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A Non-Hydrostatic Non-Dispersive
Shallow Water Model

Didier Clamond and Denys Dutykh

Abstract An improvement of the nonlinear shallow water (or Saint-Venant)
equations is proposed. The new model is designed to take into account the effects
resulting from the large spatial and/or temporal variations of the seabed. The
model is derived from a variational principle by choosing the appropriate shallow
water ansatz and imposing suitable constraints. Thus, the derivation procedure
does not explicitly involve any small parameter.

Keywords Varying bathymetry � Steep bottom � Modified Saint-Venant
equations.

1 Introduction

The celebrated classical nonlinear shallow water (Saint-Venant) equations were
derived for the first time in 1871 by Saint-Venant [1]. Currently, these equations
are widely used in practice and the literature counts many thousands of publica-
tions devoted to the applications, validations, or numerical solutions of these
equations.

Some important attempts have been also made to improve this model from
physical point of view. The main attention was paid to various dispersive
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extensions of shallow water equations. The inclusion of dispersive effects resulted
in a big family of the so-called Boussinesq-type equations (c.f., e.g., [2, 3]).

However, there are a few studies which attempt to include the bottom curvature
effect into the classical Saint-Venant. One of the first studies in this direction is
perhaps due to Dressler [4]. Much later, this research was pursued almost in the
same time by Keller [5] and by Bouchut et al. [6]. We note that all these authors
used some variant of the asymptotic expansion method. The present study is a
further attempt to improve the classical Saint-Venant equations by including a
better representation of the bottom shape. As a general derivation procedure, we
choose a variational approach based on a relaxed Lagrangian principle [7].

In the next section, we present the derivation and discussion of some properties
of the improved Saint-Venant equations. Then, we detail the hyperbolic structure
in Sect. 3 and give a numerical example in Sect. 4. Finally, we underline some
main conclusions of this study in Sect. 5.

2 Modified Saint-Venant Equations

Consider an ideal incompressible fluid of constant density q. The horizontal
independent variables are denoted by x ¼ ðx1; x2Þ and the upward vertical one by
y. The origin of the Cartesian coordinate system is chosen such that the surface
y ¼ 0 corresponds to the still water level. The fluid is bounded below by an
impermeable bottom at y ¼ �dðx; tÞ and above by an impermeable free surface at
y ¼ gðx; tÞ. Usually, we assume that the total depth hðx; tÞ ¼ dðx; tÞ þ gðx; tÞ
remains positive hðx; tÞ ffi h0 [ 0 for all times t. Traditionally, in water wave
modeling, the assumption of flow irrotationality is also adopted. The assumptions
of fluid incompressibility and flow irrotationality lead to the Laplace equation for a
velocity potential /ðx; y; tÞ.

It is well known that the water wave problem possesses several variational
structures [8–10]. Recently, we proposed a relaxed Lagrangian variational prin-
ciple which allows much more freedom for constructing approximations in com-
parison with classical formulations, namely the water wave equations can be
derived as the critical point of the functional

RRR
L d2x dt involving the

Lagrangian density [7]:

L ¼ ðgt þ ~l�rg� ~mÞ ~/ þ ðdt þ �l�rd þ �mÞ �/ � 1
2 g g2

þ
Z g

�d
l�u� 1

2u
2 þ mv� 1

2v
2 þ ðr�lþ myÞ/

� �
dy;

ð1Þ

where g is the acceleration due to gravity force, and r ¼ ðox1 ; ox2Þ denotes the
gradient operator in horizontal Cartesian coordinates. Other variables {u; v; l; m}
are the horizontal velocity, the vertical velocity, and the associated Lagrange
multipliers, respectively. The last two additional variables {l; m} are called
pseudo-velocities. They formally arise as Lagrange multipliers associated with the
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constraints u ¼ r/, v ¼ /y. However, once these variables are introduced, the
ansatz can be chosen regardless to their initial definition. The over ‘tildes’ and
‘wedges’ denote, respectively, a quantity traces computed at the free surface y ¼
gðx; tÞ and at the bottom y ¼ �dðx; tÞ. We shall also denote below with ‘bars’ the
quantities averaged over the water depth. Note that the efficiency of the relaxed
variational principle (1) relies on the extra freedom for constructing
approximations.

