, per il caso di distribuzione degli zeri a distanze non mai minori di una 
quantità fissa d, il sig. Betti nella Introduzione della sua Monografia delle funzioni ellittiche 
(Annali di Matematica, Tomo III, Roma, 1860), dove precede assai più oltre di Gauss nella 
via che mena al teorema del sig. Weierstrass». 
 

Therefore, from Mittag-Leffler works onward, together to all those works made by other 
mathematicians amongst whom Dini, Schering, Casorati, Hermite, Picard, Cazzaniga, Guichard and 
Weierstrass himself, starts the theory of entire transcendental functions whose early history surely 
would need larger space besides this. In any case, with Mittag-Leffler, we have the most general 
theorems for the construction, by infinite products, of an entire function with prescribed 
singularities. To be precise, following (Gonchar et al. 1997, Part I, Introduction) and (Vivanti 1901, 
Section 215), the works by Weierstrass, Mittag-Leffler and Picard, dating back to 1870s, marked 
the beginning of systematic studies of the theory of entire and meromorphic functions. The 
Weierstrass and Mittag-Leffler theorems gave a general description of the structure of entire and 
meromorphic functions, while the representation of entire functions as an infinite product à la 
Weierstrass, served as the basis for studying properties of entire and meromorphic functions. The 
Picard theorem initiated the theory of value distribution of meromorphic functions, while J.L.W.V. 
Jensen works, at the late 1890s, were of a great importance for the further developments of the 
theory of entire and meromorphic functions which started, in the same period, to gradually become 

                                                           
10 In this regards, Salvatore Pincherle (1899, Chapter IX, Section 175) said that Betti solved the Weierstrass’ problem in 
a quite general case.  
11 Some sources refer of Paolo Cazzaniga, whereas others refer of Paolo Gazzaniga. Very likely, they are the same 
person, that is to say, Paolo Gazzanica (1853-1930), an Italian mathematician graduated from Pavia University in 1878 
under the supervision of F. Casorati. In the years 1878-1883, he was interim assistant professor at Pavia, then he spent a 
period of study in Germany under Weierstrass and Kronecker. Afterwards, from 1888, he became professor at the high 
school Tito Livio in Padua, teaching as well in the local University. He was too one of the most influential teachers of 
Tullio Levi-Civita during his high school studies. His researches, mainly concerned with applied algebra and number 
theory. Paolo Gazzaniga has to be distinguished from Tito Camillo Cazzaniga (1872-1900), a prematurely died Italian 
mathematician, graduated from Pavia University in 1896, whose researches concerned matrix theory and analytic 
functions according to the trend of Ernesto Pascal during his teaching in Pavia. Both Tito Cazzaniga and Paolo 
Gazzaniga are quoted in (Vivanti 1901), but not in (Vivanti 1928). 
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a separate scientific discipline after the pioneering works of Laguerre, Hadamard, Poincaré, 
Lindelöff and Borel, until the Rolf Nevanlinna work of early 1900s. 
 
 7. On the history of entire function factorization theorem, IV 
 
As has already been recalled in (Iurato2013), the Weierstrass’ entire function factorization theorem 
has had further remarkable applications in many other pure and applied mathematical contexts. In 
this place, we wish to point out on another possible interesting historical connection there not 
mentioned. To be precise, following (Markuševič 1967, Volume II, Chapters 8 and 9), (Burckel 
1979, Chapter VII) and (Remmert 1998, Chapter 4), a very similar problem to that considered by 
Weierstrass is the one considered in (Markuševič 1967, Volume II, Chapter 8, Theorem 8.5) where, 
roughly, a bounded analytic function with prescribed zeros is constructed by means of certain 
infinite products introduced by Wilhelm Blaschke (1915) in relation to questions related to 
Giuseppe Vitali convergence theorem for sequences of holomorphic functions, and defined upon 
those complex numbers assigned as given zeros of the function that has to be determined. We shall 
return later on such aspects concerning Blaschke products, which form a special class of 
Weierstrass’ products, when we will go on in deepening the history of entire function theory; due to 
this, to our historical purposes, we would want to try to analyze whether the previous Weierstrass’ 
work on entire function factorization theorems have played a certain role in Blaschke’s work.  
 
Note. Recently, a truly masterful, updated and complete history of complex function theory has 
been published, namely the 2013 Bottazzini and Gray book, written by two of the most leading 
historians of mathematics. We have constantly followed this treatise, which may be considered as 
the most systematic and organic historical treatment of this argument published so far. We will refer 
to (Bottazzini & Gray 2013) for any further in-depth study on the subject. 
 
Acknowledgements. My grātiās agō to Professor Umberto Bottazzini of the University of Milan as 
well as to Professor Mauro Nacinovich of the University of Rome ‘’Tor Vergata’’, for having 
promptly and kindly supplied me useful bibliographical comments and hints about my research 
project.  
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