In order to simplify the full water wave problem, we choose some approximate,
but physically relevant, representations of all variables. In this study, we consider
very long waves in shallow water. This means that the flow is mainly columnar
[11] and that the dispersive effects are negligible. In other words, a vertical slice of
the fluid moves like a rigid body. Thus, we choose a simple shallow water ansatz,
which is independent of the vertical coordinate y, and such that the vertical
velocity v equals the one of the bottom, i.e.,

/ � �/ðx; tÞ; u ¼ l � �uðx; tÞ; v ¼ m � �vðx; tÞ; ð2Þ

where �vðx; tÞ is the vertical velocity at the bottom. In the above ansatz, we take for
simplicity the pseudo-velocity to be equal to the velocity field l ¼ u, m ¼ v. Note
that in other situations, they can differ (see [7] for more examples). With this
ansatz, the Lagrangian density (1) becomes

L ¼ ðht þ �u�rhþ hr��uÞ �/ � 1
2 g g2 þ 1

2 h ð�u2 þ �v2Þ; ð3Þ

where we introduced the total water depth h ¼ gþ d.
Now, we are going to impose one constraint by choosing a particular repre-

sentation of the fluid vertical velocity �vðx; tÞ at the bottom, namely we require fluid
particles to follow the bottom profile:

�v ¼ �dt � �u�rd: ð4Þ

This last identity is nothing else but the bottom impermeability condition within
ansatz (2). Substituting the relation (4) into Lagrangian density (3), the Euler–
Lagrange equations yield

d�/ : 0 ¼ ht þ r�½ h �u �; ð5Þ

d�u : 0 ¼ �u � r�/ � �vrd; ð6Þ

dg : 0 ¼ �/t þ g g þ �u�r�/ � 1
2 ð�u

2 þ �v2Þ: ð7Þ

Taking the gradient of (7) and eliminating �/ from (6) gives us this system of
governing equations

ht þ r�½ h �u � ¼ 0; ð8Þ
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ot ½ �u � �vrd � þ r ½ g g þ 1
2 �u2 þ 1

2 �v2 þ �v dt � ¼ 0; ð9Þ

together with the relations

�u ¼ r�/ þ �vrd; �v ¼ � dt � �u�rd ¼ � dt þ r�/�rd

1 þ jrdj2
:

Further details on these equations and their variants can be found in [12].

3 Hyperbolic Structure

From now on, we consider Eqs. (8, 9) posed in 1D space for simplicity:

ot h þ ox ½ h �u � ¼ 0; ð10Þ

ot �u � �v ox d½ � þ ox g g þ 1
2 �u2 þ 1

2 �v2 þ �v ot d
� �

¼ 0: ð11Þ

In order to make appear conservative variables, we will introduce the potential
velocity variable U ¼ ox

�/. From Eq. (6) it is straightforward to see that U sat-
isfies the relation U ¼ �u� �voxd. Depth averaged and vertical bottom velocities can
be also easily expressed in terms of the potential U. Consequently, using this new
variable Eqs. (10, 11) can be rewritten as a system of conservation laws

ot w þ ox f ðwÞ ¼ 0; ð12Þ

where the vector of conservative variables w and the advective flux f ðwÞ are

w ¼
h

U

ffl �
; f ðwÞ ¼

h
U � ðotdÞðoxdÞ

1þ ðoxdÞ2

gðh� dÞ þ U2 � 2UðoxdÞðotdÞ � ðotdÞ2

2 ½1þ ðoxdÞ2�

0
BBB@

1
CCCA:

The Jacobian matrix of the advective flux f ðwÞ can be easily computed:

AðwÞ ¼ o f ðwÞ
ow

¼ 1

1þ ðoxdÞ2
U � ðotdÞðoxdÞ h

g ð1þ ðoxdÞ2Þ U � ðotdÞðoxdÞ

ffi �
:

The matrix AðwÞ has two distinct eigenvalues:

k� ¼ U � ðotdÞ ðoxdÞ
1 þ ðoxdÞ2

� c ¼ �u � c; c2 � g h

1 þ ðoxdÞ2
:
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Physically, the quantity c represents the phase celerity of long gravity waves. In
the framework of the Saint-Venant equations, it is well known that c ¼

ffiffiffiffiffi
gh
p

. Both

expressions differ by the factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðoxdÞ2

q
. In our model, the long waves are

slowed down by strong bathymetric variations since fluid particles are constrained
to follow the seabed.

4 Numerical Experiment

The equations are solved numerically with a spacial finite volume scheme together
with a high-order adaptive time stepping. In order to obtain a higher-order scheme
in space, we use a piecewise polynomial representation. This is achieved by
various so-called reconstruction procedures, such as MUSCL TVD [13–15], UNO
[16], ENO [17], WENO [18], and many others. In order to solve numerically the
last system of equations, we apply a third-order Runge–Kutta scheme with four
stages, with an embedded second-order method which is used to estimate the local
error and, thus, to adapt the time step size. The model details and its performance
can be found in [19]. Here, we focus of an illustrative example of the new modified
Saint-Venant model: Wave generation by a sudden bottom uplift. This simple
situation has some important implications to tsunami genesis problems.

The bottom is given by the following function:

dðx; tÞ ¼ d0 � a TðtÞHðb2 � x2Þ x

b

	 
2
�1

ffi �2

; TðtÞ ¼ 1 � e�at;

where HðxÞ is the Heaviside step function, a is the deformation amplitude, and b is
the half-length of the uplifting sea floor area. The function TðtÞ provides a com-
plete information on the dynamics of the bottom motion. In tsunami wave liter-
ature, it is called a dynamic scenario. Initially, the free surface is undisturbed and
the velocity field is taken to be identically zero. The values of various parameter
are given in Table 1, where one should note that the quantities are normalized such
that the water depth and the acceleration due to gravity are equal to one.

Table 1 Values of various
parameters used for the wave
generation by a moving
bottom

Slow uplift parameter a1: 2:0 s�1

Fast uplift parameter a2: 12:0 s�1

Gravity acceleration g: 1 m s�2

Final simulation time T: 5 s

Undisturbed water depth d0: 1 m

Deformation amplitude a: 0:25 m

Half-length of the uplift area b: 2:5 m
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The numerical results of the moving bottom test case are shown on the figures
below. On all these figures, the blue solid line corresponds to the modified Saint-
Venant equations (mSV), while the black dashed line refers to its classical
counterpart (SV). The dash-dotted line shows the bottom profile which evolves in
time as well.

First, we present numerical results (see Fig. 1) corresponding to a relatively
slow uplift of a portion of the bottom (a1 ¼ 2:0 s�1). There is a very good
agreement between the two computations. We note that the amplitude of the
bottom deformation a=d ¼ 0:25 is big which explains some small discrepancies on
Fig. 1a between two models. This effect is rather due to the bottom shape than to
its dynamic motion.

Second, we test the same situation but the bottom uplift is fast with the inverse
characteristic time a2 ¼ 12:0 s�1. In this case, the differences between two models
are very flagrant. As it can be seen on Fig. 2 that the modified Saint-Venant
equations give a wave with almost two times higher amplitude. Some differences
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Fig. 1 Slow bottom uplift test case (a1 ¼ 2). a t ¼ 2:0 s. b t ¼ 5:0 s
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Fig. 2 Fast bottom uplift test case (a2 ¼ 12 s�1). a t ¼ 1:0 s. b t ¼ 1:5 s
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in the wave shape persist even during the propagation (see Fig. 3). This test case
clearly shows another advantage of the modified Saint-Venant equations in better
representation of the vertical velocity field.

5 Conclusion

We derived a non-hydrostatic non-dispersive model of shallow water type which
takes into account large bathymetric variations. Previously, some attempt was
already made in the literature to derive shallow water systems for arbitrary slopes
and curvature [4–6]. However, our study contains a certain number of new ele-
ments with respect to the existing state of the art, namely our derivation procedure
relies on a generalized Lagrangian principle of the water wave problem [7].
Moreover, we do not introduce any small parameter, and our approximation is
made through the choice of a suitable constrained ansatz. Resulting governing
equations have a simple form and physically sound structure. Another new ele-
ment is the introduction of arbitrary bottom time variations.

The proposed model is discretized with a finite volume scheme with adaptive
time stepping to capture the underlying complex dynamics. The performance of
this scheme is then illustrated on several test cases. Some implications to tsunami
wave modeling are also suggested at the end of this study.

Among various perspectives, we would like to underline the importance of a
robust run-up algorithm development using the current model. This research
should shift forward the accuracy and our comprehension of a water wave runup
onto complex shores [20, 21].
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Fig. 3 Fast bottom uplift test case (a2 ¼ 12 s�1). a t ¼ 2:0 s. b t ¼ 2:5 s
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